1
|
Yumoto G, Nishio H, Muranaka T, Sugisaka J, Honjo MN, Kudoh H. Seasonal switching of integrated leaf senescence controls in an evergreen perennial Arabidopsis. Nat Commun 2024; 15:4719. [PMID: 38849351 PMCID: PMC11161623 DOI: 10.1038/s41467-024-48814-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Accepted: 05/10/2024] [Indexed: 06/09/2024] Open
Abstract
Evergreeness is a substantial strategy for temperate and boreal plants and is as common as deciduousness. However, whether evergreen plants switch foliage functions between seasons remains unknown. We conduct an in natura study of leaf senescence control in the evergreen perennial, Arabidopsis halleri. A four-year census of leaf longevity of 102 biweekly cohorts allows us to identify growth season (GS) and overwintering (OW) cohorts characterised by short and extended longevity, respectively, and to recognise three distinct periods in foliage functions, i.e., the growth, overwintering, and reproductive seasons. Photoperiods during leaf expansion separate the GS and OW cohorts, providing primal control of leaf senescence depending on the season, with leaf senescence being shut down during winter. Phenotypic and transcriptomic responses in field experiments indicate that shade-induced and reproductive-sink-triggered senescence are active during the growth and reproductive seasons, respectively. These secondary controls of leaf senescence cause desynchronised and synchronised leaf senescence during growth and reproduction, respectively. Conclusively, seasonal switching of leaf senescence optimises resource production, storage, and translocation for the season, making the evergreen strategy adaptively relevant.
Collapse
Affiliation(s)
- Genki Yumoto
- Center for Ecological Research, Kyoto University, Hirano 2-509-3, Otsu, 520-2113, Japan.
| | - Haruki Nishio
- Center for Ecological Research, Kyoto University, Hirano 2-509-3, Otsu, 520-2113, Japan
- Data Science and AI Innovation Research Promotion Center, Shiga University, Banba 1-1-1, Hikone, 522-8522, Japan
| | - Tomoaki Muranaka
- Center for Ecological Research, Kyoto University, Hirano 2-509-3, Otsu, 520-2113, Japan
- Graduate School of Bioagricultural Sciences, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-0814, Japan
| | - Jiro Sugisaka
- Center for Ecological Research, Kyoto University, Hirano 2-509-3, Otsu, 520-2113, Japan
| | - Mie N Honjo
- Center for Ecological Research, Kyoto University, Hirano 2-509-3, Otsu, 520-2113, Japan
| | - Hiroshi Kudoh
- Center for Ecological Research, Kyoto University, Hirano 2-509-3, Otsu, 520-2113, Japan.
| |
Collapse
|
2
|
Zentgraf U, Andrade-Galan AG, Bieker S. Specificity of H 2O 2 signaling in leaf senescence: is the ratio of H 2O 2 contents in different cellular compartments sensed in Arabidopsis plants? Cell Mol Biol Lett 2022; 27:4. [PMID: 34991444 PMCID: PMC8903538 DOI: 10.1186/s11658-021-00300-w] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Accepted: 12/17/2021] [Indexed: 01/21/2023] Open
Abstract
Leaf senescence is an integral part of plant development and is driven by endogenous cues such as leaf or plant age. Developmental senescence aims to maximize the usage of carbon, nitrogen and mineral resources for growth and/or for the sake of the next generation. This requires efficient reallocation of the resources out of the senescing tissue into developing parts of the plant such as new leaves, fruits and seeds. However, premature senescence can be induced by severe and long-lasting biotic or abiotic stress conditions. It serves as an exit strategy to guarantee offspring in an unfavorable environment but is often combined with a trade-off in seed number and quality. In order to coordinate the very complex process of developmental senescence with environmental signals, highly organized networks and regulatory cues have to be in place. Reactive oxygen species, especially hydrogen peroxide (H2O2), are involved in senescence as well as in stress signaling. Here, we want to summarize the role of H2O2 as a signaling molecule in leaf senescence and shed more light on how specificity in signaling might be achieved. Altered hydrogen peroxide contents in specific compartments revealed a differential impact of H2O2 produced in different compartments. Arabidopsis lines with lower H2O2 levels in chloroplasts and cytoplasm point to the possibility that not the actual contents but the ratio between the two different compartments is sensed by the plant cells.
Collapse
Affiliation(s)
- Ulrike Zentgraf
- ZMBP (Centre of Plant Molecular Biology), University of Tübingen, Auf der Morgenstelle 32, 72076, Tübingen, Germany.
| | - Ana Gabriela Andrade-Galan
- ZMBP (Centre of Plant Molecular Biology), University of Tübingen, Auf der Morgenstelle 32, 72076, Tübingen, Germany
| | - Stefan Bieker
- ZMBP (Centre of Plant Molecular Biology), University of Tübingen, Auf der Morgenstelle 32, 72076, Tübingen, Germany
| |
Collapse
|
3
|
Zhu L, Liu L, Sun H, Zhang Y, Zhu J, Zhang K, Li A, Bai Z, Wang G, Li C. Physiological and Comparative Transcriptomic Analysis Provide Insight Into Cotton ( Gossypium hirsutum L.) Root Senescence in Response. FRONTIERS IN PLANT SCIENCE 2021; 12:748715. [PMID: 34733305 PMCID: PMC8558499 DOI: 10.3389/fpls.2021.748715] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Accepted: 09/28/2021] [Indexed: 06/13/2023]
Abstract
Nitrogen (N) deficiency is one of the pivotal environmental factors that induce leaf senescence. However, little is known regarding the impact of low N on root senescence in cotton. Thus, the objective of this study was to investigate the effect of low nitrogen on root senescence. In this study, the molecular mechanism of cotton root senescence in response to nitrogen deficiency was investigated by combing physiological and transcriptomic analysis when no nitrogen and normal nitrogen (138mg N·kg-1 soil). The results showed that: (1) nitrogen starvation induced the premature senescence of leaf, while delaying root senescence. (2) The increase in catalase (CAT) activity at 60, 80, and 100days after emergence (DAE), combined with decrease of malonaldehyde content at 60, 80, and 100 DAE, and the content of abscisic acid (ABA), all of these contributed to the delay of root senescence by low nitrogen treatment. (3) To study the molecular mechanisms underlying root senescence, the gene expression profiling between low nitrogen and normal nitrogen treatments were compared pairwise at 20, 40, 60, 80, and 100 DAE. A total of 14,607 genes were identified to be differentially expressed at these five points. (5) Most genes involved in glutathione (GSH) and ascorbate peroxidase (APX) synthesis were upregulated, while ABA, apoptosis, caspase, and cell cycle-related differentially expressed genes (DEGs) were downregulated. Coupled with the physiology data, these results provide new insights into the effect of nitrogen starvation on root senescence.
Collapse
Affiliation(s)
- Lingxiao Zhu
- State Key Laboratory of North China Crop Improvement and Regulation, Key Laboratory of Crop Growth Regulation of Hebei Province, College of Agronomy, Hebei Agricultural University, Baoding, China
| | - Liantao Liu
- State Key Laboratory of North China Crop Improvement and Regulation, Key Laboratory of Crop Growth Regulation of Hebei Province, College of Agronomy, Hebei Agricultural University, Baoding, China
| | - Hongchun Sun
- State Key Laboratory of North China Crop Improvement and Regulation, Key Laboratory of Crop Growth Regulation of Hebei Province, College of Agronomy, Hebei Agricultural University, Baoding, China
| | - Yongjiang Zhang
- State Key Laboratory of North China Crop Improvement and Regulation, Key Laboratory of Crop Growth Regulation of Hebei Province, College of Agronomy, Hebei Agricultural University, Baoding, China
| | - Jijie Zhu
- Institute of Cereal and Oil Crops, Hebei Academy of Agricultural and Forestry Science, Shijiazhuang, China
| | - Ke Zhang
- State Key Laboratory of North China Crop Improvement and Regulation, Key Laboratory of Crop Growth Regulation of Hebei Province, College of Agronomy, Hebei Agricultural University, Baoding, China
| | - Anchang Li
- State Key Laboratory of North China Crop Improvement and Regulation, Key Laboratory of Crop Growth Regulation of Hebei Province, College of Agronomy, Hebei Agricultural University, Baoding, China
| | - Zhiying Bai
- State Key Laboratory of North China Crop Improvement and Regulation, Key Laboratory of Crop Growth Regulation of Hebei Province, College of Agronomy, Hebei Agricultural University, Baoding, China
| | - Guiyan Wang
- State Key Laboratory of North China Crop Improvement and Regulation, Key Laboratory of Crop Growth Regulation of Hebei Province, College of Agronomy, Hebei Agricultural University, Baoding, China
| | - Cundong Li
- State Key Laboratory of North China Crop Improvement and Regulation, Key Laboratory of Crop Growth Regulation of Hebei Province, College of Agronomy, Hebei Agricultural University, Baoding, China
| |
Collapse
|
4
|
Chen C, Galon Y, Rahmati Ishka M, Malihi S, Shimanovsky V, Twito S, Rath A, Vatamaniuk OK, Miller G. ASCORBATE PEROXIDASE6 delays the onset of age-dependent leaf senescence. PLANT PHYSIOLOGY 2021; 185:441-456. [PMID: 33580795 PMCID: PMC8133542 DOI: 10.1093/plphys/kiaa031] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Accepted: 11/04/2020] [Indexed: 05/11/2023]
Abstract
Age-dependent changes in reactive oxygen species (ROS) levels are critical in leaf senescence. While H2O2-reducing enzymes such as catalases and cytosolic ASCORBATE PEROXIDASE1 (APX1) tightly control the oxidative load during senescence, their regulation and function are not specific to senescence. Previously, we identified the role of ASCORBATE PEROXIDASE6 (APX6) during seed maturation in Arabidopsis (Arabidopsis thaliana). Here, we show that APX6 is a bona fide senescence-associated gene. APX6 expression is specifically induced in aging leaves and in response to senescence-promoting stimuli such as abscisic acid (ABA), extended darkness, and osmotic stress. apx6 mutants showed early developmental senescence and increased sensitivity to dark stress. Reduced APX activity, increased H2O2 level, and altered redox state of the ascorbate pool in mature pre-senescing green leaves of the apx6 mutants correlated with the early onset of senescence. Using transient expression assays in Nicotiana benthamiana leaves, we unraveled the age-dependent post-transcriptional regulation of APX6. We then identified the coding sequence of APX6 as a potential target of miR398, which is a key regulator of copper redistribution. Furthermore, we showed that mutants of SQUAMOSA PROMOTER BINDING PROTEIN-LIKE7 (SPL7), the master regulator of copper homeostasis and miR398 expression, have a higher APX6 level compared with the wild type, which further increased under copper deficiency. Our study suggests that APX6 is a modulator of ROS/redox homeostasis and signaling in aging leaves that plays an important role in developmental- and stress-induced senescence programs.
Collapse
Affiliation(s)
- Changming Chen
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan 5290002, Israel
- Ministry of Agriculture and Rural Affairs Key Laboratory of South China Horticultural Crop Biology and Germplasm Enhancement, College of Horticulture, South China Agricultural University, Guangzhou 510642, China
| | - Yael Galon
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan 5290002, Israel
| | - Maryam Rahmati Ishka
- Soil and Crop Sciences Section, School of Integrative Plant Science, Cornell University, Ithaca, New York 14853, USA
| | - Shimrit Malihi
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan 5290002, Israel
| | - Vladislava Shimanovsky
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan 5290002, Israel
| | - Shir Twito
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan 5290002, Israel
| | - Abhishek Rath
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan 5290002, Israel
| | - Olena K Vatamaniuk
- Soil and Crop Sciences Section, School of Integrative Plant Science, Cornell University, Ithaca, New York 14853, USA
| | - Gad Miller
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan 5290002, Israel
| |
Collapse
|
5
|
Niu F, Cui X, Zhao P, Sun M, Yang B, Deyholos MK, Li Y, Zhao X, Jiang YQ. WRKY42 transcription factor positively regulates leaf senescence through modulating SA and ROS synthesis in Arabidopsis thaliana. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2020; 104:171-184. [PMID: 32634860 DOI: 10.1111/tpj.14914] [Citation(s) in RCA: 78] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Revised: 06/18/2020] [Accepted: 06/25/2020] [Indexed: 05/08/2023]
Abstract
Leaf senescence represents the final stage of leaf growth and development, and its onset and progression are strictly regulated; however, the underlying regulatory mechanisms remain largely unknown. In this study we found that WRKY42 was highly induced during leaf senescence. Loss-of-function wrky42 mutants showed delayed leaf senescence whereas the overexpression of WRKY42 accelerated senescence. Transcriptome analysis revealed 2721 differentially expressed genes between wild-type and WRKY42-overexpressing plants, including genes involved in salicylic acid (SA) and reactive oxygen species (ROS) synthesis as well as several senescence-associated genes (SAGs). Moreover, WRKY42 activated the transcription of isochorismate synthase 1 (ICS1), respiratory burst oxidase homolog F (RbohF) and a few SAG genes. Consistently, the expression of these genes was reduced in wrky42 mutants but was markedly increased in transgenic Arabidopsis overexpressing WRKY42. Both in vitro electrophoretic mobility shift assays (EMSAs) and in vivo chromatin immunoprecipitation and dual luciferase assays demonstrated that WRKY42 directly bound to the promoters of ICS1 and RbohF, as well as a few SAGs, to activate their expression. Genetic analysis further showed that mutations of ICS1 and RbohF suppressed the early senescence phenotype evoked by WRKY42 overexpression. Thus, we have identified WRKY42 as a novel transcription factor positively regulating leaf senescence by directly activating the transcription of ICS1, RbohF and SAGs, without any seed yield penalty.
Collapse
Affiliation(s)
- Fangfang Niu
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Life Sciences, Northwest A & F University, Yangling, Shaanxi, 712100, China
| | - Xing Cui
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Life Sciences, Northwest A & F University, Yangling, Shaanxi, 712100, China
| | - Peiyu Zhao
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Life Sciences, Northwest A & F University, Yangling, Shaanxi, 712100, China
| | - Mengting Sun
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Life Sciences, Northwest A & F University, Yangling, Shaanxi, 712100, China
| | - Bo Yang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Life Sciences, Northwest A & F University, Yangling, Shaanxi, 712100, China
| | - Michael K Deyholos
- Department of Biology, University of British Columbia, Okanagan Campus, Kelowna, BC, V1V 1V7, Canada
| | - Ye Li
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Life Sciences, Northwest A & F University, Yangling, Shaanxi, 712100, China
| | - Xinjie Zhao
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Life Sciences, Northwest A & F University, Yangling, Shaanxi, 712100, China
| | - Yuan-Qing Jiang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Life Sciences, Northwest A & F University, Yangling, Shaanxi, 712100, China
| |
Collapse
|
6
|
Samuilov VD, Kiselevsky DB, Oleskin AV. Mitochondria-targeted quinones suppress the generation of reactive oxygen species, programmed cell death and senescence in plants. Mitochondrion 2019; 46:164-171. [PMID: 29723685 DOI: 10.1016/j.mito.2018.04.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Revised: 04/02/2018] [Accepted: 04/27/2018] [Indexed: 12/13/2022]
Abstract
This work focuses on the effect of mitochondria-targeted quinones (SkQs) on plants. SkQs with antioxidant properties are accumulated in the mitochondria of pea cells and suppress the generation of reactive oxygen species. At nanomolar concentrations, SkQs prevented the death of pea leaf epidermal or guard cells caused by chitosan, bacterial lipopolysaccharide or KCN. The protective effect of SkQs was removed by a protonophoric uncoupler. SkQs at micromolar concentrations inhibited the O2 evolution by illuminated chloroplasts and stimulated the respiration of mitochondria. SkQs slowed down the senescence and the death of Arabidopsis thaliana leaves and improved the wheat crop structure.
Collapse
Affiliation(s)
- Vitaly D Samuilov
- Faculty of Biology, M.V.Lomonosov Moscow State University, Leninskie gory 1, bld. 12, Moscow 119991, Russia.
| | - Dmitry B Kiselevsky
- Faculty of Biology, M.V.Lomonosov Moscow State University, Leninskie gory 1, bld. 12, Moscow 119991, Russia
| | - Alexander V Oleskin
- Faculty of Biology, M.V.Lomonosov Moscow State University, Leninskie gory 1, bld. 12, Moscow 119991, Russia
| |
Collapse
|
7
|
Yang L, Ye C, Zhao Y, Cheng X, Wang Y, Jiang YQ, Yang B. An oilseed rape WRKY-type transcription factor regulates ROS accumulation and leaf senescence in Nicotiana benthamiana and Arabidopsis through modulating transcription of RbohD and RbohF. PLANTA 2018; 247:1323-1338. [PMID: 29511814 DOI: 10.1007/s00425-018-2868-z] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2017] [Accepted: 03/01/2018] [Indexed: 05/10/2023]
Abstract
MAIN CONCLUSION Overexpression of BnaWGR1 causes ROS accumulation and promotes leaf senescence. BnaWGR1 binds to promoters of RbohD and RbohF and regulates their expression. Manipulation of leaf senescence process affects agricultural traits of crop plants, including biomass, seed yield and stress resistance. Since delayed leaf senescence usually enhances tolerance to multiple stresses, we analyzed the function of specific MAPK-WRKY cascades in abiotic and biotic stress tolerance as well as leaf senescence in oilseed rape (Brassica napus L.), one of the important oil crops. In the present study, we showed that expression of one WRKY gene from oilseed rape, BnaWGR1, induced an accumulation of reactive oxygen species (ROS), cell death and precocious leaf senescence both in Nicotiana benthamiana and transgenic Arabidopsis (Arabidopsis thaliana). BnaWGR1 regulates the transcription of two genes encoding key enzymes implicated in production of ROS, that is, respiratory burst oxidase homolog (Rboh) D and RbohF. A dual-luciferase reporter assay confirmed the transcriptional regulation of RbohD and RbohF by BnaWGR1. In vitro electrophoresis mobility shift assay (EMSA) showed that BnaWGR1 could bind to W-box cis-elements within promoters of RbohD and RbohF. Moreover, RbohD and RbohF were significantly upregulated in transgenic Arabidopsis overexpressing BnaWGR1. In summary, these results suggest that BnaWGR1 could positively regulate leaf senescence through regulating the expression of RbohD and RbohF genes.
Collapse
Affiliation(s)
- Liu Yang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Life Sciences, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Chaofei Ye
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Life Sciences, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Yuting Zhao
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Life Sciences, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Xiaolin Cheng
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Life Sciences, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Yiqiao Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Life Sciences, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Yuan-Qing Jiang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Life Sciences, Northwest A&F University, Yangling, 712100, Shaanxi, China.
| | - Bo Yang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Life Sciences, Northwest A&F University, Yangling, 712100, Shaanxi, China.
| |
Collapse
|
8
|
Li R, Sun X, Zhu J, Wang D, Xu Y. Novel Multifunctional and Edible Film Based on Phenyllactic Acid Grafted Chitosan Derivative and Nano Zinc Oxide. FOOD BIOPHYS 2018. [DOI: 10.1007/s11483-018-9516-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
9
|
Bresson J, Bieker S, Riester L, Doll J, Zentgraf U. A guideline for leaf senescence analyses: from quantification to physiological and molecular investigations. JOURNAL OF EXPERIMENTAL BOTANY 2018; 69:769-786. [PMID: 28992225 DOI: 10.1093/jxb/erx246] [Citation(s) in RCA: 71] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Leaf senescence is not a chaotic breakdown but a dynamic process following a precise timetable. It enables plants to economize with their resources and control their own viability and integrity. The onset as well as the progression of leaf senescence are co-ordinated by a complex genetic network that continuously integrates developmental and environmental signals such as biotic and abiotic stresses. Therefore, studying senescence requires an integrative and multi-scale analysis of the dynamic changes occurring in plant physiology and metabolism. In addition to providing an automated and standardized method to quantify leaf senescence at the macroscopic scale, we also propose an analytic framework to investigate senescence at physiological, biochemical, and molecular levels throughout the plant life cycle. We have developed protocols and suggested methods for studying different key processes involved in senescence, including photosynthetic capacities, membrane degradation, redox status, and genetic regulation. All methods presented in this review were conducted on Arabidopsis thaliana Columbia-0 and results are compared with senescence-related mutants. This guideline includes experimental design, protocols, recommendations, and the automated tools for leaf senescence analyses that could also be applied to other species.
Collapse
Affiliation(s)
- Justine Bresson
- ZMBP, General Genetics, University of Tübingen, Auf der Morgenstelle 32, Tübingen, Germany
| | - Stefan Bieker
- ZMBP, General Genetics, University of Tübingen, Auf der Morgenstelle 32, Tübingen, Germany
| | - Lena Riester
- ZMBP, General Genetics, University of Tübingen, Auf der Morgenstelle 32, Tübingen, Germany
| | - Jasmin Doll
- ZMBP, General Genetics, University of Tübingen, Auf der Morgenstelle 32, Tübingen, Germany
| | - Ulrike Zentgraf
- ZMBP, General Genetics, University of Tübingen, Auf der Morgenstelle 32, Tübingen, Germany
| |
Collapse
|
10
|
Poirier BC, Feldman MJ, Lange BM. bHLH093/NFL and bHLH061 are required for apical meristem function in Arabidopsis thaliana. PLANT SIGNALING & BEHAVIOR 2018; 13:e1486146. [PMID: 30160638 PMCID: PMC6128687 DOI: 10.1080/15592324.2018.1486146] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
The basic Helix-Loop-Helix (bHLH) transcription factors SCREAM/ICE1 and SCREAM2 have well-characterized roles in the terminal differentiation of stomatal guard cells in Arabidopsis thaliana. Here we report on the characterization of the functional roles of the remaining members of sub-group IIIB, bHLH093 and bHLH061. The bhlh093/bhlh061 double mutant failed to produce a primary inflorescence shoot and displayed greater phenotypic severity than bhlh093 and bhlh061 single mutants. An ultrastructural investigation revealed structural defects that develop in tissues surrounding the meristem prior to inflorescence emergence. The transition to flowering was restored in bhlh093/bhlh061 with the application of gibberellin to the apex. We also demonstrate that gibberellin application alleviates structural defects that develop in tissues surrounding the meristem and restore meristem activity. Furthermore, the bhlh093/bhlh061 double mutant was affected by delayed flowering, and the severity of the phenotype correlated with photoperiod and light intensity. Our results indicate that bHLH093 and bHLH061 function in the gibberellin-mediated establishment of functional apical meristems during the transition from vegetative to reproductive growth.
Collapse
Affiliation(s)
- B. C. Poirier
- Institute of Biological Chemistry and M.J. Murdock Metabolomics Laboratory, Washington State University, Pullman, WA, USA
- CONTACT B. Markus Lange Professor, Institute of Biological Chemistry, Murdock Metabolomics Laboratory, Washington State University Co-Director, M.J., Pullman, WA 99164-6340, Phone: (509) 335-3794; Fax: (509) 335-7643
| | - M. J. Feldman
- Institute of Biological Chemistry and M.J. Murdock Metabolomics Laboratory, Washington State University, Pullman, WA, USA
| | - B. M. Lange
- Institute of Biological Chemistry and M.J. Murdock Metabolomics Laboratory, Washington State University, Pullman, WA, USA
| |
Collapse
|
11
|
Abstract
In many plant species, leaf senescence correlates with an increase in intracellular levels of reactive oxygen species (ROS) as well as differential regulation of anti-oxidative systems. Due to their reactive nature, reactive oxygen species (ROS) were considered to have only detrimental effects for long time. However, ROS turned out to be more than just toxic by-products of aerobic metabolism but rather major components in different signaling pathways. Considering its relatively long half-life, comparably low reactivity, and its ability to cross membranes, especially hydrogen peroxide, has gained attention as a signaling molecule. In this article, a set of tools to study hydrogen peroxide contents and the activity of its scavenging enzymes in correlation with leaf senescence parameters is presented.
Collapse
Affiliation(s)
- Stefan Bieker
- ZMBP, Department of General Genetics, University Tuebingen, Tuebingen, Germany
| | - Maren Potschin
- ZMBP, Department of General Genetics, University Tuebingen, Tuebingen, Germany
| | - Ulrike Zentgraf
- ZMBP, Department of General Genetics, University Tuebingen, Tuebingen, Germany.
| |
Collapse
|
12
|
Basu S, Giri RK, Benazir I, Kumar S, Rajwanshi R, Dwivedi SK, Kumar G. Comprehensive physiological analyses and reactive oxygen species profiling in drought tolerant rice genotypes under salinity stress. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2017; 23:837-850. [PMID: 29158633 PMCID: PMC5671459 DOI: 10.1007/s12298-017-0477-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Revised: 08/08/2017] [Accepted: 09/19/2017] [Indexed: 05/24/2023]
Abstract
Rice being a staple cereal is extremely susceptible towards abiotic stresses. Drought and salinity are two vital factors limiting rice cultivation in Eastern Indo-Gangetic Plains (EIGP). Present study has intended to evaluate the consequences of salinity stress on selected drought tolerant rice genotypes at the most susceptible seedling stage with an aim to identify the potential multi-stress (drought and salt) tolerant rice genotype of this region. Genotypic variation was obvious in all traits related to drought and salt susceptibility. IR84895-B-127-CRA-5-1-1, one of the rice genotypes studied, exhibited exceptional drought and salinity tolerance. IR83373-B-B-25-3-B-B-25-3 also displayed enhanced drought and salt tolerance following IR84895-B-127-CRA-5-1-1. Variations were perceptible in different factors involving photosynthetic performance, proline content, lipid peroxidation, K+/Na+ ratio. Accumulation of reactive oxygen species (ROS) disintegrated cellular and sub-cellular membrane leading to decreased photosynthetic activities. Therefore, accumulation and detoxification of reactive oxygen species was also considered as a major determinant of salt tolerance. IR84895-B-127-CRA-5-1-1 showed improved ROS detoxification mediated by antioxidant enzymes. IR84895-B-127-CRA-5-1-1 seedlings also displayed significant recovery after removal of salt stress. The results established a direct association of ROS scavenging with improved physiological activities and salt tolerance. The study also recommended IR84895-B-127-CRA-5-1-1 for improved crop performance in both drought and saline environments of EIGP. These contrasting rice genotypes may assist in understanding the multiple stress associated factors in concurrent drought and salt tolerant rice genotypes.
Collapse
Affiliation(s)
- Sahana Basu
- Department of Biotechnology, Assam University, Silchar, Assam 788011 India
| | - Ranjan Kumar Giri
- Department of Life Science, Central University of South Bihar, Patna, 800014 India
| | - Ibtesham Benazir
- Department of Life Science, Central University of South Bihar, Patna, 800014 India
| | - Santosh Kumar
- ICAR Research Complex for Eastern Region, Patna, 800014 India
| | - Ravi Rajwanshi
- Department of Biotechnology, Assam University, Silchar, Assam 788011 India
| | | | - Gautam Kumar
- Department of Life Science, Central University of South Bihar, Patna, 800014 India
| |
Collapse
|
13
|
Ghimire BK, Son NY, Kim SH, Yu CY, Chung IM. Evaluating water deficit and glyphosate treatment on the accumulation of phenolic compounds and photosynthesis rate in transgenic Codonopsis lanceolata (Siebold & Zucc.) Trautv. over-expressing γ-tocopherol methyltransferase (γ-tmt) gene. 3 Biotech 2017; 7:167. [PMID: 28660450 PMCID: PMC5489442 DOI: 10.1007/s13205-017-0795-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Accepted: 04/10/2017] [Indexed: 10/19/2022] Open
Abstract
The effect of water stress and herbicide treatment on the phenolic compound concentration and photosynthesis rate in transgenic Codonopsis lanceolata plants over-expressing the γ-tmt gene was investigated and compared to that in control non-transgenic C. lanceolata plants. The total phenolic compound content was investigated using high-performance liquid chromatography combined with diode array detection in C. lanceolata seedlings 3 weeks after water stress and treatment with glyphosate. Changes in the composition of phenolic compounds were observed in leaf and root extracts from transformed C. lanceolata plants following water stress and treatment with glyphosate. The total concentration of phenolic compounds in the leaf extracts of transgenic samples after water stress ranged from 3455.13 ± 40.48 to 8695.00 ± 45.44 µg g-1 dry weight (DW), whereas the total concentration phenolic compound in the leaf extracts of non-transgenic control samples was 5630.83 ± 45.91 µg g-1 DW. The predominant phenolic compounds that increased after the water stress in the transgenic leaf were (+) catechin, benzoic acid, chlorogenic acid, ferulic acid, gallic acid, rutin, vanillic acid, and veratric acid. The total concentration of phenolic compounds in the leaf extracts of transgenic samples after glyphosate treatment ranged from 4744.37 ± 81.81 to 12,051.02 ± 75.00 µg g-1 DW, whereas the total concentration of the leaf extracts of non-transgenic control samples after glyphosate treatment was 3778.28 ± 59.73 µg g-1 DW. Major phenolic compounds that increased in the transgenic C. lanceolata plants after glyphosate treatment included kaempherol, gallic acid, myricetin, p-hydroxybenzjoic acid, quercetin, salicylic acid, t-cinnamic acid, catechin, benzoicacid, ferulic acid, protocatechuic acid, veratric acid, and vanillic acid. Among these, vanillic acid showed the greatest increase in both leaf and root extracts from transgenic plants relative to those from control C. lanceolata plants following treatment with glyphosate, which could affect the 5-enol-pyruvyl shikimate-3-phosphate (EPSP) synthase, an enzyme in the shikimate pathway. We observed enhanced stomatal conductance (gs) and photosynthesis rate (A) in the transgenic plants treated with water stress and glyphosate treatment. The results of this study demonstrated large variations in the functioning of secondary metabolites pathway in response glyphosate and water stress in transgenic C. lanceolata.
Collapse
Affiliation(s)
- Bimal Kumar Ghimire
- Department of Applied Life Science, Konkuk University, Seoul, 05025, South Korea
| | - Na-Young Son
- Department of Applied Life Science, Konkuk University, Seoul, 05025, South Korea
| | - Seung-Hyun Kim
- Department of Applied Life Science, Konkuk University, Seoul, 05025, South Korea
| | - Chang Yeon Yu
- Bioherb Research Institute, Kangwon National University, Chuncheon, 200-701, South Korea
| | - Ill-Min Chung
- Department of Applied Life Science, Konkuk University, Seoul, 05025, South Korea.
| |
Collapse
|
14
|
Zhang H, Wei Q, Li C, Jiang C, Zhang H. Comparative Proteomic Analysis Provides Insights into the Regulation of Flower Bud Differentiation in Crocus SativusL. J Food Biochem 2016. [DOI: 10.1111/jfbc.12254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Affiliation(s)
- Hengfeng Zhang
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Longpan Road, Xuanwu District, Nanjing 210037, People's Republic of China
- College of Forestry, Nanjing Forestry Universtiy, Longpan Road, Xuanwu District, Nanjing 210037, People's Republic of China
- Department of Landscape and Horticulture, Jiangsu Agri-Animal Husbandry Vocational College, Fenghuang Road, Hailing District, Taizhou 225300, People's Republic of China
| | - Qingcui Wei
- Department of Landscape and Horticulture, Jiangsu Agri-Animal Husbandry Vocational College, Fenghuang Road, Hailing District, Taizhou 225300, People's Republic of China
| | - Chengzhong Li
- Department of Landscape and Horticulture, Jiangsu Agri-Animal Husbandry Vocational College, Fenghuang Road, Hailing District, Taizhou 225300, People's Republic of China
| | - Chunmao Jiang
- Department of Landscape and Horticulture, Jiangsu Agri-Animal Husbandry Vocational College, Fenghuang Road, Hailing District, Taizhou 225300, People's Republic of China
| | - Huanchao Zhang
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Longpan Road, Xuanwu District, Nanjing 210037, People's Republic of China
- College of Forestry, Nanjing Forestry Universtiy, Longpan Road, Xuanwu District, Nanjing 210037, People's Republic of China
| |
Collapse
|
15
|
Cha JY, Kim MR, Jung IJ, Kang SB, Park HJ, Kim MG, Yun DJ, Kim WY. The Thiol Reductase Activity of YUCCA6 Mediates Delayed Leaf Senescence by Regulating Genes Involved in Auxin Redistribution. FRONTIERS IN PLANT SCIENCE 2016; 7:626. [PMID: 27242830 PMCID: PMC4860463 DOI: 10.3389/fpls.2016.00626] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2015] [Accepted: 04/25/2016] [Indexed: 05/20/2023]
Abstract
Auxin, a phytohormone that affects almost every aspect of plant growth and development, is biosynthesized from tryptophan via the tryptamine, indole-3-acetamide, indole-3-pyruvic acid, and indole-3-acetaldoxime pathways. YUCCAs (YUCs), flavin monooxygenase enzymes, catalyze the conversion of indole-3-pyruvic acid (IPA) to the auxin (indole acetic acid). Arabidopsis thaliana YUC6 also exhibits thiol-reductase and chaperone activity in vitro; these activities require the highly conserved Cys-85 and are essential for scavenging of toxic reactive oxygen species (ROS) in the drought tolerance response. Here, we examined whether the YUC6 thiol reductase activity also participates in the delay in senescence observed in YUC6-overexpressing (YUC6-OX) plants. YUC6 overexpression delays leaf senescence in natural and dark-induced senescence conditions by reducing the expression of SENESCENCE-ASSOCIATED GENE 12 (SAG12). ROS accumulation normally occurs during senescence, but was not observed in the leaves of YUC6-OX plants; however, ROS accumulation was observed in YUC6-OX(C85S) plants, which overexpress a mutant YUC6 that lacks thiol reductase activity. We also found that YUC6-OX plants, but not YUC6-OX(C85S) plants, show upregulation of three genes encoding NADPH-dependent thioredoxin reductases (NTRA, NTRB, and NTRC), and GAMMA-GLUTAMYLCYSTEINE SYNTHETASE 1 (GSH1), encoding an enzyme involved in redox signaling. We further determined that excess ROS accumulation caused by methyl viologen treatment or decreased glutathione levels caused by buthionine sulfoximine treatment can decrease the levels of auxin efflux proteins such as PIN2-4. The expression of PINs is also reduced in YUC6-OX plants. These findings suggest that the thiol reductase activity of YUC6 may play an essential role in delaying senescence via the activation of genes involved in redox signaling and auxin availability.
Collapse
Affiliation(s)
- Joon-Yung Cha
- Division of Applied Life Science (BK21 Plus), Plant Molecular Biology and Biotechnology Research Center, Institute of Agriculture and Life Sciences, Gyeongsang National UniversityJinju, South Korea
| | - Mi R. Kim
- Division of Applied Life Science (BK21 Plus), Plant Molecular Biology and Biotechnology Research Center, Institute of Agriculture and Life Sciences, Gyeongsang National UniversityJinju, South Korea
| | - In J. Jung
- Division of Applied Life Science (BK21 Plus), Plant Molecular Biology and Biotechnology Research Center, Institute of Agriculture and Life Sciences, Gyeongsang National UniversityJinju, South Korea
| | - Sun B. Kang
- Division of Applied Life Science (BK21 Plus), Plant Molecular Biology and Biotechnology Research Center, Institute of Agriculture and Life Sciences, Gyeongsang National UniversityJinju, South Korea
| | - Hee J. Park
- Division of Applied Life Science (BK21 Plus), Plant Molecular Biology and Biotechnology Research Center, Institute of Agriculture and Life Sciences, Gyeongsang National UniversityJinju, South Korea
| | - Min G. Kim
- College of Pharmacy, Research Institute of Pharmaceutical Science, Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National UniversityJinju, South Korea
| | - Dae-Jin Yun
- Division of Applied Life Science (BK21 Plus), Plant Molecular Biology and Biotechnology Research Center, Institute of Agriculture and Life Sciences, Gyeongsang National UniversityJinju, South Korea
- *Correspondence: Dae-Jin Yun, ; Woe-Yeon Kim,
| | - Woe-Yeon Kim
- Division of Applied Life Science (BK21 Plus), Plant Molecular Biology and Biotechnology Research Center, Institute of Agriculture and Life Sciences, Gyeongsang National UniversityJinju, South Korea
- *Correspondence: Dae-Jin Yun, ; Woe-Yeon Kim,
| |
Collapse
|
16
|
Wu L, Yang H. Combined Application of Carboxymethyl Chitosan Coating and Brassinolide Maintains the Postharvest Quality and Shelf Life of Green Asparagus. J FOOD PROCESS PRES 2015. [DOI: 10.1111/jfpp.12592] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Lingyan Wu
- School of Agriculture and Food Science; Zhejiang Agricultural & Forestry University; Huan Cheng Bei Lu # 88, Lin'an Hangzhou Zhejiang 311300 China
| | - Huqing Yang
- School of Agriculture and Food Science; Zhejiang Agricultural & Forestry University; Huan Cheng Bei Lu # 88, Lin'an Hangzhou Zhejiang 311300 China
| |
Collapse
|
17
|
Phosphorylation Affects DNA-Binding of the Senescence-Regulating bZIP Transcription Factor GBF1. PLANTS 2015; 4:691-709. [PMID: 27135347 PMCID: PMC4844403 DOI: 10.3390/plants4030691] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/08/2015] [Revised: 08/12/2015] [Accepted: 09/08/2015] [Indexed: 11/28/2022]
Abstract
Massive changes in the transcriptome of Arabidopsis thaliana during onset and progression of leaf senescence imply a central role for transcription factors. While many transcription factors are themselves up- or down-regulated during senescence, the bZIP transcription factor G-box-binding factor 1 (GBF1/bZIP41) is constitutively expressed in Arabidopsis leaf tissue but at the same time triggers the onset of leaf senescence, suggesting posttranscriptional mechanisms for senescence-specific GBF1 activation. Here we show that GBF1 is phosphorylated by the threonine/serine CASEIN KINASE II (CKII) in vitro and that CKII phosphorylation had a negative effect on GBF1 DNA-binding to G-boxes of two direct target genes, CATALASE2 and RBSCS1a. Phosphorylation mimicry at three serine positions in the basic region of GBF1 also had a negative effect on DNA-binding. Kinase assays revealed that CKII phosphorylates at least one serine in the basic domain but has additional phosphorylation sites outside this domain. Two different ckII α subunit1 and one α subunit2 T-DNA insertion lines showed no visible senescence phenotype, but in all lines the expression of the senescence marker gene SAG12 was remarkably diminished. A model is presented suggesting that senescence-specific GBF1 activation might be achieved by lowering the phosphorylation of GBF1 by CKII.
Collapse
|
18
|
Häffner E, Konietzki S, Diederichsen E. Keeping Control: The Role of Senescence and Development in Plant Pathogenesis and Defense. PLANTS (BASEL, SWITZERLAND) 2015; 4:449-88. [PMID: 27135337 PMCID: PMC4844401 DOI: 10.3390/plants4030449] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/04/2015] [Revised: 06/24/2015] [Accepted: 07/03/2015] [Indexed: 12/12/2022]
Abstract
Many plant pathogens show interactions with host development. Pathogens may modify plant development according to their nutritional demands. Conversely, plant development influences pathogen growth. Biotrophic pathogens often delay senescence to keep host cells alive, and resistance is achieved by senescence-like processes in the host. Necrotrophic pathogens promote senescence in the host, and preventing early senescence is a resistance strategy of plants. For hemibiotrophic pathogens both patterns may apply. Most signaling pathways are involved in both developmental and defense reactions. Increasing knowledge about the molecular components allows to distinguish signaling branches, cross-talk and regulatory nodes that may influence the outcome of an infection. In this review, recent reports on major molecular players and their role in senescence and in pathogen response are reviewed. Examples of pathosystems with strong developmental implications illustrate the molecular basis of selected control strategies. A study of gene expression in the interaction between the hemibiotrophic vascular pathogen Verticillium longisporum and its cruciferous hosts shows processes that are fine-tuned to counteract early senescence and to achieve resistance. The complexity of the processes involved reflects the complex genetic control of quantitative disease resistance, and understanding the relationship between disease, development and resistance will support resistance breeding.
Collapse
Affiliation(s)
- Eva Häffner
- Freie Universität Berlin, Fachbereich Biologie, Chemie, Pharmazie, Institut für Biologie, Dahlem Centre of Plant Sciences, Angewandte Genetik, Albrecht-Thaer-Weg 6, 14195 Berlin, Germany.
| | - Sandra Konietzki
- Freie Universität Berlin, Fachbereich Biologie, Chemie, Pharmazie, Institut für Biologie, Dahlem Centre of Plant Sciences, Angewandte Genetik, Albrecht-Thaer-Weg 6, 14195 Berlin, Germany
| | - Elke Diederichsen
- Freie Universität Berlin, Fachbereich Biologie, Chemie, Pharmazie, Institut für Biologie, Dahlem Centre of Plant Sciences, Angewandte Genetik, Albrecht-Thaer-Weg 6, 14195 Berlin, Germany.
- Norddeutsche Pflanzenzucht H.G. Lembke KG, Hohenlieth, D-24363 Holtsee, Germany.
| |
Collapse
|
19
|
Sidler C, Li D, Kovalchuk O, Kovalchuk I. Development-Dependent Expression of DNA Repair Genes and Epigenetic Regulators in Arabidopsis Plants Exposed to Ionizing Radiation. Radiat Res 2015; 183:219-32. [DOI: 10.1667/rr13840.1] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Affiliation(s)
- Corinne Sidler
- Department of Biological Sciences, University of Lethbridge, Lethbridge, Alberta, T1K 3M4, Canada
| | - Dongping Li
- Department of Biological Sciences, University of Lethbridge, Lethbridge, Alberta, T1K 3M4, Canada
| | - Olga Kovalchuk
- Department of Biological Sciences, University of Lethbridge, Lethbridge, Alberta, T1K 3M4, Canada
| | - Igor Kovalchuk
- Department of Biological Sciences, University of Lethbridge, Lethbridge, Alberta, T1K 3M4, Canada
| |
Collapse
|
20
|
Blée E, Boachon B, Burcklen M, Le Guédard M, Hanano A, Heintz D, Ehlting J, Herrfurth C, Feussner I, Bessoule JJ. The reductase activity of the Arabidopsis caleosin RESPONSIVE TO DESSICATION20 mediates gibberellin-dependent flowering time, abscisic acid sensitivity, and tolerance to oxidative stress. PLANT PHYSIOLOGY 2014; 166:109-24. [PMID: 25056921 PMCID: PMC4149700 DOI: 10.1104/pp.114.245316] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2014] [Accepted: 07/22/2014] [Indexed: 05/20/2023]
Abstract
Contrasting with the wealth of information available on the multiple roles of jasmonates in plant development and defense, knowledge about the functions and the biosynthesis of hydroxylated oxylipins remains scarce. By expressing the caleosin RESPONSIVE TO DESSICATION20 (RD20) in Saccharomyces cerevisiae, we show that the recombinant protein possesses an unusual peroxygenase activity with restricted specificity toward hydroperoxides of unsaturated fatty acid. Accordingly, Arabidopsis (Arabidopsis thaliana) plants overexpressing RD20 accumulate the product 13-hydroxy-9,11,15-octadecatrienoic acid, a linolenate-derived hydroxide. These plants exhibit elevated levels of reactive oxygen species (ROS) associated with early gibberellin-dependent flowering and abscisic acid hypersensitivity at seed germination. These phenotypes are dependent on the presence of active RD20, since they are abolished in the rd20 null mutant and in lines overexpressing RD20, in which peroxygenase was inactivated by a point mutation of a catalytic histidine residue. RD20 also confers tolerance against stress induced by Paraquat, Rose Bengal, heavy metal, and the synthetic auxins 1-naphthaleneacetic acid and 2,4-dichlorophenoxyacetic acid. Under oxidative stress, 13-hydroxy-9,11,15-octadecatrienoic acid still accumulates in RD20-overexpressing lines, but this lipid oxidation is associated with reduced ROS levels, minor cell death, and delayed floral transition. A model is discussed where the interplay between fatty acid hydroxides generated by RD20 and ROS is counteracted by ethylene during development in unstressed environments.
Collapse
Affiliation(s)
- Elizabeth Blée
- Institut de Biologie Moléculaire des Plantes, Unité Propre de Recherche 2357-Université de Strasbourg, 67083 Strasbourg cedex, France (E.B., B.B., M.B., A.H., D.H., J.E.)Laboratoire de Biogénèse Membranaire, Bâtiment A3-Institut National de la Recherche Agronomique Bordeaux Aquitaine, 33140 Villenave d'Ornon, France (M.L.G., J.-J.B.); andGeorg-August-University, Albrecht-von-Haller Institute, Department of Plant Biochemistry, 37077 Goettingen, Germany (C.H., I.F.)
| | - Benoît Boachon
- Institut de Biologie Moléculaire des Plantes, Unité Propre de Recherche 2357-Université de Strasbourg, 67083 Strasbourg cedex, France (E.B., B.B., M.B., A.H., D.H., J.E.)Laboratoire de Biogénèse Membranaire, Bâtiment A3-Institut National de la Recherche Agronomique Bordeaux Aquitaine, 33140 Villenave d'Ornon, France (M.L.G., J.-J.B.); andGeorg-August-University, Albrecht-von-Haller Institute, Department of Plant Biochemistry, 37077 Goettingen, Germany (C.H., I.F.)
| | - Michel Burcklen
- Institut de Biologie Moléculaire des Plantes, Unité Propre de Recherche 2357-Université de Strasbourg, 67083 Strasbourg cedex, France (E.B., B.B., M.B., A.H., D.H., J.E.)Laboratoire de Biogénèse Membranaire, Bâtiment A3-Institut National de la Recherche Agronomique Bordeaux Aquitaine, 33140 Villenave d'Ornon, France (M.L.G., J.-J.B.); andGeorg-August-University, Albrecht-von-Haller Institute, Department of Plant Biochemistry, 37077 Goettingen, Germany (C.H., I.F.)
| | - Marina Le Guédard
- Institut de Biologie Moléculaire des Plantes, Unité Propre de Recherche 2357-Université de Strasbourg, 67083 Strasbourg cedex, France (E.B., B.B., M.B., A.H., D.H., J.E.)Laboratoire de Biogénèse Membranaire, Bâtiment A3-Institut National de la Recherche Agronomique Bordeaux Aquitaine, 33140 Villenave d'Ornon, France (M.L.G., J.-J.B.); andGeorg-August-University, Albrecht-von-Haller Institute, Department of Plant Biochemistry, 37077 Goettingen, Germany (C.H., I.F.)
| | - Abdulsamie Hanano
- Institut de Biologie Moléculaire des Plantes, Unité Propre de Recherche 2357-Université de Strasbourg, 67083 Strasbourg cedex, France (E.B., B.B., M.B., A.H., D.H., J.E.)Laboratoire de Biogénèse Membranaire, Bâtiment A3-Institut National de la Recherche Agronomique Bordeaux Aquitaine, 33140 Villenave d'Ornon, France (M.L.G., J.-J.B.); andGeorg-August-University, Albrecht-von-Haller Institute, Department of Plant Biochemistry, 37077 Goettingen, Germany (C.H., I.F.)
| | - Dimitri Heintz
- Institut de Biologie Moléculaire des Plantes, Unité Propre de Recherche 2357-Université de Strasbourg, 67083 Strasbourg cedex, France (E.B., B.B., M.B., A.H., D.H., J.E.)Laboratoire de Biogénèse Membranaire, Bâtiment A3-Institut National de la Recherche Agronomique Bordeaux Aquitaine, 33140 Villenave d'Ornon, France (M.L.G., J.-J.B.); andGeorg-August-University, Albrecht-von-Haller Institute, Department of Plant Biochemistry, 37077 Goettingen, Germany (C.H., I.F.)
| | - Jürgen Ehlting
- Institut de Biologie Moléculaire des Plantes, Unité Propre de Recherche 2357-Université de Strasbourg, 67083 Strasbourg cedex, France (E.B., B.B., M.B., A.H., D.H., J.E.)Laboratoire de Biogénèse Membranaire, Bâtiment A3-Institut National de la Recherche Agronomique Bordeaux Aquitaine, 33140 Villenave d'Ornon, France (M.L.G., J.-J.B.); andGeorg-August-University, Albrecht-von-Haller Institute, Department of Plant Biochemistry, 37077 Goettingen, Germany (C.H., I.F.)
| | - Cornelia Herrfurth
- Institut de Biologie Moléculaire des Plantes, Unité Propre de Recherche 2357-Université de Strasbourg, 67083 Strasbourg cedex, France (E.B., B.B., M.B., A.H., D.H., J.E.)Laboratoire de Biogénèse Membranaire, Bâtiment A3-Institut National de la Recherche Agronomique Bordeaux Aquitaine, 33140 Villenave d'Ornon, France (M.L.G., J.-J.B.); andGeorg-August-University, Albrecht-von-Haller Institute, Department of Plant Biochemistry, 37077 Goettingen, Germany (C.H., I.F.)
| | - Ivo Feussner
- Institut de Biologie Moléculaire des Plantes, Unité Propre de Recherche 2357-Université de Strasbourg, 67083 Strasbourg cedex, France (E.B., B.B., M.B., A.H., D.H., J.E.)Laboratoire de Biogénèse Membranaire, Bâtiment A3-Institut National de la Recherche Agronomique Bordeaux Aquitaine, 33140 Villenave d'Ornon, France (M.L.G., J.-J.B.); andGeorg-August-University, Albrecht-von-Haller Institute, Department of Plant Biochemistry, 37077 Goettingen, Germany (C.H., I.F.)
| | - Jean-Jacques Bessoule
- Institut de Biologie Moléculaire des Plantes, Unité Propre de Recherche 2357-Université de Strasbourg, 67083 Strasbourg cedex, France (E.B., B.B., M.B., A.H., D.H., J.E.)Laboratoire de Biogénèse Membranaire, Bâtiment A3-Institut National de la Recherche Agronomique Bordeaux Aquitaine, 33140 Villenave d'Ornon, France (M.L.G., J.-J.B.); andGeorg-August-University, Albrecht-von-Haller Institute, Department of Plant Biochemistry, 37077 Goettingen, Germany (C.H., I.F.)
| |
Collapse
|
21
|
Allu AD, Soja AM, Wu A, Szymanski J, Balazadeh S. Salt stress and senescence: identification of cross-talk regulatory components. JOURNAL OF EXPERIMENTAL BOTANY 2014; 65:3993-4008. [PMID: 24803504 PMCID: PMC4106443 DOI: 10.1093/jxb/eru173] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Leaf senescence is an active process with a pivotal impact on plant productivity. It results from extensive signalling cross-talk coordinating environmental factors with intrinsic age-related mechanisms. Although many studies have shown that leaf senescence is affected by a range of external parameters, knowledge about the regulatory systems that govern the interplay between developmental programmes and environmental stress is still vague. Salinity is one of the most important environmental stresses that promote leaf senescence and thus affect crop yield. Improving salt tolerance by avoiding or delaying senescence under stress will therefore play an important role in maintaining high agricultural productivity. Experimental evidence suggests that hydrogen peroxide (H2O2) functions as a common signalling molecule in both developmental and salt-induced leaf senescence. In this study, microarray-based gene expression profiling on Arabidopsis thaliana plants subjected to long-term salinity stress to induce leaf senescence was performed, together with co-expression network analysis for H2O2-responsive genes that are mutually up-regulated by salt induced- and developmental leaf senescence. Promoter analysis of tightly co-expressed genes led to the identification of seven cis-regulatory motifs, three of which were known previously, namely CACGTGT and AAGTCAA, which are associated with reactive oxygen species (ROS)-responsive genes, and CCGCGT, described as a stress-responsive regulatory motif, while the others, namely ACGCGGT, AGCMGNC, GMCACGT, and TCSTYGACG were not characterized previously. These motifs are proposed to be novel elements involved in the H2O2-mediated control of gene expression during salinity stress-triggered and developmental senescence, acting through upstream transcription factors that bind to these sites.
Collapse
Affiliation(s)
- Annapurna Devi Allu
- University of Potsdam, Institute of Biochemistry and Biology, Karl-Liebknecht-Straße 24-25, Haus 20, D-14476 Potsdam-Golm, Germany Max-Planck Institute of Molecular Plant Physiology, Plant Signaling Group, Am Mühlenberg 1, D-14476 Potsdam-Golm, Germany
| | - Aleksandra Maria Soja
- Max-Planck Institute of Molecular Plant Physiology, Department of Molecular Physiology, Am Mühlenberg 1, D-14476 Potsdam-Golm, Germany
| | - Anhui Wu
- University of Potsdam, Institute of Biochemistry and Biology, Karl-Liebknecht-Straße 24-25, Haus 20, D-14476 Potsdam-Golm, Germany
| | - Jedrzej Szymanski
- Max-Planck Institute of Molecular Plant Physiology, Department of Molecular Physiology, Am Mühlenberg 1, D-14476 Potsdam-Golm, Germany
| | - Salma Balazadeh
- University of Potsdam, Institute of Biochemistry and Biology, Karl-Liebknecht-Straße 24-25, Haus 20, D-14476 Potsdam-Golm, Germany Max-Planck Institute of Molecular Plant Physiology, Plant Signaling Group, Am Mühlenberg 1, D-14476 Potsdam-Golm, Germany
| |
Collapse
|
22
|
Pilati S, Brazzale D, Guella G, Milli A, Ruberti C, Biasioli F, Zottini M, Moser C. The onset of grapevine berry ripening is characterized by ROS accumulation and lipoxygenase-mediated membrane peroxidation in the skin. BMC PLANT BIOLOGY 2014; 14:87. [PMID: 24693871 PMCID: PMC4021102 DOI: 10.1186/1471-2229-14-87] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2013] [Accepted: 03/20/2014] [Indexed: 05/18/2023]
Abstract
BACKGROUND The ripening of fleshy fruits is a complex developmental program characterized by extensive transcriptomic and metabolic remodeling in the pericarp tissues (pulp and skin) making unripe green fruits soft, tasteful and colored. The onset of ripening is regulated by a plethora of endogenous signals tuned to external stimuli. In grapevine and tomato, which are classified as non-climacteric and climacteric species respectively, the accumulation of hydrogen peroxide (H2O2) and extensive modulation of reactive oxygen species (ROS) scavenging enzymes at the onset of ripening has been reported, suggesting that ROS could participate to the regulatory network of fruit development. In order to investigate this hypothesis, a comprehensive biochemical study of the oxidative events occurring at the beginning of ripening in Vitis vinifera cv. Pinot Noir has been undertaken. RESULTS ROS-specific staining allowed to visualize not only H2O2 but also singlet oxygen (1O2) in berry skin cells just before color change in distinct subcellular locations, i.e. cytosol and plastids. H2O2 peak in sample skins at véraison was confirmed by in vitro quantification and was supported by the concomitant increase of catalase activity. Membrane peroxidation was also observed by HPLC-MS on galactolipid species at véraison. Mono- and digalactosyl diacylglycerols were found peroxidized on one or both α-linolenic fatty acid chains, with a 13(S) absolute configuration implying the action of a specific enzyme. A lipoxygenase (PnLOXA), expressed at véraison and localizing inside the chloroplasts, was indeed able to catalyze membrane galactolipid peroxidation when overexpressed in tobacco leaves. CONCLUSIONS The present work demonstrates the controlled, harmless accumulation of specific ROS in distinct cellular compartments, i.e. cytosol and chloroplasts, at a definite developmental stage, the onset of grape berry ripening. These features strongly candidate ROS as cellular signals in fruit ripening and encourage further studies to identify downstream elements of this cascade. This paper also reports the transient galactolipid peroxidation carried out by a véraison-specific chloroplastic lipoxygenase. The function of peroxidized membranes, likely distinct from that of free fatty acids due to their structural role and tight interaction with photosynthesis protein complexes, has to be ascertained.
Collapse
Affiliation(s)
- Stefania Pilati
- Research and Innovation Centre, Fondazione Edmund Mach, via E. Mach 1, 38010 San Michele a/Adige, TN, Italy
| | - Daniele Brazzale
- Research and Innovation Centre, Fondazione Edmund Mach, via E. Mach 1, 38010 San Michele a/Adige, TN, Italy
| | - Graziano Guella
- Department of Physics, Bioorganic Chemistry Lab, University of Trento, Via Sommarive 14, 38123 Trento, Povo, Italy
- CNR, Istituto di Biofisica Trento, Via alla Cascata 56/C, 38123 Trento, Povo, Italy
| | - Alberto Milli
- Department of Physics, Bioorganic Chemistry Lab, University of Trento, Via Sommarive 14, 38123 Trento, Povo, Italy
| | - Cristina Ruberti
- Department of Biology, University of Padova, Via U. Bassi 58/b, 35131 Padova, Italy
| | - Franco Biasioli
- Research and Innovation Centre, Fondazione Edmund Mach, via E. Mach 1, 38010 San Michele a/Adige, TN, Italy
| | - Michela Zottini
- Department of Biology, University of Padova, Via U. Bassi 58/b, 35131 Padova, Italy
| | - Claudio Moser
- Research and Innovation Centre, Fondazione Edmund Mach, via E. Mach 1, 38010 San Michele a/Adige, TN, Italy
| |
Collapse
|
23
|
Jakhar S, Mukherjee D. Chloroplast pigments, proteins, lipid peroxidation and activities of antioxidative enzymes during maturation and senescence of leaves and reproductive organs of Cajanus cajan L. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2014; 20:171-80. [PMID: 24757321 PMCID: PMC3988333 DOI: 10.1007/s12298-013-0219-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2013] [Revised: 12/14/2013] [Accepted: 12/26/2013] [Indexed: 05/06/2023]
Abstract
A comparative investigation was undertaken with pigeon pea leaves and attached flower buds/flowers/pods during their developmental stages including senescence in a natural system in experimental plots. Alterations in chloroplast pigments, total soluble proteins, lipid peroxidation, malondialdehyde (MDA) content and activities of guaiacol peroxidase (POD, EC 1.11.1.7) and superoxide dismutase (SOD, EC 1.15.1.1) were studied at 5-day interval from initial to 40-day stage. Chloroplast pigments and proteins of leaves increased upto 15 and 20-day stages respectively followed by a steady decline. Reproductive parts, however, exhibited rise in chloroplast pigments upto 25-day and protein till last stage as developing pods gain the amount from the senescing leaves which are nearest to them. Senescing leaves show very high POD activity than the developing and senescing pods and POD appears to be associated with chlorophyll degradation. Considerably higher activity and amount of LOX and MDA respectively have been noticed in senescing leaves than in flowers and pods. Increase in SOD activity during early stage of leaf growth and maturation indicates protective role that declined at senescent stages. Pods are unique in having very high SOD activity, only last stage of senescence does show a decline.
Collapse
Affiliation(s)
- Somveer Jakhar
- Plant Physiology and Biochemistry Laboratory, Department of Botany, Kurukshetra University, Kurukshetra, 136119 India
| | - D. Mukherjee
- Plant Physiology and Biochemistry Laboratory, Department of Botany, Kurukshetra University, Kurukshetra, 136119 India
| |
Collapse
|
24
|
Effect of hypobaric storage on flesh lignification, active oxygen metabolism and related enzyme activities in bamboo shoots. Lebensm Wiss Technol 2013. [DOI: 10.1016/j.lwt.2012.09.031] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
25
|
Zhang D, Ren L, Yue JH, Wang L, Zhuo LH, Shen XH. A comprehensive analysis of flowering transition in Agapanthus praecox ssp. orientalis (Leighton) Leighton by using transcriptomic and proteomic techniques. J Proteomics 2013; 80:1-25. [DOI: 10.1016/j.jprot.2012.12.028] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2012] [Revised: 11/20/2012] [Accepted: 12/15/2012] [Indexed: 10/27/2022]
|
26
|
Dzyubinskaya EV, Ionenko IF, Kiselevsky DB, Samuilov VD, Samuilov FD. Mitochondria-addressed cations decelerate the leaf senescence and death in Arabidopsis thaliana and increase the vegetative period and improve crop structure of the wheat Triticum aestivum. BIOCHEMISTRY (MOSCOW) 2013; 78:68-74. [DOI: 10.1134/s0006297913010082] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
27
|
Nam KH, Yoshihara T. Interactions among LOX metabolites regulate temperature-mediated flower bud formation in morning glory (Pharbitis nil). JOURNAL OF PLANT PHYSIOLOGY 2012; 169:1815-1820. [PMID: 22902207 DOI: 10.1016/j.jplph.2012.07.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2012] [Revised: 07/27/2012] [Accepted: 07/27/2012] [Indexed: 06/01/2023]
Abstract
We examined the relationship between temperature (15-35°C) and flower induction as it is influenced by linolenic acid (LA) cascade products, lipoxygenase (LOX; EC 1.13.11.12), allene oxide synthase (AOS; EC 4.2.1.92), and allene oxide cyclase (AOC; EC 5.3.99.6) generated in morning glory (Pharbitis nil Choisy). The maximum amount of LOX protein was detected when plants were grown at 30°C, whereas endogenous AOS and AOC proteins were markedly accumulated at 15°C. Although both test levels of 9(S)- and 13(S)-hydroperoxy linolenic acid (HPOT) showed similar temperature dependencies, reflecting the profile of LOX, the relative amount of 13(S)-HPOT was much higher than that of 9(S)-HPOT, regardless of temperature regime. This implied a faster reaction pathway to 9,10-α-ketol octadecadienoic acid (KODA) in the LA cascade. In the 13(S)-HPOT pathway, the highest level of endogenous jasmonic acid (JA) was observed at 15°C. Our results suggest that at a high temperature (30°C), 9(S)-HPOT may be readily metabolized into KODA to promote flower bud formation. By contrast, at a low temperature, high levels of AOS and AOC result in an accumulation of JA that inhibits this developmental process. Accordingly, depending on the growing temperature, flower bud formation in P. nil is possibly regulated by the interactions among LOX metabolites, with KODA serving as a promoter and JA as an inhibitor.
Collapse
Affiliation(s)
- Kyong-Hee Nam
- Laboratory of Bio-organic Chemistry, Division of Applied Bioscience, Graduate School of Agriculture, Hokkaido University, Kita 9, Nishi 9, Kitaku, Sapporo 060-8589, Japan
| | | |
Collapse
|
28
|
Bieker S, Riester L, Stahl M, Franzaring J, Zentgraf U. Senescence-specific alteration of hydrogen peroxide levels in Arabidopsis thaliana and oilseed rape spring variety Brassica napus L. cv. Mozart. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2012; 54:540-54. [PMID: 22805117 DOI: 10.1111/j.1744-7909.2012.01147.x] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
In order to analyze the signaling function of hydrogen peroxide (H(2)O(2)) production in senescence in more detail, we manipulated intracellular H(2)O(2) levels in Arabidopsis thaliala (L.) Heynh by using the hydrogen-peroxide-sensitive part of the Escherichia coli transcription regulator OxyR, which was directed to the cytoplasm as well as into the peroxisomes. H(2)O(2) levels were lowered and senescence was delayed in both transgenic lines, but OxyR was found to be more effective in the cytoplasm. To transfer this knowledge to crop plants, we analyzed oilseed rape plants Brassica napus L. cv. Mozart for H(2)O(2) and its scavenging enzymes catalase (CAT) and ascorbate peroxidase (APX) during leaf and plant development. H(2)O(2) levels were found to increase during bolting and flowering time, but no increase could be observed in the very late stages of senescence. With increasing H(2)O(2) levels, CAT and APX activities declined, so it is likely that similar mechanisms are used in oilseed rape and Arabidopsis to control H(2)O(2) levels. Under elevated CO(2) conditions, oilseed rape senescence was accelerated and coincided with an earlier increase in H(2)O(2) levels, indicating that H(2)O(2) may be one of the signals to inducing senescence in a broader range of Brassicaceae.
Collapse
Affiliation(s)
- Stefan Bieker
- ZMBP (Center for Plant Molecular Biology), University of Tübingen, Auf der Morgenstelle 28, 72076 Tübingen, Germany
| | | | | | | | | |
Collapse
|
29
|
Kumar S, Yadav P, Jain V, Malhotra SP. Isozymes of antioxidative enzymes during ripening and storage of ber ( Ziziphus mauritiana Lamk.). Journal of Food Science and Technology 2011; 51:329-34. [PMID: 24493891 DOI: 10.1007/s13197-011-0489-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 07/18/2011] [Accepted: 08/02/2011] [Indexed: 12/01/2022]
Abstract
Isozyme profile of antioxidative enzymes viz. superoxide dismutase (SOD), peroxidase (POX), catalase (CAT) and ascorbate peroxidase (APX) was studied during ripening and storage of two cultivars of ber fruit (Ziziphus mauritiana Lamk.) differing in their shelf-lives viz. Umran (shelf-life, 8-9 d) and Kaithali (shelf-life, 4-5 d). The profile revealed that Umran variety exhibited three bands each of SOD and POX while in Kaithali, these enzymes had two isoenzymes throughout ripening. CAT and APX, however, showed two isozymes each during ripening of both the varieties and the pattern remained the same at all the stages of ripening except at the initial stage i.e immature green stage where single CAT isozyme was visible. During storage, one extra band each of SOD and POX present only in Umran got disappeared at later stages of storage, whereas in Kaithali, the pattern remained unchanged. Also, there was no change in the pattern of CAT and APX isozymes during storage of both the varieties. One isozyme of CAT could be considered as ripening related while one isozyme each of SOD and POX could be related to higher shelf life of fruits.
Collapse
Affiliation(s)
- Sunil Kumar
- Department of Biochemistry, College of Basic Sciences & Humanities, CCS Haryana Agricultural University, Hissar, 125004 Haryana India ; Central Institute of Post Harvest Engineering & Technology, Abohar, Punjab India
| | | | - Veena Jain
- Department of Biochemistry, College of Basic Sciences & Humanities, CCS Haryana Agricultural University, Hissar, 125004 Haryana India
| | - Sarla P Malhotra
- Department of Biochemistry, College of Basic Sciences & Humanities, CCS Haryana Agricultural University, Hissar, 125004 Haryana India
| |
Collapse
|
30
|
Lozano-Juste J, León J. Nitric oxide regulates DELLA content and PIF expression to promote photomorphogenesis in Arabidopsis. PLANT PHYSIOLOGY 2011; 156:1410-23. [PMID: 21562334 PMCID: PMC3135954 DOI: 10.1104/pp.111.177741] [Citation(s) in RCA: 85] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2011] [Accepted: 05/06/2011] [Indexed: 05/19/2023]
Abstract
The transition from etiolated to green seedlings involves a shift from hypocotyl growth-promoting conditions to growth restraint. These changes occur through a complex light-driven process involving multiple and tightly coordinated hormonal signaling pathways. Nitric oxide (NO) has been lately characterized as a regulator of plant development interacting with hormone signaling. Here, we show that Arabidopsis (Arabidopsis thaliana) NO-deficient mutant hypocotyls are longer than those from wild-type seedlings under red light but not under blue or far-red light. Accordingly, exogenous treatment with the NO donor sodium nitroprusside and mutant plants with increased endogenous NO levels resulted in reduced hypocotyl length. In addition to increased hypocotyl elongation, NO deficiency led to increased anthocyanin levels and reduced PHYB content under red light, all processes governed by phytochrome-interacting factors (PIFs). NO-deficient plants accordingly showed an enhanced expression of PIF3, PIF1, and PIF4. Moreover, exogenous NO increased the levels of the gibberellin (GA)-regulated DELLA proteins and shortened hypocotyls, likely through the negative regulation of the GA Insensitive Dwarf1 (GID1)-Sleepy1 (SLY1) module. Consequently, NO-deficient seedlings displayed up-regulation of SLY1, defective DELLA accumulation, and altered GA sensitivity, thus resulting in defective deetiolation under red light. Accumulation of NO in wild-type seedlings undergoing red light-triggered deetiolation and elevated levels of NO in the GA-deficient ga1-3 mutant in darkness suggest a mutual NO-GA antagonism in controlling photomorphogenesis. PHYB-dependent NO production promotes photomorphogenesis by a GID1-GA-SLY1-mediated mechanism based on the coordinated repression of growth-promoting PIF genes and the increase in the content of DELLA proteins.
Collapse
|
31
|
Smykowski A, Zimmermann P, Zentgraf U. G-Box binding factor1 reduces CATALASE2 expression and regulates the onset of leaf senescence in Arabidopsis. PLANT PHYSIOLOGY 2010; 153:1321-31. [PMID: 20484024 PMCID: PMC2899923 DOI: 10.1104/pp.110.157180] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2010] [Accepted: 05/13/2010] [Indexed: 05/19/2023]
Abstract
Hydrogen peroxide (H(2)O(2)) is discussed as being a signaling molecule in Arabidopsis (Arabidopsis thaliana) leaf senescence. Intracellular H(2)O(2) levels are controlled by the H(2)O(2)-scavenging enzyme catalase in concert with other scavenging and producing systems. Catalases are encoded by a small gene family, and the expression of all three Arabidopsis catalase genes is regulated in a senescence-associated manner. CATALASE2 (CAT2) expression is down-regulated during bolting time at the onset of leaf senescence and appears to be involved in the elevation of the H(2)O(2) level at this time point. To understand the role of CAT2 in senescence regulation in more detail, we used CAT2 promoter fragments in a yeast one-hybrid screen to isolate upstream regulatory factors. Among others, we could identify G-Box Binding Factor1 (GBF1) as a DNA-binding protein of the CAT2 promoter. Transient overexpression of GBF1 together with a CAT2:beta-glucuronidase construct in tobacco (Nicotiana benthamiana) plants and Arabidopsis protoplasts revealed a negative effect of GBF1 on CAT2 expression. In gbf1 mutant plants, the CAT2 decrease in expression and activity at bolting time and the increase in H(2)O(2) could no longer be observed. Consequently, the onset of leaf senescence and the expression of senescence-associated genes were delayed in gbf1 plants, clearly indicating a regulatory function of GBF1 in leaf senescence, most likely via regulation of the intracellular H(2)O(2) content.
Collapse
Affiliation(s)
| | | | - Ulrike Zentgraf
- Center for Plant Molecular Biology, General Genetics, University of Tuebingen, 72076 Tuebingen, Germany
| |
Collapse
|
32
|
Li J, Zhao X, Nishimura Y, Fukumoto Y. Correlation between Bolting and Physiological Properties in Chinese Cabbage (Brassica rapa L. pekinensis Group). ACTA ACUST UNITED AC 2010. [DOI: 10.2503/jjshs1.79.294] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
33
|
Mondal K, Malhotra SP, Jain V, Singh R. Oxidative stress and antioxidant systems in Guava (Psidium guajava L.) fruits during ripening. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2009; 15:327-34. [PMID: 23572943 PMCID: PMC3550346 DOI: 10.1007/s12298-009-0037-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Two varieties of guava viz., L-49 and Hisar Safeda differing in their shelf lives were analyzed for various components of oxidative stress and of enzymatic and non-enzymatic antioxidative system at different stages of fruit ripening. Indices of oxidative stress viz., lipoxygenase activity, malondialdehyde value and H2O2 content increased throughout during ripening in both the varieties. The extent of oxidative stress was more pronounced in Hisar Safeda (shelf life 3-4 days) than in L-49 (shelf life 7-8 days). Except for superoxide dismutase, activities of all other antioxidative enzymes viz., catalase, peroxidase, ascorbate peroxidase and glutathione reductase increased up to color turning stage and decreased thereafter. Superoxide dismutase activity, however, increased upto ripe stage followed by a decline. Contents of ascorbic acid and glutathione (total, oxidized and reduced) were found to be the maximum at turning and mature stage, respectively. It is inferred that ripening of guava fruit is accompanied by a progressive increase in oxidative/peroxidative stress which induces antioxidant system but not until later stages of ripening. Over-accumulation of ROS due to dysfunctioning of ROS scavenging system at later stages of fruit ripening appears to be responsible for loss of tissue structure as observed in ripened and over-ripened fruits.
Collapse
Affiliation(s)
- Koushik Mondal
- Plant Biochemistry and Molecular Biology Laboratory, Department of Biochemistry, CCS Haryana Agricultural University, Hisar, 125 004 India
| | - Sarla P. Malhotra
- Plant Biochemistry and Molecular Biology Laboratory, Department of Biochemistry, CCS Haryana Agricultural University, Hisar, 125 004 India
| | - Veena Jain
- Plant Biochemistry and Molecular Biology Laboratory, Department of Biochemistry, CCS Haryana Agricultural University, Hisar, 125 004 India
| | - Randhir Singh
- Plant Biochemistry and Molecular Biology Laboratory, Department of Biochemistry, CCS Haryana Agricultural University, Hisar, 125 004 India
| |
Collapse
|
34
|
Foyer CH, Noctor G. Redox regulation in photosynthetic organisms: signaling, acclimation, and practical implications. Antioxid Redox Signal 2009; 11:861-905. [PMID: 19239350 DOI: 10.1089/ars.2008.2177] [Citation(s) in RCA: 764] [Impact Index Per Article: 47.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Reactive oxygen species (ROS) have multifaceted roles in the orchestration of plant gene expression and gene-product regulation. Cellular redox homeostasis is considered to be an "integrator" of information from metabolism and the environment controlling plant growth and acclimation responses, as well as cell suicide events. The different ROS forms influence gene expression in specific and sometimes antagonistic ways. Low molecular antioxidants (e.g., ascorbate, glutathione) serve not only to limit the lifetime of the ROS signals but also to participate in an extensive range of other redox signaling and regulatory functions. In contrast to the low molecular weight antioxidants, the "redox" states of components involved in photosynthesis such as plastoquinone show rapid and often transient shifts in response to changes in light and other environmental signals. Whereas both types of "redox regulation" are intimately linked through the thioredoxin, peroxiredoxin, and pyridine nucleotide pools, they also act independently of each other to achieve overall energy balance between energy-producing and energy-utilizing pathways. This review focuses on current knowledge of the pathways of redox regulation, with discussion of the somewhat juxtaposed hypotheses of "oxidative damage" versus "oxidative signaling," within the wider context of physiological function, from plant cell biology to potential applications.
Collapse
Affiliation(s)
- Christine H Foyer
- School of Agriculture, Food and Rural Development, Agriculture Building, University of Newcastle upon Tyne, Newcastle upon Tyne, United Kingdom.
| | | |
Collapse
|
35
|
Bañuelos GR, Argumedo R, Patel K, Ng V, Zhou F, Vellanoweth RL. The developmental transition to flowering in Arabidopsis is associated with an increase in leaf chloroplastic lipoxygenase activity. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2008; 174:366-373. [PMID: 19568326 PMCID: PMC2703494 DOI: 10.1016/j.plantsci.2007.12.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
The developmental transition from vegetative growth to flowering in Arabidopsis is associated with a precipitous decline in the activity of leaf ascorbate peroxidase (APx), an enzymatic scavenger of hydrogen peroxide, and an increase in specific lipid peroxidation leading to the accumulation of 13-hydroperoxy-9,11,15 (Z,E,Z) octadecatrienoic acid (13 HOO-FA). The appearance of this specific isomer suggests that it is of enzymatic origin and may represent the activation of an oxylipin signaling pathway. We thus hypothesized that leaf 13-lipoxygenase (LOX) activity increases at the floral transition and leads to the observed elevation of 13-HOO-FA levels. Leaf protein extracts were prepared from seven distinct life stages of Arabidopsis plants and used to assay for LOX activity. We report that leaf 13-LOX enzymatic activity increases two- to three-fold from the vegetative stage to the immediate post-floral transition stage. We found two forms of LOX activity in cell extracts and show that the higher pH optimum form is the isoenzyme activated. This increase is correlated with a small increase in H(2)O(2), perhaps resulting from the previously reported decline in leaf APx activity. Very low levels of exogenous H(2)O(2) activate the induced form in vegetative leaf extracts in vitro, suggesting that the floral transition-dependent APx decline and subsequent H(2)O(2) elevation are involved in activating plastid 13-LOX and thus a second messenger oxylipin pathway.
Collapse
|
36
|
Zentgraf U, Hemleben V. Molecular Cell Biology: Are Reactive Oxygen Species Regulators of Leaf Senescence? PROGRESS IN BOTANY 2008. [DOI: 10.1007/978-3-540-72954-9_5] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
37
|
Miao Y, Laun TM, Smykowski A, Zentgraf U. Arabidopsis MEKK1 can take a short cut: it can directly interact with senescence-related WRKY53 transcription factor on the protein level and can bind to its promoter. PLANT MOLECULAR BIOLOGY 2007; 65:63-76. [PMID: 17587183 DOI: 10.1007/s11103-007-9198-z] [Citation(s) in RCA: 116] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2006] [Accepted: 05/29/2007] [Indexed: 05/15/2023]
Abstract
Despite the importance of the senescence processes in plants, our knowledge on regulatory mechanisms of senescence is still poor. WRKY transcription factors have been shown to be involved in the regulation of leaf senescence. However, almost nothing is known about the upstream regulation of the senescence specific expression of WRKY factors. Therefore, we characterized proteins that bind and activate the promoter of WRKY53, which participates in leaf senescence in Arabidopsis thaliana. Surprisingly, a mitogen activated protein kinase kinase kinase (MEKK1) was identified as a DNA-binding protein. The binding motif for MEKK1 in the WRKY53 promoter could be characterized and promoter:GUS analyses revealed that this region is important for the switch of WRKY53 expression from a leaf age dependent to a systemic plant age dependent expression during bolting time. In addition to its promotor-binding activity, MEKK1 was also able to interact with the WRKY53 protein. Using bimolecular fluorescence complementation assays the complex formation of MEKK1 and WRKY53 could be localized predominately in the nucleus of Arabidopsis cells. MEKK1 could also phosphorylate WRKY53 in vitro and phosphorylation could increase DNA-binding activity of WRKY53 in vitro and transcription of a WRKY53 promoter driven reporter gene in vivo. These results suggest that MEKK1 is a bifunctional protein: it binds to the promoter of the WRKY53 gene regulating the switch from a leaf age dependent to a plant age dependent expression and it can phosopharylate WRKY53 in vitro increasing its DNA binding activity. Thus, MEKK1 might be able to take a very direct short cut in mitogen-activated protein kinase (MAPK) signalling by directly phosphorylating a transcription factor.
Collapse
Affiliation(s)
- Ying Miao
- Department of General Genetics, ZMBP (Centre of Molecular Biology of Plants), University of Tuebingen, Auf der Morgenstelle 28, Tuebingen, Germany
| | | | | | | |
Collapse
|
38
|
Bassin S, Volk M, Fuhrer J. Factors affecting the ozone sensitivity of temperate European grasslands: an overview. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2007; 146:678-91. [PMID: 16904248 DOI: 10.1016/j.envpol.2006.06.010] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2006] [Revised: 05/31/2006] [Accepted: 06/15/2006] [Indexed: 05/10/2023]
Abstract
This overview of experimentally induced effects of ozone aims to identify physiological and ecological principles, which can be used to classify the sensitivity to ozone of temperate grassland communities in Europe. The analysis of data from experiments with single plants, binary mixtures and multi-species communities illustrates the difficulties to relate individual responses to communities, and thus to identify grassland communities most at risk. Although there is increasing evidence that communities can be separated into broad classes of ozone sensitivity, the database from experiments under realistic conditions with representative systems is too small to draw firm conclusions. But it appears that risk assessments, based on results from individuals or immature mixtures exposed in chambers, are only applicable to intensively managed, productive grasslands, and that the risk of ozone damage for most of perennial grasslands with lower productivity tends to be less than previously expected.
Collapse
Affiliation(s)
- S Bassin
- Agroscope FAL Reckenholz, Swiss Federal Research Station for Agroecology and Agriculture, Air Pollution/Climate Group, Reckenholzstrasse 191, CH-8046 Zurich, Switzerland.
| | | | | |
Collapse
|
39
|
Qin T, Fu J, Zhang N, Du L. Comparative studies of senescence-related enzymes in the cotyledon of chlorophyll b-deficient mutant and its wild type oilseed rape during senescence. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2006; 171:293-299. [PMID: 22980198 DOI: 10.1016/j.plantsci.2006.03.016] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2005] [Revised: 03/13/2006] [Accepted: 03/17/2006] [Indexed: 06/01/2023]
Abstract
The change patterns of senescence-related enzymes during cotyledon senescence were studied in a chlorophyll (Chl) b-deficient mutant type (MT, Cr3529) and its wild type (WT) of Brassica napus L. seedlings. The fresh weight on the basis of cotyledon number initially increased till 20 days after planting (DAP) and then kept relative constant. The protein content decreased sharply since 20 DAP and Chl content reduced since 10 DAP in both types; however the rate of degradation in protein and Chl in the MT was slower than that in the WT since 20 DAP. Superoxide dismutase (SOD; E.C.1.15.1.1) activity declined in the WT but increased in the MT since 20 DAP. Activity of peroxidase (POD; E.C.1.11.1.7) increased markedly after 20 DAP in both types. Esterase (EST; E.C.3.1.1.1) activity increased in both types since 10 DAP, whereas at 40 DAP it was much lower in the MT than that in the WT. In addition, bands patterns of SOD, POD and EST isozymes were changed during cotyledon development in both types, but some differences were observed. Cu/ZnSODs activities were higher in the MT at 40 DAP as compared with the WT. These results showed that day 20 was the turning point during the cotyledon development and the senescence in the MT cotyledon was slower than that in the WT.
Collapse
Affiliation(s)
- Tingting Qin
- Key Laboratory of Bio-resources and Eco-environment (Ministry of Education), College of Life Science, Sichuan University, Chengdu, Sichuan 610064, China
| | | | | | | |
Collapse
|
40
|
Zimmermann P, Heinlein C, Orendi G, Zentgraf U. Senescence-specific regulation of catalases in Arabidopsis thaliana (L.) Heynh. PLANT, CELL & ENVIRONMENT 2006; 29:1049-60. [PMID: 17080932 DOI: 10.1111/j.1365-3040.2005.01459.x] [Citation(s) in RCA: 178] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Oxygen free radicals are thought to play an essential role in senescence, especially those derived from peroxisomes. Therefore, the activities of different isoforms of the peroxisomal hydrogen peroxide (H2O2)-scavenging enzyme catalase (CAT) were analysed during senescence of Arabidopsis. CAT2 activity decreased with bolting time parallel with cytosolic ascorbate peroxidase 1 (APX1) activity before loss of chlorophyll could be measured. At the same time point, the H2O2 content increased. Subsequently, the stress-inducible CAT3 isoform was activated and APX1 activity was recovered, accompanied by a decline of the H2O2 content. In very late stages, low activities of the seed-specific CAT1 became detectable in leaves, but H2O2 increased again. Further analyses of CAT expression by promoter: beta-glucuronidase (GUS) fusions in transgenic plants revealed a vasculature-specific CAT3 expression, whereas CAT2 expression turned out to be specific for photosynthetic active tissues. CAT2 expression is down-regulated during leaf senescence, while CAT3 expression is induced with age and corresponds to an accumulation of H2O2 in the vascular bundles. CAT2 down-regulation on the transcriptional level appears as the initial step in creating the H2O2 peak during bolting time, while the decrease in APX1 activity might only be a secondary and amplifying effect.
Collapse
Affiliation(s)
- Petra Zimmermann
- ZMBP (Centre of Molecular Biology of Plants), University of Tübingen, Auf der Morgenstelle 28, 72076 Tübingen, Germany
| | | | | | | |
Collapse
|
41
|
Hossain Z, Mandal AKA, Kumar Datta S, Krishna Biswas A. Decline in ascorbate peroxidase activity--a prerequisite factor for tepal senescence in gladiolus. JOURNAL OF PLANT PHYSIOLOGY 2006; 163:186-94. [PMID: 16399009 DOI: 10.1016/j.jplph.2005.03.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2005] [Accepted: 03/07/2005] [Indexed: 05/06/2023]
Abstract
Flower senescence was studied in Gladiolus cv. "Snow Princess" over five arbitrarily divided developmental stages (stage 1, half bloom; stage 2, full bloom; stage 3, beginning of wilting; stage 4, 50% wilting; stage 5, complete wilting) in terms of changes in fresh weight, antioxidant enzymes (superoxide dismutase, SOD; ascorbate peroxidase, APX; glutathione reductase, GR) activities and membrane integrity. A significant decrease in tepal fresh weight was observed over the senescence period (after stage 2). Membrane integrity was studied by measuring lipid peroxidation [in terms of thiobarbituric acid reactive substances (TBARS) content] and membrane stability index (MSI) percentage. Maximum TBARS content was recorded in stage 4 (50% wilting). This increase in lipid peroxidation over the senescence period was in close association with high degree of membrane deterioration expressed as decrease in membrane stability index percentage. A significant decrease (two and half-fold) in MSI% in stage 5 (as compared to stage 1) indicates complete membrane deterioration. Progressive increase in endogenous H2O2 level was recorded over senescence period. Maximum H2O2 content (19.7+/-1.4 micromol g(-1) DW) was recorded at stage 5 (complete wilting). Three different patterns were observed in antioxidant enzymes behavior over the senescence period. APX activity was declined significantly as, the flower entered stage 3 (beginning of wilting) from full bloom condition (stage 2). Progressive and significant increase in SOD activity was measured as a function of time. Maximum SOD activity (24.2+/-0.8 U mg(-1) DW) was recorded in stage 5 (three-fold increase over stage 1). GR activity initially increased up to stage 4 (50% wilting) and declined significantly thereafter (approximately seven-fold). An increase in endogenous H2O2 level during senescence may be the result of a programmed down-regulation of APX enzyme activity, which seems to be the prerequisite factor for initiating senescence process in gladiolus tepal.
Collapse
Affiliation(s)
- Zahed Hossain
- Botanic Garden & Floriculture, National Botanical Research Institute, Lucknow-226001, Uttar Pradesh, India
| | | | | | | |
Collapse
|
42
|
Ouelhadj A, Kuschk P, Humbeck K. Heavy metal stress and leaf senescence induce the barley gene HvC2d1 encoding a calcium-dependent novel C2 domain-like protein. THE NEW PHYTOLOGIST 2006; 170:261-73. [PMID: 16608452 DOI: 10.1111/j.1469-8137.2006.01663.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
By comparing cDNA populations derived from chromium-stressed primary leaves of barley (Hordeum vulgare L.) with controls, differentially expressed cDNA fragments could be identified. The deduced amino acid sequence of one of these cDNAs [named 'C2 domain 1' (HvC2d1)] exhibits a motif that is similar to the known C2 domain and a nuclear localization signal (NLS). Expression of this member of a novel class of plant C2 domain-like proteins was studied using real-time PCR, and subcellular localization was investigated using green fluorescent protein (GFP) fusion constructs. Calcium binding was analysed using a (45)Ca(2+) overlay assay. HvC2d1 was transiently induced after exposure to different heavy metals and its mRNA accumulated during the phase of leaf senescence. HvC2d1 expression responded to changes in calcium levels caused by the calcium ionophore A23187 and to treatment with methylviologen resulting in the production of reactive oxygen species (ROS). Using overexpressed and purified HvC2d1, the binding of calcium could be confirmed. Chimeric HvC2d1-GFP protein was localized in onion epidermal cells at the plasma membrane, cytoplasm and the nucleus. After addition of calcium ionophore A23187 green fluorescence was only visible in the nucleus. The data suggest a calcium-dependent translocation of HvC2d1 to the nucleus. A possible role of HvC2d1 in stress- and development-dependent signalling in the nucleus is discussed.
Collapse
Affiliation(s)
- Akli Ouelhadj
- Institute of Plant Physiology, Martin-Luther-University Halle-Wittenberg, Weinbergweg 10, D-06120 Halle, Germany
| | | | | |
Collapse
|
43
|
Vanderauwera S, Zimmermann P, Rombauts S, Vandenabeele S, Langebartels C, Gruissem W, Inzé D, Van Breusegem F. Genome-wide analysis of hydrogen peroxide-regulated gene expression in Arabidopsis reveals a high light-induced transcriptional cluster involved in anthocyanin biosynthesis. PLANT PHYSIOLOGY 2005; 139:806-21. [PMID: 16183842 PMCID: PMC1255997 DOI: 10.1104/pp.105.065896] [Citation(s) in RCA: 360] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2005] [Revised: 07/20/2005] [Accepted: 07/25/2005] [Indexed: 05/04/2023]
Abstract
In plants, reactive oxygen species and, more particularly, hydrogen peroxide (H(2)O(2)) play a dual role as toxic by-products of normal cell metabolism and as regulatory molecules in stress perception and signal transduction. Peroxisomal catalases are an important sink for photorespiratory H(2)O(2). Using ATH1 Affymetrix microarrays, expression profiles were compared between control and catalase-deficient Arabidopsis (Arabidopsis thaliana) plants. Reduced catalase levels already provoked differences in nuclear gene expression under ambient growth conditions, and these effects were amplified by high light exposure in a sun simulator for 3 and 8 h. This genome-wide expression analysis allowed us to reveal the expression characteristics of complete pathways and functional categories during H(2)O(2) stress. In total, 349 transcripts were significantly up-regulated by high light in catalase-deficient plants and 88 were down-regulated. From this data set, H(2)O(2) was inferred to play a key role in the transcriptional up-regulation of small heat shock proteins during high light stress. In addition, several transcription factors and candidate regulatory genes involved in H(2)O(2) transcriptional gene networks were identified. Comparisons with other publicly available transcriptome data sets of abiotically stressed Arabidopsis revealed an important intersection with H(2)O(2)-deregulated genes, positioning elevated H(2)O(2) levels as an important signal within abiotic stress-induced gene expression. Finally, analysis of transcriptional changes in a combination of a genetic (catalase deficiency) and an environmental (high light) perturbation identified a transcriptional cluster that was strongly and rapidly induced by high light in control plants, but impaired in catalase-deficient plants. This cluster comprises the complete known anthocyanin regulatory and biosynthetic pathway, together with genes encoding unknown proteins.
Collapse
Affiliation(s)
- Sandy Vanderauwera
- Department of Plant Systems Biology, Flanders Interuniversity Institute for Biotechnology, Ghent University, Belgium
| | | | | | | | | | | | | | | |
Collapse
|
44
|
Diaz C, Purdy S, Christ A, Morot-Gaudry JF, Wingler A, Masclaux-Daubresse C. Characterization of markers to determine the extent and variability of leaf senescence in Arabidopsis. A metabolic profiling approach. PLANT PHYSIOLOGY 2005; 138:898-908. [PMID: 15923326 PMCID: PMC1150406 DOI: 10.1104/pp.105.060764] [Citation(s) in RCA: 123] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2005] [Revised: 04/07/2005] [Accepted: 04/12/2005] [Indexed: 05/02/2023]
Abstract
Comparison of the extent of leaf senescence depending on the genetic background of different recombinant inbred lines (RILs) of Arabidopsis (Arabidopsis thaliana) is described. Five RILs of the Bay-0 x Shahdara population showing differential leaf senescence phenotypes (from early senescing to late senescing) were selected to determine metabolic markers to discriminate Arabidopsis lines on the basis of senescence-dependent changes in metabolism. The proportion of gamma-aminobutyric acid, leucine, isoleucine, aspartate, and glutamate correlated with (1) the age and (2) the senescence phenotype of the RILs. Differences were observed in the glycine/serine ratio even before any senescence symptoms could be detected in the rosettes. This could be used as predictive indicator for plant senescence behavior. Surprisingly, late-senescing lines appeared to mobilize glutamine, asparagine, and sulfate more efficiently than early-senescing lines. The physiological basis of the relationship between leaf senescence and flowering time was analyzed.
Collapse
Affiliation(s)
- Céline Diaz
- Unité de Nutrition Azotée des Plantes, Institut National de la Recherche Agronomique, 78 026 Versailles cedex, France
| | | | | | | | | | | |
Collapse
|
45
|
Bassin S, Kölliker R, Cretton C, Bertossa M, Widmer F, Bungener P, Fuhrer J. Intra-specific variability of ozone sensitivity in Centaurea jacea L., a potential bioindicator for elevated ozone concentrations. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2004; 131:1-12. [PMID: 15210270 DOI: 10.1016/j.envpol.2004.02.014] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2003] [Accepted: 02/16/2004] [Indexed: 05/24/2023]
Abstract
Brown knapweed (Centaurea jacea L.) has been suggested as a potential bioindicator for tropospheric ozone (O3), but little is known about the intra-specific variation in O3 sensitivity in this wild species. The aim of this study was to quantify the differences in O3 sensitivity among and within five populations, and to relate the differences to morphological, phenological, and genetic characteristics. These parameters were periodically recorded in two consecutive experiments on a total of 357 plants from five different European countries (Norway, Hungary, Switzerland, Italy, Slovenia). They were grown from seed in natural soil under ambient conditions at a site with seasonally elevated O3 concentrations (Cadenazzo, southern Switzerland). The populations differed significantly both in frequency and extent of O3 injury, as well as in phenological development. The observed degree of O3 injury was highest in the Slovenian and the Swiss populations, while only few Hungarian and Norwegian plants showed slight symptoms of injury. Plants were generally most sensitive to O3 when reaching the reproductive stage, and insensitive at the rosette stage. Amplified fragment length polymorphism analysis (AFLP) demonstrated genetic distinctiveness of the five C. jacea populations. All individuals of four of the five populations were correctly assigned to the respective populations based on principal component analysis. Cluster analysis quite accurately reflected the geographic origin of each population. Overall, the analysis revealed a high degree of intra-specific variability in O3 sensitivity in C. jacea, and underlined the important influence of the climate-dependent population-specific plant development on O3 sensitivity. These observations may constrain the development of a standardized biomonitoring system.
Collapse
Affiliation(s)
- Seraina Bassin
- Swiss Federal Research Station for Agroecology and Agriculture (FAL), Reckenholzstrasse 191, CH-8046 Zurich, Switzerland.
| | | | | | | | | | | | | |
Collapse
|
46
|
Buchanan-Wollaston V, Earl S, Harrison E, Mathas E, Navabpour S, Page T, Pink D. The molecular analysis of leaf senescence--a genomics approach. PLANT BIOTECHNOLOGY JOURNAL 2003; 1:3-22. [PMID: 17147676 DOI: 10.1046/j.1467-7652.2003.00004.x] [Citation(s) in RCA: 383] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Senescence in green plants is a complex and highly regulated process that occurs as part of plant development or can be prematurely induced by stress. In the last decade, the main focus of research has been on the identification of senescence mutants, as well as on genes that show enhanced expression during senescence. Analysis of these is beginning to expand our understanding of the processes by which senescence functions. Recent rapid advances in genomics resources, especially for the model plant species Arabidopsis, are providing scientists with a dazzling array of tools for the identification and functional analysis of the genes and pathways involved in senescence. In this review, we present the current understanding of the mechanisms by which plants control senescence and the processes that are involved.
Collapse
|
47
|
Song F, Zhou F, Wang J, Tao N, Lin J, Vellanoweth RL, Morquecho Y, Wheeler-Laidman J. Detection of oligonucleotide hybridization at femtomolar level and sequence-specific gene analysis of the Arabidopsis thaliana leaf extract with an ultrasensitive surface plasmon resonance spectrometer. Nucleic Acids Res 2002; 30:e72. [PMID: 12136120 PMCID: PMC135773 DOI: 10.1093/nar/gnf072] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2001] [Revised: 05/01/2002] [Accepted: 05/31/2002] [Indexed: 11/13/2022] Open
Abstract
A flow-injection (FI) device is combined, through the use of a low-volume (4 microl) flow cell, with an ultrasensitive surface plasmon resonance (SPR) spectrometer equipped with a bi-cell photodiode detector. The application of this novel FI-SPR device for sequence-specific ultratrace analysis of oligodeoxynucleotides (ODNs) and polydeoxynucleotides was demonstrated. Self-assembled monolayers of ODN probes are tethered onto Au films with a mercaptohexyl group at the 3' ends. The FI-SPR provides a detection level (< or =54 fM) 2-3 orders of magnitude lower than other SPR devices and compares well with several ultrasensitive detection methods for labeled DNA targets (e.g. fluorophore-tagged and radiolabeled DNA samples). The technique is also highly selective, since a 47mer ODN target with a single-base mismatch yielded a much smaller SPR signal, and a specific interaction was detected when the complementary target was present at 0.001% of the total DNA. The FI-SPR was extended to the measurement of two individual genes in a cDNA mixture transcribed from an Arabidopsis thaliana leaf mRNA pool. The greatly enhanced sensitivity not only obviates the necessity of DNA labeling, but also significantly reduces sample consumption, allowing direct quantification of low abundance mRNAs in cellular samples without amplification.
Collapse
Affiliation(s)
- Fayi Song
- Department of Chemistry and Biochemistry, California State University, Los Angeles, 5151 State University Drive, Los Angeles, CA 90032, USA
| | | | | | | | | | | | | | | |
Collapse
|
48
|
Orendi G, Zimmermann P, Baar C, Zentgraf U. Loss of stress-induced expression of catalase3 during leaf senescence in Arabidopsis thaliana is restricted to oxidative stress. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2001; 161:301-314. [PMID: 11448761 DOI: 10.1016/s0168-9452(01)00409-5] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Different stress conditions can induce changes in the activity of the antioxidant enzymes superoxide dismutase (SOD, EC 1.15.1.1), ascorbate peroxidase (APX, EC 1.11.1.11) and catalase (CAT, EC 1.11.1.6). The enzyme activities of all SOD and APX isoforms detected in young Arabidopsis leaves remained unaffected or slightly decreased after moderate paraquat treatment. While CAT2 activity also remained unaffected under these conditions, CAT3 enzyme activity was enhanced. In contrast to the enzyme activities, mRNA levels of both cat2 and cat3 were enhanced under oxidative stress induced by either paraquat or the fungal toxin cercosporin. This indicates that, with respect to enzyme activity level, CAT3 is the enzyme which is most sensitive to oxidative stress in this developmental stage and that the enzyme activity of CAT2 is possibly regulated at the post-transcriptional level. Interestingly, cat3 mRNA level and CAT3 activity are not elevated by paraquat treatment in senescing leaves. In contrast, the response to other stress conditions, such as water stress induced by flooding of detached leaves and heat stress, is maintained in senescing leaves. Since changes in stress response are not a general phenomenon in leaf senescence but appear to be restricted to oxidative stress, this might be a specific mechanism to promote senescence in Arabidopsis thaliana.
Collapse
Affiliation(s)
- G Orendi
- ZMBP - Center for Plant Molecular Biology, University of Tübingen, Auf der Morgenstelle 28, 72076, Tübingen, Germany
| | | | | | | |
Collapse
|
49
|
Shinozaki K, Yamaguchi-Shinozaki K. Gene Expression and Signal Transduction in Water-Stress Response. PLANT PHYSIOLOGY 1997; 121:58-65. [PMID: 15086818 DOI: 10.1111/j.0031-9317.2004.00294.x] [Citation(s) in RCA: 75] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Affiliation(s)
- K. Shinozaki
- Laboratory of Plant Molecular Biology, Tsukuba Life Science Center, The Institute of Physical and Chemical Research (RIKEN), 3-1-1 Koyadai, Tsukuba, Ibaraki 305, Japan (K.S.)
| | | |
Collapse
|