1
|
Shi MJ, Yan XL, Dong BS, Yang WN, Su SB, Zhang H. A network pharmacology approach to investigating the mechanism of Tanshinone IIA for the treatment of liver fibrosis. JOURNAL OF ETHNOPHARMACOLOGY 2020; 253:112689. [PMID: 32101775 DOI: 10.1016/j.jep.2020.112689] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Revised: 01/30/2020] [Accepted: 02/19/2020] [Indexed: 06/10/2023]
Abstract
ETHNOPHARMACOLOGICAL REVELVANCE Tanshinone IIA (TIIA) is a major component extracted from the traditional herbal medicine salvia miltiorrhiza (Danshen), which activates blood circulation and treats chronic hepatitis and liver fibrosis. However, the underlying molecular mechanism of TIIA against hepatic fibrosis is still largely unknown. AIM OF THE STUDY The present study aimed to evaluate the antifibrotic effects of TIIA in liver fibrosis and investigate its underlying mechanism through network pharmacology-based prediction and experimental verification. MATERIALS AND METHODS In this study, a "TIIA-targets-liver fibrosis" network was constructed by combining the TIIA-specific and hepatic fibrosis-specific targets with protein-protein interactions (PPIS), and network pharmacology was applied to identify the potential targets and mechanisms of TIIA in the treatment of hepatic fibrosis. The antifibrotic effect of TIIA was investigated in CCl4-induced liver fibrosis in rats in vivo and in the human HSC line LX2 in vitro. RESULTS We identified 75 potential targets of TIIA and 1382 targets of liver fibrosis. Subsequently, the 29 target proteins that overlapped between the potential TIIA targets and the liver fibrosis targets indicated that TIIA has potential antifibrotic effects through regulating multiple targets, including c-Jun, c-Myc, CCND1, MMP9 and P65. Pathway and functional enrichment analysis of these putative targets showed that TIIA could regulate the MAPK, PI3K/Akt and Wnt signaling pathways. Consistently, in vivo and in vitro experiments indicated that TIIA attenuated CCl4-induced liver injury and fibrosis and inhibited hepatic stellate cell (HSC) proliferation and activation; these findings were concomitant with the decreased expression of α-smooth muscle actin (α-SMA) and human α2 (I) collagen (COL1A2). Moreover, TIIA remarkably downregulated the expression of c-Jun, c-Myc, MMP9, PI3K and P38 proteins, which were upregulated in CCl4-induced hepatic fibrosis in vivo. TIIA significantly downregulated the expression of c-Jun, p-c-Jun, c-Myc, CCND1, MMP9, P65, P-P65, PI3K and P38 proteins, which were upregulated during HSC activation in vitro. CONCLUSION Our study demonstrated that TIIA could significantly improve liver function, decrease liver injury, alleviate ECM accumulation, and attenuate HSC proliferation and activation, thus exerting an antifibrotic effect. The possible molecular mechanism involved MAPK, Wnt and PI3K/Akt signaling pathways via inhibiting c-Jun, p-c-Jun, c-Myc, CCND1, MMP9, P65, P-P65, PI3K and P38. Overall, our results suggest that TIIA could alleviate liver fibrosis through multiple targets and multiple signaling pathways and provide deep insight into the pharmacological mechanisms of TIIA in the treatment of hepatic fibrosis.
Collapse
Affiliation(s)
- Miao-Juan Shi
- Research Center for Traditional Chinese Medicine Complexity System, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Xiu-Li Yan
- Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Ben-Sheng Dong
- Research Center for Traditional Chinese Medicine Complexity System, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Wen-Na Yang
- Research Center for Traditional Chinese Medicine Complexity System, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Shi-Bing Su
- Research Center for Traditional Chinese Medicine Complexity System, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| | - Hui Zhang
- Research Center for Traditional Chinese Medicine Complexity System, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| |
Collapse
|
2
|
Jiang Y, Zhao Y, He F, Wang H. Artificial MicroRNA-Mediated Tgfbr2 and Pdgfrb Co-Silencing Ameliorates Carbon Tetrachloride-Induced Hepatic Fibrosis in Mice. Hum Gene Ther 2018; 30:179-196. [PMID: 30024280 DOI: 10.1089/hum.2018.047] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Hepatic stellate cells (HSCs) are the primary cell type responsible for liver fibrogenesis. Transforming growth factor beta 1 (TGF-β1) and platelet-derived growth factor (PDGF) are key profibrotic cytokines that regulate HSC activation and proliferation with functional convergence. Dual RNA interference against their receptors may achieve therapeutic effects. A novel RNAi strategy based on HSC-specific GFAP promoter-driven and lentiviral-expressed artificial microRNAs (amiRNAs) was devised that consists of an microRNA-30a backbone and effective shRNAs against mouse Pdgfrβ and Tgfbr2. Then, its antifibrotic efficacy was tested in primary and cultured HSCs and in mice affected with carbon tetrachloride-induced hepatic fibrosis. The study shows that amiRNA-mediated Pdgfrβ and Tgfbr2 co-silencing inhibits HSC activation and proliferation. After recombinant lentiviral particles were delivered into the liver via tail-vein injection, therapeutic amiRNAs were preferentially expressed in HSCs and efficiently co-knocked down in situ Tgfbr2 and Pdgfrβ expression, which correlates with downregulated expression of target or effector genes of their signaling, which include Pai-1, P70S6K, and D-cyclins. amiRNA-based HSC-specific co-silencing of Tgfbr2 and Pdgfrβ significantly suppressed hepatic expression of fibrotic markers α-Sma and Col1a1, extracellular matrix regulators Mmps and Timp1, and phenotypically ameliorated liver fibrosis, as indicated by reductions in serum alanine aminotransferase activity, collagen deposition, and α-Sma-positive staining. The findings provide proof of concept for the use of amiRNA-mediated co-silencing of two profibrogenic pathways in liver fibrosis treatment and highlight the therapeutic potential of concatenated amiRNAs for gene therapy.
Collapse
Affiliation(s)
- Yan Jiang
- 1 The Fifth People's Hospital of Shanghai, State Key Laboratory of Genetic Engineering and Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Institutes of Biomedical Sciences of Shanghai Medical College, Fudan University, Shanghai, P.R. China
| | - Yuanyuan Zhao
- 1 The Fifth People's Hospital of Shanghai, State Key Laboratory of Genetic Engineering and Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Institutes of Biomedical Sciences of Shanghai Medical College, Fudan University, Shanghai, P.R. China
| | - Fuchu He
- 1 The Fifth People's Hospital of Shanghai, State Key Laboratory of Genetic Engineering and Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Institutes of Biomedical Sciences of Shanghai Medical College, Fudan University, Shanghai, P.R. China.,2 State Key Laboratory of Proteomics, Beijing Institute of Radiation Medicine, Beijing, P.R. China
| | - Haijian Wang
- 1 The Fifth People's Hospital of Shanghai, State Key Laboratory of Genetic Engineering and Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Institutes of Biomedical Sciences of Shanghai Medical College, Fudan University, Shanghai, P.R. China
| |
Collapse
|
3
|
Exosome-Mediated Intercellular Communication between Hepatitis C Virus-Infected Hepatocytes and Hepatic Stellate Cells. J Virol 2017; 91:JVI.02225-16. [PMID: 28077652 DOI: 10.1128/jvi.02225-16] [Citation(s) in RCA: 117] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2016] [Accepted: 01/04/2017] [Indexed: 12/15/2022] Open
Abstract
Fibrogenic pathways in the liver are principally regulated by activation of hepatic stellate cells (HSC). Fibrosis is associated with chronic hepatitis C virus (HCV) infection, although the mechanism is poorly understood. HSC comprise the major population of nonparenchymal cells in the liver. Since HCV does not replicate in HSC, we hypothesized that exosomes secreted from HCV-infected hepatocytes activate HSC. Primary or immortalized human hepatic stellate (LX2) cells were exposed to exosomes derived from HCV-infected hepatocytes (HCV-exo), and the expression of fibrosis-related genes was examined. Our results demonstrated that HCV-exo internalized to HSC and increased the expression of profibrotic markers. Further analysis suggested that HCV-exo carry miR-19a and target SOCS3 in HSC, which in turn activates the STAT3-mediated transforming growth factor β (TGF-β) signaling pathway and enhances fibrosis marker genes. The higher expression of miR-19a in exosomes was also observed from HCV-infected hepatocytes and in sera of chronic HCV patients with fibrosis compared to healthy volunteers and non-HCV-related liver disease patients with fibrosis. Together, our results demonstrated that miR-19a carried through the exosomes from HCV-infected hepatocytes activates HSC by modulating the SOCS-STAT3 axis. Our results implicated a novel mechanism of exosome-mediated intercellular communication in the activation of HSC for liver fibrosis in HCV infection.IMPORTANCE HCV-associated liver fibrosis is a critical step for end-stage liver disease progression. However, the molecular mechanisms for hepatic stellate-cell activation by HCV-infected hepatocytes are underexplored. Here, we provide a role for miR-19a carried through the exosomes in intercellular communication between HCV-infected hepatocytes and HSC in fibrogenic activation. Furthermore, we demonstrate the role of exosomal miR-19a in activation of the STAT3-TGF-β pathway in HSC. This study contributes to the understanding of intercellular communication in the pathogenesis of liver disease during HCV infection.
Collapse
|
4
|
Zhai X, Yan K, Fan J, Niu M, Zhou Q, Zhou Y, Chen H, Zhou Y. The β-catenin pathway contributes to the effects of leptin on SREBP-1c expression in rat hepatic stellate cells and liver fibrosis. Br J Pharmacol 2014; 169:197-212. [PMID: 23347184 DOI: 10.1111/bph.12114] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2012] [Revised: 12/11/2012] [Accepted: 01/09/2013] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND AND PURPOSE Liver fibrosis is commonly associated with obesity and most obese patients develop hyperleptinaemia. The adipocytokine leptin has a unique role in the development of liver fibrosis. Activation of hepatic stellate cells (HSCs) is a key step in hepatic fibrogenesis and sterol regulatory element-binding protein-1c (SREBP-1c) can inhibit HSC activation. We have shown that leptin strongly inhibits SREBP-1c expression in rat HSCs. Hence, we aimed to clarify whether the β-catenin pathway, the crucial negative regulator of adipocyte differentiation, mediates the effects of leptin on SREBP-1c expression in HSCs and in mouse liver fibrosis. EXPERIMENTAL APPROACH HSCs were prepared from rats and mice. Gene expressions were analysed by real-time PCR, Western blot analysis, immunostaining and transient transfection assays. KEY RESULTS Leptin increased β-catenin protein but not mRNA levels in cultured HSCs. Leptin induced phosphorylation of glycogen synthase kinase-3β at Ser(9) and subsequent stabilization of β-catenin protein was mediated, at least in part, by ERK and p38 MAPK pathways. The leptin-induced β-catenin pathway reduced SREBP-1c expression and activity but did not affect protein levels of key regulators controlling SREBP-1c activity, and was not involved in leptin inhibition of liver X receptor α. In a mouse model of liver injury, the β-catenin pathway was shown to be involved in leptin-induced liver fibrosis. CONCLUSIONS AND IMPLICATIONS The β-catenin pathway contributes to leptin regulation of SREBP-1c expression in HSCs and leptin-induced liver fibrosis in mice. These results have potential implications for clarifying the mechanisms of liver fibrogenesis associated with elevated leptin levels.
Collapse
Affiliation(s)
- Xuguang Zhai
- Department of Biochemistry and Molecular Biology, Medical College, Nantong University, Nantong, China
| | | | | | | | | | | | | | | |
Collapse
|
5
|
Morin ameliorates chemically induced liver fibrosis in vivo and inhibits stellate cell proliferation in vitro by suppressing Wnt/β-catenin signaling. Toxicol Appl Pharmacol 2014; 277:210-20. [PMID: 24657339 DOI: 10.1016/j.taap.2014.03.008] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2014] [Revised: 03/05/2014] [Accepted: 03/10/2014] [Indexed: 12/11/2022]
Abstract
The anti-fibrotic effect of morin was examined in LX-2 cells (culture-activated human hepatic stellate cells) and in diethylnitrosamine induced rat model of liver fibrosis. The in vitro study was designed to determine whether morin affects the survival of cultured LX-2 cells, while the in vivo study was designed to evaluate the antioxidant and anti-fibrotic efficacy of morin on diethylnitrosamine induced liver fibrosis in male albino Wistar rat. The activities of liver function enzymes in serum, liver lipid peroxide levels, activities of serum antioxidant enzymes and liver architecture were monitored to cast light on the antioxidant and hepatoprotective nature of morin. To establish the anti-fibrotic effects of morin, the levels of key Wnt signaling molecules which are strongly associated with the signal transduction pathway of HSC activation were measured. Overall, from the in vitro results, it was observed that morin at 50 μM concentration inhibited the proliferation of cultured LX-2 cells, inhibited Wnt signaling and induced G1 cell cycle arrest. The in vivo results further confirmed that morin by downregulating the expressions of GSK-3β, β-catenin and cyclin D1 ameliorated DEN-induced liver fibrosis. Hence morin could be employed as a promising chemopreventive natural supplement for liver fibrosis.
Collapse
|
6
|
Peng Y, Yang H, Wang N, Ouyang Y, Yi Y, Liao L, Shen H, Hu G, Wang Z, Tao L. Fluorofenidone attenuates hepatic fibrosis by suppressing the proliferation and activation of hepatic stellate cells. Am J Physiol Gastrointest Liver Physiol 2014; 306:G253-63. [PMID: 24337009 DOI: 10.1152/ajpgi.00471.2012] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Fluorofenidone (AKF-PD) is a novel pyridone agent. The purpose of this study is to investigate the inhibitory effects of AKF-PD on liver fibrosis in rats and the involved molecular mechanism related to hepatic stellate cells (HSCs). Rats treated with dimethylnitrosamine or CCl4 were randomly divided into normal, model, AKF-PD treatment, and pirfenidone (PFD) treatment groups. The isolated primary rat HSCs were treated with AKF-PD and PFD respectively. Cell proliferation and cell cycle distribution were analyzed by bromodeoxyuridine and flow cytometry, respectively. The expression of collagen I and α-smooth muscle actin (α-SMA) were determined by Western blot, immunohistochemical staining, and real-time RT-PCR. The expression of cyclin D1, cyclin E, and p27(kip1) and phosphorylation of MEK, ERK, Akt, and 70-kDa ribosomal S6 kinase (p70S6K) were detected by Western blot. AKF-PD significantly inhibited PDGF-BB-induced HSC proliferation and activation by attenuating the expression of collagen I and α-SMA, causing G0/G1 phase cell cycle arrest, reducing expression of cyclin D1 and cyclin E, and promoting expression of p27(kip1). AKF-PD also downregulated PDGF-BB-induced MEK, ERK, Akt, and p70S6K phosphorylation in HSCs. In rat liver fibrosis, AKF-PD alleviated hepatic fibrosis by decreasing necroinflammatory score and semiquantitative score, and reducing expression of collagen I and α-SMA. AKF-PD attenuated the progression of hepatic fibrosis by suppressing HSCs proliferation and activation via the ERK/MAPK and PI3K/Akt signaling pathways. AKF-PD may be used as a potential novel therapeutic agent against liver fibrosis.
Collapse
Affiliation(s)
- Yu Peng
- Department of Gastroenterology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Latasa MU, Gil-Puig C, Fernández-Barrena MG, Rodríguez-Ortigosa CM, Banales JM, Urtasun R, Goñi S, Méndez M, Arcelus S, Juanarena N, Recio JA, Lotersztajn S, Prieto J, Berasain C, Corrales FJ, Lecanda J, Ávila MA. Oral methylthioadenosine administration attenuates fibrosis and chronic liver disease progression in Mdr2-/- mice. PLoS One 2010; 5:e15690. [PMID: 21209952 PMCID: PMC3012093 DOI: 10.1371/journal.pone.0015690] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2010] [Accepted: 11/21/2010] [Indexed: 01/18/2023] Open
Abstract
BACKGROUND Inflammation and fibrogenesis are directly related to chronic liver disease progression, including hepatocellular carcinoma (HCC) development. Currently there are few therapeutic options available to inhibit liver fibrosis. We have evaluated the hepatoprotective and anti-fibrotic potential of orally-administered 5'-methylthioadenosine (MTA) in Mdr2(-/-) mice, a clinically relevant model of sclerosing cholangitis and spontaneous biliary fibrosis, followed at later stages by HCC development. METHODOLOGY MTA was administered daily by gavage to wild type and Mdr2(-/-) mice for three weeks. MTA anti-inflammatory and anti-fibrotic effects and potential mechanisms of action were examined in the liver of Mdr2(-/-) mice with ongoing fibrogenesis and in cultured liver fibrogenic cells (myofibroblasts). PRINCIPAL FINDINGS MTA treatment reduced hepatomegaly and liver injury. α-Smooth muscle actin immunoreactivity and collagen deposition were also significantly decreased. Inflammatory infiltrate, the expression of the cytokines IL6 and Mcp-1, pro-fibrogenic factors like TGFβ2 and tenascin-C, as well as pro-fibrogenic intracellular signalling pathways were reduced by MTA in vivo. MTA inhibited the activation and proliferation of isolated myofibroblasts and down-regulated cyclin D1 gene expression at the transcriptional level. The expression of JunD, a key transcription factor in liver fibrogenesis, was also reduced by MTA in activated myofibroblasts. CONCLUSIONS/SIGNIFICANCE Oral MTA administration was well tolerated and proved its efficacy in reducing liver inflammation and fibrosis. MTA may have multiple molecular and cellular targets. These include the inhibition of inflammatory and pro-fibrogenic cytokines, as well as the attenuation of myofibroblast activation and proliferation. Downregulation of JunD and cyclin D1 expression in myofibroblasts may be important regarding the mechanism of action of MTA. This compound could be a good candidate to be tested for the treatment of (biliary) liver fibrosis.
Collapse
Affiliation(s)
- M. Ujue Latasa
- Division of Hepatology and Gene Therapy, CIMA, University of Navarra, Pamplona, Spain
| | - Carmen Gil-Puig
- Division of Hepatology and Gene Therapy, CIMA, University of Navarra, Pamplona, Spain
- Digna Biotech, Madrid, Spain
| | - Maite G. Fernández-Barrena
- Division of Hepatology and Gene Therapy, CIMA, University of Navarra, Pamplona, Spain
- CIBERehd, University Clinic, University of Navarra, Pamplona, Spain
| | - Carlos M. Rodríguez-Ortigosa
- Division of Hepatology and Gene Therapy, CIMA, University of Navarra, Pamplona, Spain
- CIBERehd, University Clinic, University of Navarra, Pamplona, Spain
| | - Jesús M. Banales
- Division of Hepatology and Gene Therapy, CIMA, University of Navarra, Pamplona, Spain
- CIBERehd, University Clinic, University of Navarra, Pamplona, Spain
| | - Raquel Urtasun
- Division of Hepatology and Gene Therapy, CIMA, University of Navarra, Pamplona, Spain
| | - Saioa Goñi
- Division of Hepatology and Gene Therapy, CIMA, University of Navarra, Pamplona, Spain
| | - Miriam Méndez
- Division of Hepatology and Gene Therapy, CIMA, University of Navarra, Pamplona, Spain
| | - Sara Arcelus
- CIBERehd, University Clinic, University of Navarra, Pamplona, Spain
| | - Nerea Juanarena
- Division of Hepatology and Gene Therapy, CIMA, University of Navarra, Pamplona, Spain
| | - Juan A. Recio
- Vall d'Hebron Research Institute, Institute of Oncology and Hospital, Barcelona, Spain
| | - Sophie Lotersztajn
- Inserm, U955, Créteil, France
- Université Paris-Est, Faculté de Médecine, UMR-S955, Créteil, France
| | - Jesús Prieto
- Division of Hepatology and Gene Therapy, CIMA, University of Navarra, Pamplona, Spain
- CIBERehd, University Clinic, University of Navarra, Pamplona, Spain
| | - Carmen Berasain
- Division of Hepatology and Gene Therapy, CIMA, University of Navarra, Pamplona, Spain
| | - Fernando J. Corrales
- Division of Hepatology and Gene Therapy, CIMA, University of Navarra, Pamplona, Spain
| | - Jon Lecanda
- Division of Hepatology and Gene Therapy, CIMA, University of Navarra, Pamplona, Spain
- Digna Biotech, Madrid, Spain
| | - Matías A. Ávila
- Division of Hepatology and Gene Therapy, CIMA, University of Navarra, Pamplona, Spain
| |
Collapse
|
8
|
Zhou Y, Jia X, Qin J, Lu C, Zhu H, Li X, Han X, Sun X. Leptin inhibits PPARgamma gene expression in hepatic stellate cells in the mouse model of liver damage. Mol Cell Endocrinol 2010; 323:193-200. [PMID: 20226837 DOI: 10.1016/j.mce.2010.03.005] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2009] [Revised: 03/08/2010] [Accepted: 03/08/2010] [Indexed: 02/06/2023]
Abstract
Hepatic stellate cell (HSC) activation is a key cellular event in the development of liver fibrosis. Peroxisome proliferator-activated receptor-gamma (PPARgamma) has been shown to function as a key transcription regulator linked to suppressing HSC activation. Compelling evidence indicates that leptin plays a unique role in the development of liver fibrosis. The aim of this study is to investigate the in vivo impact of leptin on PPARgamma expression in HSCs in the model of TAA-induced liver damage. The results of the present study provide the first in vivo evidence that leptin might exert an inhibitory effect on PPARgamma protein expression in HSCs, which is mediated at least through leptin-induced ERK1/2 activation. Long-form leptin receptor is involved in leptin-induced ERK1/2 activation and the subsequent decline in PPARgamma expression in HSCs in the model. Furthermore, the inhibitory effect of leptin on PPARgamma protein expression enhances HSC activation and proliferation in this model. The in vivo findings from this report might provide additional insights into the mechanisms underlying the profibrogenic action of leptin in liver.
Collapse
Affiliation(s)
- Yajun Zhou
- Department of Biochemistry and Molecular Biology, Medical College, Nantong University, Qi Xiou Road 19, Nantong, 226001 Jiangsu, China.
| | | | | | | | | | | | | | | |
Collapse
|
9
|
Son G, Hines IN, Lindquist J, Schrum LW, Rippe RA. Inhibition of phosphatidylinositol 3-kinase signaling in hepatic stellate cells blocks the progression of hepatic fibrosis. Hepatology 2009; 50:1512-23. [PMID: 19790269 PMCID: PMC2913293 DOI: 10.1002/hep.23186] [Citation(s) in RCA: 113] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
UNLABELLED The hepatic stellate cell (HSC) is the primary cell type in the liver responsible for excess collagen deposition during fibrosis. Following a fibrogenic stimulus the cell changes from a quiescent vitamin A-storing cell to an activated cell type associated with increased extracellular matrix synthesis and increased cell proliferation. The phosphatidylinositol 3-kinase (PI3K) signaling pathway has been shown to regulate several aspects of HSC activation in vitro, including collagen synthesis and cell proliferation. Using a targeted approach to inhibit PI3K signaling specifically in HSCs, we investigated the role of PI3K in HSCs using a rodent model of hepatic fibrosis. An adenovirus expressing a dominant negative form of PI3K under control of the smooth muscle alpha-actin (alphaSMA) promoter was generated (Ad-SMAdnPI3K). Transducing HSCs with Ad-SMAdnPI3K resulted in decreased proliferation, migration, collagen expression, and several additional profibrogenic genes, while also promoting cell death. Inhibition of PI3K signaling was also associated with reduced activation of Akt, p70 S6 kinase, and extracellular regulated kinase signaling as well as reduced cyclin D1 expression. Administering Ad-SMAdnPI3K to mice following bile duct ligation resulted in reduced HSC activation and decreased extracellular matrix deposition, including collagen expression. A reduction in profibrogenic mediators, including transforming growth factor beta, tissue inhibitor of metalloproteinase 1, and connective tissue growth factor was also noted. However, liver damage, assessed by alanine aminotransferase levels, was not reduced. CONCLUSION Inhibition of PI3K signaling in HSCs during active fibrogenesis inhibits extracellular matrix deposition, including synthesis of type I collagen, and reduces expression of profibrogenic factors. These data suggest that targeting PI3K signaling in HSCs may represent an effective therapeutic target for hepatic fibrosis.
Collapse
Affiliation(s)
- Gakuhei Son
- Division of Gastroenterology and Hepatology, Department of Medicine, University of North Carolina, Chapel Hill, North Carolina
| | - Ian N. Hines
- Division of Gastroenterology and Hepatology, Department of Medicine, University of North Carolina, Chapel Hill, North Carolina
| | - Jeff Lindquist
- Division of Gastroenterology and Hepatology, Department of Medicine, University of North Carolina, Chapel Hill, North Carolina
| | - Laura W. Schrum
- Department of Biology, University of North Carolina, Charlotte, North Carolina
| | - Richard A. Rippe
- Division of Gastroenterology and Hepatology, Department of Medicine, University of North Carolina, Chapel Hill, North Carolina
| |
Collapse
|
10
|
PI-3 K/AKT and ERK signaling pathways mediate leptin-induced inhibition of PPARgamma gene expression in primary rat hepatic stellate cells. Mol Cell Biochem 2009; 325:131-9. [PMID: 19191008 DOI: 10.1007/s11010-009-0027-3] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2008] [Accepted: 01/15/2009] [Indexed: 01/18/2023]
Abstract
Compelling evidence indicates the pro-fibrogenic action of leptin in liver. Peroxisome proliferator-activated receptor-gamma (PPARgamma) can reverse hepatic stellate cell (HSC) activation and maintain HSC quiescence. HSC activation, a key step in the development of liver fibrosis, is coupled with the up-expression of leptin and the dramatic down-expression of PPARgamma. The present study is aimed to assess the effect of leptin on PPARgamma gene expression in primary cultured rat HSCs and investigate the related mechanisms by using Western blotting analysis, real-time PCR, transient transfection approach, and cell growth analysis. The results suggest that leptin negatively regulates PPARgamma gene expression at mRNA level, protein level and PPARgamma gene promoter activity level in HSCs. The inhibitory effect of leptin on PPARgamma gene expression contributes to cell growth of activated HSCs in vitro. Phosphatidylinositol 3-kinase/AKT (PI-3 K/AKT) and extracellular signal-regulated kinase (ERK) signaling pathways mediate the leptin-induced inhibition of PPARgamma gene expression. In summary, these findings suggest that leptin down-regulates PPARgamma gene expression through activation of PI-3 K/AKT or ERK signaling pathway in primary cultured rat HSCs. Our results might provide novel insights into the mechanisms for the pro-fibrogenic action of leptin in liver.
Collapse
|
11
|
PTK787/ZK22258 attenuates stellate cell activation and hepatic fibrosis in vivo by inhibiting VEGF signaling. J Transl Med 2009; 89:209-21. [PMID: 19114984 PMCID: PMC2888529 DOI: 10.1038/labinvest.2008.127] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Liver fibrosis due to hepatic stellate cell (HSC) activation represents a common response to chronic liver injury. PTK787/ZK222584 (PTK/ZK) is a pan-VEGFR tyrosine kinase inhibitor. The aim of this study was to examine the effect of PTK/ZK in liver fibrosis. In primary HSCs, PTK/ZK inhibited the expression of alpha-smooth muscle actin (alpha-SMA), collagen, tissue inhibitor of metalloproteinase-1 (TIMP-1), as well as cell proliferation, migration and actin filament formation. PTK/ZK-induced apoptosis of HSCs, which was correlated with increased caspase-3 activation and suppressed Bcl-2 expression. PTK/ZK also induced cell cycle arrest, accompanied by increasing the expression of p27(Kip1) and downregulation of cyclin D1 and cyclin E. PTK/ZK significantly inhibited vascular endothelial growth factor (VEGF) expression, as well as VEGF-simulated cell proliferation and phosphorylation of Akt in activated HSCs. In a murine fibrotic liver, PTK/ZK attenuated collagen deposition and alpha-SMA expression in carbon tetrachloride-induced fibrosis in both a 'prevention' and 'treatment' dosing scheme. These beneficial effects were associated with reduced phosphorylation of Akt and suppressed mRNA expression of procollagen-(I), TIMP-1, matrix metalloproteinase-9 and CD31. These findings provide novel insights into the potential value of blocking VEGF signaling by a small molecule tyrosine kinase inhibitor in treating hepatic fibrosis.
Collapse
|
12
|
The tumor suppressor protein PTEN inhibits rat hepatic stellate cell activation. J Gastroenterol 2009; 44:847-55. [PMID: 19436944 PMCID: PMC2790377 DOI: 10.1007/s00535-009-0073-3] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2009] [Accepted: 04/05/2009] [Indexed: 02/04/2023]
Abstract
BACKGROUND Following a fibrogenic stimulus, the hepatic stellate cell (HSC) transforms from a quiescent to an activated cell type associated with increased proliferation, collagen and smooth muscle alpha-actin (alphaSMA) expression. Phosphatase and Tensin Homolog Deleted on Chromosome Ten (PTEN), a tumor suppressor phosphatase, has been shown to play a role in several nonmalignant diseases. Here, we investigated the role of PTEN during HSC activation. METHODS Rat HSCs 2 days after isolation were transduced with adenoviruses expressing either the wild-type (WT) or a dominant negative form of PTEN, and culture-associated activation of HSCs, including morphological changes, expression of alphaSMA and alpha1(I) collagen, and cell proliferation, were evaluated. Apoptosis of HSCs was detected by measuring activity of caspase 3/7. Phosphorylation status of Akt, p70(S6K), and Erk was detected by Western blotting. RESULTS Overexpression of WT-PTEN inhibited phenotypic changes were associated with HSC activation, including morphological changes, expression of alphaSMA and alpha1(I) collagen, and HSC proliferation, including cyclin D1 expression. WT-PTEN expression also induced apoptosis in HSCs with increased caspase 3/7 activity. Expression of WT-PTEN also caused decreased activation of Akt, p70(S6K), and Erk signaling pathways. CONCLUSIONS Taken together, these findings show that PTEN represents an important negative regulator for transactivation of HSCs. This may have important implications for the design of therapeutic strategies to prevent the progression of liver fibrosis.
Collapse
|
13
|
Wang GJ, Huang YJ, Chen DH, Lin YL. Ganoderma lucidum
extract attenuates the proliferation of hepatic stellate cells by blocking the PDGF receptor. Phytother Res 2008; 23:833-9. [DOI: 10.1002/ptr.2687] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
14
|
Yun HS, Do SH, Jeong WI, Yang HJ, Yuan DW, Hong IH, Lee HR, Lee IS, Kim YK, Choi MS, Kim HA, Jeong KS. Cytotoxic effects of the conjugated linoleic acid isomers t10c12, c9t11-CLA and mixed form on rat hepatic stellate cells and CCl4-induced hepatic fibrosis. J Nutr Biochem 2008; 19:175-83. [PMID: 17869086 DOI: 10.1016/j.jnutbio.2007.02.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2006] [Revised: 12/20/2006] [Accepted: 02/08/2007] [Indexed: 12/29/2022]
Abstract
Rat hepatic stellate cells (HSC-T6) were incubated for 24 h with 10-180 microM of t10c12 (98%), c9t11 (96%) and a mixed form (c9,t11:t10,c12; 41%:44%) of conjugated linoleic acid (CLA). The MTS dye reduction was measured to verify cell viability in a dose-dependent manner. Among the three CLAs, c9,t11-CLA exhibited the most intense cytotoxic effect on HSCs, the survival rate of which was reduced to 60% under 80 microM of treatment, while cell survival was slightly affected by the mixed form. Three CLA-induced cell deaths were determined by measuring DNA fragmentation using 4',6-diamidino-2-phenylindole staining. The degrees of DNA fragmentation were the most severe in HSC treated with 80 microM of c9,t11-CLA. The mitogen-activated protein kinase/extracellular signal-regulated kinase-kinase and mitogen-activated or extracellular signal-regulated protein kinase (MEK) 1 and 2 were not activated in the t10,c12-CLA treatment. This suggests that the MEK-dependent apoptosis signal is crucial in HSC, which is induced by c9,t11 and mixed CLA. In order to evaluate the protective effect of CLA on carbon tetrachloride (CCl4)-induced hepatic fibrosis in vivo, animals were treated with 10% CCl4 to induce hepatic fibrosis during all experimental periods. Rats were divided into two treatment groups: (1) control diet with tap water ad libitum (n=15) and (2) 1% CLA diet with tap water ad libitum (n=15). In the CLA-supplemented rat livers, alpha-smooth muscle actin-positive cells were significantly reduced around the portal vein. In addition, collagen fibers were not detected in the CLA-treated group. These results suggest that 9c,11t-CLA influences cytotoxic effect on HSC in an MEK-dependent manner and preserving liver from fibrosis.
Collapse
Affiliation(s)
- Hae-Sun Yun
- Department of Pathology, College of Veterinary Medicine, Kyungpook National University, Daegu 702-701, Republic of Korea
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Li J, Si H, Lü X, Guo A, Jiang H. Suppressive effects of leflunomide on leptin-induced TIMP-1 production involves on hepatic stellate cell proliferation and apoptosis. Eur J Pharmacol 2008; 580:63-9. [DOI: 10.1016/j.ejphar.2007.10.061] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2007] [Revised: 10/18/2007] [Accepted: 10/22/2007] [Indexed: 01/04/2023]
|
16
|
Abstract
Liver fibrosis, a wound-healing response to a variety of chronic stimuli, is characterized by excessive deposition of extracellular matrix (ECM) proteins, of which type I collagen predominates. This alters the structure of the liver leading to organ dysfunction. The activated hepatic stellate cell (HSC) is primarily responsible for excess collagen deposition during liver fibrosis. Two important aspects are involved in mediating the fibrogenic response: first the HSC becomes directly fibrogenic by synthesizing ECM proteins; second, the activated HSC proliferates, effectively amplifying the fibrogenic response. Although the precise mechanisms responsible for HSC activation remain elusive, substantial insight is being gained into the molecular mechanisms responsible for ECM production and cell proliferation in the HSC. The activated HSC becomes responsive to both proliferative (platelet-derived growth factor) and fibrogenic (transforming growth factor-beta[TGF-beta]) cytokines. It is becoming clear that these cytokines activate both mitogen-activated protein kinase (MAPK) signaling, involving p38, and focal adhesion kinase-phosphatidylinositol 3-kinase-Akt-p70 S6 kinase (FAK-PI3K-Akt-p70(S6K)) signaling cascades. Together, these regulate the proliferative response, activating cell cycle progression as well as collagen gene expression. In addition, signaling by both TGF-beta, mediated by Smad proteins, and p38 MAPK influence collagen gene expression. Smad and p38 MAPK signaling have been found to independently and additively regulate alpha1(I) collagen gene expression by transcriptional activation while p38 MAPK, but not Smad signaling, increases alpha1(I) collagen mRNA stability, leading to increased synthesis and deposition of type I collagen. It is anticipated that by understanding the molecular mechanisms responsible for HSC proliferation and excess ECM production new therapeutic targets will be identified for the treatment of liver fibrosis.
Collapse
Affiliation(s)
- Christopher J Parsons
- Division of Gastroenterology and Hepatology, Department of Medicine, University of North Carolina, Chapel Hill, North Carolina 27599-7032, USA
| | | | | |
Collapse
|
17
|
Effects of curcumin on peroxisome proliferator-activated receptor γ expression and nuclear translocation/redistribution in culture-activated rat hepatic stellate cells. Chin Med J (Engl) 2007. [DOI: 10.1097/00029330-200705010-00011] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
|
18
|
Lin YL, Lee TF, Huang YJ, Huang YT. Antiproliferative effect of salvianolic acid A on rat hepatic stellate cells. J Pharm Pharmacol 2006; 58:933-9. [PMID: 16805953 DOI: 10.1211/jpp.58.7.0008] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Suppression of activation or proliferation, or induction of apoptosis in hepatic stellate cells (HSCs) have been proposed as therapeutic strategies against liver fibrosis. Salvia miltiorrhiza has been reported to exert antifibrotic effects in rats with hepatic fibrosis, but its mechanisms of action remain to be clarified. We have investigated the effects of salvianolic acid A (Sal A), an active principle from S. miltiorrhiza, on the proliferation-related biomarkers in a cell line of rat HSCs (HSC-T6) stimulated with platelet-derived growth factor-BB homodimer (PDGF-BB). DNA synthesis (bromodeoxyuridine (BrdU) incorporation), cell cycle related proteins and apoptosis markers were determined to evaluate the inhibitory effects of Sal A. The results showed that Sal A (1-10 microM) concentration-dependently attenuated PDGF-BB-stimulated proliferation (BrdU incorporation) in HSC-T6 cells. Sal A at 10 microM induced cell apoptosis in PDGF-BB-incubated HSCs, together with a reduction of Bcl-2 protein expression, induction of cell cycle inhibitory proteins p21 and p27, and down-regulation of cyclins D1 and E, suppression of Akt phosphorylation, reduction in PDGF receptor phosphorylation, and an increase in caspase-3 activity. Sal A exerted no direct cytotoxicity on primary hepatocytes and HSC-T6 cells under experimental concentrations. Our results suggested that Sal A inhibited PDGF-BB-activated HSC proliferation, partially through apoptosis induction.
Collapse
Affiliation(s)
- Yun-Lian Lin
- National Research Institute of Chinese Medicine, Taipei 112, Taiwan
| | | | | | | |
Collapse
|
19
|
Ogawa T, Tateno C, Asahina K, Fujii H, Kawada N, Obara M, Yoshizato K. Identification of vitamin A-free cells in a stellate cell-enriched fraction of normal rat liver as myofibroblasts. Histochem Cell Biol 2006; 127:161-74. [PMID: 17024455 DOI: 10.1007/s00418-006-0237-7] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/21/2006] [Indexed: 01/29/2023]
Abstract
Myofibroblasts (MFs) as well as hepatic stellate cells (HSCs) are known to be involved in liver fibrogenesis. Quiescent HSCs (qHSCs) in culture have been thought to differentiate to replicative activated HSCs (aHSCs). In this study a qHSC-enriched fraction isolated by Nycodenz-isodensity centrifugation was separated with a fluorescence-activated cell sorter, which revealed the presence of a small fraction (occupancy rate=0.4%) of cells that did not show vitamin A-autofluorescence under ultraviolet (UV)-irradiation (UV- cells). The remaining vitamin A-containing cells were autofluorescent (UV+) and originally expressed markers of qHSCs, and, in culture, did not grow, lost vitamin A, and expressed markers of aHSCs. UV- cells showed morphology of MFs, and, in culture, grew to form colonies and expressed markers of MFs. These results indicated that UV+ and UV- cells represent qHSCs and MFs, respectively, and that aHSCs have no growth potential and are a cell-type distinct from proliferative MFs. Gene expression profiles of UV- cells (MFs) newly identified gremlin as one of MF-preferential genes and its proteins were localized around fibrotic septa in rat and human livers. In addition, we suggested that the qHSC-enriched fraction included approximately 6% of liver MFs.
Collapse
Affiliation(s)
- Tomohiro Ogawa
- Developmental Biology Laboratory, Department of Biological Science, Graduate School of Science, Hiroshima University, 1-3-1 Kagamiyama, Higashihiroshima, Hiroshima, 739-8526, Japan
| | | | | | | | | | | | | |
Collapse
|
20
|
Bridle KR, Li L, O'Neill R, Britton RS, Bacon BR. Coordinate activation of intracellular signaling pathways by insulin-like growth factor-1 and platelet-derived growth factor in rat hepatic stellate cells. ACTA ACUST UNITED AC 2006; 147:234-41. [PMID: 16697771 DOI: 10.1016/j.lab.2005.12.009] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2005] [Revised: 12/05/2005] [Accepted: 12/29/2005] [Indexed: 01/18/2023]
Abstract
Proliferation of activated hepatic stellate cells (HSC) is an important event in the development of hepatic fibrosis. Insulin-like growth factor-1 (IGF-1) has been shown to be mitogenic for HSC, but the intracellular signaling pathways involved have not been fully characterized. Thus, the aims of the current study were to examine the roles of the extracellular signal-regulated kinase (ERK), phosphatidylinositol 3-kinase (PI3-K) and p70-S6 kinase (p70-S6-K) signaling pathways in IGF-1- and platelet-derived growth factor (PDGF)-induced mitogenic signaling of HSC and to examine the potential crosstalk between these pathways. Both IGF-1 and PDGF increased ERK, PI3-K and p70-S6-K activity. When evaluating potential crosstalk between these signaling pathways, we observed that PI3-K is required for p70-S6-K activation by IGF-1 and PDGF, and is partially responsible for PDGF-induced ERK activation. PDGF and IGF-1 also increased the levels of cyclin D1 and phospho-glycogen synthase kinase-3beta. Coordinate activation of ERK, PI3-K and p70-S6-K is important for perpetuating the activated state of HSC during fibrogenesis.
Collapse
Affiliation(s)
- Kim R Bridle
- Division of Gastroenterology and Hepatology, Saint Louis University Liver Center, Saint Louis University School of Medicine, St. Louis, Missouri 63110-0250, USA
| | | | | | | | | |
Collapse
|
21
|
Gäbele E, Reif S, Tsukada S, Bataller R, Yata Y, Morris T, Schrum LW, Brenner DA, Rippe RA. The role of p70S6K in hepatic stellate cell collagen gene expression and cell proliferation. J Biol Chem 2005; 280:13374-82. [PMID: 15677443 DOI: 10.1074/jbc.m409444200] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
During fibrosis the hepatic stellate cell (HSC) undergoes a complex activation process characterized by increased proliferation and extracellular matrix deposition. The 70-kDa ribosomal S6 kinase (p70S6K) is activated by mitogens, growth factors, and hormones in a phosphatidylinositol 3-kinase-dependent manner. p70S6K regulates protein synthesis, proliferation, and cell cycle control. Because these processes are involved in HSC activation, we investigated the role of p70S6K in HSC proliferation, cell cycle control, and type I collagen expression. Platelet-derived growth factor (PDGF) stimulated p70S6K phosphorylation, which was blocked by LY294002, an inhibitor of phosphatidylinositol 3-kinase. Rapamycin blocked phosphorylation of p70S6K but had no affect on PDGF-induced Akt phosphorylation, positioning p70S6K downstream of Akt. Transforming growth factor-beta, which inhibits HSC proliferation, did not affect PDGF-induced p70S6K phosphorylation. Rapamycin treatment did not affect alpha1(I) collagen mRNA but reduced type I collagen protein secretion. Expression of smooth muscle alpha-actin was not affected by rapamycin treatment, indicating that HSC activation was not altered. Rapamycin inhibited serum-induced DNA synthesis approximately 2-fold. Moreover, rapamycin decreased expression of cyclins D1, D3, and E but not cyclin D2, Rb-Ser780, and Rb-Ser795. Together, p70S6K plays a crucial role in HSC proliferation, collagen expression, and cell cycle control, thus representing a potential therapeutic target for liver fibrosis.
Collapse
Affiliation(s)
- Erwin Gäbele
- Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-7032, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Saxena NK, Titus MA, Ding X, Floyd J, Srinivasan S, Sitaraman SV, Anania FA. Leptin as a novel profibrogenic cytokine in hepatic stellate cells: mitogenesis and inhibition of apoptosis mediated by extracellular regulated kinase (Erk) and Akt phosphorylation. FASEB J 2004; 18:1612-4. [PMID: 15319373 PMCID: PMC2924993 DOI: 10.1096/fj.04-1847fje] [Citation(s) in RCA: 162] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
A key feature in the molecular pathogenesis of liver fibrosis requires maintenance of the activated hepatic stellate cell (HSC) phenotype by both proliferation and inhibition of apoptosis. We provide evidence that leptin is a potent HSC mitogen and dramatically inhibits stellate cell apoptosis. Leptin proved to be as potent an HSC mitogen as platelet-derived growth factor (PDGF) as assessed by bromodeoxyuridine (BrdU) incorporation in isolated primary HSCs; data using fluorescent propidium iodide (PI) uptake revealed that leptin, like PDGF, increased HSC populations in the S- and G2/M-phases of the cell cycle. Leptin resulted in a robust increase in cyclin D1 expression. Using the chemical inhibitor of Janus kinase 2 (Jak2) activity, AG 490, and overexpression of the suppressor of cytokine signaling 3 (SOCS-3), we show that blockade of leptin receptor (Ob-Rb) phosphorylation blocks leptin-induced HSC proliferation. Leptin-associated phosphorylation of both extracellular regulated kinase (p44/p42, Erk) and Akt is also prohibited. Further, the PI-3 kinase inhibitor LY294002 and MAPK inhibitor PD98059 were found to significantly reduce leptin-induced HSC proliferation, thereby indicating that leptin induced HSC proliferation is Akt- and Erk-dependent. Akt was also protective against HSC apoptosis. Leptin abolished both cycloheximide-induced and tumor necrosis factor-related apoptosis-inducing ligand (TRAIL)-induced apoptosis, demonstrated by reduced caspase-3 activity, HSC-TUNEL staining, and DNA fragmentation. We conclude that leptin acts as a direct hepatic stellate cell survival agonist. Importantly, we have demonstrated that leptin-induced HSC proliferation and survival by Ob-Rb phosphorylation are both Erk- and Akt-dependent.
Collapse
Affiliation(s)
- Neeraj K. Saxena
- Whitehead Biomedical Research Building, Room 248, Division of Digestive Diseases, Department of Medicine, Emory University School of Medicine, Atlanta, GA 30322 US
| | - Mark A. Titus
- Division of Gastroenterology, Department of Medicine, University of Maryland School of Medicine, Baltimore, MD 21201 USA
| | - Xiaokun Ding
- Whitehead Biomedical Research Building, Room 248, Division of Digestive Diseases, Department of Medicine, Emory University School of Medicine, Atlanta, GA 30322 US
| | - Jeffrey Floyd
- Division of Gastroenterology, Department of Medicine, University of Maryland School of Medicine, Baltimore, MD 21201 USA
| | - Shanthi Srinivasan
- Whitehead Biomedical Research Building, Room 248, Division of Digestive Diseases, Department of Medicine, Emory University School of Medicine, Atlanta, GA 30322 US
| | - Shanthi V. Sitaraman
- Whitehead Biomedical Research Building, Room 248, Division of Digestive Diseases, Department of Medicine, Emory University School of Medicine, Atlanta, GA 30322 US
| | - Frank A. Anania
- Whitehead Biomedical Research Building, Room 248, Division of Digestive Diseases, Department of Medicine, Emory University School of Medicine, Atlanta, GA 30322 US
| |
Collapse
|
23
|
da Silva FM, Guimarães ELM, Grivicich I, Trindade VMT, Guaragna RM, Borojevic R, Guma FCR. Hepatic stellate cell activation in vitro: cell cycle arrest at G2/M and modification of cell motility. J Cell Biochem 2004; 90:387-96. [PMID: 14505354 DOI: 10.1002/jcb.10642] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Hepatic fibrosis is a common response to chronic liver injury and is characterized by increased production of extracellular matrix components, whose major part is produced by hepatic stellate cells activated by inflammatory mediators to proliferate and migrate into the injured regions. GRX cells are a model of hepatic stellate cells characterized as myofibroblasts by morphological and biochemical criteria. We have recently shown that they respond to inflammatory mediators and cytokines present in the concanavalin A-activated spleen cell supernatant (SCS) by quantitative changes in the expression of intermediate filaments. The present study investigated the effects of SCS and TNF-alpha on the GRX cell proliferation and on the organization of the actin cytoskeleton. SCS and TNF-alpha diminished the culture cell density, with an increase of cell [(3)H]thymidine incorporation and of cellular protein content, indicating an arrest in the G2/M phase of the cell cycle, which was reversible 48 h after removal of SCS. This effect was abrogated by dibutiryl-cAMP. Actin cytoskeleton reorganization was observed after 24 h treatment, indicating increased cell motility. Our results suggest that inflammation-dependent activation of stellate cells occurs in ordered interaction and coordination of proinflammatory agents. The increase of cAMP levels activates the conversion of lipocytes into myofibroblasts and increases the number of cells that can participate in repair. Since cAMP retains cells in the G1 phase, cytokines of the TNF-alpha group are required for cell proliferation inducing the entry into the S phase. The progression through the G2/M checkpoint is mediated again by increased cAMP levels.
Collapse
Affiliation(s)
- Fabiana M da Silva
- Departamento de Bioquímica, ICBS, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | | | | | | | | | | | | |
Collapse
|
24
|
Kawada N. Molecular mechanism of stellate cell activation and therapeutic strategy for liver fibrosis. COMPARATIVE HEPATOLOGY 2004; 3 Suppl 1:S3. [PMID: 14960155 PMCID: PMC2410226 DOI: 10.1186/1476-5926-2-s1-s3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Affiliation(s)
- Norifumi Kawada
- Department of Hepatology, Graduate School of Medicine, Osaka City University, Osaka 545-8585, Japan.
| |
Collapse
|
25
|
Sakata R, Ueno T, Nakamura T, Sakamoto M, Torimura T, Sata M. Green tea polyphenol epigallocatechin-3-gallate inhibits platelet-derived growth factor-induced proliferation of human hepatic stellate cell line LI90. J Hepatol 2004; 40:52-9. [PMID: 14672614 DOI: 10.1016/s0168-8278(03)00477-x] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
BACKGROUND/AIMS Green-tea polyphenols are known to have anti-fibrotic properties of the skin and the artery. The proliferation of hepatic stellate cells (HSC) is closely related to the progression of liver fibrosis in chronic liver diseases. We investigated the inhibitory effect of epigallocatechin-3-gallate (EGCG), the major potential inhibitory component of green-tea polyphenols, on the proliferation of HSC. The aim of this study was to clarify the molecular mechanisms of EGCG inhibition of HSC proliferation. METHODS A cultured human hepatic stellate cell line LI90 was used for this study. The cells were stimulated by platelet-derived growth factor (PDGF)-BB in the presence or absence of EGCG. Proliferation was determined by bromodeoxy-uridine incorporation. The mRNA expressions of collagen alpha1(I) and (IV) were evaluated by a quantitative reverse transcription-polymerase chain reaction. PDGF receptor tyrosine phosphorylation was detected using anti-phosphotyrosine antibody. PDGF receptor radioligand binding assay was performed by [125I]-PDGF-BB. RESULTS EGCG inhibited the PDGF-BB-induced cell-proliferation and collagen alpha1(I) and (IV) mRNA expressions. EGCG reduced the autophosphorylation of the PDGF receptor. EGCG blocked PDGF-BB binding to its receptor in a non-competitive manner. CONCLUSIONS EGCG has an inhibitory effect on PDGF-induced proliferation of HSC, and the blocking of PDGF-BB binding to its receptor may be the mechanism behind this effect.
Collapse
Affiliation(s)
- Ryuichiro Sakata
- Research Center for Innovative Cancer Therapy, Second Department of Medicine, Kurume University School of Medicine, 67 Asahi-machi, Kurume 830-0011, Japan.
| | | | | | | | | | | |
Collapse
|
26
|
Xu J, Fu Y, Chen A. Activation of peroxisome proliferator-activated receptor-gamma contributes to the inhibitory effects of curcumin on rat hepatic stellate cell growth. Am J Physiol Gastrointest Liver Physiol 2003; 285:G20-30. [PMID: 12660143 DOI: 10.1152/ajpgi.00474.2002] [Citation(s) in RCA: 179] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Hepatic fibrogenesis occurs as a wound-healing process after many forms of chronic liver injury. Hepatic fibrosis ultimately leads to cirrhosis if not treated effectively. During liver injury, quiescent hepatic stellate cells (HSC), the most relevant cell type, become active and proliferative. Oxidative stress is a major and critical factor for HSC activation. Activation of peroxisome proliferator-activated receptor-gamma (PPAR-gamma) inhibits the proliferation of nonadipocytes. The level of PPAR-gamma is dramatically diminished along with activation of HSC. Curcumin, the yellow pigment in curry, is a potent antioxidant. The aims of this study were to evaluate the effect of curcumin on HSC proliferation and to begin elucidating underlying mechanisms. It was hypothesized that curcumin might inhibit the proliferation of activated HSC by inducing PPAR-gamma gene expression and reviving PPAR-gamma activation. Our results indicated that curcumin significantly inhibited the proliferation of activated HSC and induced apoptosis in vitro. We demonstrated, for the first time, that curcumin dramatically induced the gene expression of PPAR-gamma and activated PPAR-gamma in activated HSC. Blocking its trans-activating activity by a PPAR-gamma antagonist markedly abrogated the effects of curcumin on inhibition of cell proliferation. Our results provide a novel insight into mechanisms underlying the inhibition of activated HSC growth by curcumin. The characteristics of curcumin, including antioxidant potential, reduction of activated HSC growth, and no adverse health effects, make it a potential antifibrotic candidate for prevention and treatment of hepatic fibrosis.
Collapse
Affiliation(s)
- Jianye Xu
- Dept. of Pathology, Louisiana State University Health Sciences Center, 1501 Kings Highway, Shreveport, LA 71130, USA
| | | | | |
Collapse
|
27
|
Maeda N, Kawada N, Seki S, Arakawa T, Ikeda K, Iwao H, Okuyama H, Hirabayashi J, Kasai KI, Yoshizato K. Stimulation of proliferation of rat hepatic stellate cells by galectin-1 and galectin-3 through different intracellular signaling pathways. J Biol Chem 2003; 278:18938-44. [PMID: 12646584 DOI: 10.1074/jbc.m209673200] [Citation(s) in RCA: 111] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
We found that the expression of galectin-1 and galectin-3 was significantly up-regulated in hepatic stellate cells (HSCs) both in the course of their transdifferentiation into myofibroblasts, a process of "self-activation," and in the fibrosis of liver tissues. Recombinant galectin-1 and galectin-3 stimulated the proliferation of cultured HSCs via the MEK1/2-ERK1/2 signaling pathway. However, galectin-3 utilized protein kinases C and A to induce this process, whereas galectin-1 did not. We also found that thiodigalactoside, a potent inhibitor of beta-galactoside binding, attenuated the effects of both galectins. In addition, galectin-1, but not galectin-3, promoted the migration of HSCs. Thus, it appears that galectin-1 and galectin-3, generated by activated HSCs, could participate in beta-galactoside binding and induce different intracellular signaling pathways leading to the proliferation of HSCs.
Collapse
Affiliation(s)
- Naoto Maeda
- Department of Hepatology, Graduate School of Medicine, Osaka City University, Asahimachi, Abeno-ku, Osaka 545-8585, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Reif S, Lang A, Lindquist JN, Yata Y, Gabele E, Scanga A, Brenner DA, Rippe RA. The role of focal adhesion kinase-phosphatidylinositol 3-kinase-akt signaling in hepatic stellate cell proliferation and type I collagen expression. J Biol Chem 2003; 278:8083-90. [PMID: 12502711 DOI: 10.1074/jbc.m212927200] [Citation(s) in RCA: 234] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Following a fibrogenic stimulus, the hepatic stellate cell (HSC) undergoes a complex activation process associated with increased cell proliferation and excess deposition of type I collagen. The focal adhesion kinase (FAK)-phosphatidylinositol 3-kinase (PI3K)-Akt signaling pathway is activated by platelet-derived growth factor (PDGF) in several cell types. We investigated the role of the FAK-PI3K-Akt pathway in HSC activation. Inhibition of FAK activity blocked HSC migration, cell attachment, and PDGF-induced PI3K and Akt activation. Both serum- and PDGF-induced Akt phosphorylation was inhibited by LY294002, an inhibitor of PI3K. A constitutively active form of Akt stimulated HSC proliferation in serum-starved HSCs, whereas LY294002 and dominant-negative forms of Akt and FAK inhibited PDGF-induced proliferation. Transforming growth factor-beta, an inhibitor of HSC proliferation, did not block PDGF-induced Akt phosphorylation, suggesting that transforming growth factor-beta mediates its antiproliferative effect downstream of Akt. Expression of type I collagen protein and alpha1(I) collagen mRNA was increased by Akt activation and inhibited when PI3K activity was blocked. Therefore, FAK is important for HSC migration, cell attachment, and PDGF-induced cell proliferation. PI3K is positioned downstream of FAK. Signals for HSC proliferation are transduced through FAK, PI3K, and Akt. Finally, expression of type I collagen is regulated by the PI3K-Akt signaling pathway.
Collapse
Affiliation(s)
- Shimon Reif
- Division of Digestive Diseases, Department of Medicine, University of North Carolina, Chapel Hill 27599, USA
| | | | | | | | | | | | | | | |
Collapse
|
29
|
Chen A, Zhang L, Xu J, Tang J. The antioxidant (-)-epigallocatechin-3-gallate inhibits activated hepatic stellate cell growth and suppresses acetaldehyde-induced gene expression. Biochem J 2002; 368:695-704. [PMID: 12223099 PMCID: PMC1223034 DOI: 10.1042/bj20020894] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2002] [Revised: 09/09/2002] [Accepted: 09/11/2002] [Indexed: 02/07/2023]
Abstract
Activated hepatic stellate cells (HSC) are the primary source of excessive production of extracellular matrix during liver fibrogenesis. Although the underlying mechanisms remain incompletely understood, it is widely accepted that oxidative stress plays a critical role in liver fibrogenesis. Suppression of HSC growth and activation, as well as induction of apoptosis, have been proposed as therapeutic strategies for treatment and prevention of this disease. In the present report, we elucidated, for the first time, effects of the antioxidant (-)-epigallocatechin-3-gallate (EGCG), a major (and the most active) component of green tea extracts, on cultured HSC growth and activation. Our results revealed that EGCG significantly inhibited cultured HSC growth by inducing cell cycle arrest and apoptosis in a dose- and time-dependent manner. In addition, EGCG markedly suppressed the activation of cultured HSC as demonstrated by blocking transforming growth factor-beta signal transduction and by inhibiting the expression of alpha1(I) collagen, fibronectin and alpha-smooth muscle actin genes induced by acetaldehyde, the most active metabolite of ethanol. Furthermore, EGCG reacted differently in the inhibition of nuclear factor-kappaB activity between cultured HSC with or without acetaldehyde stimulation. Taken together, our results indicated that EGCG was a novel and effective inhibitor for activated HSC growth and activation in vitro. Further studies are necessary to evaluate the effect of this polyphenol in prevention of quiescent HSC activation in vivo, and to further elucidate the underlying mechanisms.
Collapse
Affiliation(s)
- Anping Chen
- Department of Pathology, Louisiana State University Health Sciences Center in Shreveport, Shreveport, LA 71130, USA.
| | | | | | | |
Collapse
|
30
|
Wang L, Liu F, Adamo ML. Cyclic AMP inhibits extracellular signal-regulated kinase and phosphatidylinositol 3-kinase/Akt pathways by inhibiting Rap1. J Biol Chem 2001; 276:37242-9. [PMID: 11479306 DOI: 10.1074/jbc.m105089200] [Citation(s) in RCA: 91] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Cyclic AMP inhibited both ERK and Akt activities in rat C6 glioma cells. A constitutively active form of phosphatidylinositol 3-kinase (PI3K) prevented cAMP from inhibiting Akt, suggesting that the inactivation of Akt by cAMP is a consequence of PI3K inhibition. Neither protein kinase A nor Epac (Exchange protein directly activated by cAMP), two known direct effectors of cAMP, mediated the cAMP-induced inhibition of ERK and Akt phosphorylation. Cyclic AMP inhibited Rap1 activation in C6 cells. Moreover, inhibition of Rap1 by a Rap1 GTPase-activating protein-1 also resulted in a decrease in ERK and Akt phosphorylation, which was not further decreased by cAMP, suggesting that cAMP inhibits ERK and Akt by inhibiting Rap1. The role of Rap1 in ERK and Akt activity was further demonstrated by our observation that an active form of Epac, which activated Rap1 in the absence of cAMP, increased ERK and Akt phosphorylation. Inhibition of ERK and/or PI3K pathways mediated the inhibitory effects of cAMP on insulin-like growth factor-I (IGF-I) and IGF-binding protein-3 gene expression. Moreover, cAMP, as well as ERK and PI3K inhibitors produced equivalent stimulation and inhibition, respectively, of p27(Kip1) and cyclin D2 protein levels, potentially explaining the observation that cAMP prevented C6 cells from entering S phase.
Collapse
Affiliation(s)
- L Wang
- Department of Biochemistry, The University of Texas Health Science Center, San Antonio, Texas 78229-3900, USA
| | | | | |
Collapse
|
31
|
Okuyama H, Shimahara Y, Kawada N, Seki S, Kristensen DB, Yoshizato K, Uyama N, Yamaoka Y. Regulation of cell growth by redox-mediated extracellular proteolysis of platelet-derived growth factor receptor beta. J Biol Chem 2001; 276:28274-80. [PMID: 11346654 DOI: 10.1074/jbc.m102995200] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Redox-regulated processes are important elements in various cellular functions. Reducing agents, such as N-acetyl-l-cysteine (NAC), are known to regulate signal transduction and cell growth through their radical scavenging action. However, recent studies have shown that reactive oxygen species are not always involved in ligand-stimulated intracellular signaling. Here, we report a novel mechanism by which NAC blocks platelet-derived growth factor (PDGF)-induced signaling pathways in hepatic stellate cells, a fibrogenic player in the liver. Unlike in vascular smooth muscle cells, we found that reducing agents, including NAC, triggered extracellular proteolysis of PDGF receptor-beta, leading to desensitization of hepatic stellate cells toward PDGF-BB. This effect was mediated by secreted mature cathepsin B. In addition, type II transforming growth factor-beta receptor was also down-regulated. Furthermore, these events seemed to cause a dramatic improvement of rat liver fibrosis. These results indicated that redox processes impact the cell's response to growth factors by regulating the turnover of growth factor receptors and that "redox therapy" is promising for fibrosis-related disease.
Collapse
Affiliation(s)
- H Okuyama
- Department of Gastroenterological Surgery, Graduate School of Medicine, Kyoto University, Sakyo-ku, Kyoto 606-8397, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
32
|
Huang GC, Zhang JS, Zhang YE. Effects of retinoic acid on proliferation, phenotype and expression of cyclin-dependent kinase inhibitors in TGF-beta1-stimulated rat hepatic stellate cells. World J Gastroenterol 2000; 6:819-823. [PMID: 11819702 PMCID: PMC4728268 DOI: 10.3748/wjg.v6.i6.819] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2000] [Revised: 09/12/2000] [Accepted: 09/19/2000] [Indexed: 02/06/2023] Open
Abstract
AIM:To study the molecular mechanisms of retinoic acid (RA)on prolix-feration and expression of cyclin-dependent kinase inhibitors (CKI), i.e.p16, p21 and p27 in cultured rat hepatic stellate cells (HSC) stimulated with transforming growth factor beta 1 (TGF-beta1).METHODS:HSC were isolated from healthy rat livers and cultured.After stimulated with 1mg/L TGF-beta1, subcultured HSC were treated with or without 1nmol/L RA. MTT assay, immunocytochemistry (ICC) for p16, p21, p27 and alpha-smooth muscle actin (alpha-SMA) protein, in situ hybridization (ISH) for retinoic acid receptor beta 2 (RAR-beta2) and p16, p21 and p27 mRNA and quantitative image analysis (partially) were performed.RESULTS:inhibited HSC proliferation (41.50%,P<0.05),decreased the protein level of alpha-SMA (55.09%, P<0.05), and induced HSC to express RAR-beta2 mRNA. In addition, RA increased the protein level of p16 (218.75%, P <0.05) and induced p21 protein expression; meanwhile, p27 was undetectable by ICC in both control and RA-treated HSC. However, RA had no influence on the mRNA levels of p16, p21 or p27 as determined by ISH.CONCLUSION:Up-regulation of p16 and p21 on post-transcriptional level may contribute, in part, to RA inhibition of TGF-beta 1-initiated rat HSC activation in vitro.
Collapse
|
33
|
Wang YQ, Ikeda K, Ikebe T, Hirakawa K, Sowa M, Nakatani K, Kawada N, Kaneda K. Inhibition of hepatic stellate cell proliferation and activation by the semisynthetic analogue of fumagillin TNP-470 in rats. Hepatology 2000; 32:980-9. [PMID: 11050048 DOI: 10.1053/jhep.2000.18658] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Proliferation and activation of hepatic stellate cells (HSCs) are critical steps for the development of postnecrotic fibrosis in the liver. The present study aimed to reveal the inhibitory effect of the semisynthetic analogue of fumagillin TNP-470 on these events for its possible use as an antifibrogenic agent. Rat models of carbon tetrachloride (CCl(4))- and dimethylnitrosamine-induced hepatic fibrosis were used for an in vivo study. In both models, the fibrotic area was considerably decreased by concurrent repetitive subcutaneous injections of 30 mg/kg body weight of TNP-470. In CCl(4)-induced fibrosis, factor VIII-related antigen-positive blood vessels, desmin-, or alpha-smooth muscle actin (alphaSMA)-positive mesenchymal cells, bromodeoxyuridine (BrdU)-positive mesenchymal cells also decreased in number by treatment with TNP-470. In in vitro experiments, a supplement of 1,000 ng/mL TNP-470 suppressed BrdU incorporation and cyclins D1, D2, and E expression by cultured HSCs in the absence and/or presence of platelet-derived growth factor (PDGF). Expression of HSC activation markers, i.e., alphaSMA and PDGF receptor beta, was also suppressed. The present results indicate that TNP-470 inhibits HSC proliferation by blocking the cell-cycle transition from G1 to S and HSC activation, and, as the consequence, prevents the progression of hepatic fibrosis, probably being coupled with its antiangiogenic effect.
Collapse
Affiliation(s)
- Y Q Wang
- Department of Anatomy, Osaka City University Medical School, Osaka, Japan
| | | | | | | | | | | | | | | |
Collapse
|
34
|
Yan S, Krebs S, Leister KJ, Wenner CE. Perturbation of EGF-activated MEK1 and PKB signal pathways by TGF-beta1 correlates with perturbation of EGF-induced cyclin D1 and DNA synthesis by TGF-beta1 in C3H 10T1/2 cells. J Cell Physiol 2000; 185:107-16. [PMID: 10942524 DOI: 10.1002/1097-4652(200010)185:1<107::aid-jcp10>3.0.co;2-d] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
In mouse C3H 10T1/2 cells, we previously reported that TGF-beta1 first delays and later potentiates EGF-induced DNA synthesis corresponding to an inhibition of EGF-induced cyclin D1 expression at t = 13 h. We report here that in accord with DNA synthesis kinetics, TGF-beta1 initially suppresses EGF-induced cyclin D1 expression then later releases the inhibition. Furthermore, TGF-beta1 also first decreases and later potentiates the levels of EGF-activated MEK1/MAPK and PKB, indicating the existence of cross talk between TGF-beta 1- and EGF-activated signal transduction pathways. PD98059, the specific inhibitor of MEK1, significantly blocks EGF-induced DNA synthesis, whereas wortmannin, the PI3K inhibitor, exerts a modest inhibitory effect, which suggests that the activation of MEK1-MAPK pathway plays a major role in EGF-induced DNA synthesis and the activation of PI3K-PKB pathway plays a minor role. Upon examination of mechanisms underlying the cross talk, it was discovered that application of TGF-beta1 triggers a rapid association between Raf-1 and catalytic subunits of PKA, which are reported to be able to inactivate Raf-1 upon activation. Therefore, TGF-beta1 may activate PKA to inhibit the EGF-activated MEK1-MAPK pathway. The wortmannin-sensitive phosphorylation at the thr(389) site is necessary for activation of p70s6K, an important kinase involved in mitogen-stimulated protein synthesis. Although we found that EGF-stimulated p70s6K phosphorylates through a MAPK-dependent and a MAPK-independent (wortmannin-sensitive) pathway, TGF-beta1 failed to block EGF-triggered phosphorylation of p70s6K at thr(389) and thr(421)/ser(424) sites, implying that PKB inhibition by TGF-beta1 may result from inhibition of PDK1 activity instead of inhibition of PI3K activity. These data also suggest that TGF-beta1 may selectively perturb certain EGF-activated MAPK pools.
Collapse
Affiliation(s)
- S Yan
- Department of Biochemistry, Roswell Park Cancer Institute, Buffalo, New York 14260, USA
| | | | | | | |
Collapse
|