1
|
Sundaram B, Behnke K, Belancic A, Al-Salihi MA, Thabet Y, Polz R, Pellegrino R, Zhuang Y, Shinde PV, Xu HC, Vasilevska J, Longerich T, Herebian D, Mayatepek E, Bock HH, May P, Kordes C, Aghaeepour N, Mak TW, Keitel V, Häussinger D, Scheller J, Pandyra AA, Lang KS, Lang PA. iRhom2 inhibits bile duct obstruction-induced liver fibrosis. Sci Signal 2019; 12:12/605/eaax1194. [PMID: 31662486 DOI: 10.1126/scisignal.aax1194] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Chronic liver disease can induce prolonged activation of hepatic stellate cells, which may result in liver fibrosis. Inactive rhomboid protein 2 (iRhom2) is required for the maturation of A disintegrin and metalloprotease 17 (ADAM17, also called TACE), which is responsible for the cleavage of membrane-bound tumor necrosis factor-α (TNF-α) and its receptors (TNFRs). Here, using the murine bile duct ligation (BDL) model, we showed that the abundance of iRhom2 and activation of ADAM17 increased during liver fibrosis. Consistent with this, concentrations of ADAM17 substrates were increased in plasma samples from mice after BDL and in patients suffering from liver cirrhosis. We observed increased liver fibrosis, accelerated disease progression, and an increase in activated stellate cells after BDL in mice lacking iRhom2 (Rhbdf2-/- ) compared to that in controls. In vitro primary mouse hepatic stellate cells exhibited iRhom2-dependent shedding of the ADAM17 substrates TNFR1 and TNFR2. In vivo TNFR shedding after BDL also depended on iRhom2. Treatment of Rhbdf2-/- mice with the TNF-α inhibitor etanercept reduced the presence of activated stellate cells and alleviated liver fibrosis after BDL. Together, these data suggest that iRhom2-mediated inhibition of TNFR signaling protects against liver fibrosis.
Collapse
Affiliation(s)
- Balamurugan Sundaram
- Department of Molecular Medicine II, Medical Faculty, Heinrich-Heine-University Düsseldorf, Universitätsstrasse 1, 40225 Düsseldorf, Germany
| | - Kristina Behnke
- Department of Molecular Medicine II, Medical Faculty, Heinrich-Heine-University Düsseldorf, Universitätsstrasse 1, 40225 Düsseldorf, Germany
| | - Andrea Belancic
- Department of Molecular Medicine II, Medical Faculty, Heinrich-Heine-University Düsseldorf, Universitätsstrasse 1, 40225 Düsseldorf, Germany
| | - Mazin A Al-Salihi
- Department of Molecular Medicine II, Medical Faculty, Heinrich-Heine-University Düsseldorf, Universitätsstrasse 1, 40225 Düsseldorf, Germany
| | - Yasser Thabet
- Department of Gastroenterology, Hepatology, and Infectious Diseases, Heinrich-Heine-University Düsseldorf, Moorenstrasse 5, 40225 Düsseldorf, Germany
| | - Robin Polz
- Institute of Biochemistry and Molecular Biology II, Medical Faculty, Heinrich-Heine-University Düsseldorf, 40225 Düsseldorf, Germany
| | - Rossella Pellegrino
- Institute of Pathology, University Hospital Heidelberg, Im Neuenheimer Feld 224, 69120 Heidelberg, Germany
| | - Yuan Zhuang
- Department of Molecular Medicine II, Medical Faculty, Heinrich-Heine-University Düsseldorf, Universitätsstrasse 1, 40225 Düsseldorf, Germany
| | - Prashant V Shinde
- Department of Molecular Medicine II, Medical Faculty, Heinrich-Heine-University Düsseldorf, Universitätsstrasse 1, 40225 Düsseldorf, Germany
| | - Haifeng C Xu
- Department of Molecular Medicine II, Medical Faculty, Heinrich-Heine-University Düsseldorf, Universitätsstrasse 1, 40225 Düsseldorf, Germany
| | - Jelena Vasilevska
- Department of Molecular Medicine II, Medical Faculty, Heinrich-Heine-University Düsseldorf, Universitätsstrasse 1, 40225 Düsseldorf, Germany
| | - Thomas Longerich
- Institute of Pathology, University Hospital Heidelberg, Im Neuenheimer Feld 224, 69120 Heidelberg, Germany
| | - Diran Herebian
- Department of General Pediatrics, Neonatology and Pediatric Cardiology, Medical Faculty, Heinrich-Heine-University Düsseldorf, 40225 Düsseldorf, Germany
| | - Ertan Mayatepek
- Department of General Pediatrics, Neonatology and Pediatric Cardiology, Medical Faculty, Heinrich-Heine-University Düsseldorf, 40225 Düsseldorf, Germany
| | - Hans H Bock
- Department of Gastroenterology, Hepatology, and Infectious Diseases, Heinrich-Heine-University Düsseldorf, Moorenstrasse 5, 40225 Düsseldorf, Germany
| | - Petra May
- Department of Gastroenterology, Hepatology, and Infectious Diseases, Heinrich-Heine-University Düsseldorf, Moorenstrasse 5, 40225 Düsseldorf, Germany
| | - Claus Kordes
- Department of Gastroenterology, Hepatology, and Infectious Diseases, Heinrich-Heine-University Düsseldorf, Moorenstrasse 5, 40225 Düsseldorf, Germany.,Institute for Experimental Regenerative Hepatology, Heinrich-Heine-University Düsseldorf, 40225 Düsseldorf, Germany
| | - Nima Aghaeepour
- Stanford University, 300 Pasteur Drive, Grant S280, Stanford, CA 94305-5117, USA
| | - Tak W Mak
- Department of Medical Biophysics, University of Toronto, 1 King's Circle, Toronto, ON M5S 1A8, Canada.,Department of Pathology, University of Hong Kong, Hong Kong
| | - Verena Keitel
- Department of Gastroenterology, Hepatology, and Infectious Diseases, Heinrich-Heine-University Düsseldorf, Moorenstrasse 5, 40225 Düsseldorf, Germany
| | - Dieter Häussinger
- Department of Gastroenterology, Hepatology, and Infectious Diseases, Heinrich-Heine-University Düsseldorf, Moorenstrasse 5, 40225 Düsseldorf, Germany.,Institute for Experimental Regenerative Hepatology, Heinrich-Heine-University Düsseldorf, 40225 Düsseldorf, Germany
| | - Jürgen Scheller
- Institute of Biochemistry and Molecular Biology II, Medical Faculty, Heinrich-Heine-University Düsseldorf, 40225 Düsseldorf, Germany
| | - Aleksandra A Pandyra
- Department of Molecular Medicine II, Medical Faculty, Heinrich-Heine-University Düsseldorf, Universitätsstrasse 1, 40225 Düsseldorf, Germany.,Department of Gastroenterology, Hepatology, and Infectious Diseases, Heinrich-Heine-University Düsseldorf, Moorenstrasse 5, 40225 Düsseldorf, Germany
| | - Karl S Lang
- Institute of Immunology, Medical Faculty, University of Duisburg-Essen, Hufelandstr. 55, Essen 45147, Germany
| | - Philipp A Lang
- Department of Molecular Medicine II, Medical Faculty, Heinrich-Heine-University Düsseldorf, Universitätsstrasse 1, 40225 Düsseldorf, Germany.
| |
Collapse
|
2
|
Palladini G, Ferrigno A, Richelmi P, Perlini S, Vairetti M. Role of matrix metalloproteinases in cholestasis and hepatic ischemia/reperfusion injury: A review. World J Gastroenterol 2015; 21:12114-12124. [PMID: 26576096 PMCID: PMC4641129 DOI: 10.3748/wjg.v21.i42.12114] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2015] [Revised: 04/28/2015] [Accepted: 09/30/2015] [Indexed: 02/07/2023] Open
Abstract
Matrix metalloproteinases (MMPs) are a family of proteases using zinc-dependent catalysis to break down extracellular matrix (ECM) components, allowing cell movement and tissue reorganization. Like many other proteases, MMPs are produced as zymogens, an inactive form, which are activated after their release from cells. Hepatic ischemia/reperfusion (I/R) is associated with MMP activation and release, with profound effects on tissue integrity: their inappropriate, prolonged or excessive expression has harmful consequences for the liver. Kupffer cells and hepatic stellate cells can secrete MMPs though sinusoidal endothelial cells are a further source of MMPs. After liver transplantation, biliary complications are mainly attributable to cholangiocytes, which, compared with hepatocytes, are particularly susceptible to injury and ultimately a major cause of increased graft dysfunction and patient morbidity. This paper focuses on liver I/R injury and cholestasis and reviews factors and mechanisms involved in MMP activation together with synthetic compounds used in their regulation. In this respect, recent data have demonstrated that the role of MMPs during I/R may go beyond the mere destruction of the ECM and may be much more complex than previously thought. We thus discuss the role of MMPs as an important factor in cholestasis associated with I/R injury.
Collapse
|
3
|
Hauser-Davis RA, Lima AA, Ziolli RL, Campos RC. First-time report of metalloproteinases in fish bile and their potential as bioindicators regarding environmental contamination. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2012; 110-111:99-106. [PMID: 22281778 DOI: 10.1016/j.aquatox.2011.12.014] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2011] [Revised: 12/16/2011] [Accepted: 12/21/2011] [Indexed: 05/31/2023]
Abstract
Gallbladder bile from 2 fish species, mullet (Mugil liza) and tilapias (Tilapia rendalli), contain substantial matrix metalloproteinases (MMPs). Extensive purification studies were conducted in order to obtain workable samples for SDS-PAGE and zymography analysis. Proteinase activities were assayed by gelatin substrate zymography. Several protein bands were observed, corresponding to molecular weights of 200, 136, 43, 36, 34, 29, 23 and 14 kDa in mullet bile and 179, 97, 79, 61, 54, 45, 36, 33 and 21 kDa in tilapia bile. Specific inhibitor studies were conducted, in which MMPS were inhibited by EDTA and 1,10 phenanthroline, but not by serine and cysteine protease inhibitors, such as phenylmethylsulfonyl fluoride (PMSF) and transepoxysuccinyl-l-leucylamido-l-guanidino butane (E-64), confirming the proteinase identities as MMPs. Differences in proteinase expression were observed in fish from a contaminated and reference site. Some studies regarding MMPs in different fish tissues exist, however this is the first study conducted in fish bile, and their involvement in detoxification processes and organism protection against the effects of aquatic contaminants may be a possibility.
Collapse
Affiliation(s)
- R A Hauser-Davis
- Pontifícia Universidade Católica - Rio de Janeiro (PUC-Rio), Chemistry Department, Bioanalytics Laboratory, Rua Marquês de São Vicente, 225, Gávea, CEP: 22453-900, Rio de Janeiro, RJ, Brazil.
| | | | | | | |
Collapse
|
4
|
Abstract
Fibrosis is defined as a fibroproliferative or abnormal fibroblast activation-related disease. Deregulation of wound healing leads to hyperactivation of fibroblasts and excessive accumulation of extracellular matrix (ECM) proteins in the wound area, the pathological manifestation of fibrosis. The accumulation of excessive levels of collagen in the ECM depends on two factors: an increased rate of collagen synthesis and or decreased rate of collagen degradation by cellular proteolytic activities. The urokinase/tissue type plasminogen activator (uPA/tPA) and plasmin play significant roles in the cellular proteolytic degradation of ECM proteins and the maintenance of tissue homeostasis. The activities of uPA/tPA/plasmin and plasmin-dependent MMPs rely mostly on the activity of a potent inhibitor of uPA/tPA, plasminogen activator inhibitor-1 (PAI-1). Under normal physiologic conditions, PAI-1 controls the activities of uPA/tPA/plasmin/MMP proteolytic activities and thus maintains the tissue homeostasis. During wound healing, elevated levels of PAI-1 inhibit uPA/tPA/plasmin and plasmin-dependent MMP activities, and, thus, help expedite wound healing. In contrast to this scenario, under pathologic conditions, excessive PAI-1 contributes to excessive accumulation of collagen and other ECM protein in the wound area, and thus preserves scarring. While the level of PAI-1 is significantly elevated in fibrotic tissues, lack of PAI-1 protects different organs from fibrosis in response to injury-related profibrotic signals. Thus, PAI-1 is implicated in the pathology of fibrosis in different organs including the heart, lung, kidney, liver, and skin. Paradoxically, PAI-1 deficiency promotes spontaneous cardiac-selective fibrosis. In this review, we discuss the significance of PAI-1 in the pathogenesis of fibrosis in multiple organs.
Collapse
Affiliation(s)
- Asish K Ghosh
- Feinberg Cardiovascular Research Institute, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611, USA.
| | | |
Collapse
|
5
|
Hauser-Davis RA, de Campos RC, Ziolli RL. Fish metalloproteins as biomarkers of environmental contamination. REVIEWS OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2012; 218:101-123. [PMID: 22488605 DOI: 10.1007/978-1-4614-3137-4_2] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Fish are well-recognized bioindicators of environmental contamination. Several recent proteomic studies have demonstrated the validity and value of using fish in the search and discovery of new biomarkers. Certain analytical tools, such as comparative protein expression analyses, both in field and lab exposure studies, have been used to improve the understanding of the potential for chemical pollutants to cause harmful effects. The metallomic approach is in its early stages of development, but has already shown great potential for use in ecological and environmental monitoring contexts. Besides discovering new metalloproteins that may be used as biomarkers for environmental contamination, metallomics can be used to more comprehensively elucidate existing biomarkers, which may enhance their effectiveness. Unfortunately, metallomic profiling for fish has not been explored, because only a few fish metalloproteins have thus far been discovered and studied. Of those that have, some have shown ecological importance, and are now successfully used as biomarkers of environmental contamination. These biomarkers have been shown to respond to several types of environmental contamination, such as cyanotoxins, metals, and sewage effluents, although many do not yet possess any known function. Examples of successes include MMPs, superoxide dismutases, selenoproteins, and iron-bound proteins. Unfortunately, none of these have, as yet, been extensively studied. As data are developed for them, valuable new information on their roles in fish physiology and in inducing environmental effects should become available.
Collapse
Affiliation(s)
- Rachel Ann Hauser-Davis
- Departamento de Química, Pontifícia Universidade Católica do Rio de Janeiro (PUC-Rio), Rua Marquês de São Vicente, 225, Gávea, CEP: 22453-900, Rio de Janeiro, RJ, Brazil.
| | | | | |
Collapse
|
6
|
Plasminogen activator inhibitor-1 deficient mice are protected from angiotensin II-induced fibrosis. Arch Biochem Biophys 2011; 510:19-26. [PMID: 21501583 DOI: 10.1016/j.abb.2011.04.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2011] [Revised: 03/29/2011] [Accepted: 04/02/2011] [Indexed: 02/08/2023]
Abstract
PAI-1 has been shown to be both profibrotic and antifibrotic in animal models of hepatic fibrosis. Although these models have similarities to human fibrotic liver disease, no rodent model completely recapitulates the clinical situation; indeed, transaminase values in most models of hepatic fibrosis are much higher than in chronic liver diseases in humans. Here, wild-type and PAI-1(-/-) mice were administered AngII (500 ng/kg/min) for 4 weeks. ECM accumulation was evaluated by Sirius red staining, hydroxyproline content, and fibrin and collagen immunostaining. Induction of pro-fibrotic genes was assessed by real-time RT-PCR. Despite the absence of any significant liver damage, AngII infusion increased the deposition of hepatic collagen and fibrin ECM, with a perisinusoidal pattern. PAI-1(-/-) mice were protected from these ECM changes, indicating a causal role of PAI-1 in this fibrosis model. Protection in the knockout strain correlated with a blunted increase in αSMA, and elevated activities of matrix metalloproteinases (MMP2, MMP9). These data suggest that PAI-1 plays a critical role in mediating fibrosis caused by AngII and lends weight-of-evidence to a pro-fibrotic role of this protein in liver. Furthermore, the current study proposes a new model of 'pure' hepatic fibrosis in mice with little inflammation or hepatocyte death.
Collapse
|
7
|
von Montfort C, Beier JI, Kaiser JP, Guo L, Joshi-Barve S, Pritchard MT, States JC, Arteel GE. PAI-1 plays a protective role in CCl4-induced hepatic fibrosis in mice: role of hepatocyte division. Am J Physiol Gastrointest Liver Physiol 2010; 298:G657-66. [PMID: 20203062 PMCID: PMC2867423 DOI: 10.1152/ajpgi.00107.2009] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Plasminogen activator inhibitor-1 (PAI-1) is an acute phase protein that has been shown to play a role in experimental fibrosis caused by bile duct ligation (BDL) in mice. However, its role in more severe models of hepatic fibrosis (e.g., carbon tetrachloride; CCl(4)) has not been determined and is important for extrapolation to human disease. Wild-type or PAI-1 knockout mice were administered CCl(4) (1 ml/kg body wt ip) 2x/wk for 4 wk. Plasma (e.g., transaminase activity) and histological (e.g., Sirius red staining) indexes of liver damage and fibrosis were evaluated. Proliferation and apoptosis were assessed by PCNA and TdT-mediated dUTP nick-end labeling (TUNEL) staining, respectively, as well as by indexes of cell cycle (e.g., p53, cyclin D1). In contrast to previous studies with BDL, hepatic fibrosis was enhanced in PAI-1(-/-) mice after chronic CCl(4) administration. Indeed, all indexes of liver damage were elevated in PAI-1(-/-) mice compared with wild-type mice. This enhanced liver damage correlated with impaired hepatocyte proliferation. A similar effect on proliferation was observed after one bolus dose of CCl(4), without concomitant increases in liver damage. Under these conditions, a decrease in phospho-p38, coupled with elevated p53 protein, was observed; these results suggest impaired proliferation and a potential G(1)/S cell cycle arrest in PAI-1(-/-) mice. These data suggest that PAI-1 may play multiple roles in chronic liver diseases, both protective and damaging, the latter mediated by its influence on inflammation and fibrosis and the former via helping maintain hepatocyte division after an injury.
Collapse
Affiliation(s)
- Claudia von Montfort
- 1Department of Pharmacology and Toxicology and ,the 2University of Louisville Alcohol Research Center, University of Louisville Health Sciences Center, Louisville, Kentucky; and
| | - Juliane I. Beier
- 1Department of Pharmacology and Toxicology and ,the 2University of Louisville Alcohol Research Center, University of Louisville Health Sciences Center, Louisville, Kentucky; and
| | - J. Phillip Kaiser
- 1Department of Pharmacology and Toxicology and ,the 2University of Louisville Alcohol Research Center, University of Louisville Health Sciences Center, Louisville, Kentucky; and
| | - Luping Guo
- 1Department of Pharmacology and Toxicology and
| | - Swati Joshi-Barve
- 1Department of Pharmacology and Toxicology and ,the 2University of Louisville Alcohol Research Center, University of Louisville Health Sciences Center, Louisville, Kentucky; and
| | - Michele T. Pritchard
- 3Department of Pathobiology, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio
| | | | - Gavin E. Arteel
- 1Department of Pharmacology and Toxicology and ,the 2University of Louisville Alcohol Research Center, University of Louisville Health Sciences Center, Louisville, Kentucky; and
| |
Collapse
|
8
|
Martínez-Rizo A, Bueno-Topete M, González-Cuevas J, Armendáriz-Borunda J. Plasmin plays a key role in the regulation of profibrogenic molecules in hepatic stellate cells. Liver Int 2010; 30:298-310. [PMID: 19889106 DOI: 10.1111/j.1478-3231.2009.02155.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
BACKGROUND Plasmin role in transforming growth factor-beta (TGF-beta)-responsive gene regulation remains to be elucidated. Also, plasmin action on co-repressor Ski-related novel protein N (SnoN) and differential activation of matrix metalloproteinases (MMPs) are unknown. Thus, the role of plasmin on profibrogenic molecule expression, SnoN transcriptional kinetics and gelatinase activation was investigated. METHODS Hepatic stellate cells (HSC) were transduced with adenovirus-mediated human urokinase plasminogen activator (Ad-huPA) (4 x 10(9) viral particles/ml). Overexpression of urokinase plasminogen activator and therefore of plasmin, was blocked by tranexamic acid (TA) in transduced HSC. Gene expression was monitored by reverse transcriptase polymerase chain reaction. HSC-free supernatants were used to evaluate MMP-2 and MMP-9 by zymography. SnoN, TGF-beta and tissue inhibitor of metalloproteinase (TIMP)-1 were analysed by Western blot. Plasmin and SnoN expression kinetics were evaluated in bile duct-ligated (BDL) rats. RESULTS Plasmin overexpression in Ad-huPA-transduced HSC significantly decreased gene expression of profibrogenic molecules [alpha1(I)collagen 66%, TIMP-1 59%, alpha-smooth muscle actin 90% and TGF-beta 55%]. Interestingly, both SnoN gene and protein expression increased prominently. Plasmin inhibition by TA upregulated the profibrogenic genes, which respond to TGF-beta-intracellular signalling. In contrast, SnoN mRNA and protein dropped importantly. Plasmin-activated MMP-9 and MMP-2 in HSC supernatants. Taken together, these findings indicate that MMP-9 activation is totally plasmin dependent. SnoN levels significantly decreased in cholestatic-BDL rats (82%) as compared with control animals. Interestingly, hepatic plasmin levels dropped 46% in BDL rats as compared with control. CONCLUSION Plasmin plays a key role in regulating TGF-beta-responding genes. In particular, regulation of TGF-beta-co-repressor (SnoN) is greatly affected, which suggests SnoN as a cardinal player in cholestasis-induced fibrogenesis.
Collapse
Affiliation(s)
- Abril Martínez-Rizo
- Department of Molecular Biology and Genomics, CUCS, Institute for Molecular Biology in Medicine and Gene Therapy, University of Guadalajara, and OPD Hospital Civil de Guadalajara, Guadalajara, Jalisco, Mexico
| | | | | | | |
Collapse
|
9
|
Potent antioxidant role of pirfenidone in experimental cirrhosis. Eur J Pharmacol 2008; 595:69-77. [PMID: 18652820 DOI: 10.1016/j.ejphar.2008.06.110] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2008] [Revised: 06/19/2008] [Accepted: 06/27/2008] [Indexed: 12/28/2022]
Abstract
Three important features must be considered when proposing therapeutic strategies in liver cirrhosis: inflammation, oxidative stress and fibrogenesis. Pirfenidone is a synthetic molecule which oxidative action has not been tested in cirrhosis. Cirrhosis was induced in rats by ligation of the common bile duct or carbon tetrachloride (CCl(4)) chronic intoxication and treated with pirfenidone or diphenyleneiodonium (a potent known antioxidant) for the last two weeks for bile duct ligation model or for the last three weeks for CCl(4) chronic intoxication. A 60% reduction in fibrosis index for bile duct ligation model and 42% for CCl(4) along with reduced inflammation was observed. Considerable reduction on hepatic enzymes and total and direct bilirubins were detected with pirfenidone in both models. Pirfenidone antioxidant capacity rendered a 28% and 30% reduction in nitrites and malonyldealdehide concentration in bile duct ligation and 52% and 38% in CCl(4). With respect to gene expression, fibrotic genes like transforming growth factor-beta (TGF-beta) and collagen Ialpha (Col-1alpha) were down-regulated by pirfenidone and increased expression of regenerative genes like hepatocyte growth factor (HGF) and c-met . Superoxide dismutase (SOD), catalase (CAT) and inducible nitric oxide synthase (iNOS) gene expression were importantly down-regulated where nuclear factor kappa B (NF-kappaB) binding activity also decreased with pirfenidone treatment. Also, SOD and CAT functional activity decreased after pirfenidone action. On the other hand, diphenyleneiodonium induced a drop in oxidative stress similar in extent to pirfenidone, but it was not as effective as pirfenidone in reducing fibrosis. In this work, we showed antioxidant properties of pirfenidone beyond its well-known antifibrotic effect. These features make pirfenidone an attractive drug for trying fibrotic diseases accompanied by oxidative stress processes.
Collapse
|
10
|
Ye Z, Houssein HSH, Mahato RI. Bioconjugation of oligonucleotides for treating liver fibrosis. Oligonucleotides 2008; 17:349-404. [PMID: 18154454 DOI: 10.1089/oli.2007.0097] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Liver fibrosis results from chronic liver injury due to hepatitis B and C, excessive alcohol ingestion, and metal ion overload. Fibrosis culminates in cirrhosis and results in liver failure. Therefore, a potent antifibrotic therapy is urgently needed to reverse scarring and eliminate progression to cirrhosis. Although activated hepatic stellate cells (HSCs) remain the principle cell type responsible for liver fibrosis, perivascular fibroblasts of portal and central veins as well as periductular fibroblasts are other sources of fibrogenic cells. This review will critically discuss various treatment strategies for liver fibrosis, including prevention of liver injury, reduction of inflammation, inhibition of HSC activation, degradation of scar matrix, and inhibition of aberrant collagen synthesis. Oligonucleotides (ODNs) are short, single-stranded nucleic acids, which disrupt expression of target protein by binding to complementary mRNA or forming triplex with genomic DNA. Triplex forming oligonucleotides (TFOs) provide an attractive strategy for treating liver fibrosis. A series of TFOs have been developed for inhibiting the transcription of alpha1(I) collagen gene, which opens a new area for antifibrotic drugs. There will be in-depth discussion on the use of TFOs and how different bioconjugation strategies can be utilized for their site-specific delivery to HSCs or hepatocytes for enhanced antifibrotic activities. Various insights developed in individual strategy and the need for multipronged approaches will also be discussed.
Collapse
Affiliation(s)
- Zhaoyang Ye
- Department of Pharmaceutical Sciences, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | | | | |
Collapse
|
11
|
Abstract
Plasminogen activator inhibitor-1 (PAI-1) is the main inhibitor of plasminogen activators, thereby playing a major role in fibrinolysis. Whereas hyperfibrinolysis is common in alcoholic cirrhosis, hypofibrinolysis (driven mostly by elevated levels of PAI-1) is common during the development of alcoholic liver disease (ALD). However, whether or not PAI-1 plays a causal role in the development of ALD has been unclear. The role of PAI-1 was therefore investigated in models of early (steatosis), intermediate (inflammation/necrosis) and late (fibrosis) stages of alcoholic liver disease. For example, hepatic steatosis caused by both acute and chronic ethanol was blunted by inhibiting PAI-1 activation. This effect of inhibiting PAI-1 appears to be mediated, at least in part, by an increase in very low-density lipoprotein (VLDL) synthesis in the absence of PAI-1. The results from that study also indicated that PAI-1 plays a critical role in both acute and chronic hepatic inflammation. Lastly, knocking out PAI-1 potently protected against experimental hepatic fibrosis; the mechanism of this protective effect appears to be mediated predominantly by extracellular matrix (ECM) resolution by matrix metalloproteases, which are indirectly inhibited by PAI-1. In summary, targeting PAI-1 protects against all three stages of ALD in model systems. The mechanisms by which PAI-1 contributes to these disease stages appear to not only involve the 'classical' function of PAI-1 (i.e. in mediating fibrinolysis), but also other functions of this protein. These data support a role of PAI-1 in the initiation and progression of ALD, and suggest that PAI-1 may be a useful target for clinical therapy to halt or blunt disease progression.
Collapse
Affiliation(s)
- Gavin E Arteel
- Department of Pharmacology and Toxicology and the James Graham Brown-Cancer Center, University of Louisville Health Sciences Center, Louisville, Kentucky, USA
| |
Collapse
|
12
|
Hemmann S, Graf J, Roderfeld M, Roeb E. Expression of MMPs and TIMPs in liver fibrosis - a systematic review with special emphasis on anti-fibrotic strategies. J Hepatol 2007; 46:955-75. [PMID: 17383048 DOI: 10.1016/j.jhep.2007.02.003] [Citation(s) in RCA: 371] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
In liver tissue matrix metalloproteinases (MMPs) and their specific inhibitors (tissue inhibitors of metalloproteinases, TIMPs) play a pivotal role in both, fibrogenesis and fibrolysis. The current knowledge of the pathophysiology of liver fibrogenesis with special emphasis on MMPs and TIMPs is presented. A systematic literature search was conducted. All experimental models of liver fibrosis that evaluated a defined anti-fibrotic intervention in vivo or in vitro considering MMPs and TIMPs were selected. The methodological quality of all these publications has been critically appraised using an objective scoring system and the content has been summarized in a table.
Collapse
Affiliation(s)
- Stefanie Hemmann
- Department of Medicine II, Gastroenterology, University Hospital Giessen and Marburg GmbH, Paul-Meimberg-Str. 5, 35392 Giessen, Germany
| | | | | | | |
Collapse
|
13
|
Korolenko TA, Filatova TG, Savchenko NG, Yuz’ko YV, Goncharova IA, Alexeenko TV. Changes in the concentration of tissue inhibitor of type 1 metalloproteinases in blood serum and liver of mice with CCl4-induced hepatitis. Bull Exp Biol Med 2007; 143:312-5. [DOI: 10.1007/s10517-007-0098-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
14
|
Bueno M, Salgado S, Beas-Zárate C, Armendariz-Borunda J. Urokinase-type plasminogen activator gene therapy in liver cirrhosis is mediated by collagens gene expression down-regulation and up-regulation of MMPs, HGF and VEGF. J Gene Med 2007; 8:1291-9. [PMID: 16958060 DOI: 10.1002/jgm.961] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Human urokinase-type plasminogen activator (uPA) gene administration via an adenoviral (Ad)-vector induced cirrhosis regression and ameliorated hepatic dysfunction in a model of experimental liver cirrhosis. The administration of a single dose of 6 x 10(11) viral particles per kilogram of a clinical-grade Ad-vector was evaluated after the onset of rat liver cirrhosis via degradation of deposited collagen and a substantial decrease of alpha-sma-positive cells. Also, gene expression for pro-fibrogenic molecules (Col I, III, IV, TIMP-1 and PAI-1) was clearly down-regulated. In contrast, gene expression for collagen-degrading enzymes such as MMP-13 and MMP-2 was up-regulated. These events correlated with increased amounts of proteic free-TIMP-1, i.e. non-complexed with metalloproteinases (MMPs), indicating the presence of higher amounts of active MMPs inside the liver of cirrhotic animals treated with Ad-huPA. The harmonized and concerted expression of HGF and c-met resulted in exacerbated hepatocyte proliferation, although these events did not induce an abnormal liver growth. Angiogenesis, i.e. formation of new blood vessels, was evaluated by vascular endothelial growth factor (VEGF) expression which was notably detected to be 10 times higher during the first 6 days after Ad-huPA-treatment in cirrhotic animals as compared with controls. These events provide a clearer rationale as to how Ad-huPA-induced liver regeneration on CCl(4)-induced liver fibrosis takes place.
Collapse
Affiliation(s)
- Miriam Bueno
- Institute for Molecular Biology and Gene Therapy, CUCS, University of Guadalajara, Apdo. Postal 2-123, Guadalajara, Jal, Mexico 44281
| | | | | | | |
Collapse
|
15
|
González-Cuevas J, Bueno-Topete M, Armendariz-Borunda J. Urokinase plasminogen activator stimulates function of active forms of stromelysin and gelatinases (MMP-2 and MMP-9) in cirrhotic tissue. J Gastroenterol Hepatol 2006; 21:1544-54. [PMID: 16928215 DOI: 10.1111/j.1440-1746.2006.04398.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
BACKGROUND The authors' previous data support the notion that adenoviral-driven urokinase plasminogen activator (u-PA) expression results in reversion of experimental liver cirrhosis. The specific aim of the present study was to decipher the mechanisms involved in the regulation by endogenous/gene-delivered u-PA of matrix metalloproteinases (MMP) and related proteins engaged in degradation of excessive hepatic connective tissue. METHODS Tissue slices from cirrhotic rat livers were incubated with u-PA-rich supernatants from 24-h-cultured hepatic stellate cells (HSC). Matrix metalloproteinase-2, -9 and tissue inhibitor of metalloproteinases-1 (TIMP-1) were detected by western blot and biologic activity. The HSC that discontinued u-PA production were transfected with the adenovector Adu-PA and serum-free supernatants evaluated for proteolytic activity by MMP-3, MMP-2 and MMP-9. Collagen I, transforming growth factor-beta1 (TGF-beta1), plasminogen activator inhibitor-1 (PAI-1) and TIMP-1 mRNA levels were also evaluated. RESULTS AND CONCLUSION Endogenous u-PA from cultured HSC significantly induced the active forms of MMP-2 (68 kDa) and MMP-9 (78 kDa) in cirrhotic tissue slices. The TIMP-1 molecular forms demonstrated that u-PA pushed the presence of 'free' TIMP-1 (not complexed with MMP; 71%) in cirrhotic tissue. When non-producing u-PA-HSC were transfected with adenoviral vector coding for the functional human protein u-PA (Adhu-PA), an overactivation of MMP-3, MMP-2 and MMP-9 (800%, 48% and 100%, respectively) was found as compared with HSC transfected with control adenovirus encoding green fluorescent protein (Ad-GFP). Finally, gene expression of collagen I, TGF-beta1, PAI-1 and TIMP-1 were downregulated by Adhu-PA action as well.
Collapse
Affiliation(s)
- Jaime González-Cuevas
- Institute for Molecular Biology in Medicine and Gene Therapy, CUCS, University of Guadalajara, OPD Civil Hospital of Guadalajara, Jalisco, Mexico
| | | | | |
Collapse
|
16
|
Serpaggi J, Carnot F, Nalpas B, Canioni D, Guéchot J, Lebray P, Vallet-Pichard A, Fontaine H, Bedossa P, Pol S. Direct and indirect evidence for the reversibility of cirrhosis. Hum Pathol 2006; 37:1519-26. [PMID: 16997354 DOI: 10.1016/j.humpath.2006.07.007] [Citation(s) in RCA: 80] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2006] [Revised: 07/03/2006] [Accepted: 07/07/2006] [Indexed: 12/18/2022]
Abstract
The aim of this study was to assess the reversibility of cirrhosis after therapy in a large series of patients with cirrhosis from various etiologies. We performed a retrospective study of 113 patients with biopsy-proven cirrhosis who underwent specific therapy and follow-up biopsies. Two pathologists performed blinded analyses of indirect biochemical and morphological signs of cirrhosis. Fourteen (12.4%) of the 113 cirrhotic patients had biopsy-proven disappearance of cirrhosis, defined as a decrease of 2 or greater in their METAVIR fibrosis score: 8 were related to hepatitis C virus, 3 to hepatitis B virus, and 3 to autoimmune cirrhosis. Necro-inflammatory activity decreased from 2.4 +/- 0.65 to 0.85 +/- 0.9 (P = .004), and fibrosis from 4 to 1.7 +/- 0.61 (P = .001). Prothrombin time (n = 1), platelet count (n = 2), serum albumin level (n = 2), and ultrasound abnormalities (n = 6) normalized in patients who had initial abnormalities. Hyaluronic acid and procollagen type III serum level decreased in all. In the 11 patients with regression of viral cirrhosis, 2 were nonresponders and 9 were responders, including 2 relapsers. The 3 patients with regressive autoimmune cirrhosis were complete responders to immunosupressive therapy. Using repeated liver biopsies, clinicobiochemical, radiologic, and endoscopic tests, we provide evidence for potential reversibility of cirrhosis after long-lasting suppression of the necro-inflammatory activity of liver disease.
Collapse
Affiliation(s)
- Jeanne Serpaggi
- Service d'Hépatologie et INSERM U-567, Hôpital Necker Enfants-Malades, Paris, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Bergheim I, Guo L, Davis MA, Duveau I, Arteel GE. Critical role of plasminogen activator inhibitor-1 in cholestatic liver injury and fibrosis. J Pharmacol Exp Ther 2005; 316:592-600. [PMID: 16221737 DOI: 10.1124/jpet.105.095042] [Citation(s) in RCA: 101] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Plasminogen activator inhibitor-1 (PAI-1) is an acute phase protein known to correlate with hepatic fibrosis. However, whether or not PAI-1 plays a causal role in this disease process had not been directly tested. Therefore, wild-type or PAI-1 knockout (PAI-1(-/-)) mice underwent bile duct ligation. Mice were sacrificed either 3 or 14 days after surgery for assessment of early (i.e., inflammation) and late (i.e., fibrosis) changes caused by bile duct ligation. Liver injury was determined by histopathology and plasma enzymes. Accumulation of extracellular matrix was evaluated by Sirius red staining and by measuring hydroxyproline content. Hepatic expression of PAI-1 was increased approximately 9-fold by bile duct ligation in wild-type mice. Furthermore, early liver injury and inflammation due to bile duct ligation was significantly blunted in PAI-1(-/-) mice in comparison with wild-type mice. Although PAI-1(-/-) mice were significantly protected against the accumulation of extracellular matrix caused by bile duct ligation, increases in expression of indices of stellate cell activation and collagen synthesis caused by bile duct ligation were not attenuated. Protection did, however, correlate with an elevation in hepatic activities of plasminogen activator and matrix metalloprotease activities. In contrast, the increase in tissue inhibitor of metalloproteases-1 protein, a major inhibitor of matrix metalloproteases, caused by bile duct ligation was not altered in PAI-1(-/-) mice compared with the wild-type strain. The increase in hepatic activity of urokinase-type plasminogen activator was also accompanied by more activation of the hepatocyte growth factor receptor c-Met. Taken together, these data suggest that PAI-1 plays a causal role in mediating fibrosis during cholestasis.
Collapse
Affiliation(s)
- Ina Bergheim
- Department of Pharmacology and Toxicology, University of Louisville Health Sciences Center, KY 40292, USA
| | | | | | | | | |
Collapse
|
18
|
Islas-Carbajal MC, Covarrubias A, Grijalva G, Alvarez-Rodríguez A, Armendáriz-Borunda J, Rincón-Sánchez AR. Nitric oxide synthases inhibition results in renal failure improvement in cirrhotic rats. Liver Int 2005; 25:131-40. [PMID: 15698410 DOI: 10.1111/j.1478-3231.2005.01018.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/13/2023]
Abstract
UNLABELLED Nitric oxide (NO) has been implicated in cirrhosis and might be implicated in renal failure end-stage cirrhosis. AIM Our aim was to evaluate NO role in renal failure induced during decompensated cirrhosis, using the following inhibitors: aminoguanidine (AG), a specific inducible nitric oxide synthase (iNOS) inhibitor and NG-nitro-l-arginine methyl ester (L-NAME), a nonselective blocker of NOS isoforms. METHODS Endothelial (eNOS) and iNOS gene expression was analyzed by reverse transcriptase-polymerase chain reaction. Cirrhotic rats received a single intragastric dose of CCl(4) to induce acute liver damage (ALD). RESULTS After ALD, aspartate aminotransferase highest levels were observed in rats treated with AG and ALT in rats treated with L-NAME. Inhibitors decreased creatinine serum levels to normal values and serum sodium levels re-established after the third day of ALD. L-NAME diminished (P<0.05) eNOS RNA renal expression. Renal iNOS with no inhibitor was overexpressed but was down-regulated by AG treatment. Liver eNOS RNA expression had a decreased expression before ALD in cirrhotic rats, but L-NAME treatment down-regulated eNOS after ALD. AG induced an important iNOS liver decrease. CONCLUSION Both inhibitors improved renal function, although AG displayed a better effect and did not aggravate liver function. We concluded that NOS isoforms are implicated in the renal pathophysiologic events induced by ALD.
Collapse
Affiliation(s)
- M C Islas-Carbajal
- Instituto de Biología Molecular en Medicina y Terapia Génica. C.U.C.S. U. de G, Mexico, Mexico
| | | | | | | | | | | |
Collapse
|
19
|
Miranda-Díaz A, Rincón AR, Salgado S, Vera-Cruz J, Gálvez J, Islas MC, Berumen J, Aguilar-Cordova E, Armendáriz-Borunda J. Improved effects of viral gene delivery of human uPA plus biliodigestive anastomosis induce recovery from experimental biliary cirrhosis. Mol Ther 2004; 9:30-7. [PMID: 14741775 DOI: 10.1016/j.ymthe.2003.09.015] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Gene therapy may represent a new avenue for the development of multimodal treatment for diverse forms of cirrhosis. This study explores the potential benefits of combining adenovirus-mediated human urokinase-plasminogen activator (AdHuPA) gene delivery and biliodigestive anastomosis to enhance the therapeutic efficacy of each treatment alone for cholestatic disorders resulting in secondary biliary cirrhosis. In an experimental model of secondary biliary cirrhosis, application of 6 x 10(11) vp/kg AdHuPA adenovirus vector resulted in 25.8% liver fibrosis reduction and some improvement in liver histology. The relief of bile cholestasis by a surgical procedure (biliodigestive anastomosis) combined with AdHuPA hepatic gene delivery rendered a synergistic effect, with a substantial 56.9 to 42.9% fibrosis decrease. AdHuPA transduction resulted in clear-cut expression of human uPA protein detected by immunohistochemistry and induction of up-regulation in the expression of metalloproteinases MMP-3, MMP-9, and MMP-2. Importantly, functional hepatic tests, specifically direct bilirubin, were improved. Also, hepatic cell regeneration, rearrangement of hepatic architecture, ascites, and gastric varices improved in cirrhotic rats treated with AdHuPA but not in counterpart AdGFP cirrhotic animals. We believe this might represent a novel therapeutic strategy for human cholestatic diseases.
Collapse
Affiliation(s)
- Alejandra Miranda-Díaz
- Institute of Molecular Biology in Medicine and Gene Therapy, CUCS, University of Guadalajara, Apartado Postal 2-123, 44281, Guadalajara, Jalisco, Mexico
| | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Wang ZR, Chen XM, Li DG, Wei HS, Huang X, Zhan YT, Lu HM. Suppression of expression extracellular matrix in hepatic fibrosis rat with tetrandrine and glycyrrhizinic acid. Shijie Huaren Xiaohua Zazhi 2003; 11:970-974. [DOI: 10.11569/wcjd.v11.i7.970] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM To investigate effects and mechanism of tetrandrine(Tet) and glycyrrhizinic acid(Glz) in combination on metabolism of extracellular matrix in hepatic fibrotic rats induced by carbon tetrachloride.
METHODS The hepatic fibrosis model rats induced with carbon tetrachloride were grouped randomly into 5 mg/kg, 10 mg/kg, 20 mg/kg Tet, 5 mg/kgTet+50 mg/kgGlz, 10 mg/kgTet+50 mg/kgGlz, 20 mg/kgTet+50 mg/kgGlz and 50 mg/kgGlz groups. Rats in experimental groups were administrated with Tet and or Glz by gavage or peritoneal injection every day. Serum levels of HA, LN, and PIIIP were detected with radioimmunoassay. Histopathological change was examined with VG staining and observed under light-microscope. mRNA of collagen type I and III were evaluated by RT-PCR.
RESULTS In comparison with model group, Tet and Glz in combination could markedly decrease serum levels of HA, LN and PIIIP(121.8±9.5 vs 58.4±7.6, 85.7±12.1 vs 46.2±7.3, 35.9±3.5 vs 23.5±2.9; P<0.05), and suppress the expressions of type I, III procollagen mRNA(0.53±0.07 vs 0.26±0.09, 0.47±0.05 vs 0.21±0.07; P<0.05), and reduce deposition of extracellular matrix. Compared with Tet (10mg/kg)only group, Tet with Glz in combination could markedly reduced the serum levels of HA, LN and PIIIP(69.2±11.1 vs 58.4±7.6; 52.3±6.7 vs 46.2±7.3; 29.9±3.2 vs 23.5±2.9; P<0.05), and inhibit the expression of type I, III procollagen mRNA(0.33±0.06 vs 0.26±0.09, 0.29±0.04 vs 0.21±0.07; P<0.05).
CONCLUSION Tet and Glz in combination could inhibit expression and deposition of extracellular matrix in fibrotic rats more significantly than either Tet or Glz.
Collapse
Affiliation(s)
- Zhi-Rong Wang
- Department of Gastroenterology, Tongji Hospital, Tongji University, 389 Xincun Rd. Shanghai 200065, China
| | - Xi-Mei Chen
- Department of Gastroenterology, Tongji Hospital, Tongji University, 389 Xincun Rd. Shanghai 200065, China
| | - Ding-Guo Li
- Department of Gastroenterology, Tongji Hospital, Tongji University, 389 Xincun Rd. Shanghai 200065, China
| | - Hong-Shan Wei
- Department of Gastroenterology, Tongji Hospital, Tongji University, 389 Xincun Rd. Shanghai 200065, China
| | - Xin Huang
- Department of Gastroenterology, Tongji Hospital, Tongji University, 389 Xincun Rd. Shanghai 200065, China
| | - Yu-Tao Zhan
- Department of Gastroenterology, Tongji Hospital, Tongji University, 389 Xincun Rd. Shanghai 200065, China
| | - Han-Ming Lu
- Department of Gastroenterology, Tongji Hospital, Tongji University, 389 Xincun Rd. Shanghai 200065, China
| |
Collapse
|
21
|
Benlloch S, Beltrán B, Moreno R, Berenguer M. [Fibrogenesis and liver transplantation]. GASTROENTEROLOGIA Y HEPATOLOGIA 2003; 26:381-95. [PMID: 12809575 DOI: 10.1016/s0210-5705(03)70375-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Affiliation(s)
- S Benlloch
- Servicio de Medicina Digestiva. Hospital La Fe. Valencia. España
| | | | | | | |
Collapse
|
22
|
García L, Hernández I, Sandoval A, Salazar A, Garcia J, Vera J, Grijalva G, Muriel P, Margolin S, Armendariz-Borunda J. Pirfenidone effectively reverses experimental liver fibrosis. J Hepatol 2002; 37:797-805. [PMID: 12445421 DOI: 10.1016/s0168-8278(02)00272-6] [Citation(s) in RCA: 121] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
BACKGROUND/AIMS Our group has been involved in searching for different strategies to ameliorate hepatic cirrhosis. The aim of this study was to evaluate the effect of Pirfenidone in the reversion or prevention of cirrhosis experimentally induced in rats by chronic administration of CCl(4) and bile-duct ligation (BDL). METHODS Male cirrhotic Wistar rats (8 weeks of intoxication and then hepatotoxin was discontinued) received either oral saline or Pirfenidone at 500 mg/kg per day. RESULTS High levels of alanine aminotransferase, aspartate aminotransferase, and alkaline phosphatase decreased significantly (P<0.001) in animals treated with Pirfenidone (n=11) with regard to saline-administrated animals (n=9). Prothrombin activity and bilirubins were also reduced. Computerized fibrosis index demonstrated a 70% decrease (P<0.001) along with less hydroxyproline content, reduction in activated HSC and higher active cell regeneration. A rearrangement of the parenchyma was also noted and gene expression of collagens I, III and IV, transforming growth factor beta-1, Smad-7, TIMP-1 and PAI-1 decreased considerably in treated animals. Cirrhotic rats in which CCl(4) was not discontinued displayed 40% liver fibrosis reduction. In a different cirrhosis model, 4-week BDL rats treated with the drug showed a significant 50% reduction in hepatic fibrosis (P<0.01). CONCLUSIONS This new drug might be useful in healing human disease.
Collapse
Affiliation(s)
- Leonel García
- Institute for Molecular Biology in Medicine and Gene Therapy, CUCS, University of Guadalajara, Apdo. Postal 2-123, Guadalajara, Jal. 44281, Mexico
| | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Song E, Chen J, Wang K, Zhang H, Su F, Wang M, Heemann U. Intrasplenic transplantation of syngenic hepatocytes modified by IFN-gamma gene ameliorates hepatic fibrosis in rats. Transpl Int 2002. [PMID: 12389079 DOI: 10.1111/j.1432-2277.2002.tb00202.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Transplanted hepatocytes are ideal carriers for exogenous genes in liver gene therapy. The present study investigated the anti-fibrogenic effects of intrasplenically transplanted hepatocytes modified with interferon gamma (IFN-gamma) gene on cirrhotic rats. Hepatocytes isolated from normal Sprague-Dawley (SD) rats were transfected with an adenoviral vector encoding human IFN-gamma gene (AdCMVhIFN-gamma) and transplanted into the spleens of syngenic recipients with ongoing liver fibrosis induced by carbon tetrachloride (CCl(4)). Histology was assessed, and liver hydroxyproline was detected. Additionally, serum procollagen type III (PIIINP) levels and hepatic collagenase activity were measured to determine hepatic collagen synthesis and degradation. Transplantation with AdCMVhIFN-gamma transfected hepatocytes ameliorated the histological outcome of liver fibrosis by reducing liver collagen content and decreasing hepatic hydroxyproline. Additionally, IFN-gamma transfected hepatocytes reduced serum PIIINP levels and increased hepatic collagenase activity. Our data suggest that transplantation of IFN-gamma transfected hepatocytes may reduce the pace of liver fibrosis by inhibiting the synthesis and enhancing the degradation of hepatic collagen.
Collapse
Affiliation(s)
- Erwei Song
- Department of Surgery, Sun-Yat-Sen Memorial Hospital, Sun-Yat-Sen University of Medical Science, Guangzhou, China
| | | | | | | | | | | | | |
Collapse
|
24
|
Oh SH, Nan JX, Sohn DW, Kim YC, Lee BH. Salvia miltiorrhiza inhibits biliary obstruction-induced hepatocyte apoptosis by cytoplasmic sequestration of p53. Toxicol Appl Pharmacol 2002; 182:27-33. [PMID: 12127260 DOI: 10.1006/taap.2002.9367] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Cholestatic liver injury is caused by hepatocellular apoptosis induced by toxic bile salts. We have studied the effects of a traditional Chinese herbal medicine, Salvia miltiorrhiza, on apoptotic cell death in bile duct-ligated (BDL) rats. We also attempted to clarify the molecular mechanisms of the hepatoprotective effects of S. miltiorrhiza in this animal model. A water extract of S. miltiorrhiza (Sm-X; 200 mg/kg; po) was administered to BDL rats for 10 days. Rats were euthanized and apoptosis was detected in liver tissue by TUNEL staining. Western blot analysis and immunostaining for alpha-smooth muscle actin (alpha-SMA), Bax, Bcl-2, and p53 were performed. Results show that the treatment of BDL rats with Sm-X significantly improved the liver function parameters, although the expression of alpha-SMA, a marker of hepatic stellate cell activation, was not affected. Treatment with Sm-X significantly reduced the number of apoptotic cells. A time-dependent decrease in Bax protein level and an increase in Bcl-2 protein level were observed in BDL rats treated with Sm-X. Immunohistochemical analysis demonstrated that p53 was strongly positive in hepatocyte nuclei of BDL rats but that treatment with Sm-X induced a cytoplasmic sequestration of p53. Taken together, hepatoprotective effects of Sm-X partially ascribe to the antiapoptotic property in hepatocytes. Treatment of Sm-X-induced cytoplasmic sequestration of p53, downregulation of Bax, and upregulation of Bcl-2 protein. This study identifies and delineates signaling factors involved in the antiapoptotic properties of Sm-X and suggests a potential application of S. miltiorrhiza in the clinical management of hepatic disease induced by toxic bile salts following biliary obstruction.
Collapse
Affiliation(s)
- Seon-Hee Oh
- College of Pharmacy and Medicinal Resources Research Center, Wonkwang University, Iksan, Jeonbuk, 570-749, Korea
| | | | | | | | | |
Collapse
|
25
|
Rath NC, Huff WE, Huff GR, Balog JM, Xie H. Matrix metalloproteinase activities of turkey (Meleagris gallopavo) bile. Comp Biochem Physiol C Toxicol Pharmacol 2001; 130:97-105. [PMID: 11544146 DOI: 10.1016/s1532-0456(01)00223-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The bile from turkey (Meleagris gallopavo) gall bladders was found to contain substantial matrix metalloproteinase (MMP) activities using gelatin, collagen, and casein substrate zymography, [3H]labeled collagen degradation assays, and gelatin-agarose affinity purification. Five major bands corresponding to approximate M(w) of 64, 60, 46, 40 and 36 kDa showed gelatinolytic activities. On incubation with p-aminophenylmercuric acetate or thimerosal, the densities of both the 64- and 46-kDa bands decreased with increasing intensities of the 60- and 40-kDa bands. Both the 64- and 60-kDa bands showed collagenolytic activities whereas the caseinolytic activities appeared as diffuse bands corresponding to M(w) of approximately 60, 40 and 36 kDa. Using [3H]collagen as substrate, the bile enzymes showed both a time and concentration-dependent degradation, which could be inhibited by the MMP inhibitors such as EDTA, phenanthroline, and N-[(2R)-2-(hydroxyamido carbonylmethyl)-4-methylpentanonyl]-L-tryptophan methylamide, but not by serine and cysteine protease inhibitors like trans-epoxysuccinyl-L-leucylamido-(4-guanidino)butane, phenylmethylsulfonyl fluoride or leupeptin. Both 60- and the 40-kDa gelatinolytic bands showed affinity adsorption to a gelatin-agarose matrix. The physiological roles of bile MMPs are not clear, but their involvement in the digestive functions of birds are likely.
Collapse
Affiliation(s)
- N C Rath
- USDA, ARS, PPPSRU, Poultry Science Center, University of Arkansas, Fayetteville, AR 72701, USA.
| | | | | | | | | |
Collapse
|
26
|
Abstract
New insights into the regulation of hepatobiliary transport proteins have provided the basis for a better understanding of the pathogenesis of cholestatic liver diseases. Mutations of transporter genes can cause hereditary cholestatic syndromes, the study of which has shed much light on the basic mechanisms of bile secretion and cholestasis. Important new studies have been published about the pathogenesis, clinical features, and treatment of primary biliary cirrhosis, primary sclerosing cholangitis, cholestasis of pregnancy, total parenteral nutrition-induced cholestasis, and drug-induced cholestasis.
Collapse
Affiliation(s)
- M Trauner
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Karl Franzens University School of Medicine, Graz, Austria
| | | |
Collapse
|