1
|
Shi J, Qian W, Zhou Z, Jin Z. Response of bacterial communities in desert grassland soil profiles to acid mine drainage pollution. CHEMOSPHERE 2024; 369:143831. [PMID: 39608651 DOI: 10.1016/j.chemosphere.2024.143831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 11/25/2024] [Accepted: 11/26/2024] [Indexed: 11/30/2024]
Abstract
Acid mine drainage (AMD) causes serious environmental pollution, which imposes stresses on soil ecosystems. Therefore, it is critical to study the responses of soil bacterial communities to AMD pollution in ecologically fragile desert grasslands. Here, the bacterial community composition, structure, and assembly processes in vertical soil profiles of an AMD contaminated desert grassland were explored using 16S rRNA high-throughput sequencing. The results showed that the surface layers of the profiles exhibited lower pH and higher heavy metals (HMs) content due to AMD influence. The AMD contamination led to reduced bacterial diversity in the surface soil layer of the profiles and significantly changed the bacterial community composition and structure. Gradients in pH, TK, TN, and HMs were the main factors driving bacterial community variability. In contrast to the uncontaminated profile, deterministic processes were important in shaping soil bacterial community in the AMD contaminated profiles. These findings will enhance understanding about the responses of soil bacteria in desert grassland soil to the environmental changes caused by AMD contamination and will improve the remediation of AMD contaminated soil.
Collapse
Affiliation(s)
- Jianfei Shi
- Xinjiang Institute of Ecology and Geography, Chinese Academy of Science/National Desert-Oasis Ecology Construction Engineering Technology Research Center, Urumqi, 830011, China; University of Chinese Academy of Science, Beijing, 100049, China
| | - Wenting Qian
- Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Public Technology Service Center, Urumqi, 830011, China
| | - Zhibin Zhou
- Xinjiang Institute of Ecology and Geography, Chinese Academy of Science/National Desert-Oasis Ecology Construction Engineering Technology Research Center, Urumqi, 830011, China; University of Chinese Academy of Science, Beijing, 100049, China
| | - Zhengzhong Jin
- Xinjiang Institute of Ecology and Geography, Chinese Academy of Science/National Desert-Oasis Ecology Construction Engineering Technology Research Center, Urumqi, 830011, China; University of Chinese Academy of Science, Beijing, 100049, China; Taklimakan Desert Ecosystem Field Observation and Research Station of Xinjiang, Urumqi, 830011, China.
| |
Collapse
|
2
|
Sanchez AA, Haas K, Jackisch C, Hedrich S, Lau MP. Enrichment of dissolved metal(loid)s and microbial organic matter during transit of a historic mine drainage system. WATER RESEARCH 2024; 266:122336. [PMID: 39216129 DOI: 10.1016/j.watres.2024.122336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 08/23/2024] [Accepted: 08/24/2024] [Indexed: 09/04/2024]
Abstract
Water quality degradation by decommissioned mining sites is an environmental issue recognized globally. In the Ore mountains of Central Europe, a wide array of contaminants is released by abandoned under- and aboveground mining sites threatening the quantity and quality of surface and groundwater resources. Here, we focus on the less-explored internal pollution processes within these mines involving organic carbon and microorganisms in trace metal(loid)s mobilization processes. Over an 18-month period, we conducted hydrological and biogeochemical monitoring at the Reiche Zeche mine, a former lead-zinc-silver mine, in Germany, reaching 230 meters below ground, well below the critical zone. Our results show strong seasonal fluctuations in water availability, concentrations of metal(loid)s, pH, and dissolved organic matter (DOM) components across multiple depths. Excess metal(loid) presence during high flow conditions indicated mobilization behavior deviating from conservative dilution. Our findings reveal strong positive correlations between metal(loid) variability and pH (0.894), and between metal(loid) variability and the DOM fluorescent component C2 (-0.910), a proxy for microbial activity. Accordingly, the microbial processes may significantly contribute to the observed metal(loid) composition and fluxes. By elucidating the intricate roles of hydrological and biogeochemical factors in trace metal(loid) mobilization, our research offers a comprehensive framework for improving mine water management and remediation, potentially informing global environmental policies and sustainable mining practices.
Collapse
Affiliation(s)
- Anita Alexandra Sanchez
- Institute of Mineralogy, Technische Universität Bergakademie Freiberg, Brennhausgasse 14, 09599 Freiberg, Germany.
| | - Karl Haas
- Institute of Drilling Technology and Fluid Mining, Technische Universität Bergakademie Freiberg, Germany
| | - Conrad Jackisch
- Institute of Drilling Technology and Fluid Mining, Technische Universität Bergakademie Freiberg, Germany
| | - Sabrina Hedrich
- Institute of Biosciences, Technische Universität Bergakademie Freiberg, Germany
| | - Maximilian P Lau
- Institute of Mineralogy, Technische Universität Bergakademie Freiberg, Brennhausgasse 14, 09599 Freiberg, Germany; Interdisciplinary Environmental Research Centre, Technische Universität Bergakademie Freiberg, Germany
| |
Collapse
|
3
|
Oggerin M, del Moral C, Rodriguez N, Fernandez-Gonzalez N, Martínez JM, Lorca I, Amils R. Metal tolerance of Río Tinto fungi. FRONTIERS IN FUNGAL BIOLOGY 2024; 5:1446674. [PMID: 39479218 PMCID: PMC11521807 DOI: 10.3389/ffunb.2024.1446674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Accepted: 09/23/2024] [Indexed: 11/02/2024]
Abstract
Southwest Spain's Río Tinto is a stressful acidic microbial habitat with a noticeably high concentration of toxic heavy metals. Nevertheless, it has an unexpected degree of eukaryotic diversity in its basin, with a high diversity of fungal saprotrophs. Although some studies on the eukaryotic diversity in Rio Tinto have been published, none of them used molecular methodologies to describe the fungal diversity and taxonomic affiliations that emerge along the river in different seasons. The aim of the present study was to isolate and describe the seasonal diversity of the fungal community in the Río Tinto basin and its correlation with the physicochemical parameters existing along the river's course. The taxonomic affiliation of 359 fungal isolates, based on the complete internal transcribed spacer DNA sequences, revealed a high degree of diversity, identifying species belonging primarily to the phylum Ascomycota, but representatives of the Basidiomycota and Mucoromycota phyla were also present. In total, 40 representative isolates along the river were evaluated for their tolerance to toxic heavy metals. Some of the isolates were able to grow in the presence of 1000 mM of Cu2+, 750 mM of As5+ and Cd2+, and 100 mM of Co2+, Ni2+, and Pb2+.
Collapse
Affiliation(s)
- Monike Oggerin
- Centro de Biología Molecular Severo Ochoa (CBMSO, CSIC-UAM), Universidad Autónoma de Madrid, Madrid, Spain
| | - Catalina del Moral
- Centro de Biología Molecular Severo Ochoa (CBMSO, CSIC-UAM), Universidad Autónoma de Madrid, Madrid, Spain
| | | | | | - José Manuel Martínez
- Centro de Biología Molecular Severo Ochoa (CBMSO, CSIC-UAM), Universidad Autónoma de Madrid, Madrid, Spain
| | - Iván Lorca
- Centro de Biología Molecular Severo Ochoa (CBMSO, CSIC-UAM), Universidad Autónoma de Madrid, Madrid, Spain
| | - Ricardo Amils
- Centro de Biología Molecular Severo Ochoa (CBMSO, CSIC-UAM), Universidad Autónoma de Madrid, Madrid, Spain
- Centro de Astrobiología (CAB, INTA-CSIC), Madrid, Spain
| |
Collapse
|
4
|
Gao SM, Wang P, Li Q, Shu WS, Tang LY, Lin ZL, Li JT, Huang LN. Deciphering microbial metabolic interactions and their implications for community dynamics in acid mine drainage sediments. JOURNAL OF HAZARDOUS MATERIALS 2024; 478:135478. [PMID: 39137550 DOI: 10.1016/j.jhazmat.2024.135478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 07/28/2024] [Accepted: 08/08/2024] [Indexed: 08/15/2024]
Abstract
The microbially-mediated reduction processes have potential for the bioremediation of acid mine drainage (AMD), which represents a worldwide environment problem. However, we know little about the microbial interactions in anaerobic AMD sediments. Here we utilized genome-resolved metagenomics to uncover the nature of cooperative and competitive metabolic interactions in 90 AMD sediments across Southern China. Our analyses recovered well-represented prokaryotic communities through the reconstruction of 2625 population genomes. Functional analyses of these genomes revealed extensive metabolic handoffs which occurred more frequently in nitrogen metabolism than in sulfur metabolism, as well as stable functional redundancy across sediments resulting from populations with low genomic relatedness. Genome-scale metabolic modeling showed that metabolic competition promoted microbial co-occurrence relationships, suggesting that community assembly was dominated by habitat filtering in sediments. Notably, communities colonizing more extreme conditions tended to be highly competitive, which was typically accompanied with increased network complexity but decreased stability of the microbiome. Finally, our results demonstrated that heterotrophic Thermoplasmatota associated with ferric iron and sulfate reduction contributed most to the elevated levels of competition. Our study shed light on the cooperative and competitive metabolisms of microbiome in the hazardous AMD sediments, which may provide preliminary clues for the AMD bioremediation in the future.
Collapse
Affiliation(s)
- Shao-Ming Gao
- School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, PR China
| | - Pandeng Wang
- School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, PR China
| | - Qi Li
- School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, PR China
| | - Wen-Sheng Shu
- School of Life Sciences, South China Normal University, Guangzhou 510631, PR China
| | - Ling-Yun Tang
- School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, PR China
| | - Zhi-Liang Lin
- School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, PR China
| | - Jin-Tian Li
- School of Life Sciences, South China Normal University, Guangzhou 510631, PR China.
| | - Li-Nan Huang
- School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, PR China.
| |
Collapse
|
5
|
Valdez‐Nuñez LF, Kappler A, Ayala‐Muñoz D, Chávez IJ, Mansor M. Acidophilic sulphate-reducing bacteria: Diversity, ecophysiology, and applications. ENVIRONMENTAL MICROBIOLOGY REPORTS 2024; 16:e70019. [PMID: 39396517 PMCID: PMC11471286 DOI: 10.1111/1758-2229.70019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Accepted: 09/10/2024] [Indexed: 10/15/2024]
Abstract
Acidophilic sulphate-reducing bacteria (aSRB) are widespread anaerobic microorganisms that perform dissimilatory sulphate reduction and have key adaptations to tolerate acidic environments (pH <5.0), such as proton impermeability and Donnan potential. This diverse prokaryotic group is of interest from physiological, ecological, and applicational viewpoints. In this review, we summarize the interactions between aSRB and other microbial guilds, such as syntrophy, and their roles in the biogeochemical cycling of sulphur, iron, carbon, and other elements. We discuss the biotechnological applications of aSRB in treating acid mine drainage (AMD, pH <3), focusing on their ability to produce biogenic sulphide and precipitate metals, particularly in the context of utilizing microbial consortia instead of pure isolates. Metal sulphide nanoparticles recovered after AMD treatment have multiple potential technological uses, including in electronics and biomedicine, contributing to a cost-effective circular economy. The products of aSRB metabolisms, such as biominerals and isotopes, could also serve as biosignatures to understand ancient and extant microbial life in the universe. Overall, aSRB are active components of the sulphur and carbon cycles under acidic conditions, with potential natural and technological implications for the world around us.
Collapse
Affiliation(s)
- Luis Felipe Valdez‐Nuñez
- Biotechnology, Department of Biological SciencesNational University of Cajamarca. Av. Atahualpa 1050CajamarcaPeru
| | - Andreas Kappler
- Geomicrobiology, Department of GeosciencesUniversity of TübingenTübingenGermany
- Cluster of Excellence: EXC 2124Controlling Microbes to Fight InfectionTübingenGermany
| | - Diana Ayala‐Muñoz
- Biotechnology Engineering, Department of Engineering and Applied SciencesUniversity of Las AméricasQuitoEcuador
| | - Idelso Jamín Chávez
- Biotechnology, Department of Biological SciencesNational University of Cajamarca. Av. Atahualpa 1050CajamarcaPeru
| | - Muammar Mansor
- Geomicrobiology, Department of GeosciencesUniversity of TübingenTübingenGermany
| |
Collapse
|
6
|
Willard DJ, H. Manesh MJ, Bing RG, Alexander BH, Kelly RM. Phenotype-driven assessment of the ancestral trajectory of sulfur biooxidation in the thermoacidophilic archaea Sulfolobaceae. mBio 2024; 15:e0103324. [PMID: 38953360 PMCID: PMC11323534 DOI: 10.1128/mbio.01033-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Accepted: 06/06/2024] [Indexed: 07/04/2024] Open
Abstract
Certain members of the family Sulfolobaceae represent the only archaea known to oxidize elemental sulfur, and their evolutionary history provides a framework to understand the development of chemolithotrophic growth by sulfur oxidation. Here, we evaluate the sulfur oxidation phenotype of Sulfolobaceae species and leverage comparative genomic and transcriptomic analysis to identify the key genes linked to sulfur oxidation. Metabolic engineering of the obligate heterotroph Sulfolobus acidocaldarius revealed that the known cytoplasmic components of sulfur oxidation alone are not sufficient to drive prolific sulfur oxidation. Imaging analysis showed that Sulfolobaceae species maintain proximity to the sulfur surface but do not necessarily contact the substrate directly. This indicates that a soluble form of sulfur must be transported to initiate cytoplasmic sulfur oxidation. Conservation patterns and transcriptomic response implicate an extracellular tetrathionate hydrolase and putative thiosulfate transporter in a newly proposed mechanism of sulfur acquisition in the Sulfolobaceae.IMPORTANCESulfur is one of the most abundant elements on earth (2.9% by mass), so it makes sense that the earliest biology found a way to use sulfur to create and sustain life. However, beyond evolutionary significance, sulfur and the molecules it comprises have important technological significance, not only in chemicals such as sulfuric acid and in pyritic ores containing critical metals but also as a waste product from oil and gas production. The thermoacidophilic Sulfolobaceae are unique among the archaea as sulfur oxidizers. The trajectory for how sulfur biooxidation arose and evolved can be traced using experimental and bioinformatic analyses of the available genomic data set. Such analysis can also inform the process by which extracellular sulfur is acquired and transported by thermoacidophilic archaea, a phenomenon that is critical to these microorganisms but has yet to be elucidated.
Collapse
Affiliation(s)
- Daniel J. Willard
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina, USA
| | - Mohamad J. H. Manesh
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina, USA
| | - Ryan G. Bing
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina, USA
| | - Benjamin H. Alexander
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina, USA
| | - Robert M. Kelly
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina, USA
| |
Collapse
|
7
|
Shi J, Qian W, Zhou Z, Jin Z, Gao X, Fan J, Wang X. Effects of acid mine drainage and sediment contamination on soil bacterial communities, interaction patterns, and functions in alkaline desert grassland. JOURNAL OF HAZARDOUS MATERIALS 2024; 474:134832. [PMID: 38852245 DOI: 10.1016/j.jhazmat.2024.134832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 05/22/2024] [Accepted: 06/04/2024] [Indexed: 06/11/2024]
Abstract
Acid mine drainage and sediments (AMD-Sed) contamination pose serious ecological and environmental problems. This study investigated the geochemical parameters and bacterial communities in the sediment layer (A) and buried soil layer (B) of desert grassland contaminated with AMD-Sed and compared them to an uncontaminated control soil layer (CK). The results showed that soil pH was significantly lower and iron, sulfur, and electroconductivity levels were significantly higher in the B layer compared to CK. A and B were dominated by Proteobacteria and Actinobacteriota, while CK was dominated by Firmicutes and Bacteroidota. The pH, Fe, S, and potentially toxic elements (PTEs) gradients were key influences on bacterial community variability, with AMD contamination characterization factors (pH, Fe, and S) explaining 48.6 % of bacterial community variation. A bacterial co-occurrence network analysis showed that AMD-Sed contamination significantly affected topological properties, reduced network complexity and stability, and increased the vulnerability of desert grassland soil ecosystems. In addition, AMD-Sed contamination reduced C/N-cycle functioning in B, but increased S-cycle functioning. The results highlight the effects of AMD-Sed contamination on soil bacterial communities and ecological functions in desert grassland and provide a reference basis for the management and restoration of desert grassland ecosystems in their later stages.
Collapse
Affiliation(s)
- Jianfei Shi
- Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, Xinjiang, China; University of Chinese Academy of Sciences, Beijing 100049, China; National Engineering Technology Research Center for Desert-Oasis Ecological Construction, Urumqi, Xinjiang 830011, China
| | - Wenting Qian
- Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, Xinjiang, China; Public Technology Service Center, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, Xinjiang, China
| | - Zhibin Zhou
- Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, Xinjiang, China; National Engineering Technology Research Center for Desert-Oasis Ecological Construction, Urumqi, Xinjiang 830011, China; Taklimakan Station for Desert Research, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China
| | - Zhengzhong Jin
- Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, Xinjiang, China; National Engineering Technology Research Center for Desert-Oasis Ecological Construction, Urumqi, Xinjiang 830011, China; Taklimakan Station for Desert Research, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China.
| | - Xin Gao
- Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, Xinjiang, China; National Engineering Technology Research Center for Desert-Oasis Ecological Construction, Urumqi, Xinjiang 830011, China; Taklimakan Station for Desert Research, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China
| | - Jinglong Fan
- Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, Xinjiang, China; National Engineering Technology Research Center for Desert-Oasis Ecological Construction, Urumqi, Xinjiang 830011, China; Taklimakan Station for Desert Research, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China
| | - Xin Wang
- Shaanxi Forestry Survey and Planning Institute, Xi'an, Shaanxi 710082, China
| |
Collapse
|
8
|
Twible LE, Whaley-Martin K, Chen LX, Colenbrander Nelson T, Arrey JL, Jarolimek CV, King JJ, Ramilo L, Sonnenberg H, Banfield JF, Apte SC, Warren LA. pH and thiosulfate dependent microbial sulfur oxidation strategies across diverse environments. Front Microbiol 2024; 15:1426584. [PMID: 39101034 PMCID: PMC11294248 DOI: 10.3389/fmicb.2024.1426584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Accepted: 06/18/2024] [Indexed: 08/06/2024] Open
Abstract
Sulfur oxidizing bacteria (SOB) play a key role in sulfur cycling in mine tailings impoundment (TI) waters, where sulfur concentrations are typically high. However, our understanding of SOB sulfur cycling via potential S oxidation pathways (sox, rdsr, and S4I) in these globally ubiquitous contexts, remains limited. Here, we identified TI water column SOB community composition, metagenomics derived metabolic repertoires, physicochemistry, and aqueous sulfur concentration and speciation in four Canadian base metal mine, circumneutral-alkaline TIs over four years (2016 - 2019). Identification and examination of genomes from nine SOB genera occurring in these TI waters revealed two pH partitioned, metabolically distinct groups, which differentially influenced acid generation and sulfur speciation. Complete sox (csox) dominant SOB (e.g., Halothiobacillus spp., Thiomonas spp.) drove acidity generation and S2O3 2- consumption via the csox pathway at lower pH (pH ~5 to ~6.5). At circumneutral pH conditions (pH ~6.5 to ~8.5), the presence of non-csox dominant SOB (hosting the incomplete sox, rdsr, and/or other S oxidation reactions; e.g. Thiobacillus spp., Sulfuriferula spp.) were associated with higher [S2O3 2-] and limited acidity generation. The S4I pathway part 1 (tsdA; S2O3 2- to S4O6 2-), was not constrained by pH, while S4I pathway part 2 (S4O6 2- disproportionation via tetH) was limited to Thiobacillus spp. and thus circumneutral pH values. Comparative analysis of low, natural (e.g., hydrothermal vents and sulfur hot springs) and high (e.g., Zn, Cu, Pb/Zn, and Ni tailings) sulfur systems literature data with these TI results, reveals a distinct TI SOB mining microbiome, characterized by elevated abundances of csox dominant SOB, likely sustained by continuous replenishment of sulfur species through tailings or mining impacted water additions. Our results indicate that under the primarily oxic conditions in these systems, S2O3 2- availability plays a key role in determining the dominant sulfur oxidation pathways and associated geochemical and physicochemical outcomes, highlighting the potential for biological management of mining impacted waters via pH and [S2O3 2-] manipulation.
Collapse
Affiliation(s)
- Lauren E. Twible
- Department of Civil and Mineral Engineering, University of Toronto, Toronto, ON, Canada
| | - Kelly Whaley-Martin
- Department of Civil and Mineral Engineering, University of Toronto, Toronto, ON, Canada
| | - Lin-Xing Chen
- Department of Earth and Planetary Science, University of California, Berkeley, Berkeley, CA, United States
| | | | - James L.S. Arrey
- Department of Civil and Mineral Engineering, University of Toronto, Toronto, ON, Canada
| | - Chad V. Jarolimek
- School of Mathematical and Physical Sciences, University of Technology Sydney, Ultimo, NSW, Australia
| | - Josh J. King
- Commonwealth Scientific Industrial and Research Organization, Black Mountain, ACT, Australia
| | | | | | - Jillian F. Banfield
- Department of Earth and Planetary Science, University of California, Berkeley, Berkeley, CA, United States
| | - Simon C. Apte
- Commonwealth Scientific Industrial and Research Organization, Clayton, VIC, Australia
| | - Lesley A. Warren
- Department of Civil and Mineral Engineering, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
9
|
Wei X, Chen H, Zhu F, Li J. Microbial community structure in an uranium-rich acid mine drainage site: implication for the biogeochemical release of uranium. Front Microbiol 2024; 15:1412599. [PMID: 38993490 PMCID: PMC11238263 DOI: 10.3389/fmicb.2024.1412599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Accepted: 06/13/2024] [Indexed: 07/13/2024] Open
Abstract
The generation of acid mine drainage (AMD) characterized by high acidity and elevated levels of toxic metals primarily results from the oxidation and dissolution of sulfide minerals facilitated by microbial catalysis. Although there has been significant research on microbial diversity and community composition in AMD, as well as the relationship between microbes and heavy metals, there remains a gap in understanding the microbial community structure in uranium-enriched AMD sites. In this paper, water samples with varying levels of uranium pollution were collected from an abandoned stone coal mine in Jiangxi Province, China during summer and winter, respectively. Geochemical and high-throughput sequencing analyses were conducted to characterize spatiotemporal variations in bacterial diversity and community composition along pollution groups. The results indicated that uranium was predominantly concentrated in the AMD of new pits with strong acid production capacity, reaching a peak concentration of 9,370 μg/L. This was accompanied by elevated acidity and concentrations of iron and total phosphorus, which were identified as significant drivers shaping the composition of bacterial communities, rather than fluctuations in seasonal conditions. In an extremely polluted environment (pH < 3), bacterial diversity was lowest, with a predominant presence of acidophilic iron-oxidizing bacteria (such as Ferrovum), and a portion of acidophilic heterotrophic bacteria synergistically coexisting. As pollution levels decreased, the microbial community gradually evolved to cohabitation of various pH-neutral heterotrophic species, ultimately reverting back to background level. The pH was the dominant factor determining biogeochemical release of uranium in AMD. Acidophilic and uranium-tolerant bacteria, including Ferrovum, Leptospirillum, Acidiphilium, and Metallibacterium, were identified as playing key roles in this process through mechanisms such as enhancing acid production rate and facilitating organic matter biodegradation.
Collapse
Affiliation(s)
- Xinxiang Wei
- School of Water Resources and Environmental Engineering, East China University of Technology, Nanchang, Jiangxi, China
- Department of Hydraulic Engineering, Jiangxi Water Resource Institute, Nanchang, Jiangxi, China
| | - Hongliang Chen
- School of Water Resources and Environmental Engineering, East China University of Technology, Nanchang, Jiangxi, China
| | - Fangfang Zhu
- College of Nursing Health Sciences, Yunnan Open University, Kunming, Yunnan, China
| | - Jiang Li
- State Key Laboratory of Nuclear Resources and Environment, East China University of Technology, Nanchang, Jiangxi, China
- Teachers’ College, East China University of Technology, Nanchang, Jiangxi, China
| |
Collapse
|
10
|
Chen M, Grégoire DS, Bain JG, Blowes DW, Hug LA. Legacy copper/nickel mine tailings potentially harbor novel iron/sulfur cycling microorganisms within highly variable communities. Appl Environ Microbiol 2024; 90:e0014324. [PMID: 38814057 PMCID: PMC11218620 DOI: 10.1128/aem.00143-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 05/07/2024] [Indexed: 05/31/2024] Open
Abstract
The oxidation of sulfide-bearing mine tailings catalyzed by acidophilic iron and sulfur-oxidizing bacteria releases toxic metals and other contaminants into soil and groundwater as acid mine drainage. Understanding the environmental variables that control the community structure and metabolic activity of microbes indigenous to tailings (especially the abiotic stressors of low pH and high dissolved metal content) is crucial to developing sustainable bioremediation strategies. We determined the microbial community composition along two continuous vertical gradients of Cu/Ni mine tailings at each of two tailings impoundments near Sudbury, Ontario. 16S rRNA amplicon data showed high variability in community diversity and composition between locations, as well as at different depths within each location. A temporal comparison for one tailings location showed low fluctuation in microbial communities across 2 years. Differences in community composition correlated most strongly with pore-water pH, Eh, alkalinity, salinity, and the concentration of several dissolved metals (including iron, but not copper or nickel). The relative abundances of individual genera differed in their degrees of correlation with geochemical factors. Several abundant lineages present at these locations have not previously been associated with mine tailings environments, including novel species predicted to be involved in iron and sulfur cycling.IMPORTANCEMine tailings represent a significant threat to North American freshwater, with legacy tailings areas generating acid mine drainage (AMD) that contaminates rivers, lakes, and aquifers. Microbial activity accelerates AMD formation through oxidative metabolic processes but may also ameliorate acidic tailings by promoting secondary mineral precipitation and immobilizing dissolved metals. Tailings exhibit high geochemical variation within and between mine sites and may harbor many novel extremophiles adapted to high concentrations of toxic metals. Characterizing the unique microbiomes associated with tailing environments is key to identifying consortia that may be used as the foundation for innovative mine-waste bioremediation strategies. We provide an in-depth analysis of microbial diversity at four copper/nickel mine tailings impoundments, describe how communities (and individual lineages) differ based on geochemical gradients, predict organisms involved in AMD transformations, and identify taxonomically novel groups present that have not previously been observed in mine tailings.
Collapse
Affiliation(s)
- Molly Chen
- Department of Biology, University of Waterloo, Waterloo, Ontario, Canada
| | - Daniel S. Grégoire
- Department of Biology, University of Waterloo, Waterloo, Ontario, Canada
- Department of Chemistry, Carleton University, Ottawa, Ontario, Canada
| | - Jeffrey G. Bain
- Department of Earth and Environmental Sciences, University of Waterloo, Waterloo, Ontario, Canada
| | - David W. Blowes
- Department of Earth and Environmental Sciences, University of Waterloo, Waterloo, Ontario, Canada
| | - Laura A. Hug
- Department of Biology, University of Waterloo, Waterloo, Ontario, Canada
| |
Collapse
|
11
|
O’Toole GA. We have a community problem. J Bacteriol 2024; 206:e0007324. [PMID: 38529952 PMCID: PMC11025320 DOI: 10.1128/jb.00073-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/27/2024] Open
Affiliation(s)
- George A. O’Toole
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, USA
| |
Collapse
|
12
|
Sharma A, Taubert M, Pérez-Carrascal OM, Lehmann R, Ritschel T, Totsche KU, Lazar CS, Küsel K. Iron coatings on carbonate rocks shape the attached bacterial aquifer community. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 917:170384. [PMID: 38281639 DOI: 10.1016/j.scitotenv.2024.170384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 01/12/2024] [Accepted: 01/21/2024] [Indexed: 01/30/2024]
Abstract
Most studies of groundwater ecosystems target planktonic microbes, which are easily obtained via water samples. In contrast, little is known about the diversity and function of microbes adhering to rock surfaces, particularly to consolidated rocks. To investigate microbial attachment to rock surfaces, we incubated rock chips from fractured aquifers in limestone-mudstone alternations in bioreactors fed with groundwater from two wells representing oxic and anoxic conditions. Half of the chips were coated with iron oxides, representing common secondary mineralization in fractured rock. Our time-series analysis showed bacteria colonizing the chips within two days, reaching cell numbers up to 4.16 × 105 cells/mm2 after 44 days. Scanning electron microscopy analyses revealed extensive colonization but no multi-layered biofilms, with chips from oxic bioreactors more densely colonized than from anoxic ones. Estimated attached-to-planktonic cell ratios yielded values of up to 106: 1 and 103: 1, for oxic and anoxic aquifers, respectively. We identified distinct attached and planktonic communities with an overlap between 17 % and 42 %. Oxic bioreactors were dominated by proteobacterial genera Aquabacterium and Rhodoferax, while Rheinheimera and Simplicispira were the key players of anoxic bioreactors. Motility, attachment, and biofilm formation traits were predicted in major genera based on groundwater metagenome-assembled genomes and reference genomes. Early rock colonizers appeared to be facultative autotrophs, capable of fixing CO2 to synthesize biomass and a biofilm matrix. Late colonizers were predicted to possess biofilm degrading enzymes such as beta-glucosidase, beta-galactosidase, amylases. Fe-coated chips of both bioreactors featured more potential iron reducers and oxidizers than bare rock chips. As secondary minerals can also serve as energy source, they might favor primary production and thus contribute to subsurface ecosystem services like carbon fixation. Since most subsurface microbes seem to be attached, their contribution to ecosystem services should be considered in future studies.
Collapse
Affiliation(s)
- Alisha Sharma
- Aquatic Geomicrobiology, Institute of Biodiversity, Friedrich Schiller University Jena, Dornburger Strasse 159, 07743 Jena, Germany
| | - Martin Taubert
- Aquatic Geomicrobiology, Institute of Biodiversity, Friedrich Schiller University Jena, Dornburger Strasse 159, 07743 Jena, Germany; Cluster of Excellence Balance of the Microverse, Friedrich Schiller University Jena, Grüne Aue, 07745 Jena, Germany
| | - Olga M Pérez-Carrascal
- Aquatic Geomicrobiology, Institute of Biodiversity, Friedrich Schiller University Jena, Dornburger Strasse 159, 07743 Jena, Germany; Cluster of Excellence Balance of the Microverse, Friedrich Schiller University Jena, Grüne Aue, 07745 Jena, Germany
| | - Robert Lehmann
- Hydrogeology, Institute of Geosciences, Friedrich Schiller University Jena, Burgweg 11, 07749 Jena, Germany
| | - Thomas Ritschel
- Hydrogeology, Institute of Geosciences, Friedrich Schiller University Jena, Burgweg 11, 07749 Jena, Germany
| | - Kai U Totsche
- Cluster of Excellence Balance of the Microverse, Friedrich Schiller University Jena, Grüne Aue, 07745 Jena, Germany; Hydrogeology, Institute of Geosciences, Friedrich Schiller University Jena, Burgweg 11, 07749 Jena, Germany
| | - Cassandre S Lazar
- Department of Biological Sciences, University of Quebec at Montreal, C.P. 8888, Succ. Centre-Ville, Montréal, QC H3C 3P8, Canada
| | - Kirsten Küsel
- Aquatic Geomicrobiology, Institute of Biodiversity, Friedrich Schiller University Jena, Dornburger Strasse 159, 07743 Jena, Germany; Cluster of Excellence Balance of the Microverse, Friedrich Schiller University Jena, Grüne Aue, 07745 Jena, Germany; German Center for Integrative Biodiversity Research (iDiv), Halle-Jena-Leipzig, Puschstrasse 4, 04103 Leipzig, Germany.
| |
Collapse
|
13
|
Hoagland B, Rasmussen KL, Singha K, Spear JR, Navarre-Sitchler A. Metal-oxide precipitation influences microbiome structure in hyporheic zones receiving acid rock drainage. Appl Environ Microbiol 2024; 90:e0198723. [PMID: 38391193 PMCID: PMC10952486 DOI: 10.1128/aem.01987-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Accepted: 01/14/2024] [Indexed: 02/24/2024] Open
Abstract
Streams impacted by historic mining activity are characterized by acidic pH, unique microbial communities, and abundant metal-oxide precipitation, all of which can influence groundwater-surface water exchange. We investigate how metal-oxide precipitates and hyporheic mixing mediate the composition of microbial communities in two streams receiving acid-rock and mine drainage near Silverton, Colorado, USA. A large, neutral pH hyporheic zone facilitated the precipitation of metal particles/colloids in hyporheic porewaters. A small, low pH hyporheic zone, limited by the presence of a low-permeability, iron-oxyhydroxide layer known as ferricrete, led to the formation of steep geochemical gradients and high dissolved-metal concentrations. To determine how these two hyporheic systems influence microbiome composition, we installed well clusters and deployed in situ microcosms in each stream to sample porewaters and sediments for 16S rRNA gene sequencing. Results indicated that distinct hydrogeochemical conditions were present above and below the ferricrete in the low pH system. A positive feedback loop may be present in the low pH stream where microbially mediated precipitation of iron-oxides contributes to additional clogging of hyporheic pore spaces, separating abundant, iron-oxidizing bacteria (Gallionella spp.) above the ferricrete from rare, low-abundance bacteria below the ferricrete. Metal precipitates and colloids that formed in the neutral pH hyporheic zone were associated with a more diverse phylogenetic community of nonmotile, nutrient-cycling bacteria that may be transported through hyporheic pore spaces. In summary, biogeochemical conditions influence, and are influenced by, hyporheic mixing, which mediates the distribution of micro-organisms and, thus, the cycling of metals in streams receiving acid-rock and mine drainage. IMPORTANCE In streams receiving acid-rock and mine drainage, the abundant precipitation of iron minerals can alter how groundwater and surface water mix along streams (in what is known as the "hyporheic zone") and may shape the distribution of microbial communities. The findings presented here suggest that neutral pH streams with large, well-mixed hyporheic zones may harbor and transport diverse microorganisms attached to particles/colloids through hyporheic pore spaces. In acidic streams where metal oxides clog pore spaces and limit hyporheic exchange, iron-oxidizing bacteria may dominate and phylogenetic diversity becomes low. The abundance of iron-oxidizing bacteria in acid mine drainage streams has the potential to contribute to additional clogging of hyporheic pore spaces and the accumulation of toxic metals in the hyporheic zone. This research highlights the dynamic interplay between hydrology, geochemistry, and microbiology at the groundwater-surface water interface of acid mine drainage streams.
Collapse
Affiliation(s)
- Beth Hoagland
- Department of Geology and Geological Engineering, Hydrologic Science and Engineering Program, Colorado School of Mines, Golden, Colorado, USA
- S.S. Papadopulos & Associates, Inc., Rockville, Maryland, USA
| | - Kalen L. Rasmussen
- Department of Civil and Environmental Engineering, Colorado School of Mines, Golden, Colorado, USA
| | - Kamini Singha
- Department of Geology and Geological Engineering, Hydrologic Science and Engineering Program, Colorado School of Mines, Golden, Colorado, USA
| | - John R. Spear
- Department of Civil and Environmental Engineering, Colorado School of Mines, Golden, Colorado, USA
| | - Alexis Navarre-Sitchler
- Department of Geology and Geological Engineering, Hydrologic Science and Engineering Program, Colorado School of Mines, Golden, Colorado, USA
| |
Collapse
|
14
|
Bharat AP, Singh AK, Mahato MK. Heavy metal geochemistry and toxicity assessment of water environment from Ib valley coalfield, India: Implications to contaminant source apportionment and human health risks. CHEMOSPHERE 2024; 352:141452. [PMID: 38354867 DOI: 10.1016/j.chemosphere.2024.141452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 10/30/2023] [Accepted: 02/10/2024] [Indexed: 02/16/2024]
Abstract
The present study aims to investigate the hydrogeochemical evolution of heavy metals and assesses impacts of mining activities on the groundwater resources and potential human health risks in the coal mining areas of Ib valley coalfield. In this perspective, a total of one hundred and two mine water and groundwater samples were collected from different locations. The water samples were analysed for some selected heavy metals i.e. Mn, Cu, Pb, Zn, Ni, Co, As, Se, Al, Sr, Ba, Cd, Cr, V and Fe using ICP-MS. In addition, pH and SO42- concentration were also measured following APHA procedure. The water pH in the Ib valley coalfields ranged from 3.26 to 8.18 for mine water and 5.23 to 8.52 for groundwater, indicating acidic to alkaline nature of water. Mn in mine water and Zn in groundwater environment were observed as the most dominant metals. The water hazard index (WHI) reflects that around 80% of mine water are non-toxic (WHI<5), 5% slightly toxic (510) and 15% extremely toxic (WHI>15). Relatively high pH and low concentration of dissolved metals and SO42- in groundwater as compared to mine water indicate lesser impact of mining activities. The calculated drinking water quality index (DWQI) suggests that Mn, Al, Ni and Fe in mine water and Mn, Fe, Ni and Pb in groundwater were the major objectionable metals which caused the water quality deterioration for drinking uses. Further, the non-carcinogenic health risk assessment for adult male, female and child populations identifies Co, Mn, Ni as the key elements making the water hazardous for human health. Comparatively higher ratio of ingestion rate and body weight in child population might be causing higher health risks in child population as compared to adult male and adult female population.
Collapse
Affiliation(s)
- Abhishek Pandey Bharat
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, Uttar Pradesh, India; CSIR-Central Institute of Mining and Fuel Research, Dhanbad 826001, Jharkhand, India.
| | - Abhay Kumar Singh
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, Uttar Pradesh, India; CSIR-Central Institute of Mining and Fuel Research, Dhanbad 826001, Jharkhand, India
| | - Mukesh Kumar Mahato
- Department of Environmental Studies, Lakshmibai College, University of Delhi, India
| |
Collapse
|
15
|
Verbuyst BR, Pakostova E, Paktunc D, Bain JG, Finfrock YZ, Saurette EM, Ptacek CJ, Blowes DW. Microbiological and geochemical characterization of As-bearing tailings and underlying sediments. JOURNAL OF HAZARDOUS MATERIALS 2024; 466:133554. [PMID: 38246057 DOI: 10.1016/j.jhazmat.2024.133554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 01/02/2024] [Accepted: 01/16/2024] [Indexed: 01/23/2024]
Abstract
Over the past 100 years, extensive oxidation of As-bearing sulfide-rich tailings from the abandoned Long Lake Gold Mine (Canada) has resulted in the formation of acid mine drainage (pH 2.0-3.9) containing high concentrations of dissolved As (∼400 mg L-1), SO42-, Fe and other metals. Dissolved As is predominantly present as As(III), with increased As(V) near the tailings surface. Pore-gas O2 is depleted to < 1 vol% in the upper 30-80 cm of the tailings profile. The primary sulfides, pyrite and arsenopyrite, are highly oxidized in the upper portions of the tailings. Elevated proportions of sulfide-oxidizing prokaryotes are present in this zone (mean 32.3% of total reads). The tailings are underlain by sediments rich in organic C. Enrichment in δ34S-SO4 in pore-water samples in the organic C-rich zone is consistent with dissimilatory sulfate reduction. Synchrotron-based spectroscopy indicates an abundance of ferric arsenate phases near the impoundment surface and the presence of secondary arsenic sulfides in the organic-C beneath the tailings. The persistence of elevated As concentrations beneath the tailings indicates precipitation of secondary As sulfides is not sufficient to completely remove dissolved As. The oxidation of sulfides and release of As is expected to continue for decades. The findings will inform future remediation efforts and provide a foundation for the long-term monitoring of the effectiveness of the remediation program.
Collapse
Affiliation(s)
- Brent R Verbuyst
- Department of Earth and Environmental Sciences, University of Waterloo, 200 University Ave W, Waterloo, ON N2L 3G1, Canada
| | - Eva Pakostova
- Department of Earth and Environmental Sciences, University of Waterloo, 200 University Ave W, Waterloo, ON N2L 3G1, Canada; Centre for Manufacturing and Materials, Coventry University, Priory Street, Coventry CV1 5FB, UK.
| | - Dogan Paktunc
- Canmet, Mining and Mineral Sciences Laboratories, 555 Booth Street, Ottawa, ON K1A 0G1, Canada
| | - Jeff G Bain
- Department of Earth and Environmental Sciences, University of Waterloo, 200 University Ave W, Waterloo, ON N2L 3G1, Canada
| | - Y Zou Finfrock
- X-ray Science Division, Advanced Photon Source, Argonne National Laboratory, Lemont, IL 60439, USA
| | - Emily M Saurette
- Department of Earth and Environmental Sciences, University of Waterloo, 200 University Ave W, Waterloo, ON N2L 3G1, Canada
| | - Carol J Ptacek
- Department of Earth and Environmental Sciences, University of Waterloo, 200 University Ave W, Waterloo, ON N2L 3G1, Canada
| | - David W Blowes
- Department of Earth and Environmental Sciences, University of Waterloo, 200 University Ave W, Waterloo, ON N2L 3G1, Canada
| |
Collapse
|
16
|
Hassan Z, Westerhoff HV. Arsenic Contamination of Groundwater Is Determined by Complex Interactions between Various Chemical and Biological Processes. TOXICS 2024; 12:89. [PMID: 38276724 PMCID: PMC11154318 DOI: 10.3390/toxics12010089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 01/03/2024] [Accepted: 01/05/2024] [Indexed: 01/27/2024]
Abstract
At a great many locations worldwide, the safety of drinking water is not assured due to pollution with arsenic. Arsenic toxicity is a matter of both systems chemistry and systems biology: it is determined by complex and intertwined networks of chemical reactions in the inanimate environment, in microbes in that environment, and in the human body. We here review what is known about these networks and their interconnections. We then discuss how consideration of the systems aspects of arsenic levels in groundwater may open up new avenues towards the realization of safer drinking water. Along such avenues, both geochemical and microbiological conditions can optimize groundwater microbial ecology vis-à-vis reduced arsenic toxicity.
Collapse
Affiliation(s)
- Zahid Hassan
- Department of Molecular Cell Biology, A-Life, Faculty of Science, Vrije Universiteit Amsterdam, 1081 HV Amsterdam, The Netherlands;
- Department of Genetic Engineering and Biotechnology, Jagannath University, Dhaka 1100, Bangladesh
| | - Hans V. Westerhoff
- Department of Molecular Cell Biology, A-Life, Faculty of Science, Vrije Universiteit Amsterdam, 1081 HV Amsterdam, The Netherlands;
- School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester M13 9PT, UK
- Synthetic Systems Biology and Nuclear Organization, Swammerdam Institute for Life Sciences, University of Amsterdam, 1098 XH Amsterdam, The Netherlands
- Stellenbosch Institute of Advanced Studies (STIAS), Wallenberg Research Centre at Stellenbosch University, Stellenbosch 7600, South Africa
| |
Collapse
|
17
|
Rafiq M, Hassan N, Rehman M, Hayat M, Nadeem G, Hassan F, Iqbal N, Ali H, Zada S, Kang Y, Sajjad W, Jamal M. Challenges and Approaches of Culturing the Unculturable Archaea. BIOLOGY 2023; 12:1499. [PMID: 38132325 PMCID: PMC10740628 DOI: 10.3390/biology12121499] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 11/06/2023] [Accepted: 11/14/2023] [Indexed: 12/23/2023]
Abstract
Since Carl Woese's discovery of archaea as a third domain of life, numerous archaeal species have been discovered, yet archaeal diversity is poorly characterized. Culturing archaea is complicated, but several queries about archaeal cell biology, evolution, physiology, and diversity need to be solved by culturing and culture-dependent techniques. Increasing interest in demand for innovative culturing methods has led to various technological and methodological advances. The current review explains frequent hurdles hindering uncultured archaea isolation and discusses features for more archaeal cultivation. This review also discusses successful strategies and available media for archaeal culturing, which might be helpful for future culturing practices.
Collapse
Affiliation(s)
- Muhammad Rafiq
- Department of Microbiology, Faculty of Life Sciences and Informatics, Balochistan University of IT, Engineering and Management Sciences, Quetta 87100, Pakistan
- FF Institute (Huzhou) Co., Ltd., Huzhou 313000, China
| | - Noor Hassan
- Industrial Biotechnology Division, National Institute for Biotechnology and Genetic Engineering-College, Pakistan Institute of Engineering and Applied Sciences, Islamabad 44000, Pakistan
| | - Maliha Rehman
- Department of Microbiology, Faculty of Life Sciences and Informatics, Balochistan University of IT, Engineering and Management Sciences, Quetta 87100, Pakistan
| | - Muhammad Hayat
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, Jinan 266101, China
| | - Gullasht Nadeem
- Department of Microbiology, Faculty of Life Sciences and Informatics, Balochistan University of IT, Engineering and Management Sciences, Quetta 87100, Pakistan
| | - Farwa Hassan
- Industrial Biotechnology Division, National Institute for Biotechnology and Genetic Engineering-College, Pakistan Institute of Engineering and Applied Sciences, Islamabad 44000, Pakistan
| | - Naveed Iqbal
- Department of Biotechnology, Faculty of Life Sciences and Informatics, Balochistan University of IT, Engineering and Management Sciences, Quetta 87100, Pakistan
- The Department of Paediatrics and Child Health, Aga Khan University, Karachi 74800, Pakistan
| | - Hazrat Ali
- Industrial Biotechnology Division, National Institute for Biotechnology and Genetic Engineering-College, Pakistan Institute of Engineering and Applied Sciences, Islamabad 44000, Pakistan
| | - Sahib Zada
- Guangzhou Institute of Energy Conservation, Chinese Academy of Sciences, Guangzhou 510640, China
| | - Yingqian Kang
- Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education of Guizhou, Guiyang 550025, China
- Key Laboratory of Medical Microbiology and Parasitology, School of Basic Medical Sciences, Guizhou Medical University, Guiyang 550025, China
| | - Wasim Sajjad
- Department of Biological Sciences, National University of Medical Sciences, Rawalpindi 46000, Pakistan
| | - Muhsin Jamal
- Department of Microbiology, Abdul Wali Khan University, Garden Campus, Mardan 23200, Pakistan
| |
Collapse
|
18
|
Marques Mendonca R, Fulton T, Blackwood C, Costello D. Sublethal nickel toxicity shuts off manganese oxidation and pellicle biofilm formation in Pseudomonas putida GB-1. Environ Microbiol 2023; 25:3639-3654. [PMID: 37875338 DOI: 10.1111/1462-2920.16529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 10/11/2023] [Indexed: 10/26/2023]
Abstract
In sediments, the bioavailability and toxicity of Ni are strongly influenced by its sorption to manganese (Mn) oxides, which largely originate from the redox metabolism of microbes. However, microbes are concurrently susceptible to the toxic effects of Ni, which establishes complex interactions between toxicity and redox processes. This study measured the effect of Ni on growth, pellicle biofilm formation and oxidation of the Mn-oxidizing bacteria Pseudomonas putida GB-1. In liquid media, Ni exposure decreased the intrinsic growth rate but allowed growth to the stationary phase in all intermediate treatments. Manganese oxidation was 67% less than control for bacteria exposed to 5 μM Ni and completely ceased in all treatments above 50 μM. Pellicle biofilm development decreased exponentially with Ni concentration (maximum 92% reduction) and was replaced by planktonic growth in higher Ni treatments. In solid media assays, growth was unaffected by Ni exposure, but Mn oxidation completely ceased in treatments above 10 μM of Ni. Our results show that sublethal Ni concentrations substantially alter Mn oxidation rates and pellicle biofilm development in P. putida GB-1, which has implications for toxic metal bioavailability to the entire benthic community and the environmental consequences of metal contamination.
Collapse
Affiliation(s)
| | - Taylor Fulton
- Department of Biological Sciences, Kent State University, Kent, Ohio, USA
- Department of Food, Agricultural and Biological Engineering, Ohio State University, Columbus, Ohio, USA
| | - Christopher Blackwood
- Department of Biological Sciences, Kent State University, Kent, Ohio, USA
- Department of Plant, Soil, and Microbial Sciences, Michigan State University, East Lansing, Michigan, USA
| | - David Costello
- Department of Biological Sciences, Kent State University, Kent, Ohio, USA
| |
Collapse
|
19
|
Thorgersen MP, Goff JL, Poole FL, Walker KF, Putt AD, Lui LM, Hazen TC, Arkin AP, Adams MWW. Mixed nitrate and metal contamination influences operational speciation of toxic and essential elements. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 338:122674. [PMID: 37793542 DOI: 10.1016/j.envpol.2023.122674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 08/18/2023] [Accepted: 09/30/2023] [Indexed: 10/06/2023]
Abstract
Environmental contamination constrains microbial communities impacting diversity and total metabolic activity. The former S-3 Ponds contamination site at Oak Ridge Reservation (ORR), TN, has elevated concentrations of nitric acid and multiple metals from decades of processing nuclear material. To determine the nature of the metal contamination in the sediment, a three-step sequential chemical extraction (BCR) was performed on sediment segments from a core located upgradient (EB271, non-contaminated) and one downgradient (EB106, contaminated) of the S-3 Ponds. The resulting exchangeable, reducing, and oxidizing fractions were analyzed for 18 different elements. Comparison of the two cores revealed changes in operational speciation for several elements caused by the contamination. Those present from the S-3 Ponds, including Al, U, Co, Cu, Ni, and Cd, were not only elevated in concentration in the EB106 core but were also operationally more available with increased mobility in the acidic environment. Other elements, including Mg, Ca, P, V, As, and Mo, were less operationally available in EB106 having decreased concentrations in the exchangeable fraction. The bioavailability of essential macro nutrients Mg, Ca, and P from the two types of sediment was determined using three metal-tolerant bacteria previously isolated from ORR. Mg and Ca were available from both sediments for all three strains; however, P was not bioavailable from either sediment for any strain. The decreased operational speciation of P in contaminated ORR sediment may increase the dependence of the microbial community on other pools of P or select for microorganisms with increased P scavenging capabilities. Hence, the microbial community at the former S-3 Ponds contamination site may be constrained not only by increased toxic metal concentrations but also by the availability of essential elements, including P.
Collapse
Affiliation(s)
- Michael P Thorgersen
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA, USA.
| | - Jennifer L Goff
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA, USA.
| | - Farris L Poole
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA, USA.
| | - Kathleen F Walker
- Earth and Planetary Sciences, University of Tennessee, Knoxville, TN, USA.
| | - Andrew D Putt
- Earth and Planetary Sciences, University of Tennessee, Knoxville, TN, USA.
| | - Lauren M Lui
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA.
| | - Terry C Hazen
- Earth and Planetary Sciences, University of Tennessee, Knoxville, TN, USA; BioSciences Division, Oak Ridge National Lab, Oak Ridge, TN, USA; Department of Civil and Environmental Engineering, University of Tennessee, Knoxville, TN, USA.
| | - Adam P Arkin
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA; Department of Bioengineering, University of California at Berkeley, Berkeley, CA, USA.
| | - Michael W W Adams
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA, USA.
| |
Collapse
|
20
|
Hobart KK, Greensky Z, Hernandez K, Feinberg JM, Bailey JV, Jones DS. Microbial communities from weathered outcrops of a sulfide-rich ultramafic intrusion, and implications for mine waste management. Environ Microbiol 2023; 25:3512-3526. [PMID: 37667903 DOI: 10.1111/1462-2920.16489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 07/20/2023] [Indexed: 09/06/2023]
Abstract
The Duluth Complex (DC) contains sulfide-rich magmatic intrusions that represent one of the largest known economic deposits of copper, nickel, and platinum group elements. Previous work showed that microbial communities associated with experimentally-weathered DC waste rock and tailings were dominated by uncultivated taxa and organisms not typically associated with mine waste. However, those experiments were designed for kinetic testing and do not necessarily represent the conditions expected for long-term environmental weathering. We used 16S rRNA gene methods to characterize the microbial communities present on the surfaces of naturally-weathered and historically disturbed outcrops of DC material. Rock surfaces were dominated by diverse uncultured Ktedonobacteria, Acetobacteria, and Actinobacteria, with abundant algae and other phototrophs. These communities were distinct from microbial assemblages from experimentally-weathered DC rocks, suggesting different energy and nutrient resources in environmental samples. Sulfide mineral incubations performed with and without algae showed that photosynthetic microorganisms could have an inhibitory effect on autotrophic populations, resulting in slightly lower sulfate release and differences in dominant microorganisms. The microbial assemblages from these weathered outcrops show how communities develop during weathering of sulfide-rich DC rocks and represent baseline data that could evaluate the effectiveness of future reclamation of waste produced by large-scale mining operations.
Collapse
Affiliation(s)
- Kathryn K Hobart
- Department of Earth & Environmental Sciences, University of Minnesota, Minneapolis, Minnesota, USA
- Institute for Rock Magnetism, University of Minnesota, Minneapolis, Minnesota, USA
| | - ZhaaZhaawaanong Greensky
- Department of Earth & Environmental Sciences, University of Minnesota, Minneapolis, Minnesota, USA
| | - Kimberly Hernandez
- Department of Earth & Environmental Sciences, University of Minnesota, Minneapolis, Minnesota, USA
| | - Joshua M Feinberg
- Department of Earth & Environmental Sciences, University of Minnesota, Minneapolis, Minnesota, USA
- Institute for Rock Magnetism, University of Minnesota, Minneapolis, Minnesota, USA
| | - Jake V Bailey
- Department of Earth & Environmental Sciences, University of Minnesota, Minneapolis, Minnesota, USA
| | - Daniel S Jones
- Department of Earth & Environmental Sciences, University of Minnesota, Minneapolis, Minnesota, USA
- Department of Earth and Environmental Science, New Mexico Institute of Mining and Technology, Socorro, New Mexico, USA
- National Cave and Karst Research Institute, Carlsbad, New Mexico, USA
| |
Collapse
|
21
|
Brown SM, Mayer-Bacon C, Freeland S. Xeno Amino Acids: A Look into Biochemistry as We Do Not Know It. Life (Basel) 2023; 13:2281. [PMID: 38137883 PMCID: PMC10744825 DOI: 10.3390/life13122281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 11/18/2023] [Accepted: 11/20/2023] [Indexed: 12/24/2023] Open
Abstract
Would another origin of life resemble Earth's biochemical use of amino acids? Here, we review current knowledge at three levels: (1) Could other classes of chemical structure serve as building blocks for biopolymer structure and catalysis? Amino acids now seem both readily available to, and a plausible chemical attractor for, life as we do not know it. Amino acids thus remain important and tractable targets for astrobiological research. (2) If amino acids are used, would we expect the same L-alpha-structural subclass used by life? Despite numerous ideas, it is not clear why life favors L-enantiomers. It seems clearer, however, why life on Earth uses the shortest possible (alpha-) amino acid backbone, and why each carries only one side chain. However, assertions that other backbones are physicochemically impossible have relaxed into arguments that they are disadvantageous. (3) Would we expect a similar set of side chains to those within the genetic code? Many plausible alternatives exist. Furthermore, evidence exists for both evolutionary advantage and physicochemical constraint as explanatory factors for those encoded by life. Overall, as focus shifts from amino acids as a chemical class to specific side chains used by post-LUCA biology, the probable role of physicochemical constraint diminishes relative to that of biological evolution. Exciting opportunities now present themselves for laboratory work and computing to explore how changing the amino acid alphabet alters the universe of protein folds. Near-term milestones include: (a) expanding evidence about amino acids as attractors within chemical evolution; (b) extending characterization of other backbones relative to biological proteins; and (c) merging computing and laboratory explorations of structures and functions unlocked by xeno peptides.
Collapse
|
22
|
Bulaev A, Kadnikov V, Elkina Y, Beletsky A, Melamud V, Ravin N, Mardanov A. Shifts in the Microbial Populations of Bioleach Reactors Are Determined by Carbon Sources and Temperature. BIOLOGY 2023; 12:1411. [PMID: 37998010 PMCID: PMC10669018 DOI: 10.3390/biology12111411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 11/06/2023] [Accepted: 11/06/2023] [Indexed: 11/25/2023]
Abstract
In the present study, the effect of additional carbon sources (carbon dioxide and molasses) on the bio-oxidation of a pyrite-arsenopyrite concentrate at temperatures of 40-50 °C was studied, and novel data regarding the patterns of the bio-oxidation of gold-bearing sulfide concentrates and the composition of the microbial populations performing these processes were obtained. At 40 °C, additional carbon sources did not affect the bio-oxidation efficiency. At the same time, the application of additional carbon dioxide improved the bio-oxidation performance at temperatures of 45 and 50 °C and made it possible to avoid the inhibition of bio-oxidation due to an increase in the temperature. Therefore, the use of additional carbon dioxide may be proposed to prevent the negative effect of an increase in temperature on the bio-oxidation of sulfide concentrates. 16S rRNA gene profiling revealed archaea of the family Thermoplasmataceae (Acidiplasma, Ferroplasma, Cuniculiplasma, and A-plasma group) and bacteria of the genera Leptospirillum, with Sulfobacillus and Acidithiobacillus among the dominant groups in the community. Temperature influenced the composition of the communities to a greater extent than the additional sources of carbon and the mode of operation of the bioreactor. Elevating the temperature from 40 °C to 50 °C resulted in increases in the shares of Acidiplasma and Sulfobacillus and decreases in the relative abundances of Ferroplasma, Leptospirillum, and Acidithiobacillus, while Cuniculiplasma and A-plasma were more abundant at 45 °C. A metagenomic analysis of the studied population made it possible to characterize novel archaea belonging to an uncultivated, poorly-studied group of Thermoplasmatales which potentially plays an important role in the bio-oxidation process. Based on an analysis of the complete genome, we propose describing the novel species and novel genus as "Candidatus Carboxiplasma ferriphilum" gen. nov., spec. nov.
Collapse
Affiliation(s)
- Aleksandr Bulaev
- Research Center of Biotechnology, The Russian Academy of Sciences, Leninsky Ave. 33 Bld. 2, 119071 Moscow, Russia; (V.K.); (Y.E.); (A.B.); (V.M.); (A.M.)
| | | | | | | | | | | | | |
Collapse
|
23
|
Zhu Q, Ruan M, Hu Z, Miao K, Ye C. The Relationship between Acid Production and the Microbial Community of Newly Produced Coal Gangue in the Early Oxidation Stage. Microorganisms 2023; 11:2626. [PMID: 38004638 PMCID: PMC10673393 DOI: 10.3390/microorganisms11112626] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 10/20/2023] [Accepted: 10/22/2023] [Indexed: 11/26/2023] Open
Abstract
Coal gangue is a solid waste formed during coal production, and the acid mine drainage it generates during open-pit storage severely pollutes the ecological environment of mining areas. Microorganisms play a crucial catalytic role in acidification, and their species and gene functions change during the oxidation process of coal gangue. In this study, the changes in microbial community structure were investigated during the initial acidification process for newly produced gangue exposed to moisture by monitoring the changes in pH, EC, sulfate ion concentration, and the iron oxidation rate of gangue leaching solutions. Moreover, the composition and functional abundance of microbial communities on the surface of the gangue were analyzed with rainfall simulation experiments and 16S rRNA sequencing. The study yielded the following findings: (1) The critical period for newly produced gangue oxidation spanned from 0~15 d after its exposure to water; the pH of leaching solutions decreased from 4.65 to 4.09 during this time, and the concentration and oxidation rate of iron in the leaching solutions remained at low levels, indicating that iron oxidation was not the main driver for acidification during this stage. (2) When the gangue was kept dry, Burkholderia spp. dominated the gangue microbial community. When the gangue was exposed to moisture, the rate of acidification accelerated, and Pseudomonas replaced Burkholderia as the dominant genus in the community. (3) In terms of gene function, the microbial community of the acidified gangue had stronger nitrogen cycling functions, and an increase in the abundance of microorganisms related to the sulfur cycle occurred after day 15 of the experiment. The microbial community in the acidified gangue had more stress resistance than the community of the newly formed gangue, but its potential to decompose environmental pollutants decreased.
Collapse
Affiliation(s)
- Qi Zhu
- Chinese Research Academy of Environmental Sciences, National Engineering Laboratory for Lake Pollution Control and Ecological Restoration, State Environmental Protection Key Laboratory for Lake Pollution Control, Beijing 100012, China; (K.M.); (C.Y.)
| | - Mengying Ruan
- Institute of Land Reclamation and Ecological Restoration, China University of Mining and Technology-Beijing, Beijing 100083, China;
| | - Zhenqi Hu
- Institute of Land Reclamation and Ecological Restoration, China University of Mining and Technology-Beijing, Beijing 100083, China;
- School of Environment Science and Spatial Informatics, China University of Mining and Technology, Xuzhou 221116, China
| | - Kexin Miao
- Chinese Research Academy of Environmental Sciences, National Engineering Laboratory for Lake Pollution Control and Ecological Restoration, State Environmental Protection Key Laboratory for Lake Pollution Control, Beijing 100012, China; (K.M.); (C.Y.)
| | - Chun Ye
- Chinese Research Academy of Environmental Sciences, National Engineering Laboratory for Lake Pollution Control and Ecological Restoration, State Environmental Protection Key Laboratory for Lake Pollution Control, Beijing 100012, China; (K.M.); (C.Y.)
| |
Collapse
|
24
|
Simister RL, Iulianella Phillips BP, Wickham AP, Cayer EM, Hart CJR, Winterburn PA, Crowe SA. DNA sequencing, microbial indicators, and the discovery of buried kimberlites. COMMUNICATIONS EARTH & ENVIRONMENT 2023; 4:387. [PMID: 38665197 PMCID: PMC11041713 DOI: 10.1038/s43247-023-01020-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Accepted: 09/19/2023] [Indexed: 04/28/2024]
Abstract
Population growth and technological advancements are placing growing demand on mineral resources. New and innovative exploration technologies that improve detection of deeply buried mineralization and host rocks are required to meet these demands. Here we used diamondiferous kimberlite ore bodies as a test case and show that DNA amplicon sequencing of soil microbial communities resolves anomalies in microbial community composition and structure that reflect the surface expression of kimberlites buried under 10 s of meters of overburden. Indicator species derived from laboratory amendment experiments were employed in an exploration survey in which the species distributions effectively delineated the surface expression of buried kimberlites. Additional indicator species derived directly from field observations improved the blind discovery of kimberlites buried beneath similar overburden types. Application of DNA sequence-based analyses of soil microbial communities to mineral deposit exploration provides a powerful illustration of how genomics technologies can be leveraged in the discovery of critical new resources.
Collapse
Affiliation(s)
- Rachel L. Simister
- Department of Microbiology & Immunology, University of British Columbia, Vancouver, BC V6T 1Z3 Canada
- Department of Earth, Ocean and Atmospheric Sciences, University of British Columbia, Vancouver, BC V6T 1Z4 Canada
| | - Bianca P. Iulianella Phillips
- Department of Earth, Ocean and Atmospheric Sciences, University of British Columbia, Vancouver, BC V6T 1Z4 Canada
- MDRU-Mineral Deposit Research Unit, Department of Earth, Ocean and Atmospheric Sciences, University of British Columbia, Vancouver, BC V6T 1Z4 Canada
| | - Andrew P. Wickham
- Department of Earth, Ocean and Atmospheric Sciences, University of British Columbia, Vancouver, BC V6T 1Z4 Canada
- MDRU-Mineral Deposit Research Unit, Department of Earth, Ocean and Atmospheric Sciences, University of British Columbia, Vancouver, BC V6T 1Z4 Canada
| | - Erika M. Cayer
- Department of Earth, Ocean and Atmospheric Sciences, University of British Columbia, Vancouver, BC V6T 1Z4 Canada
- MDRU-Mineral Deposit Research Unit, Department of Earth, Ocean and Atmospheric Sciences, University of British Columbia, Vancouver, BC V6T 1Z4 Canada
| | - Craig J. R. Hart
- Department of Earth, Ocean and Atmospheric Sciences, University of British Columbia, Vancouver, BC V6T 1Z4 Canada
- MDRU-Mineral Deposit Research Unit, Department of Earth, Ocean and Atmospheric Sciences, University of British Columbia, Vancouver, BC V6T 1Z4 Canada
| | - Peter A. Winterburn
- Department of Earth, Ocean and Atmospheric Sciences, University of British Columbia, Vancouver, BC V6T 1Z4 Canada
- MDRU-Mineral Deposit Research Unit, Department of Earth, Ocean and Atmospheric Sciences, University of British Columbia, Vancouver, BC V6T 1Z4 Canada
| | - Sean A. Crowe
- Department of Microbiology & Immunology, University of British Columbia, Vancouver, BC V6T 1Z3 Canada
- Department of Earth, Ocean and Atmospheric Sciences, University of British Columbia, Vancouver, BC V6T 1Z4 Canada
| |
Collapse
|
25
|
Kracmarova-Farren M, Papik J, Uhlik O, Freeman J, Foster A, Leewis MC, Creamer C. Compost, plants and endophytes versus metal contamination: choice of a restoration strategy steers the microbiome in polymetallic mine waste. ENVIRONMENTAL MICROBIOME 2023; 18:74. [PMID: 37805609 PMCID: PMC10559404 DOI: 10.1186/s40793-023-00528-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 09/14/2023] [Indexed: 10/09/2023]
Abstract
Finding solutions for the remediation and restoration of abandoned mining areas is of great environmental importance as they pose a risk to ecosystem health. In this study, our aim was to determine how remediation strategies with (i) compost amendment, (ii) planting a metal-tolerant grass Bouteloua curtipendula, and (iii) its inoculation with beneficial endophytes influenced the microbiome of metal-contaminated tailings originating from the abandoned Blue Nose Mine, SE Arizona, near Patagonia (USA). We conducted an indoor microcosm experiment followed by a metataxonomic analysis of the mine tailings, compost, and root samples. Our results showed that each remediation strategy promoted a distinct pattern of microbial community structure in the mine tailings, which correlated with changes in their chemical properties. The combination of compost amendment and endophyte inoculation led to the highest prokaryotic diversity and total nitrogen and organic carbon, but also induced shifts in microbial community structure that significantly correlated with an enhanced potential for mobilization of Cu and Sb. Our findings show that soil health metrics (total nitrogen, organic carbon and pH) improved, and microbial community changed, due to organic matter input and endophyte inoculation, which enhanced metal leaching from the mine waste and potentially increased environmental risks posed by Cu and Sb. We further emphasize that because the initial choice of remediation strategy can significantly impact trace element mobility via modulation of both soil chemistry and microbial communities, site specific, bench-scale preliminary tests, as reported here, can help determine the potential risk of a chosen strategy.
Collapse
Affiliation(s)
- Martina Kracmarova-Farren
- Department of Biochemistry and Microbiology, Faculty of Food and Biochemical Technology, University of Chemistry and Technology, Prague, Technicka 3, 166 28, Prague 6, Czech Republic
| | - Jakub Papik
- Department of Biochemistry and Microbiology, Faculty of Food and Biochemical Technology, University of Chemistry and Technology, Prague, Technicka 3, 166 28, Prague 6, Czech Republic.
| | - Ondrej Uhlik
- Department of Biochemistry and Microbiology, Faculty of Food and Biochemical Technology, University of Chemistry and Technology, Prague, Technicka 3, 166 28, Prague 6, Czech Republic
| | - John Freeman
- Intrinsyx Environmental, Sunnyvale, CA, 94085, USA
| | | | - Mary-Cathrine Leewis
- U.S. Geological Survey, Menlo Park, CA, USA
- Agriculture and Agri-Food Canada, Quebec Research and Development Centre, Quebec, QC, Canada
| | | |
Collapse
|
26
|
Zhang M, Huang C, Ni J, Yue S. Global trends and future prospects of acid mine drainage research. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:109233-109249. [PMID: 37770736 DOI: 10.1007/s11356-023-30059-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 09/20/2023] [Indexed: 09/30/2023]
Abstract
The uncontrolled release of acid mine drainage (AMD) results in the ongoing deterioration of groundwater and surface water, along with harmful impacts on aquatic ecosystems and surrounding habitats. This study employed a bibliometric analysis to examine research activities and trends related to AMD from 1991 to 2021. The analysis demonstrated a consistent growth in AMD research over the years, with a notable surge in the number of publications starting from 2014. Applied Geochemistry and Science of the Total Environment emerged as the top two extensively published journals in the field of AMD research. The USA held a prominent position, achieving the highest h-index (96) and central value (0.36) among 111 countries/territories, with China and Spain following closely behind. The author keyword analysis provides an overview of the main focuses in AMD research. Furthermore, the co-citation reference analysis reveals four primary domains of AMD research. Moreover, the prevention and remediation of AMD, including source prevention and migration control, as well as the hazards posed by heavy metals/metalloids and the mechanisms and techniques employed for their removal, are discussed in detail.
Collapse
Affiliation(s)
- Min Zhang
- Jiangxi Copper Technology Research Institute, Jiangxi Copper Corporation, Nanchang, 330096, Jiangxi Province, China
| | - Chang Huang
- Jiangxi Copper Technology Research Institute, Jiangxi Copper Corporation, Nanchang, 330096, Jiangxi Province, China
| | - Jin Ni
- Jiangxi Copper Technology Research Institute, Jiangxi Copper Corporation, Nanchang, 330096, Jiangxi Province, China
| | - Siyuan Yue
- Institute of Microbiology, Jiangxi Academy of Sciences, Nanchang, 330096, Jiangxi Province, China.
| |
Collapse
|
27
|
Li X, Ren H, Xu Z, Chen G, Zhang S, Zhang L, Sun Y. Practical application for legacy acid mine drainage (AMD) prevention and treatment technologies in karst-dominated regions: A case study. JOURNAL OF CONTAMINANT HYDROLOGY 2023; 258:104238. [PMID: 37673015 DOI: 10.1016/j.jconhyd.2023.104238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 07/27/2023] [Accepted: 08/29/2023] [Indexed: 09/08/2023]
Abstract
Acid mine drainage (AMD) from abandoned mines in karst-dominated regions in southwestern China was causing contamination of groundwater and surface streams. To avert the unwise decisions of "pollution first before treatment" during pre-mining, mid-mining and post-mining activities, this paper proposes a contaminant migration prevention technical framework covering 4 comprehensive processes. The formation mechanism of spring pollution, engineering remediation processes and contamination treatment effects were described in Longdong Spring. In 2018, the Longdong Spring water had Fe 33.83 mg/L and Mn 3.60 mg/L, exceeding the Chinese surface water standard (0.3 mg/L and 0.1 mg/L in GB 3838-2002) by 112 and 36 times, respectively. In 2020, after grout blocking, in situ treatment and wetland remediation, the highest Fe was 4.5 mg/L in a short period, and the spring water pollution days in this year were 42 days compared with the previous 320 spring water pollution days in 2018. In 2021, two years of remediation with the implementation of terminal remediation wetlands, the Fe was less than 0.03 mg/L compared with the previous 33.83 mg/L, and the water quality reached water standard (less than 0.3 mg/L). At present, Longdong Spring has become one of the most beautiful natural local landscapes.
Collapse
Affiliation(s)
- Xin Li
- School of Resources and Geosciences, China University of Mining and Technology, Xuzhou 221116, Jiangsu, People's Republic of China
| | - Hujun Ren
- China Coal Hydrogeological Bureau Group Company, 18 Dafeng Road, Hongqiao District, Tianjin 300131, People's Republic of China
| | - Zhimin Xu
- School of Resources and Geosciences, China University of Mining and Technology, Xuzhou 221116, Jiangsu, People's Republic of China; Fundamental Research Laboratory for Mine Water Hazards Prevention and Controlling Technology, Xuzhou 221006, Jiangsu, People's Republic of China.
| | - Ge Chen
- School of Resources and Geosciences, China University of Mining and Technology, Xuzhou 221116, Jiangsu, People's Republic of China
| | - Shangguo Zhang
- School of Resources and Geosciences, China University of Mining and Technology, Xuzhou 221116, Jiangsu, People's Republic of China
| | - Li Zhang
- School of Resources and Geosciences, China University of Mining and Technology, Xuzhou 221116, Jiangsu, People's Republic of China
| | - Yajun Sun
- School of Resources and Geosciences, China University of Mining and Technology, Xuzhou 221116, Jiangsu, People's Republic of China; Fundamental Research Laboratory for Mine Water Hazards Prevention and Controlling Technology, Xuzhou 221006, Jiangsu, People's Republic of China.
| |
Collapse
|
28
|
Wang M, Wang X, Zhou S, Chen Z, Chen M, Feng S, Li J, Shu W, Cao B. Strong succession in prokaryotic association networks and community assembly mechanisms in an acid mine drainage-impacted riverine ecosystem. WATER RESEARCH 2023; 243:120343. [PMID: 37482007 DOI: 10.1016/j.watres.2023.120343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 07/10/2023] [Accepted: 07/11/2023] [Indexed: 07/25/2023]
Abstract
Acid mine drainage (AMD) serves as an ideal model system for investigating microbial ecology, interaction, and assembly mechanism in natural environments. While previous studies have explored the structure and function of microbial communities in AMD, the succession patterns of microbial association networks and underlying assembly mechanisms during natural attenuation processes remain elusive. Here, we investigated prokaryotic microbial diversity and community assembly along an AMD-impacted river, from the extremely acidic, heavily polluted headwaters to the nearly neutral downstream sites. Microbial diversity was increased along the river, and microbial community composition shifted from acidophile-dominated to freshwater taxa-dominated communities. The complexity and relative modularity of the microbial networks were also increased, indicating greater network stability during succession. Deterministic processes, including abiotic selection of pH and high contents of sulfur and iron, governed community assembly in the headwaters. Although the stochasticity ratio was increased downstream, manganese content, microbial negative cohesion, and relative modularity played important roles in shaping microbial community structure. Overall, this study provides valuable insights into the ecological processes that govern microbial community succession in AMD-impacted riverine ecosystems. These findings have important implications for in-situ remediation of AMD contamination.
Collapse
Affiliation(s)
- Mengmeng Wang
- Institute of Ecological Science and Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou 510631, China
| | - Xiaonan Wang
- Institute of Ecological Science and Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou 510631, China
| | - Sining Zhou
- Institute of Ecological Science and Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou 510631, China
| | - Zifeng Chen
- Institute of Ecological Science and Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou 510631, China
| | - Mengyun Chen
- Institute of Ecological Science and Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou 510631, China
| | - Shiwei Feng
- Institute of Ecological Science and Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou 510631, China
| | - Jintian Li
- Institute of Ecological Science and Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou 510631, China
| | - Wensheng Shu
- Institute of Ecological Science and Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou 510631, China
| | - Baichuan Cao
- Institute of Ecological Science and Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou 510631, China.
| |
Collapse
|
29
|
Ruan M, Hu Z, Zhu Q, Li Y, Nie X. 16S rDNA Sequencing-Based Insights into the Bacterial Community Structure and Function in Co-Existing Soil and Coal Gangue. Microorganisms 2023; 11:2151. [PMID: 37763995 PMCID: PMC10536285 DOI: 10.3390/microorganisms11092151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 08/16/2023] [Accepted: 08/21/2023] [Indexed: 09/29/2023] Open
Abstract
Coal gangue is a solid waste emitted during coal production. Coal gangue is deployed adjacent to mining land and has characteristics similar to those of the soils of these areas. Coal gangue-soil ecosystems provide habitats for a rich and active bacterial community. However, co-existence networks and the functionality of soil and coal gangue bacterial communities have not been studied. Here, we performed Illumina MiSeq high-throughput sequencing, symbiotic network and statistical analyses, and microbial phenotype prediction to study the microbial community in coal gangue and soil samples from Shanxi Province, China. In general, the structural difference between the bacterial communities in coal gangue and soil was large, indicating that interactions between soil and coal gangue are limited but not absent. The bacterial community exhibited a significant symbiosis network in soil and coal gangue. The co-occurrence network was primarily formed by Proteobacteria, Firmicutes, and Actinobacteria. In addition, BugBase microbiome phenotype predictions and PICRUSt bacterial functional potential predictions showed that transcription regulators represented the highest functional category of symbiotic bacteria in soil and coal gangue. Proteobacteria played an important role in various processes such as mobile element pathogenicity, oxidative stress tolerance, and biofilm formation. In general, this work provides a theoretical basis and data support for the in situ remediation of acidified coal gangue hills based on microbiological methods.
Collapse
Affiliation(s)
- Mengying Ruan
- Institute of Land Reclamation and Ecological Restoration, China University of Mining and Technology-Beijing, Beijing 100083, China; (M.R.); (X.N.)
| | - Zhenqi Hu
- China University of Mining and Technology, Xuzhou 221116, China;
| | - Qi Zhu
- National Engineering Laboratory for Lake Pollution Control and Ecological Restoration, State Environmental Protection Key Laboratory for Lake Pollution Control, Chinese Research Academy of Environmental Sciences, Beijing 100012, China;
| | - Yuanyuan Li
- China University of Mining and Technology, Xuzhou 221116, China;
| | - Xinran Nie
- Institute of Land Reclamation and Ecological Restoration, China University of Mining and Technology-Beijing, Beijing 100083, China; (M.R.); (X.N.)
| |
Collapse
|
30
|
He Y, Pan J, Huang D, Sanford RA, Peng S, Wei N, Sun W, Shi L, Jiang Z, Jiang Y, Hu Y, Li S, Li Y, Li M, Dong Y. Distinct microbial structure and metabolic potential shaped by significant environmental gradient impacted by ferrous slag weathering. ENVIRONMENT INTERNATIONAL 2023; 178:108067. [PMID: 37393724 DOI: 10.1016/j.envint.2023.108067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 06/23/2023] [Accepted: 06/25/2023] [Indexed: 07/04/2023]
Abstract
Alkaline ferrous slags pose global environmental issues and long-term risks to ambient environments. To explore the under-investigated microbial structure and biogeochemistry in such unique ecosystems, combined geochemical, microbial, ecological and metagenomic analyses were performed in the areas adjacent to a ferrous slag disposal plant in Sichuan, China. Different levels of exposure to ultrabasic slag leachate had resulted in a significant geochemical gradient of pH (8.0-12.4), electric potential (-126.9 to 437.9 mV), total organic carbon (TOC, 1.5-17.3 mg/L), and total nitrogen (TN, 0.17-1.01 mg/L). Distinct microbial communities were observed depending on their exposure to the strongly alkaline leachate. High pH and Ca2+ concentrations were associated with low microbial diversity and enrichment of bacterial classes Gamma-proteobacteria and Deinococci in the microbial communities exposed to the leachate. Combined metagenomic analyses of 4 leachate-unimpacted and 2-impacted microbial communities led to the assembly of one Serpentinomonas pangenome and 81 phylogenetically diversified metagenome assembled genomes (MAGs). The prevailing taxa in the leachate-impacted habitats (e.g., Serpentinomonas and Meiothermus spp.) were phylogenetically related to those in active serpentinizing ecosystems, suggesting the analogous processes between the man-made and natural systems. More importantly, they accounted for significant abundance of most functional genes associated with environmental adaptation and major element cycling. Their metabolic potential (e.g., cation/H+ antiporters, carbon fixation on lithospheric carbon source, and respiration coupling sulfur oxidization and oxygen or nitrate reduction) may support these taxa to survive and prosper in these unique geochemical niches. This study provides fundamental understandings of the adaptive strategies of microorganisms in response to the strong environmental perturbation by alkali tailings. It also contributes to a better comprehension of how to remediate environments affected by alkaline industrial material.
Collapse
Affiliation(s)
- Yu He
- School of Environmental Studies, China University of Geosciences, China
| | - Jie Pan
- Archaeal Biology Center, Institute for Advanced Studies, Shenzhen University, China; Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, China
| | - Dongmei Huang
- School of Environmental Studies, China University of Geosciences, China; Yejin Geological Team of Hubei Geological Bureau, China
| | - Robert A Sanford
- Department of Earth Science & Environmental Change, University of Illinois Urbana-Champaign, Champaign, IL, United States
| | - Shuming Peng
- Institute of Ecological Environment, Chengdu University of Technology, China
| | - Na Wei
- Department of Civil and Environmental Engineering, University of Illinois Urbana-Champaign, Champaign, IL, United States
| | - Weimin Sun
- Guangdong Institute of Eco-environmental and Soil Science, Guangdong, China
| | - Liang Shi
- School of Environmental Studies, China University of Geosciences, China; State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, China; State Environmental Protection Key Laboratory of Source Apportionment and Control of Aquatic Pollution, Ministry of Ecology and Environment, China
| | - Zhou Jiang
- School of Environmental Studies, China University of Geosciences, China
| | - Yongguang Jiang
- School of Environmental Studies, China University of Geosciences, China
| | - Yidan Hu
- School of Environmental Studies, China University of Geosciences, China
| | - Shuyi Li
- School of Environmental Studies, China University of Geosciences, China
| | - Yongzhe Li
- School of Environmental Studies, China University of Geosciences, China
| | - Meng Li
- Archaeal Biology Center, Institute for Advanced Studies, Shenzhen University, China; Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, China.
| | - Yiran Dong
- School of Environmental Studies, China University of Geosciences, China; State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, China; State Environmental Protection Key Laboratory of Source Apportionment and Control of Aquatic Pollution, Ministry of Ecology and Environment, China; Hubei Key Laboratory of Yangtze Catchment Environmental Aquatic Science, China; Hubei Key Laboratory of Wetland Evolution and Ecology Restoration, China.
| |
Collapse
|
31
|
Bargiela R, Korzhenkov AA, McIntosh OA, Toshchakov SV, Yakimov MM, Golyshin PN, Golyshina OV. Evolutionary patterns of archaea predominant in acidic environment. ENVIRONMENTAL MICROBIOME 2023; 18:61. [PMID: 37464403 DOI: 10.1186/s40793-023-00518-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 07/12/2023] [Indexed: 07/20/2023]
Abstract
BACKGROUND Archaea of the order Thermoplasmatales are widely distributed in natural acidic areas and are amongst the most acidophilic prokaryotic organisms known so far. These organisms are difficult to culture, with currently only six genera validly published since the discovery of Thermoplasma acidophilum in 1970. Moreover, known great diversity of uncultured Thermoplasmatales represents microbial dark matter and underlines the necessity of efforts in cultivation and study of these archaea. Organisms from the order Thermoplasmatales affiliated with the so-called "alphabet-plasmas", and collectively dubbed "E-plasma", were the focus of this study. These archaea were found predominantly in the hyperacidic site PM4 of Parys Mountain, Wales, UK, making up to 58% of total metagenomic reads. However, these archaea escaped all cultivation attempts. RESULTS Their genome-based metabolism revealed its peptidolytic potential, in line with the physiology of the previously studied Thermoplasmatales isolates. Analyses of the genome and evolutionary history reconstruction have shown both the gain and loss of genes, that may have contributed to the success of the "E-plasma" in hyperacidic environment compared to their community neighbours. Notable genes among them are involved in the following molecular processes: signal transduction, stress response and glyoxylate shunt, as well as multiple copies of genes associated with various cellular functions; from energy production and conversion, replication, recombination, and repair, to cell wall/membrane/envelope biogenesis and archaella production. History events reconstruction shows that these genes, acquired by putative common ancestors, may determine the evolutionary and functional divergences of "E-plasma", which is much more developed than other representatives of the order Thermoplasmatales. In addition, the ancestral hereditary reconstruction strongly indicates the placement of Thermogymnomonas acidicola close to the root of the Thermoplasmatales. CONCLUSIONS This study has analysed the metagenome-assembled genome of "E-plasma", which denotes the basis of their predominance in Parys Mountain environmental microbiome, their global ubiquity, and points into the right direction of further cultivation attempts. The results suggest distinct evolutionary trajectories of organisms comprising the order Thermoplasmatales, which is important for the understanding of their evolution and lifestyle.
Collapse
Affiliation(s)
- Rafael Bargiela
- School of Natural Sciences and Centre for Environmental Biotechnology, Bangor University, Bangor, UK
| | | | - Owen A McIntosh
- School of Natural Sciences and Centre for Environmental Biotechnology, Bangor University, Bangor, UK
| | - Stepan V Toshchakov
- Kurchatov Center for Genome Research, NRC Kurchatov Institute, Moscow, Russia
| | | | - Peter N Golyshin
- School of Natural Sciences and Centre for Environmental Biotechnology, Bangor University, Bangor, UK
| | - Olga V Golyshina
- School of Natural Sciences and Centre for Environmental Biotechnology, Bangor University, Bangor, UK.
| |
Collapse
|
32
|
Chen D, Zhang Y, Feng Q. Hydrochemical characteristics and microbial community evolution of Pinglu River affected by regional abandoned coal mine drainage, Guizhou Province, China. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023:10.1007/s11356-023-27403-5. [PMID: 37155109 DOI: 10.1007/s11356-023-27403-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 04/29/2023] [Indexed: 05/10/2023]
Abstract
Pinglu River in southwestern China was continuously polluted by acid mine drainage (AMD) from abandoned coal mines, and AMD has become a major source of recharge to the river (43.26% of total flow), resulting in structural changes in the physicochemical properties and microbial communities of river water and sediments. In this study, we collected abandoned coal mine drainage, river water, and river sediment samples for comprehensive analysis. Results indicated that the hydrochemical types of AMD from abandoned coal mines were mainly SO4-Ca·Mg. The pH of river water in Pinglu River decreased from upstream to downstream due to AMD, with the hydrochemical type gradually changing from SO4·HCO3-Ca·Mg to SO4-Ca·Mg. The variation of pH along the river sediments was less than that of water samples, which remained weakly alkaline. However, high-throughput sequencing revealed a gradual decrease in microbial diversity in river sediments from upstream to downstream. The core bacteria groups in the upstream sediments were mainly attributed to the phylum Proteobacteria and Actinobacteriota, mainly including Geobacter, Anaeromyxobacter, Marmoricola, and Phycicoccus. The relative abundance of Gaiella, MND1, and Pseudolabrys in sediment samples gradually increased with the confluence of AMD, and the differences in microbial communities may be attributed to pH, TOC, and TP. Results of phenotype prediction demonstrated that the relative abundance of anaerobic microorganisms in river sediment gradually decreased from upstream to downstream (from 24.77 to 12.46%), presumably due to the large amount of oligotrophic AMD converge.
Collapse
Affiliation(s)
- Di Chen
- Engineering Research Center of Ministry of Education for Mine Ecological Restoration, China University of Mining and Technology, No. 1 Daxue Street, Quanshan District, Xuzhou, 221116, People's Republic of China.
- School of Environment Science and Spatial Informatics, China University of Mining and Technology, No. 1 Daxue Street, Quanshan District, Xuzhou, 221116, People's Republic of China.
| | - Yun Zhang
- Engineering Research Center of Ministry of Education for Mine Ecological Restoration, China University of Mining and Technology, No. 1 Daxue Street, Quanshan District, Xuzhou, 221116, People's Republic of China
- School of Environment Science and Spatial Informatics, China University of Mining and Technology, No. 1 Daxue Street, Quanshan District, Xuzhou, 221116, People's Republic of China
| | - Qiyan Feng
- Engineering Research Center of Ministry of Education for Mine Ecological Restoration, China University of Mining and Technology, No. 1 Daxue Street, Quanshan District, Xuzhou, 221116, People's Republic of China
- School of Environment Science and Spatial Informatics, China University of Mining and Technology, No. 1 Daxue Street, Quanshan District, Xuzhou, 221116, People's Republic of China
| |
Collapse
|
33
|
Whaley-Martin KJ, Chen LX, Nelson TC, Gordon J, Kantor R, Twible LE, Marshall S, McGarry S, Rossi L, Bessette B, Baron C, Apte S, Banfield JF, Warren LA. O 2 partitioning of sulfur oxidizing bacteria drives acidity and thiosulfate distributions in mining waters. Nat Commun 2023; 14:2006. [PMID: 37037821 PMCID: PMC10086054 DOI: 10.1038/s41467-023-37426-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Accepted: 03/14/2023] [Indexed: 04/12/2023] Open
Abstract
The acidification of water in mining areas is a global environmental issue primarily catalyzed by sulfur-oxidizing bacteria (SOB). Little is known about microbial sulfur cycling in circumneutral pH mine tailing impoundment waters. Here we investigate biological sulfur oxidation over four years in a mine tailings impoundment water cap, integrating aqueous sulfur geochemistry, genome-resolved metagenomics and metatranscriptomics. The microbial community is consistently dominated by neutrophilic, chemolithoautotrophic SOB (relative abundances of ~76% in 2015, ~55% in 2016/2017 and ~60% in 2018). Results reveal two SOB strategies alternately dominate across the four years, influencing acid generation and sulfur speciation. Under oxic conditions, novel Halothiobacillus drive lower pH conditions (as low as 4.3) and lower [S2O32-] via the complete Sox pathway coupled to O2. Under anoxic conditions, Thiobacillus spp. dominate in activity, via the incomplete Sox and rDSR pathways coupled to NO3-, resulting in higher [S2O32-] and no net significant acidity generation. This study provides genomic evidence explaining acidity generation and thiosulfate accumulation patterns in a circumneutral mine tailing impoundment and has significant environmental applications in preventing the discharge of sulfur compounds that can impact downstream environments. These insights illuminate opportunities for in situ biotreatment of reduced sulfur compounds and prediction of acidification events using gene-based monitoring and in situ RNA detection.
Collapse
Affiliation(s)
- Kelly J Whaley-Martin
- University of Toronto, Toronto, ON, Canada
- Environmental Resources management (ERM), Toronto, ON, Canada
| | - Lin-Xing Chen
- Department of Earth and Planetary Science, University of California, Berkeley, CA, USA
| | | | | | - Rose Kantor
- Department of Earth and Planetary Science, University of California, Berkeley, CA, USA
| | | | - Stephanie Marshall
- Environmental Resources management (ERM), Toronto, ON, Canada
- McMaster University, Hamilton, ON, Canada
| | - Sam McGarry
- Glencore, Sudbury Integrated Nickel Operations, Sudbury, ON, Canada
| | | | | | | | - Simon Apte
- CSIRO Land and Water, Clayton, NSW, Australia
| | - Jillian F Banfield
- Department of Earth and Planetary Science, University of California, Berkeley, CA, USA.
| | | |
Collapse
|
34
|
Luo ZH, Li Q, Chen N, Tang LY, Liao B, Yang TT, Huang LN. Genome-resolved metagenomics reveals depth-related patterns of microbial community structure and functions in a highly stratified, AMD overlaying mine tailings. JOURNAL OF HAZARDOUS MATERIALS 2023; 447:130774. [PMID: 36641850 DOI: 10.1016/j.jhazmat.2023.130774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Revised: 01/04/2023] [Accepted: 01/09/2023] [Indexed: 06/17/2023]
Abstract
Acid mine drainage (AMD) is a worldwide environmental problem, yet bioremediation is hampered by a limited knowledge of the reductive microbial processes in the AMD ecosystem. Here, we generate extensive metagenome and geochemical datasets to investigate how microbial populations and metabolic capacities driving major element cycles are structured in a highly stratified, AMD overlaying tailings environment. The results demonstrated an explicit depth-dependent differentiation of microbial community composition and function profiles between the surface and deeper tailings layers, paralleling the dramatic shifts in major physical and geochemical properties. Specifically, key genes involved in sulfur and iron oxidation were significantly enriched in the surface tailings, whereas those associated with reductive nitrogen, sulfur, and iron processes were enriched in the deeper layers. Genome-resolved metagenomics retrieved 406 intermediate or high-quality genomes spanning 26 phyla, including major new groups (e.g., Patescibacteria and DPANN). Metabolic models involving nitrogen, sulfur, iron, and carbon cycles were proposed based on the functional potentials of the abundant microbial genomes, emphasizing syntrophy and the importance of lesser-known taxa in the degradation of complex carbon compounds. These results have implications for in situ AMD bioremediation.
Collapse
Affiliation(s)
- Zhen-Hao Luo
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Qi Li
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Nan Chen
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Ling-Yun Tang
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Bin Liao
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Tao-Tao Yang
- Guangdong Heavy Metal Mine Ecological Restoration Engineering Technology Research Center, Shaoguan, China
| | - Li-Nan Huang
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China.
| |
Collapse
|
35
|
Kumar J, Sharma N, Singh SP. Genome-resolved metagenomics inferred novel insights into the microbial community, metabolic pathways, and biomining potential of Malanjkhand acidic copper mine tailings. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:50864-50882. [PMID: 36807860 DOI: 10.1007/s11356-023-25893-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 02/08/2023] [Indexed: 04/16/2023]
Abstract
Mine tailing sites provide profound opportunities to elucidate the microbial mechanisms involved in ecosystem functioning. In the present study, metagenomic analysis of dumping soil and adjacent pond around India's largest copper mine at Malanjkhand has been done. Taxonomic analysis deciphered the abundance of phyla Proteobacteria, Bacteroidetes, Acidobacteria, and Chloroflexi. Genomic signatures of viruses were predicted in the soil metagenome, whereas Archaea and Eukaryotes were noticed in water samples. Mesophilic chemolithotrophs, such as Acidobacteria bacterium, Chloroflexi bacterium, and Verrucomicrobia bacterium, were predominant in soil, whereas, in the water sample, the abundance of Methylobacterium mesophilicum, Pedobacter sp., and Thaumarchaeota archaeon was determined. The functional potential analysis highlighted the abundance of genes related to sulfur, nitrogen, methane, ferrous oxidation, carbon fixation, and carbohydrate metabolisms. The genes for copper, iron, arsenic, mercury, chromium, tellurium, hydrogen peroxide, and selenium resistance were found to be predominant in the metagenomes. Metagenome-assembled genomes (MAGs) were constructed from the sequencing data, indicating novel microbial species genetically related to the phylum predicted through whole genome metagenomics. Phylogenetic analysis, genome annotations, functional potential, and resistome analysis showed the resemblance of assembled novel MAGs with traditional organisms used in bioremediation and biomining applications. Microorganisms harboring adaptive mechanisms, such as detoxification, hydroxyl radical scavenging, and heavy metal resistance, could be the potent benefactions for their utility as bioleaching agents. The genetic information produced in the present investigation provides a foundation for pursuing and understanding the molecular aspects of bioleaching and bioremediation applications.
Collapse
Affiliation(s)
- Jitesh Kumar
- Center of Innovative and Applied Bioprocessing, Department of Biotechnology (DBT), Govt. of India, S.A.S. Nagar, Sector-81, (Knowledge City) Mohali, 140306, India
| | - Nitish Sharma
- Center of Innovative and Applied Bioprocessing, Department of Biotechnology (DBT), Govt. of India, S.A.S. Nagar, Sector-81, (Knowledge City) Mohali, 140306, India
| | - Sudhir P Singh
- Center of Innovative and Applied Bioprocessing, Department of Biotechnology (DBT), Govt. of India, S.A.S. Nagar, Sector-81, (Knowledge City) Mohali, 140306, India.
| |
Collapse
|
36
|
Diverse Methylmercury (MeHg) Producers and Degraders Inhabit Acid Mine Drainage Sediments, but Few Taxa Correlate with MeHg Accumulation. mSystems 2023; 8:e0073622. [PMID: 36507660 PMCID: PMC9948709 DOI: 10.1128/msystems.00736-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Methylmercury (MeHg) is a notorious neurotoxin, and its production and degradation in the environment are mainly driven by microorganisms. A variety of microbial MeHg producers carrying the gene pair hgcAB and degraders carrying the merB gene have been separately reported in recent studies. However, surprisingly little attention has been paid to the simultaneous investigation of the diversities of microbial MeHg producers and degraders in a given habitat, and no studies have been performed to explore to what extent these two contrasting microbial groups correlate with MeHg accumulation in the habitat of interest. Here, we collected 86 acid mine drainage (AMD) sediments from an area spanning approximately 500,000 km2 in southern China and profiled the sediment-borne putative MeHg producers and degraders using genome-resolved metagenomics. 46 metagenome-assembled genomes (MAGs) containing hgcAB and 93 MAGs containing merB were obtained, including those from various taxa without previously known MeHg-metabolizing microorganisms. These diverse MeHg-metabolizing MAGs were formed largely via multiple independent horizontal gene transfer (HGT) events. The putative MeHg producers from Deltaproteobacteria and Firmicutes as well as MeHg degraders from Acidithiobacillia were closely correlated with MeHg accumulation in the sediments. Furthermore, these three taxa, in combination with two abiotic factors, explained over 60% of the variance in MeHg accumulation. Most of the members of these taxa were characterized by their metabolic potential for nitrogen fixation and copper tolerance. Overall, these findings improve our understanding of the ecology of MeHg-metabolizing microorganisms and likely have implications for the development of management strategies for the reduction of MeHg accumulation in the AMD sediments. IMPORTANCE Microorganisms are the main drivers of MeHg production and degradation in the environment. However, little attention has been paid to the simultaneous investigation of the diversities of microbial MeHg producers and degraders in a given habitat. We used genome-resolved metagenomics to reveal the vast phylogenetic and metabolic diversities of putative MeHg producers and degraders in AMD sediments. Our results show that the diversity of MeHg-metabolizing microorganisms (particularly MeHg degraders) in AMD sediments is much higher than was previously recognized. Via multiple linear regression analysis, we identified both microbial and abiotic factors affecting MeHg accumulation in AMD sediments. Despite their great diversity, only a few taxa of MeHg-metabolizing microorganisms were closely correlated with MeHg accumulation. This work underscores the importance of using genome-resolved metagenomics to survey MeHg-metabolizing microorganisms and provides a framework for the illumination of the microbial basis of MeHg accumulation via the characterization of physicochemical properties, MeHg-metabolizing microorganisms, and the correlations between them.
Collapse
|
37
|
Brito EMS, Guyoneaud R, Caretta CA, Joseph M, Goñi-Urriza M, Ollivier B, Hirschler-Réa A. Bacterial diversity of an acid mine drainage beside the Xichú River (Mexico) accessed by culture-dependent and culture-independent approaches. Extremophiles 2023; 27:5. [PMID: 36800123 DOI: 10.1007/s00792-023-01291-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 02/02/2023] [Indexed: 02/18/2023]
Abstract
Xichú River is a Mexican river located in an environmental preservation area called Sierra Gorda Biosphere Reserve. Around it, there are tons of abandoned mine residues that represent a serious environmental issue. Sediment samples of Xichú River, visibly contaminated by flows of an acid mine drainage, were collected to study their prokaryotic diversity. The study was based on both cultural and non-cultural approaches. The analysis of total 16S rRNA gene by MiSEQ sequencing allowed to identify 182 Operational Taxonomic Units. The community was dominated by Pseudomonadota, Bacteroidota, "Desulfobacterota" and Acidobacteriota (27, 21, 19 and 16%, respectively). Different culture conditions were used focusing on the isolation of anaerobic bacteria, including sulfate-reducing bacteria (SRB) and arsenate-reducing bacteria (ARB). Finally, 16 strains were isolated. Among them, 12 were phylogenetically identified, with two strains being SRB, belonging to the genus Solidesulfovibrio ("Desulfobacterota"), while ten are ARB belonging to the genera Azospira (Pseudomonadota), Peribacillus (Bacillota), Raineyella and Propionicimonas (Actinomycetota). The isolate representative of Raineyella genus probably corresponds to a new species, which, besides arsenate, also reduces nitrate, nitrite, and fumarate.
Collapse
Affiliation(s)
- Elcia Margareth Souza Brito
- Environmental Engineering Department, Laboratory of Environmental Microbiology and Applied Molecular Biology, DI-CGT, Universidad de Guanajuato, CP 36000, Guanajuato (Gto.), Mexico
| | - Rémy Guyoneaud
- UMR 5254, Environmental Microbiology Group, E2S-UPPA CNRS, IPREM, Université de Pau et des Pays de l'Adour, Pau, France
| | - César Augusto Caretta
- Astronomy Department, Universidad de Guanajuato, DCNE-CGT, CP 36023, Guanajuato (Gto.), Mexico.
| | - Manon Joseph
- UM 110, CNRS, IRD, Aix Marseille Université, Institut Méditerranéen d'Océanologie (MIO), Marseille, France
| | - Marisol Goñi-Urriza
- UMR 5254, Environmental Microbiology Group, E2S-UPPA CNRS, IPREM, Université de Pau et des Pays de l'Adour, Pau, France
| | - Bernard Ollivier
- UM 110, CNRS, IRD, Aix Marseille Université, Institut Méditerranéen d'Océanologie (MIO), Marseille, France
| | - Agnès Hirschler-Réa
- UM 110, CNRS, IRD, Aix Marseille Université, Institut Méditerranéen d'Océanologie (MIO), Marseille, France
| |
Collapse
|
38
|
Convergent Community Assembly among Globally Separated Acidic Cave Biofilms. Appl Environ Microbiol 2023; 89:e0157522. [PMID: 36602326 PMCID: PMC9888236 DOI: 10.1128/aem.01575-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Acidophilic bacteria and archaea inhabit extreme geochemical "islands" that can tell us when and how geographic barriers affect the biogeography of microorganisms. Here, we describe microbial communities from extremely acidic (pH 0 to 1) biofilms, known as snottites, from hydrogen sulfide-rich caves. Given the extreme acidity and subsurface location of these biofilms, and in light of earlier work showing strong geographic patterns among snottite Acidithiobacillus populations, we investigated their structure and diversity in order to understand how geography might impact community assembly. We used 16S rRNA gene cloning and fluorescence in situ hybridization (FISH) to investigate 26 snottite samples from four sulfidic caves in Italy and Mexico. All samples had very low biodiversity and were dominated by sulfur-oxidizing bacteria in the genus Acidithiobacillus. Ferroplasma and other archaea in the Thermoplasmatales ranged from 0 to 50% of total cells, and relatives of the bacterial genera Acidimicrobium and Ferrimicrobium were up to 15% of total cells. Rare phylotypes included Sulfobacillus spp. and members of the phyla "Candidatus Dependentiae" and "Candidatus Saccharibacteria" (formerly TM6 and TM7). Although the same genera of acidophiles occurred in snottites on separate continents, most members of those genera represent substantially divergent populations, with 16S rRNA genes that are only 95 to 98% similar. Our findings are consistent with a model of community assembly where sulfidic caves are stochastically colonized by microorganisms from local sources, which are strongly filtered through environmental selection for extreme acid tolerance, and these different colonization histories are maintained by dispersal restrictions within and among caves. IMPORTANCE Microorganisms that are adapted to extremely acidic conditions, known as extreme acidophiles, are catalysts for rock weathering, metal cycling, and mineral formation in naturally acidic environments. They are also important drivers of large-scale industrial processes such as biomining and contaminant remediation. Understanding the factors that govern their ecology and distribution can help us better predict and utilize their activities in natural and engineered systems. However, extremely acidic habitats are unusual in that they are almost always isolated within circumneutral landscapes. So where did their acid-adapted inhabitants come from, and how do new colonists arrive and become established? In this study, we took advantage of a unique natural experiment in Earth's subsurface to show how isolation may have played a role in the colonization history, community assembly, and diversity of highly acidic microbial biofilms.
Collapse
|
39
|
Lahiri D, Nag M, Dey A, Sarkar T, Pati S, Nirmal NP, Ray RR, Upadhye VJ, Pandit S, Moovendhan M, Kavisri M. Marine bioactive compounds as antibiofilm agent: a metabolomic approach. Arch Microbiol 2023; 205:54. [PMID: 36602609 DOI: 10.1007/s00203-022-03391-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 12/17/2022] [Accepted: 12/27/2022] [Indexed: 01/06/2023]
Abstract
The ocean is a treasure trove of both living and nonliving creatures, harboring incredibly diverse group of organisms. A plethora of marine sourced bioactive compounds are discovered over the past few decades, many of which are found to show antibiofilm activity. These are of immense clinical significance since the formation of microbial biofilm is associated with the development of high antibiotic resistance. Biofilms are also responsible to bring about problems associated with industries. In fact, the toilets and wash-basins also show degradation due to development of biofilm on their surfaces. Antimicrobial resistance exhibited by the biofilm can be a potent threat not only for the health care unit along with industries and daily utilities. Various recent studies have shown that the marine members of various kingdom are capable of producing antibiofilm compounds. Many such compounds are with unique structural features and metabolomics approaches are essential to study such large sets of metabolites. Associating holobiome metabolomics with analysis of their chemical attribute may bring new insights on their antibiofilm effect and their applicability as a substitute for conventional antibiotics. The application of computer-aided drug design/discovery (CADD) techniques including neural network approaches and structured-based virtual screening, ligand-based virtual screening in combination with experimental validation techniques may help in the identification of these molecules and evaluation of their drug like properties.
Collapse
Affiliation(s)
- Dibyajit Lahiri
- Department of Biotechnology, University of Engineering & Management, Kolkata, 700160, West Bengal, India
| | - Moupriya Nag
- Department of Biotechnology, University of Engineering & Management, Kolkata, 700160, West Bengal, India
| | - Ankita Dey
- Department of Biotechnology, Maulana Abul Kalam Azad University of Technology, Haringhata, West Bengal, India
| | - Tanmay Sarkar
- Department of Food Processing Technology, Malda Polytechnic, West Bengal State Council of Technical Education, Government of West Bengal, Malda, 732102, West Bengal, India
| | - Siddhartha Pati
- Nat Nov Bioscience Private Limited, Balasore, 756001, Odisha, India
| | - Nilesh P Nirmal
- Institute of Nutrition, Mahidol University, 999 Phutthamonthon 4 Road, Salaya, 73170, Nakhon Pathom, Thailand.
| | - Rina Rani Ray
- Department of Biotechnology, Maulana Abul Kalam Azad University of Technology, Haringhata, West Bengal, India.
| | - Vijay Jagdish Upadhye
- Center of Research for Development (CR4D), Parul Institute of Applied Sciences (PIAS), Parul University, Vadodara, Gujarat, India
| | - Soumya Pandit
- Department of Life Sciences, School of Basic Sciences and Research, Sharda University, Greater Noida, 201306, India
| | - M Moovendhan
- Centre for Ocean Research (DST-FIST Sponsored Centre) MoES-Earth Science & Technology Cell, Col. Dr. Jeppiaar Research Park, Sathyabama Institute of Science and Technology, Chennai, 600119, Tamil Nadu, India
| | - M Kavisri
- Department of Civil Engineering, School of Building and Environment, Sathyabama Institute of Science and Technology, Chennai, 600119, India
| |
Collapse
|
40
|
Li S, Li G, Huang X, Chen Y, Lv C, Bai L, Zhang K, He H, Dai J. Cultivar-specific response of rhizosphere bacterial community to uptake of cadmium and mineral elements in rice (Oryza sativa L.). ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 249:114403. [PMID: 36508785 DOI: 10.1016/j.ecoenv.2022.114403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 11/16/2022] [Accepted: 12/06/2022] [Indexed: 06/17/2023]
Abstract
Toxic metal-contaminated farmland from Cadmium (Cd) can enhance the accumulation of Cd and impair the absorption of mineral elements in brown rice. Although several studies have been conducted on Cd exposure on rice, little has been reported on the relationship between Cd and mineral elements in brown rice and the regulatory mechanism of rhizosphere microorganisms during element uptake. Thus, a field study was undertaken to screen japonica rice cultivars with low Cd and high mineral elements levels, analyze the quantitative relationship between Cd and seven mineral elements, and investigate the cultivar-specific response of rice rhizosphere bacterial communities to differences in Cd and mineral uptake in japonica rice. Results showed that Huaidao-9 and Xudao-7 had low Cd absorption and high amounts of mineral nutrient elements (Fe, Zn, Mg, and Ca, LCHM group), whereas Zhongdao-1 and Xinkedao-31 showed opposite accumulation characteristics (HCLM group). Stepwise regression analysis showed that zinc, iron, and potassium are the key minerals that affect Cd accumulation in japonica rice and zinc was the most important factor, accounting for 68.99 %. The accumulation of Cd and mineral elements is potentially associated with rhizosphere soil bacteria. Taxa enriched in the LCHM rhizosphere (phyla Acidobacteriota and MBNT15) indicated the high nutrient characteristics of the soil and reduced activity of Cd in soil. The HCLM rhizosphere was highly colonized by metal-activating bacteria (Actinobacteria), lignin-degrading bacteria (Actinobacteria and Chlorofexi), and bacteria scavenging nutrients and trace elements (Anaerolinea and Ketobacter). Moreover, the differences in the uptake of Cd and mineral elements affected predicted functions of microbial communities, including sulfur oxidation and sulfur derivative formation, human or plant pathogen, and functions related to the iron oxidation and nitrate reduction. The results indicate a potential association of Cd and mineral elements uptake and accumulation with rhizosphere bacteria in rice, thus providing theoretical basis and a new perspective on the maintenance of rice security and high quality simultaneously.
Collapse
Affiliation(s)
- Shuangshuang Li
- Environment Research Institute, Shandong University, Qingdao 266237, China
| | - Guangxian Li
- Shandong Academy of Agricultural Sciences, Jinan 250100, China
| | - Xianmin Huang
- Shandong General Station of Agricultural Environmental Protection and Rural Energy, Jinan 250100, China
| | - Yihui Chen
- Environment Research Institute, Shandong University, Qingdao 266237, China
| | - Cheng Lv
- Environment Research Institute, Shandong University, Qingdao 266237, China
| | - Liyong Bai
- Environment Research Institute, Shandong University, Qingdao 266237, China
| | - Ke Zhang
- Environment Research Institute, Shandong University, Qingdao 266237, China
| | - Huan He
- Environment Research Institute, Shandong University, Qingdao 266237, China
| | - Jiulan Dai
- Environment Research Institute, Shandong University, Qingdao 266237, China.
| |
Collapse
|
41
|
Daraz U, Li Y, Ahmad I, Iqbal R, Ditta A. Remediation technologies for acid mine drainage: Recent trends and future perspectives. CHEMOSPHERE 2023; 311:137089. [PMID: 36336014 DOI: 10.1016/j.chemosphere.2022.137089] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 10/10/2022] [Accepted: 10/30/2022] [Indexed: 06/16/2023]
Abstract
Acid mine drainage (AMD) is a highly acidic solution rich in heavy metals and produced by mining activities. It can severely inhibit the growth of plants, and microbial communities and disturb the surrounding ecosystem. In recent years, the use of different bioremediation technologies to treat AMD pollution has received widespread attention due to its environment-friendly and low-cost nature. Various active and passive remediation technologies have been developed for the treatment of AMD. The active treatment involves the use of different chemical compounds while passive treatments utilize natural and biological processes like constructed wetlands, anaerobic sulfate-reducing bioreactors, anoxic limestone drains, vertical flow wetlands, limestone leach beds, open limestone channels, and various organic materials. Moreover, different nanomaterials have also been successfully employed in AMD treatment. There are also reports on certain plant growth-promoting rhizobacteria (PGPR) which have the potential to enhance the growth and productivity of plants under AMD-contaminated soil conditions. PGPR applied to plants with phytoremediation potential called PGPR-assisted phytoremediation has emerged as an economical and environment-friendly approach. Nevertheless, various approaches have been tested and employed, all the approaches have certain limitations in terms of efficiency, secondary pollution of chemicals used for the remediation of AMD, and disposal of materials used as sorbents or as phytoextractants as in the case of PGPR-assisted phytoremediation. In the future, more research work is needed to enhance the efficiency of various approaches employed with special attention to alleviating secondary pollutants production and safe disposal of materials used or biomass produced during PGPR-assisted phytoremediation.
Collapse
Affiliation(s)
- Umar Daraz
- School of Resources and Environmental Engineering, Anhui University, Hefei, 230601, Anhui Province, China; State Key Laboratory of Grassland Agro-Ecosystems, Center for Grassland Microbiome, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, 730000, China
| | - Yang Li
- Anhui University of Science and Technology, Huainan, Anhui, 232001, China
| | - Iftikhar Ahmad
- Department of Environmental Sciences, COMSATS University Islamabad Vehari-Campus, Vehari, 61100, Pakistan.
| | - Rashid Iqbal
- Department of Agronomy, Faculty of Agriculture and Environment, The Islamia University of Bahawalpur, 63100, Pakistan
| | - Allah Ditta
- School of Biological Sciences, The University of Western Australia, 35 Stirling Highway, Perth, WA, 6009, Australia; Department of Environmental Sciences, Shaheed Benazir Bhutto University Sheringal, Dir (Upper) Khyber Pakhtunkhwa, 18000, Pakistan.
| |
Collapse
|
42
|
Metagenomic insights into taxonomic, functional diversity and inhibitors of microbial biofilms. Microbiol Res 2022; 265:127207. [DOI: 10.1016/j.micres.2022.127207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 04/17/2022] [Accepted: 09/18/2022] [Indexed: 11/21/2022]
|
43
|
Zhu Q, Ruan M, Hu Z, Ye C. Addition of carbon sources and nutrient salts can inhibit gangue acidification by changing microbial community structure. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:90046-90057. [PMID: 35864391 DOI: 10.1007/s11356-022-21726-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Accepted: 06/25/2022] [Indexed: 06/15/2023]
Abstract
Acidic pollution from gangue oxidation has become a primary environmental problem in coal mining areas in China. The use of microorganisms to remediate acidic pollution in coal gangue piles has been indicated to be effective, but environmental differences and carbon sources in different mining areas have become important factors restricting microbial activity. Instead of the addition of new functional bacteria to gangue piles, carbon sources and nutrient salts were added to recently discharged gangue to enhance the activity of beneficial bacteria in the indigenous microbial community. The changes in pH and electrical conductivity (EC) of the gangue leachate as well as the composition and abundance of the functional microbial community on the surface of the gangue were analyzed by leaching simulation experiments and 16S rRNA sequencing. The results showed that the addition of a carbon source maintained the pH of the gangue leachate at 6.31~6.65 in 14 d, which was significantly higher than that of the control group, but the pH of the leachate decreased significantly after the addition of the carbon source was stopped. The most effective treatment is adding a low concentration of nutrient salt (20% concentration) and sodium lactate (0.02 g/L) to the gangue first, and then adding sodium lactate (0.1 mg/L) every 7 days. The addition of carbon sources and nutrient salts changed the microbial community composition on the surface of the gangue, and the species diversity index decreased. The dominant genera in the experimental group were Listeria, Arthrobacter, and Enterococcus. The functional gene types in the experimental and control groups were almost the same, but their relative abundance changed. The abundance of functional genes related to the sulfur cycle increased substantially in the experimental group, and the abundance of genes involved in the nitrogen and carbon cycles also increased, albeit to different degrees.
Collapse
Affiliation(s)
- Qi Zhu
- Chinese Research Academy of Environmental Sciences, National Engineering Laboratory for Lake Pollution Control and Ecological Restoration, State Environmental Protection Key Laboratory for Lake Pollution Control, Beijing, 100012, China
| | - Mengying Ruan
- Institute of Land Reclamation and Ecological Restoration, China University of Mining and Technology (Beijing), Beijing, 100083, China
| | - Zhenqi Hu
- School of Environment Science and Spatial Informatics, China University of Mining and Technology, Xuzhou, 211116, Jiangsu, China.
| | - Chun Ye
- Chinese Research Academy of Environmental Sciences, National Engineering Laboratory for Lake Pollution Control and Ecological Restoration, State Environmental Protection Key Laboratory for Lake Pollution Control, Beijing, 100012, China
| |
Collapse
|
44
|
Kelly LC, Rivett DW, Pakostova E, Creer S, Cotterell T, Johnson DB. Mineralogy affects prokaryotic community composition in an acidic metal mine. Microbiol Res 2022; 266:127257. [DOI: 10.1016/j.micres.2022.127257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 11/06/2022] [Accepted: 11/09/2022] [Indexed: 11/13/2022]
|
45
|
Chen Z, Fei YH, Liu WS, Ding K, Lu J, Cai X, Cui T, Tang YT, Wang S, Chao Y, Qiu R. Untangling microbial diversity and assembly patterns in rare earth element mine drainage in South China. WATER RESEARCH 2022; 225:119172. [PMID: 36191530 DOI: 10.1016/j.watres.2022.119172] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 09/23/2022] [Accepted: 09/24/2022] [Indexed: 06/16/2023]
Abstract
Ion-adsorption rare earth element (REE) deposits are the main reservoirs of REEs worldwide, and are widely exploited in South China. Microbial diversity is essential for maintaining the performance and function of mining ecosystems. Investigating the ecological patterns underlying the REE mine microbiome is essential to understand ecosystem responses to environmental changes and to improve the bioremediation of mining areas. We applied 16S rRNA and ITS gene sequence analyses to investigate the composition characteristics of prokaryotic (bacteria, archaea) and fungal communities in a river impacted by REE acid mine drainage (REE-AMD). The river formed a unique micro-ecosystem, including the main prokaryotic taxa of Proteobacteria, Acidobacteria, Crenarchaeota, and Euryarchaeota, as well as the main fungal taxa of Ascomycota, Basidiomycota, and Chytridiomycota. Analysis of microbial diversity showed that, unlike prokaryotic communities that responded drastically to pollution disturbances, fungal communities were less affected by REE-AMD, but fluctuated significantly in different seasons. Ecological network analysis revealed that fungal communities have lower connectivity and centrality, and higher modularity than prokaryotic networks, indicating that fungal communities have more stable network structures. The introduction of REE-AMD mainly reduced the complexity of the community network and the number of keystone species, while the proportion of negative prokaryotic-fungal associations in the network increased. Ecological process analysis revealed that, compared to the importance of environmental selection for prokaryotes, stochastic processes might have contributed primarily to fungal communities in REE mining areas. These findings confirm that the different assembly mechanisms of prokaryotic and fungal communities are key to the differences in their responses to environmental perturbations. The findings also provide the first insights into microbiota assembly patterns in REE-AMD and important ecological knowledge for the formation and development of microbial communities in REE mining areas.
Collapse
Affiliation(s)
- Ziwu Chen
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510275, China; National-level Nanchang Economic and Technical Development Zone, Nanchang 330000, China
| | - Ying-Heng Fei
- School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, China
| | - Wen-Shen Liu
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510275, China; Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510275, China; Guangdong Provincial Engineering Research Center for Heavy Metal Contaminated Soil Remediation, Sun Yat-sen University, Guangzhou 510275, China
| | - Kengbo Ding
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510275, China; Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510275, China; Guangdong Provincial Engineering Research Center for Heavy Metal Contaminated Soil Remediation, Sun Yat-sen University, Guangzhou 510275, China
| | - Jianan Lu
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510275, China
| | - Xuan Cai
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510275, China
| | - Tuantuan Cui
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510275, China
| | - Ye-Tao Tang
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510275, China; Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510275, China; Guangdong Provincial Engineering Research Center for Heavy Metal Contaminated Soil Remediation, Sun Yat-sen University, Guangzhou 510275, China
| | - Shizhong Wang
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510275, China; Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510275, China; Guangdong Provincial Engineering Research Center for Heavy Metal Contaminated Soil Remediation, Sun Yat-sen University, Guangzhou 510275, China
| | - Yuanqing Chao
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510275, China; Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510275, China; Guangdong Provincial Engineering Research Center for Heavy Metal Contaminated Soil Remediation, Sun Yat-sen University, Guangzhou 510275, China.
| | - Rongliang Qiu
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510275, China; Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510275, China; Guangdong Provincial Engineering Research Center for Heavy Metal Contaminated Soil Remediation, Sun Yat-sen University, Guangzhou 510275, China; Guangdong Laboratory for Lingnan Modern Agriculture, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China
| |
Collapse
|
46
|
Ramos-Perez D, Alcántara-Hernández RJ, Romero FM, González-Chávez JL. Changes in the prokaryotic diversity in response to hydrochemical variations during an acid mine drainage passive treatment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 842:156629. [PMID: 35691343 DOI: 10.1016/j.scitotenv.2022.156629] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 05/07/2022] [Accepted: 06/07/2022] [Indexed: 06/15/2023]
Abstract
Acid mine drainage (AMD) causes major environmental problems and consequently, several treatments are proposed, favoring the passive systems because of their many advantages. The main goal of these procedures is the neutralization and removal of potentially toxic elements (PTE), yet little is known about the changes in the microbial assemblages in response to the hydrochemical variations during the treatments. Therefore, the main objective of this research was to determine the changes in the diversity and structure of the prokaryotic assemblages in a hybrid abiotic and biological (wetland) passive treatment system. The 16S rRNA gene survey showed that the AMD coming from the mine (pH 2.6) was mainly composed of acidophilic genera such as Acidithiobacillus, Leptospirillum, Ferritrophicum, and Cuniculiplasma (up to 76 % relative abundance). In the abiotic treatment, Acidiphilium was dominant in the sections with limestone filters (pH 2.2-4.8), followed by Limnobacter in the subsequent dolomite/limestone and phosphoric rock filters (pH 5.2-5.8). In these abiotic passive treatment sections, the microbial assemblage showed a limited diversity and richness. However, when the treated AMD reached the two final wetlands (pH ~6.8), the microbial diversity and richness increased, suggesting that further bioattenuation mechanisms might be occurring. Limnobacter and Novosphingobium were the main bacterial genera in the water samples of the wetland sections (Arundo donax). These changes in the composition of the microbial assemblages were highly correlated with the pH and Eh values during the treatment (p-value <0.001); however, the concentration of metal(loid)s such as Al, Cd, Fe, Mn, Ni, and Zn were also significantly related (p-value <0.05). In conclusion, the studied passive AMD treatment system enhanced the chemical quality of the treated AMD, showing high removal efficiencies for Al and Fe (> 99 %), and increasing the microbial diversity and richness in the effluent.
Collapse
Affiliation(s)
- Daniel Ramos-Perez
- Posgrado en Ciencias de la Tierra, Universidad Nacional Autónoma de México (UNAM), Mexico
| | - Rocio J Alcántara-Hernández
- Instituto de Geología, Ciudad Universitaria, Universidad Nacional Autónoma de México (UNAM), 04510 Ciudad de México, México.
| | - Francisco M Romero
- Instituto de Geología, Ciudad Universitaria, Universidad Nacional Autónoma de México (UNAM), 04510 Ciudad de México, México; Laboratorio Nacional de Geoquímica y Mineralogía, Universidad Nacional Autónoma de México, Ciudad Universitaria, 04510 Ciudad de México, México
| | - José Luz González-Chávez
- Facultad de Química, Ciudad Universitaria, Universidad Nacional Autónoma de México (UNAM), 04510 Ciudad de México, México
| |
Collapse
|
47
|
Neira G, Vergara E, Holmes DS. Genome-guided prediction of acid resistance mechanisms in acidophilic methanotrophs of phylogenetically deep-rooted Verrucomicrobia isolated from geothermal environments. Front Microbiol 2022; 13:900531. [PMID: 36212841 PMCID: PMC9543262 DOI: 10.3389/fmicb.2022.900531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Accepted: 07/22/2022] [Indexed: 11/13/2022] Open
Abstract
Verrucomicrobia are a group of microorganisms that have been proposed to be deeply rooted in the Tree of Life. Some are methanotrophs that oxidize the potent greenhouse gas methane and are thus important in decreasing atmospheric concentrations of the gas, potentially ameliorating climate change. They are widespread in various environments including soil and fresh or marine waters. Recently, a clade of extremely acidophilic Verrucomicrobia, flourishing at pH < 3, were described from high-temperature geothermal ecosystems. This novel group could be of interest for studies about the emergence of life on Earth and to astrobiologists as homologs for possible extraterrestrial life. In this paper, we describe predicted mechanisms for survival of this clade at low pH and suggest its possible evolutionary trajectory from an inferred neutrophilic ancestor. Extreme acidophiles are defined as organisms that thrive in extremely low pH environments (≤ pH 3). Many are polyextremophiles facing high temperatures and high salt as well as low pH. They are important to study for both providing fundamental insights into biological mechanisms of survival and evolution in such extreme environments and for understanding their roles in biotechnological applications such as industrial mineral recovery (bioleaching) and mitigation of acid mine drainage. They are also, potentially, a rich source of novel genes and pathways for the genetic engineering of microbial strains. Acidophiles of the Verrucomicrobia phylum are unique as they are the only known aerobic methanotrophs that can grow optimally under acidic (pH 2–3) and moderately thermophilic conditions (50–60°C). Three moderately thermophilic genera, namely Methylacidiphilum, Methylacidimicrobium, and Ca. Methylacidithermus, have been described in geothermal environments. Most of the investigations of these organisms have focused on their methane oxidizing capabilities (methanotrophy) and use of lanthanides as a protein cofactor, with no extensive study that sheds light on the mechanisms that they use to flourish at extremely low pH. In this paper, we extend the phylogenetic description of this group of acidophiles using whole genome information and we identify several mechanisms, potentially involved in acid resistance, including “first line of defense” mechanisms that impede the entry of protons into the cell. These include the presence of membrane-associated hopanoids, multiple copies of the outer membrane protein (Slp), and inner membrane potassium channels (kup, kdp) that generate a reversed membrane potential repelling the intrusion of protons. Acidophilic Verrucomicrobia also display a wide array of proteins potentially involved in the “second line of defense” where protons that evaded the first line of defense and entered the cell are expelled or neutralized, such as the glutamate decarboxylation (gadAB) and phosphate-uptake systems. An exclusive N-type ATPase F0-F1 was identified only in acidophiles of Verrucomicrobia and is predicted to be a specific adaptation in these organisms. Phylogenetic analyses suggest that many predicted mechanisms are evolutionarily conserved and most likely entered the acidophilic lineage of Verrucomicrobia by vertical descent from a common ancestor. However, it is likely that some defense mechanisms such as gadA and kup entered the acidophilic Verrucomicrobia lineage by horizontal gene transfer.
Collapse
Affiliation(s)
- Gonzalo Neira
- Center for Bioinformatics and Genome Biology, Centro Ciencia & Vida, Fundación Ciencia & Vida, Santiago, Chile
| | - Eva Vergara
- Center for Bioinformatics and Genome Biology, Centro Ciencia & Vida, Fundación Ciencia & Vida, Santiago, Chile
- Facultad de Medicina y Ciencia, Universidad San Sebastián, Santiago, Chile
| | - David S. Holmes
- Center for Bioinformatics and Genome Biology, Centro Ciencia & Vida, Fundación Ciencia & Vida, Santiago, Chile
- Facultad de Medicina y Ciencia, Universidad San Sebastián, Santiago, Chile
- *Correspondence: David S. Holmes
| |
Collapse
|
48
|
Yi X, Liang JL, Su JQ, Jia P, Lu JL, Zheng J, Wang Z, Feng SW, Luo ZH, Ai HX, Liao B, Shu WS, Li JT, Zhu YG. Globally distributed mining-impacted environments are underexplored hotspots of multidrug resistance genes. THE ISME JOURNAL 2022; 16:2099-2113. [PMID: 35688988 PMCID: PMC9381775 DOI: 10.1038/s41396-022-01258-z] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 05/20/2022] [Accepted: 05/26/2022] [Indexed: 04/18/2023]
Abstract
Mining is among the human activities with widest environmental impacts, and mining-impacted environments are characterized by high levels of metals that can co-select for antibiotic resistance genes (ARGs) in microorganisms. However, ARGs in mining-impacted environments are still poorly understood. Here, we conducted a comprehensive study of ARGs in such environments worldwide, taking advantage of 272 metagenomes generated from a global-scale data collection and two national sampling efforts in China. The average total abundance of the ARGs in globally distributed studied mine sites was 1572 times per gigabase, being rivaling that of urban sewage but much higher than that of freshwater sediments. Multidrug resistance genes accounted for 40% of the total ARG abundance, tended to co-occur with multimetal resistance genes, and were highly mobile (e.g. on average 16% occurring on plasmids). Among the 1848 high-quality metagenome-assembled genomes (MAGs), 85% carried at least one multidrug resistance gene plus one multimetal resistance gene. These high-quality ARG-carrying MAGs considerably expanded the phylogenetic diversity of ARG hosts, providing the first representatives of ARG-carrying MAGs for the Archaea domain and three bacterial phyla. Moreover, 54 high-quality ARG-carrying MAGs were identified as potential pathogens. Our findings suggest that mining-impacted environments worldwide are underexplored hotspots of multidrug resistance genes.
Collapse
Affiliation(s)
- Xinzhu Yi
- Institute of Ecological Science, Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, 510631, PR China
| | - Jie-Liang Liang
- Institute of Ecological Science, Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, 510631, PR China
| | - Jian-Qiang Su
- Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, PR China
| | - Pu Jia
- Institute of Ecological Science, Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, 510631, PR China
| | - Jing-Li Lu
- Institute of Ecological Science, Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, 510631, PR China
| | - Jin Zheng
- Institute of Ecological Science, Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, 510631, PR China
| | - Zhang Wang
- Institute of Ecological Science, Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, 510631, PR China
| | - Shi-Wei Feng
- Institute of Ecological Science, Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, 510631, PR China
| | - Zhen-Hao Luo
- School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, PR China
| | - Hong-Xia Ai
- School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, PR China
| | - Bin Liao
- School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, PR China
| | - Wen-Sheng Shu
- Institute of Ecological Science, Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, 510631, PR China
- Guangdong Provincial Key Laboratory of Chemical Pollution, South China Normal University, Guangzhou, 510006, PR China
| | - Jin-Tian Li
- Institute of Ecological Science, Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, 510631, PR China.
| | - Yong-Guan Zhu
- Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, PR China
| |
Collapse
|
49
|
Aronson HS, Monteverde DR, Barnes BD, Johnson BR, Zawaski MJ, Speth DR, Wang XT, Wu F, Webb SM, Trower EJ, Magyar JS, Sessions AL, Orphan VJ, Fischer WW. Sulfur cycling at natural hydrocarbon and sulfur seeps in Santa Paula Creek, CA. GEOBIOLOGY 2022; 20:707-725. [PMID: 35894090 DOI: 10.1111/gbi.12512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 05/31/2022] [Accepted: 06/26/2022] [Indexed: 06/15/2023]
Abstract
Biogeochemical cycling of sulfur is relatively understudied in terrestrial environments compared to marine environments. However, the comparative ease of access, observation, and sampling of terrestrial settings can expand our understanding of organisms and processes important in the modern sulfur cycle. Furthermore, these sites may allow for the discovery of useful process analogs for ancient sulfur-metabolizing microbial communities at times in Earth's past when atmospheric O2 concentrations were lower and sulfide was more prevalent in Earth surface environments. We identified a new site at Santa Paula Creek (SPC) in Ventura County, CA-a remarkable freshwater, gravel-bedded mountain stream charged with a range of oxidized and reduced sulfur species and heavy hydrocarbons from the emergence of subsurface fluids within the underlying sulfur- and organic-rich Miocene-age Monterey Formation. SPC hosts a suite of morphologically distinct microbial biofacies that form in association with the naturally occurring hydrocarbon seeps and sulfur springs. We characterized the geology, stream geochemistry, and microbial facies and diversity of the Santa Paula Creek ecosystem. Using geochemical analyses and 16S rRNA gene sequencing, we found that SPC supports a dynamic sulfur cycle that is largely driven by sulfide-oxidizing microbial taxa, with contributions from smaller populations of sulfate-reducing and sulfur-disproportionating taxa. This preliminary characterization of SPC revealed an intriguing site in which to study geological and geochemical controls on microbial community composition and to expand our understanding of sulfur cycling in terrestrial environments.
Collapse
Affiliation(s)
- Heidi S Aronson
- Department of Biological Sciences, University of Southern California, Los Angeles, California, USA
| | - Danielle R Monteverde
- Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, California, USA
| | - Ben Davis Barnes
- Department of Geosciences, Pennsylvania State University, Pennsylvania, USA
| | - Brooke R Johnson
- Early Life Traces & Evolution-Astrobiology, University of Liège, Liège, Belgium
- Department of Earth Sciences, Oxford University, Oxford, UK
| | - Mike J Zawaski
- Department of Geological Sciences, University of Colorado Boulder, Boulder, Colorado, USA
| | - Daan R Speth
- Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, California, USA
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, California, USA
| | - Xingchen Tony Wang
- Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, California, USA
- Department of Earth and Environmental Sciences, Boston College, Chestnut Hill, Massachusetts, USA
| | - Fenfang Wu
- Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, California, USA
| | - Samuel M Webb
- SLAC National Accelerator Laboratory, Stanford Synchrotron Radiation Lightsource, Menlo Park, California, USA
| | | | - John S Magyar
- Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, California, USA
| | - Alex L Sessions
- Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, California, USA
| | - Victoria J Orphan
- Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, California, USA
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, California, USA
| | - Woodward W Fischer
- Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, California, USA
| |
Collapse
|
50
|
Song Y, Guo Z, Wang R, Yang L, Cao Y, Wang H. A novel approach for treating acid mine drainage by forming schwertmannite driven by a combination of biooxidation and electroreduction before lime neutralization. WATER RESEARCH 2022; 221:118748. [PMID: 35728497 DOI: 10.1016/j.watres.2022.118748] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 06/06/2022] [Accepted: 06/12/2022] [Indexed: 06/15/2023]
Abstract
Acid mine drainage (AMD) contains abundant iron, sulfates, and various metal ions, and it causes environmental pollution. The traditional AMD lime neutralization forms a layer of iron hydroxide and gypsum on the surface of the lime particles, preventing continuous reaction and leading to excessive lime addition and neutralized sludge production. In this study, an approach for treating AMD using a cyclic process of biooxidation and electroreduction before lime neutralization was proposed, in which the Fe2+ in AMD was oxidized to Fe3+ and induced to form schwertmannite through Acidithiobacillus ferrooxidans. The remaining Fe3+ was reduced to Fe2+ using an electric field. After three biooxidation and two electroreduction cycles, 98.2% of Fe and 62.4% of SO42- in AMD precipitated as schwertmannite (Fe8O8(OH)5.16(SO4)1.37). The yield of schwertmannite reached 33.98 g/LAMD, with a high specific surface area of 112.59 m2/g. The lime dosage and sludge yield of the treated AMD in the subsequent neutralization stage (pH = 7.00) decreased by 85.0% and 74.5%, respectively, than those of raw AMD. The pilot test results showed that the integrated treatment of biooxidation-electroreduction cyclic mineralization and lime neutralization has practical applications.
Collapse
Affiliation(s)
- Yongwei Song
- Department of Environmental Engineering, School of Information and Safety Engineering, Zhongnan University of Economics and Law, Wuhan 430073, China.
| | - Zehao Guo
- Department of Environmental Engineering, School of Information and Safety Engineering, Zhongnan University of Economics and Law, Wuhan 430073, China
| | - Rui Wang
- Department of Environmental Engineering, School of Information and Safety Engineering, Zhongnan University of Economics and Law, Wuhan 430073, China
| | - Linlin Yang
- Department of Environmental Engineering, School of Information and Safety Engineering, Zhongnan University of Economics and Law, Wuhan 430073, China
| | - Yanxiao Cao
- Department of Environmental Engineering, School of Information and Safety Engineering, Zhongnan University of Economics and Law, Wuhan 430073, China
| | - Heru Wang
- Department of Environmental Engineering, School of Information and Safety Engineering, Zhongnan University of Economics and Law, Wuhan 430073, China.
| |
Collapse
|