1
|
Dovidchenko NV, Lobanov MY, Galzitskaya OV. Is there a bias in the codon frequency corresponding to homo-repeats found in human proteins? Biosystems 2024; 246:105357. [PMID: 39442908 DOI: 10.1016/j.biosystems.2024.105357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 09/30/2024] [Accepted: 10/20/2024] [Indexed: 10/25/2024]
Abstract
It is well known that there is a codon usage bias in genomes, that is, some codons are observed more often than others. Codons implicated in the homo-repeats regions in human proteins are no exception. In this work, we analyzed the codon usage bias for all amino acid residues in homo-repeats larger than 4 in 3753 human proteins from 20447 protein sequences from the canonically reviewed human proteome. We have discovered that almost all homo-repeats in the human proteome, most of which encode Ala, Glu, Gly, Leu, Pro, and Ser (∼80% of all homo-repeats), have a codon usage bias, i.e. are mainly encoded by one codon. Moreover, there is a strong shift in homo-repeats in favor of the content of GC rich codons. Homo-repeats with Ala, Glu, Gly, Leu, Pro, and Ser predominate in the PDB, which has both ordered and disordered status. Examining the distribution of splicing sites, we found that about 15% of homo-repeats either contain or are located within 10 nucleotides of the splicing site, and Glu and Leu predominate in these homo-repeats. Our data is important for future study of the functions of homo-repeats, protein-protein interactions, and evolutionary fitness.
Collapse
Affiliation(s)
- Nikita V Dovidchenko
- Gamaleya Research Centre of Epidemiology and Microbiology, 123098, Moscow, Russia; Institute of Protein Research, Russian Academy of Sciences, 142290, Pushchino, Moscow Region, Russia.
| | - Mikhail Yu Lobanov
- Institute of Protein Research, Russian Academy of Sciences, 142290, Pushchino, Moscow Region, Russia
| | - Oxana V Galzitskaya
- Gamaleya Research Centre of Epidemiology and Microbiology, 123098, Moscow, Russia; Institute of Protein Research, Russian Academy of Sciences, 142290, Pushchino, Moscow Region, Russia; Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, 142290, Pushchino, Moscow Region, Russia.
| |
Collapse
|
2
|
Chang KH, Chen CM. The Role of NRF2 in Trinucleotide Repeat Expansion Disorders. Antioxidants (Basel) 2024; 13:649. [PMID: 38929088 PMCID: PMC11200942 DOI: 10.3390/antiox13060649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 05/20/2024] [Accepted: 05/23/2024] [Indexed: 06/28/2024] Open
Abstract
Trinucleotide repeat expansion disorders, a diverse group of neurodegenerative diseases, are caused by abnormal expansions within specific genes. These expansions trigger a cascade of cellular damage, including protein aggregation and abnormal RNA binding. A key contributor to this damage is oxidative stress, an imbalance of reactive oxygen species that harms cellular components. This review explores the interplay between oxidative stress and the NRF2 pathway in these disorders. NRF2 acts as the master regulator of the cellular antioxidant response, orchestrating the expression of enzymes that combat oxidative stress. Trinucleotide repeat expansion disorders often exhibit impaired NRF2 signaling, resulting in inadequate responses to excessive ROS production. NRF2 activation has been shown to upregulate antioxidative gene expression, effectively alleviating oxidative stress damage. NRF2 activators, such as omaveloxolone, vatiquinone, curcumin, sulforaphane, dimethyl fumarate, and resveratrol, demonstrate neuroprotective effects by reducing oxidative stress in experimental cell and animal models of these diseases. However, translating these findings into successful clinical applications requires further research. In this article, we review the literature supporting the role of NRF2 in the pathogenesis of these diseases and the potential therapeutics of NRF2 activators.
Collapse
Affiliation(s)
- Kuo-Hsuan Chang
- Department of Neurology, Chang Gung Memorial Hospital, Linkou Medical Center, Kueishan, Taoyuan 333, Taiwan;
- College of Medicine, Chang Gung University, Taoyuan 333, Taiwan
| | - Chiung-Mei Chen
- Department of Neurology, Chang Gung Memorial Hospital, Linkou Medical Center, Kueishan, Taoyuan 333, Taiwan;
- College of Medicine, Chang Gung University, Taoyuan 333, Taiwan
| |
Collapse
|
3
|
McComish BJ, Charleston MA, Parks M, Baroni C, Salvatore MC, Li R, Zhang G, Millar CD, Holland BR, Lambert DM. Ancient and Modern Genomes Reveal Microsatellites Maintain a Dynamic Equilibrium Through Deep Time. Genome Biol Evol 2024; 16:evae017. [PMID: 38412309 PMCID: PMC10972684 DOI: 10.1093/gbe/evae017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 12/22/2023] [Accepted: 01/23/2024] [Indexed: 02/29/2024] Open
Abstract
Microsatellites are widely used in population genetics, but their evolutionary dynamics remain poorly understood. It is unclear whether microsatellite loci drift in length over time. This is important because the mutation processes that underlie these important genetic markers are central to the evolutionary models that employ microsatellites. We identify more than 27 million microsatellites using a novel and unique dataset of modern and ancient Adélie penguin genomes along with data from 63 published chordate genomes. We investigate microsatellite evolutionary dynamics over 2 timescales: one based on Adélie penguin samples dating to ∼46.5 ka and the other dating to the diversification of chordates aged more than 500 Ma. We show that the process of microsatellite allele length evolution is at dynamic equilibrium; while there is length polymorphism among individuals, the length distribution for a given locus remains stable. Many microsatellites persist over very long timescales, particularly in exons and regulatory sequences. These often retain length variability, suggesting that they may play a role in maintaining phenotypic variation within populations.
Collapse
Affiliation(s)
- Bennet J McComish
- School of Natural Sciences, University of Tasmania, Hobart, TAS 7001, Australia
- Menzies Institute for Medical Research, University of Tasmania, Hobart, TAS 7001, Australia
| | | | - Matthew Parks
- Australian Research Centre for Human Evolution, Griffith University, Nathan, QLD 4111, Australia
- Department of Biology, University of Central Oklahoma, Edmond, OK 73034, USA
| | - Carlo Baroni
- Dipartimento di Scienze della Terra, University of Pisa, Pisa, Italy
- CNR-IGG, Institute of Geosciences and Earth Resources, Pisa, Italy
| | - Maria Cristina Salvatore
- Dipartimento di Scienze della Terra, University of Pisa, Pisa, Italy
- CNR-IGG, Institute of Geosciences and Earth Resources, Pisa, Italy
| | - Ruiqiang Li
- Novogene Bioinformatics Technology Co. Ltd., Beijing 100083, China
| | - Guojie Zhang
- China National GeneBank, BGI-Shenzhen, Shenzhen 518083, China
- Department of Biology, Centre for Social Evolution, University of Copenhagen, Copenhagen DK-2100, Denmark
| | - Craig D Millar
- School of Biological Sciences, University of Auckland, Auckland, New Zealand
| | - Barbara R Holland
- School of Natural Sciences, University of Tasmania, Hobart, TAS 7001, Australia
| | - David M Lambert
- Australian Research Centre for Human Evolution, Griffith University, Nathan, QLD 4111, Australia
| |
Collapse
|
4
|
Tomas C, Rodrigues P, Jønck CG, Barekzay Z, Simayijiang H, Pereira V, Børsting C. Performance of a 74-Microhaplotype Assay in Kinship Analyses. Genes (Basel) 2024; 15:224. [PMID: 38397213 PMCID: PMC10888013 DOI: 10.3390/genes15020224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 02/07/2024] [Accepted: 02/08/2024] [Indexed: 02/25/2024] Open
Abstract
Microhaplotypes (MHs) consisting of multiple SNPs and indels on short stretches of DNA are new and interesting loci for forensic genetic investigations. In this study, we analysed 74 previously defined MHs in two of the populations that our laboratory provides with forensic genetic services, Danes and Greenlanders. In addition to the 229 SNPs that originally made up the 74 MHs, 66 SNPs and 3 indels were identified in the two populations, and 45 of these variants were included in new definitions of the MHs, whereas 24 SNPs were considered rare and of little value for case work. The average effective number of alleles (Ae) was 3.2, 3.0, and 2.6 in Danes, West Greenlanders, and East Greenlanders, respectively. High levels of linkage disequilibrium were observed in East Greenlanders, which reflects the characteristics of this population that has a small size, and signs of admixture and substructure. Pairwise kinship simulations of full siblings, half-siblings, first cousins, and unrelated individuals were performed using allele frequencies from MHs, STRs and SNPs from Danish and Greenlandic populations. The MH panel outperformed the currently used STR and SNP marker sets and was able to differentiate siblings from unrelated individuals with a 0% false positive rate and a 1.1% false negative rate using an LR threshold of 10,000 in the Danish population. However, the panel was not able to differentiate half-siblings or first cousins from unrelated individuals. The results generated in this study will be used to implement MHs as investigative markers for relationship testing in our laboratory.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Claus Børsting
- Section of Forensic Genetics, Department of Forensic Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Frederik V’s Vej 11, DK-2100 Copenhagen, Denmark; (C.T.); (P.R.); (C.G.J.); (Z.B.); (V.P.)
| |
Collapse
|
5
|
Vlaic BA, Vlaic A, Russo IR, Colli L, Bruford MW, Odagiu A, Orozco-terWengel P. Analysis of Genetic Diversity in Romanian Carpatina Goats Using SNP Genotyping Data. Animals (Basel) 2024; 14:560. [PMID: 38396528 PMCID: PMC10886219 DOI: 10.3390/ani14040560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 01/30/2024] [Accepted: 02/05/2024] [Indexed: 02/25/2024] Open
Abstract
Animal husbandry is one of man's oldest occupations. It began with the domestication of animals and developed continuously, in parallel with the evolution of human society. The selection and improvement of goats in Romania was not a clearly defined objective until around 1980. In recent years, with the increasing economic value given to goats, breeding programs are becoming established. In Romania, a few goat genetic studies using microsatellites and mtDNA have been carried out; however, a systematic characterization of the country's goat genomic resources remains missing. In this study, we analyzed the genetic variability of Carpatina goats from four distinct geographical areas (northern, north-eastern, eastern and southern Romania), using the Illumina OvineSNP60 (RefSeq ARS1) high-density chip for 67 goats. Heterozygosity values, inbreeding coefficients and effective population size across all autosomes were calculated for those populations that inhabit high- and low-altitude and high- and low-temperature environments. Diversity, as measured by expected heterozygosity (HE), ranged from 0.413 in the group from a low-temperature environment to 0.420 in the group from a high-temperature environment. Within studied groups, the HT (high temperature) goats were the only group with a positive but low average inbreeding coefficient value, which was 0.009. After quality control (QC) analysis, 46,965 SNPs remained for analysis (MAF < 0.01). LD was calculated for each chromosome separately. The Ne has been declining since the time of domestication, having recently reached 123, 125, 185 and 92 for the HA (high altitude), LA (low altitude), HT (high temperature) and LT (low temperature) group, respectively. Our study revealed a low impact of inbreeding in the Carpatina population, and the Ne trend also indicated a steep decline in the last hundred years. These results will contribute to the genetic improvement of the Carpatina breed.
Collapse
Affiliation(s)
- Bogdan Alin Vlaic
- Department of Animal Breeding, Faculty of Animal Science and Biotechnologies, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, Mănăștur Street 3–5, 400372 Cluj-Napoca, Romania;
| | - Augustin Vlaic
- Faculty of Animal Science and Biotechnologies, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, Mănăștur Street 3–5, 400372 Cluj-Napoca, Romania;
| | - Isa-Rita Russo
- Cardiff School of Biosciences, Cardiff University, The Sir Martin Evans Building, Museum Avenue, Cardiff CF10 3AX, Wales, UK; (I.-R.R.); (M.W.B.)
| | - Licia Colli
- Dipartimento di Scienze Animali, della Nutrizione e degli Alimenti (DIANA), BioDNA Centro di ricerca sulla Biodiversità e sul DNA Antico, Facoltà di Scienze Agrarie, Alimentari e Ambientali, Università Cattolica del Sacro Cuore, Via Emilia Parmense n. 84, 29122 Piacenza, PC, Italy;
| | - Michael William Bruford
- Cardiff School of Biosciences, Cardiff University, The Sir Martin Evans Building, Museum Avenue, Cardiff CF10 3AX, Wales, UK; (I.-R.R.); (M.W.B.)
| | - Antonia Odagiu
- Faculty of Agriculture, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, Mănăștur Street 3–5, 400372 Cluj-Napoca, Romania
| | - Pablo Orozco-terWengel
- Cardiff School of Biosciences, Cardiff University, The Sir Martin Evans Building, Museum Avenue, Cardiff CF10 3AX, Wales, UK; (I.-R.R.); (M.W.B.)
| | | |
Collapse
|
6
|
Thelingwani RS, Jonhera CA, Masimirembwa C. Analysis of data and common mutations encountered during routine parentage testing in Zimbabwe. Sci Rep 2024; 14:1385. [PMID: 38228706 DOI: 10.1038/s41598-024-51987-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 01/11/2024] [Indexed: 01/18/2024] Open
Abstract
We analyzed parentage data collected over a ten-year period in a Zimbabwean DNA testing laboratory. Parentage case types, prevalence, exclusion data, mutations rates and observed genotyping irregularities were analyzed. We report analysis results from 1303 cases. DNA extraction and STR typing was conducted using standard commercial kits. Paternity was the most requested test (87.37%) followed by the indirect biological kinship tests (7.01%). Duo paternity (motherless) was the most common paternity test for both regular and court cases. We observed 367 paternity exclusions from 1135 cases, giving an overall paternity exclusion rate of 32.33%. Maternity had the lowest exclusion rate (8.33%), with criminal cases having the highest paternity (61.11%) and maternity (33.33%) exclusion rates. The number of mismatched STR loci ranged from 2-12 for duo cases and 4-18 for the trio cases. FGA, D2S1338, D18S51 and D2S441 were the most informative markers for exclusion. We detected 30 mutations out of 837 cases with an estimated paternal and maternal mutation rate of 0.0021 and 0.0011 respectively. Triallelic patterns were only observed at the TPOX locus with allele 10 and 11 being the extra alleles transmitted. Our report provides forensic parameters which can improve parentage and forensic analysis in Zimbabwe.
Collapse
Affiliation(s)
- Roslyn Stella Thelingwani
- Forensic Science Unit, Department of Genomic Medicine, African Institute of Biomedical Science and Technology (AiBST), 911 Boronia Township, Beatrice, Zimbabwe.
- CradleOmics, Block C, Wilkins Hospital Complex, Harare, Zimbabwe.
| | - Catherine Ashley Jonhera
- Forensic Science Unit, Department of Genomic Medicine, African Institute of Biomedical Science and Technology (AiBST), 911 Boronia Township, Beatrice, Zimbabwe
| | - Collen Masimirembwa
- Forensic Science Unit, Department of Genomic Medicine, African Institute of Biomedical Science and Technology (AiBST), 911 Boronia Township, Beatrice, Zimbabwe
| |
Collapse
|
7
|
Ramos RM, Petroli RJ, D'Alessandre NDR, Guardia GDA, Afonso ACDF, Nishi MY, Domenice S, Galante PAF, Mendonca BB, Batista RL. Small Indels in the Androgen Receptor Gene: Phenotype Implications and Mechanisms of Mutagenesis. J Clin Endocrinol Metab 2023; 109:68-79. [PMID: 37572362 DOI: 10.1210/clinem/dgad470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 08/02/2023] [Accepted: 08/07/2023] [Indexed: 08/14/2023]
Abstract
CONTEXT Despite high abundance of small indels in human genomes, their precise roles and underlying mechanisms of mutagenesis in Mendelian disorders require further investigation. OBJECTIVE To profile the distribution, functional implications, and mechanisms of small indels in the androgen receptor (AR) gene in individuals with androgen insensitivity syndrome (AIS). METHODS We conducted a systematic review of previously reported indels within the coding region of the AR gene, including 3 novel indels. Distribution throughout the AR coding region was examined and compared with genomic population data. Additionally, we assessed their impact on the AIS phenotype and investigated potential mechanisms driving their occurrence. RESULTS A total of 82 indels in AIS were included. Notably, all frameshift indels exhibited complete AIS. The distribution of indels across the AR gene showed a predominance in the N-terminal domain, most leading to frameshift mutations. Small deletions accounted for 59.7%. Most indels occurred in nonrepetitive sequences, with 15.8% situated within triplet regions. Gene burden analysis demonstrated significant enrichment of frameshift indels in AIS compared with controls (P < .00001), and deletions were overrepresented in AIS (P < .00001). CONCLUSION Our findings underscore a robust genotype-phenotype relationship regarding small indels in the AR gene in AIS, with a vast majority presenting complete AIS. Triplet regions and homopolymeric runs emerged as prone loci for small indels within the AR. Most were frameshift indels, with polymerase slippage potentially explaining half of AR indel occurrences. Complex frameshift indels exhibited association with palindromic runs. These discoveries advance understanding of the genetic basis of AIS and shed light on potential mechanisms underlying pathogenic small indel events.
Collapse
Affiliation(s)
- Raquel Martinez Ramos
- Developmental Endocrinology Unit, Hormone and Molecular Genetics Laboratory (LIM/42), Endocrinology Division, Internal Medicine Department, Medical School, University of São Paulo (USP), São Paulo, SP, 05403-000, Brazil
| | - Reginaldo José Petroli
- Faculdade de Medicina da Universidade Federal de Alagoas (UFAL), Programa de Pós-Graduação em Ciências Médicas-UFAL, Maceió, AL, 57072-900, Brazil
| | | | | | - Ana Caroline de Freitas Afonso
- Developmental Endocrinology Unit, Hormone and Molecular Genetics Laboratory (LIM/42), Endocrinology Division, Internal Medicine Department, Medical School, University of São Paulo (USP), São Paulo, SP, 05403-000, Brazil
| | - Mirian Yumie Nishi
- Developmental Endocrinology Unit, Hormone and Molecular Genetics Laboratory (LIM/42), Endocrinology Division, Internal Medicine Department, Medical School, University of São Paulo (USP), São Paulo, SP, 05403-000, Brazil
| | - Sorahia Domenice
- Developmental Endocrinology Unit, Hormone and Molecular Genetics Laboratory (LIM/42), Endocrinology Division, Internal Medicine Department, Medical School, University of São Paulo (USP), São Paulo, SP, 05403-000, Brazil
| | | | - Berenice Bilharinho Mendonca
- Developmental Endocrinology Unit, Hormone and Molecular Genetics Laboratory (LIM/42), Endocrinology Division, Internal Medicine Department, Medical School, University of São Paulo (USP), São Paulo, SP, 05403-000, Brazil
| | - Rafael Loch Batista
- Developmental Endocrinology Unit, Hormone and Molecular Genetics Laboratory (LIM/42), Endocrinology Division, Internal Medicine Department, Medical School, University of São Paulo (USP), São Paulo, SP, 05403-000, Brazil
- Instituto do Câncer do Estado de São Paulo da Faculdade, de Medicina da Universidade de São Paulo (ICESP), São Paulo, SP, 01246-000, Brazil
| |
Collapse
|
8
|
Felício D, du Mérac TR, Amorim A, Martins S. Functional implications of paralog genes in polyglutamine spinocerebellar ataxias. Hum Genet 2023; 142:1651-1676. [PMID: 37845370 PMCID: PMC10676324 DOI: 10.1007/s00439-023-02607-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 09/22/2023] [Indexed: 10/18/2023]
Abstract
Polyglutamine (polyQ) spinocerebellar ataxias (SCAs) comprise a group of autosomal dominant neurodegenerative disorders caused by (CAG/CAA)n expansions. The elongated stretches of adjacent glutamines alter the conformation of the native proteins inducing neurotoxicity, and subsequent motor and neurological symptoms. Although the etiology and neuropathology of most polyQ SCAs have been extensively studied, only a limited selection of therapies is available. Previous studies on SCA1 demonstrated that ATXN1L, a human duplicated gene of the disease-associated ATXN1, alleviated neuropathology in mice models. Other SCA-associated genes have paralogs (i.e., copies at different chromosomal locations derived from duplication of the parental gene), but their functional relevance and potential role in disease pathogenesis remain unexplored. Here, we review the protein homology, expression pattern, and molecular functions of paralogs in seven polyQ dominant ataxias-SCA1, SCA2, MJD/SCA3, SCA6, SCA7, SCA17, and DRPLA. Besides ATXN1L, we highlight ATXN2L, ATXN3L, CACNA1B, ATXN7L1, ATXN7L2, TBPL2, and RERE as promising functional candidates to play a role in the neuropathology of the respective SCA, along with the parental gene. Although most of these duplicates lack the (CAG/CAA)n region, if functionally redundant, they may compensate for a partial loss-of-function or dysfunction of the wild-type genes in SCAs. We aim to draw attention to the hypothesis that paralogs of disease-associated genes may underlie the complex neuropathology of dominant ataxias and potentiate new therapeutic strategies.
Collapse
Affiliation(s)
- Daniela Felício
- Instituto de Investigação e Inovação em Saúde (i3S), 4200-135, Porto, Portugal
- Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP), 4200-135, Porto, Portugal
- Instituto Ciências Biomédicas Abel Salazar (ICBAS), Universidade do Porto, 4050-313, Porto, Portugal
| | - Tanguy Rubat du Mérac
- Instituto de Investigação e Inovação em Saúde (i3S), 4200-135, Porto, Portugal
- Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP), 4200-135, Porto, Portugal
- Faculty of Science, University of Amsterdam, 1098 XH, Amsterdam, The Netherlands
| | - António Amorim
- Instituto de Investigação e Inovação em Saúde (i3S), 4200-135, Porto, Portugal
- Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP), 4200-135, Porto, Portugal
- Department of Biology, Faculty of Sciences, University of Porto, 4169-007, Porto, Portugal
| | - Sandra Martins
- Instituto de Investigação e Inovação em Saúde (i3S), 4200-135, Porto, Portugal.
- Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP), 4200-135, Porto, Portugal.
| |
Collapse
|
9
|
du Plessis SJ, Blaxter M, Koepfli KP, Chadwick EA, Hailer F. Genomics Reveals Complex Population History and Unexpected Diversity of Eurasian Otters (Lutra lutra) in Britain Relative to Genetic Methods. Mol Biol Evol 2023; 40:msad207. [PMID: 37713621 PMCID: PMC10630326 DOI: 10.1093/molbev/msad207] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 08/04/2023] [Accepted: 09/06/2023] [Indexed: 09/17/2023] Open
Abstract
Conservation genetic analyses of many endangered species have been based on genotyping of microsatellite loci and sequencing of short fragments of mtDNA. The increase in power and resolution afforded by whole genome approaches may challenge conclusions made on limited numbers of loci and maternally inherited haploid markers. Here, we provide a matched comparison of whole genome sequencing versus microsatellite and control region (CR) genotyping for Eurasian otters (Lutra lutra). Previous work identified four genetically differentiated "stronghold" populations of otter in Britain, derived from regional populations that survived the population crash of the 1950s-1980s. Using whole genome resequencing data from 45 samples from across the British stronghold populations, we confirmed some aspects of population structure derived from previous marker-driven studies. Importantly, we showed that genomic signals of the population crash bottlenecks matched evidence from otter population surveys. Unexpectedly, two strongly divergent mitochondrial lineages were identified that were undetectable using CR fragments, and otters in the east of England were genetically distinct and surprisingly variable. We hypothesize that this previously unsuspected variability may derive from past releases of Eurasian otters from other, non-British source populations in England around the time of the population bottleneck. Our work highlights that even reasonably well-studied species may harbor genetic surprises, if studied using modern high-throughput sequencing methods.
Collapse
Affiliation(s)
| | - Mark Blaxter
- Tree of Life, Wellcome Sanger Institute, Cambridge, UK
| | - Klaus-Peter Koepfli
- Smithsonian-Mason School of Conservation, George Mason University, Front Royal, VA, USA
- Centre for Species Survival, Smithsonian's National Zoo and Conservation Biology Institute, Washington, DC, USA
| | | | - Frank Hailer
- School of Biosciences, Cardiff University, Cardiff, UK
| |
Collapse
|
10
|
Deryusheva EI, Machulin AV, Galzitskaya OV. Diversity and features of proteins with structural repeats. Biophys Rev 2023; 15:1159-1169. [PMID: 37974986 PMCID: PMC10643770 DOI: 10.1007/s12551-023-01130-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 08/28/2023] [Indexed: 11/19/2023] Open
Abstract
The review provides information on proteins with structural repeats, including their classification, characteristics, functions, and relevance in disease development. It explores methods for identifying structural repeats and specialized databases. The review also highlights the potential use of repeat proteins as drug design scaffolds and discusses their evolutionary mechanisms.
Collapse
Affiliation(s)
- Evgeniya I. Deryusheva
- Institute for Biological Instrumentation, Federal Research Center “Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences”, Pushchino, Russia
| | - Andrey V. Machulin
- Skryabin Institute of Biochemistry and Physiology of Microorganisms, Federal Research Center “Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences”, Pushchino, Russia
| | - Oxana V. Galzitskaya
- Institute of Protein Research of the Russian Academy of Sciences, Pushchino, Russia
- Institute of Theoretical and Experimental Biophysics of the Russian Academy of Sciences, Pushchino, Russia
| |
Collapse
|
11
|
Kristmundsdottir S, Jonsson H, Hardarson MT, Palsson G, Beyter D, Eggertsson HP, Gylfason A, Sveinbjornsson G, Holley G, Stefansson OA, Halldorsson GH, Olafsson S, Arnadottir GA, Olason PI, Eiriksson O, Masson G, Thorsteinsdottir U, Rafnar T, Sulem P, Helgason A, Gudbjartsson DF, Halldorsson BV, Stefansson K. Sequence variants affecting the genome-wide rate of germline microsatellite mutations. Nat Commun 2023; 14:3855. [PMID: 37386006 PMCID: PMC10310707 DOI: 10.1038/s41467-023-39547-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Accepted: 06/16/2023] [Indexed: 07/01/2023] Open
Abstract
Microsatellites are polymorphic tracts of short tandem repeats with one to six base-pair (bp) motifs and are some of the most polymorphic variants in the genome. Using 6084 Icelandic parent-offspring trios we estimate 63.7 (95% CI: 61.9-65.4) microsatellite de novo mutations (mDNMs) per offspring per generation, excluding one bp repeats motifs (homopolymers) the estimate is 48.2 mDNMs (95% CI: 46.7-49.6). Paternal mDNMs occur at longer repeats than maternal ones, which are in turn larger with a mean size of 3.4 bp vs 3.1 bp for paternal ones. mDNMs increase by 0.97 (95% CI: 0.90-1.04) and 0.31 (95% CI: 0.25-0.37) per year of father's and mother's age at conception, respectively. Here, we find two independent coding variants that associate with the number of mDNMs transmitted to offspring; The minor allele of a missense variant (allele frequency (AF) = 1.9%) in MSH2, a mismatch repair gene, increases transmitted mDNMs from both parents (effect: 13.1 paternal and 7.8 maternal mDNMs). A synonymous variant (AF = 20.3%) in NEIL2, a DNA damage repair gene, increases paternally transmitted mDNMs (effect: 4.4 mDNMs). Thus, the microsatellite mutation rate in humans is in part under genetic control.
Collapse
Affiliation(s)
- Snaedis Kristmundsdottir
- deCODE genetics / Amgen Inc., Reykjavik, Iceland
- School of Technology, Reykjavik University, Reykjavik, Iceland
| | | | - Marteinn T Hardarson
- deCODE genetics / Amgen Inc., Reykjavik, Iceland
- School of Technology, Reykjavik University, Reykjavik, Iceland
| | | | - Doruk Beyter
- deCODE genetics / Amgen Inc., Reykjavik, Iceland
| | | | | | | | | | | | - Gisli H Halldorsson
- deCODE genetics / Amgen Inc., Reykjavik, Iceland
- School of Engineering and Natural Sciences, University of Iceland, Reykjavik, Iceland
| | | | - Gudny A Arnadottir
- deCODE genetics / Amgen Inc., Reykjavik, Iceland
- Faculty of Medicine, School of Health Sciences, University of Iceland, Reykjavik, Iceland
| | | | | | - Gisli Masson
- deCODE genetics / Amgen Inc., Reykjavik, Iceland
| | - Unnur Thorsteinsdottir
- deCODE genetics / Amgen Inc., Reykjavik, Iceland
- Faculty of Medicine, School of Health Sciences, University of Iceland, Reykjavik, Iceland
| | | | | | - Agnar Helgason
- deCODE genetics / Amgen Inc., Reykjavik, Iceland
- Department of Anthropology, University of Iceland, Reykjavik, Iceland
| | - Daniel F Gudbjartsson
- deCODE genetics / Amgen Inc., Reykjavik, Iceland
- School of Engineering and Natural Sciences, University of Iceland, Reykjavik, Iceland
| | - Bjarni V Halldorsson
- deCODE genetics / Amgen Inc., Reykjavik, Iceland.
- School of Technology, Reykjavik University, Reykjavik, Iceland.
| | | |
Collapse
|
12
|
Verbiest M, Maksimov M, Jin Y, Anisimova M, Gymrek M, Bilgin Sonay T. Mutation and selection processes regulating short tandem repeats give rise to genetic and phenotypic diversity across species. J Evol Biol 2023; 36:321-336. [PMID: 36289560 PMCID: PMC9990875 DOI: 10.1111/jeb.14106] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 06/29/2022] [Accepted: 08/01/2022] [Indexed: 02/03/2023]
Abstract
Short tandem repeats (STRs) are units of 1-6 bp that repeat in a tandem fashion in DNA. Along with single nucleotide polymorphisms and large structural variations, they are among the major genomic variants underlying genetic, and likely phenotypic, divergence. STRs experience mutation rates that are orders of magnitude higher than other well-studied genotypic variants. Frequent copy number changes result in a wide range of alleles, and provide unique opportunities for modulating complex phenotypes through variation in repeat length. While classical studies have identified key roles of individual STR loci, the advent of improved sequencing technology, high-quality genome assemblies for diverse species, and bioinformatics methods for genome-wide STR analysis now enable more systematic study of STR variation across wide evolutionary ranges. In this review, we explore mutation and selection processes that affect STR copy number evolution, and how these processes give rise to varying STR patterns both within and across species. Finally, we review recent examples of functional and adaptive changes linked to STRs.
Collapse
Affiliation(s)
- Max Verbiest
- Institute of Computational Life Sciences, School of Life Sciences and Facility ManagementZürich University of Applied SciencesWädenswilSwitzerland
- Department of Molecular Life SciencesUniversity of ZurichZurichSwitzerland
- Swiss Institute of BioinformaticsLausanneSwitzerland
| | - Mikhail Maksimov
- Department of Computer Science & EngineeringUniversity of California San DiegoLa JollaCaliforniaUSA
- Department of MedicineUniversity of California San DiegoLa JollaCaliforniaUSA
| | - Ye Jin
- Department of MedicineUniversity of California San DiegoLa JollaCaliforniaUSA
- Department of BioengineeringUniversity of California San DiegoLa JollaCaliforniaUSA
| | - Maria Anisimova
- Institute of Computational Life Sciences, School of Life Sciences and Facility ManagementZürich University of Applied SciencesWädenswilSwitzerland
- Swiss Institute of BioinformaticsLausanneSwitzerland
| | - Melissa Gymrek
- Department of Computer Science & EngineeringUniversity of California San DiegoLa JollaCaliforniaUSA
- Department of MedicineUniversity of California San DiegoLa JollaCaliforniaUSA
| | - Tugce Bilgin Sonay
- Institute of Ecology, Evolution and Environmental BiologyColumbia UniversityNew YorkNew YorkUSA
| |
Collapse
|
13
|
Zhang C, Jia C, Liu X, Zhao H, Hou L, Li M, Cui B, Li Y. Genetic Diversity Study on Geographical Populations of the Multipurpose Species Elsholtzia stauntonii Using Transferable Microsatellite Markers. FRONTIERS IN PLANT SCIENCE 2022; 13:903674. [PMID: 35646027 PMCID: PMC9134938 DOI: 10.3389/fpls.2022.903674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 04/21/2022] [Indexed: 06/15/2023]
Abstract
Elsholtzia stauntonii Benth. (Lamiaceae) is an economically important ornamental, medicinal and aromatic plant species. To meet the increasing market demand for E. stauntonii, it is necessary to assess genetic diversity within the species to accelerate the process of genetic improvement. Analysis of the transferability of simple sequence repeat (SSR) markers from related species or genera is a fast and economical method to evaluate diversity, and can ensure the availability of molecular markers in crops with limited genomic resources. In this study, the cross-genera transferability of 497 SSR markers selected from other members of the Lamiaceae (Salvia L., Perilla L., Mentha L., Hyptis Jacq., Leonurus L., Pogostemon Desf., Rosmarinus L., and Scutella L.) to E. stauntonii was 9.05% (45 primers). Among the 45 transferable markers, 10 markers revealed relatively high polymorphism in E. stauntonii. The genetic variation among 825 individuals from 18 natural populations of E. stauntonii in Hebei Province of China was analyzed using the 10 polymorphic SSR markers. On the basis of the SSR data, the average number of alleles (N A), expected heterozygosity (H E), and Shannon's information index (I) of the 10 primers pairs were 7.000, 0.478, and 0.688, respectively. Lower gene flow (N m = 1.252) and high genetic differentiation (F st = 0.181) were detected in the populations. Analysis of molecular variance (AMOVA) revealed that most of the variation (81.47%) was within the populations. Integrating the results of STRUCTURE, UPGMA (Unweighted Pair Group Method with Arithmetic Mean) clustering, and principal coordinate analysis, the 825 samples were grouped into two clusters associated with geographical provenance (southwestern and northeastern regions), which was consistent with the results of a Mantel test (r = 0.56, p < 0.001). Overall, SSR markers developed in related genera were effective to study the genetic structure and genetic diversity in geographical populations of E. stauntonii. The results provide a theoretical basis for conservation of genetic resources, genetic improvement, and construction of a core collection for E. stauntonii.
Collapse
Affiliation(s)
- Chenxing Zhang
- National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
- The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, Beijing Forestry University, Beijing, China
| | - Chunfeng Jia
- College of Biochemistry and Environmental Engineering, Baoding University, Baoding, China
| | - Xinru Liu
- National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
- The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, Beijing Forestry University, Beijing, China
| | - Hanqing Zhao
- National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
- The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, Beijing Forestry University, Beijing, China
| | - Lu Hou
- National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
- The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, Beijing Forestry University, Beijing, China
| | - Meng Li
- National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
- The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, Beijing Forestry University, Beijing, China
| | - Binbin Cui
- College of Biochemistry and Environmental Engineering, Baoding University, Baoding, China
| | - Yingyue Li
- National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
- The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, Beijing Forestry University, Beijing, China
| |
Collapse
|
14
|
Honka J, Baini S, Searle JB, Kvist L, Aspi J. Genetic assessment reveals inbreeding, possible hybridization, and low levels of genetic structure in a declining goose population. Ecol Evol 2022; 12:e8547. [PMID: 35127046 PMCID: PMC8796947 DOI: 10.1002/ece3.8547] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 12/18/2021] [Accepted: 12/21/2021] [Indexed: 11/30/2022] Open
Abstract
The population numbers of taiga bean goose (Anser fabalis fabalis) have halved during recent decades. Since this subspecies is hunted throughout most of its range, the decline is of management concern. Knowledge of the genetic population structure and diversity is important for guiding management and conservation efforts. Genetically unique subpopulations might be hunted to extinction if not managed separately, and any inbreeding depression or lack of genetic diversity may affect the ability to adapt to changing environments and increase extinction risk. We used microsatellite and mitochondrial DNA markers to study the genetic population structure and diversity among taiga bean geese breeding within the Central flyway management unit using non-invasively collected feathers. We found some genetic structuring with the maternally inherited mitochondrial DNA between four geographic regions (ɸ ST = 0.11-0.20) but none with the nuclear microsatellite markers (all pairwise F ST-values = 0.002-0.005). These results could be explained by female natal philopatry and male-biased dispersal, which completely homogenizes the nuclear genome. Therefore, the population could be managed as a single unit. Genetic diversity was still at a moderate level (average H E = 0.69) and there were no signs of past population size reductions, although significantly positive inbreeding coefficients in all sampling sites (F IS = 0.05-0.10) and high relatedness values (r = 0.60-0.86) between some individuals could indicate inbreeding. In addition, there was evidence of either incomplete lineage sorting or introgression from the pink-footed goose (Anser brachyrhynchus). The current population is not under threat by genetic impoverishment but monitoring in the future is desirable.
Collapse
Affiliation(s)
- Johanna Honka
- Ecology and Genetics Research UnitUniversity of OuluOuluFinland
| | - Serena Baini
- Department of BiologyUniversity of Rome “Tor Vergata”RomeItaly
| | - Jeremy B. Searle
- Department of Ecology and Evolutionary BiologyCornell UniversityIthacaNew YorkUSA
| | - Laura Kvist
- Ecology and Genetics Research UnitUniversity of OuluOuluFinland
| | - Jouni Aspi
- Ecology and Genetics Research UnitUniversity of OuluOuluFinland
| |
Collapse
|
15
|
Hart MW, Guerra VI, Allen JD, Byrne M. Cloning and Selfing Affect Population Genetic Variation in Simulations of Outcrossing, Sexual Sea Stars. THE BIOLOGICAL BULLETIN 2021; 241:286-302. [PMID: 35015625 DOI: 10.1086/717293] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
AbstractMany sea stars are well known for facultative or obligate asexual reproduction in both the adult and larval life-cycle stages. Some species and lineages are also capable of facultative or obligate hermaphroditic reproduction with self-fertilization. However, models of population genetic variation and empirical analyses of genetic data typically assume only sexual reproduction and outcrossing. A recent reanalysis of previously published empirical data (microsatellite genotypes) from two studies of one of the most well-known sea star species (the crown-of-thorns sea star; Acanthaster sp.) concluded that cloning and self-fertilization in that species are rare and contribute little to patterns of population genetic variation. Here we reconsider that conclusion by simulating the contribution of cloning and selfing to genetic variation in a series of models of sea star demography. Simulated variation in two simple models (analogous to previous analyses of empirical data) was consistent with high rates of cloning or selfing or both. More realistic scenarios that characterize population flux in sea stars of ecological significance, including outbreaks of crown-of-thorns sea stars that devastate coral reefs, invasions by Asterias amurensis, and epizootics of sea star wasting disease that kill Pisaster ochraceus, also showed significant but smaller effects of cloning and selfing on variation within subpopulations and differentiation between subpopulations. Future models or analyses of genetic variation in similar study systems might benefit from simulation modeling to characterize possible contributions of cloning or selfing to genetic variation in population samples or to understand the limits on inferring the effects of cloning or selfing in nature.
Collapse
|
16
|
Wolfgramm H, Martens J, Töpfer T, Vamberger M, Pathak A, Stuckas H, Päckert M. Asymmetric allelic introgression across a hybrid zone of the coal tit ( Periparus ater) in the central Himalayas. Ecol Evol 2021; 11:17332-17351. [PMID: 34938512 PMCID: PMC8668783 DOI: 10.1002/ece3.8369] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 10/26/2021] [Accepted: 11/02/2021] [Indexed: 11/07/2022] Open
Abstract
In the Himalayas, a number of secondary contact zones have been described for vicariant vertebrate taxa. However, analyses of genetic divergence and admixture are missing for most of these examples. In this study, we provide a population genetic analysis for the coal tit (Periparus ater) hybrid zone in Nepal. Intermediate phenotypes between the distinctive western "spot-winged tit" (P. a. melanolophus) and Eastern Himalayan coal tits (P. a. aemodius) occur across a narrow range of <100 km in western Nepal. As a peculiarity, another distinctive cinnamon-bellied form is known from a single population so far. Genetic admixture of western and eastern mitochondrial lineages was restricted to the narrow zone of phenotypically intermediate populations. The cline width was estimated 46 km only with a center close to the population of the cinnamon-bellied phenotype. In contrast, allelic introgression of microsatellite loci was asymmetrical from eastern P. a. aemodius into far western populations of phenotypic P. a. melanolophus but not vice versa. Accordingly, the microsatellite cline was about 3.7 times wider than the mitochondrial one.
Collapse
Affiliation(s)
- Hannes Wolfgramm
- Senckenberg Natural History Collections DresdenDresdenGermany
- Present address:
Department of Functional GenomicsInterfaculty Institute of Genetics and Functional GenomicsUniversity Medicine GreifswaldGreifswaldGermany
| | - Jochen Martens
- Institute of Organismic and Molecular Evolution (iomE)Johannes Gutenberg UniversityMainzGermany
| | - Till Töpfer
- Leibniz Institute for the Analysis of Biodiversity ChangeZoological Research Museum Alexander KoenigBonnGermany
| | | | - Abhinaya Pathak
- Department of National Parks and Wildlife ConservationKathmanduNepal
| | - Heiko Stuckas
- Senckenberg Natural History Collections DresdenDresdenGermany
| | - Martin Päckert
- Senckenberg Natural History Collections DresdenDresdenGermany
| |
Collapse
|
17
|
Leontaritou P, Lamari FN, Papasotiropoulos V, Iatrou G. Exploration of genetic, morphological and essential oil variation reveals tools for the authentication and breeding of Salvia pomifera subsp. calycina (Sm.) Hayek. PHYTOCHEMISTRY 2021; 191:112900. [PMID: 34399302 DOI: 10.1016/j.phytochem.2021.112900] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 07/25/2021] [Accepted: 08/04/2021] [Indexed: 06/13/2023]
Abstract
Salvia pomifera subsp. calycina (Sm.) Hayek (Lamiaceae), is an Eastern Mediterranean element, which is used in traditional medicine and cuisine in the same manner as S. fruticosa Mill. and S. officinalis L.. The essential oil (EO) and the extracts of S. pomifera possess bioactive compounds with anti-proliferative, anticholinesterase, antioxidant, antiviral and antifungal properties. In this study, the chemical (EO), genetic (DNA microsatellites, SSRs) and morphological diversity of forty-nine individuals of Salvia pomifera subsp. calycina, originating from five natural populations of the Peloponnese (Greece) were determined, in order to explore the potential for successful breeding and to reveal tools and biomarkers for identification and authentication. Chemical and genetic analyses revealed high levels of variation both within and among populations, while morphological analysis mainly within populations. Essential oil yield ranged from 1.79 to 5.79 ml 100 g-1 dry wt, among individuals while β-thujone ranged from 6.04 to 64.75%. Consistency was found in the EO yield and composition of specific individuals, when sampled during the same period, for three consecutive years, while the analysis during spring and summer months showed differentiation that still retained individual's discrimination. Genetic analysis using SSRs showed that the observed population heterozygosity (Ho) ranged from 0.48 to 0.67, while high number of private alleles were revealed in all populations. Considerable genetic differentiation was observed among the three Salvia taxa (S. pomifera subsp. calycina, S. fruticosa, S. officinalis) (Fst values ranged from 0.27 to 0.48) and lower among S. pomifera subsp. calycina populations (Fst values ranged from 0.06 to 0.13). The great variation that was revealed in all measured traits, in combination with the demonstrated, genetically based, consistency of their EO yield and composition, advocates to a successful breeding, whereas SSR genotyping presents a strong identification and authentication tool.
Collapse
Affiliation(s)
- Peggy Leontaritou
- Department of Biology, Division of Plant Biology, University of Patras, 26504, Patras, Greece.
| | - Fotini N Lamari
- Laboratory of Pharmacognosy & Chemistry of Natural Products, Department of Pharmacy, University of Patras, 26504, Patras, Greece
| | - Vasileios Papasotiropoulos
- Laboratory of Agricultural Genetics and Breeding, Department of Agriculture, University of Patras, 27200, Amaliada, Greece
| | - Gregoris Iatrou
- Department of Biology, Division of Plant Biology, University of Patras, 26504, Patras, Greece
| |
Collapse
|
18
|
Deryusheva EI, Machulin AV, Galzitskaya OV. Structural, Functional, and Evolutionary Characteristics of Proteins with Repeats. Mol Biol 2021. [DOI: 10.1134/s0026893321040038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
19
|
Rotger A, Igual JM, Genovart M, Rodríguez V, Ramon C, Pérez-Mellado V, Bibiloni G, Rita J, Tavecchia G. Contrasting Adult Body-Size in Sister Populations of the Balearic Lizard, Podarcis lilfordi (Günther 1874) Suggests Anthropogenic Selective Pressures. HERPETOLOGICAL MONOGRAPHS 2021. [DOI: 10.1655/herpmonographs-d-19-00005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Andreu Rotger
- Animal Demography and Ecology Unit, IMEDEA, CSIC-UIB, Miquel Marquès 21, 07190 Esporles, Spain
| | - José Manuel Igual
- Animal Demography and Ecology Unit, IMEDEA, CSIC-UIB, Miquel Marquès 21, 07190 Esporles, Spain
| | | | - Virginia Rodríguez
- Human Genetic Group, University of the Balearic Islands, ctra. Valldemossa, km 7.5, 07122 Palma de Mallorca, Spain
| | - Cori Ramon
- Departamento de Biologia, Universitat de les Illes Balears, ctra. Valldemossa km 7,5, 07122 Palma de Mallorca, Spain
| | | | - Gabriel Bibiloni
- Departamento de Biologia, Universitat de les Illes Balears, ctra. Valldemossa km 7,5, 07122 Palma de Mallorca, Spain
| | - Juan Rita
- Departamento de Biologia, Universitat de les Illes Balears, ctra. Valldemossa km 7,5, 07122 Palma de Mallorca, Spain
| | - Giacomo Tavecchia
- Animal Demography and Ecology Unit, IMEDEA, CSIC-UIB, Miquel Marquès 21, 07190 Esporles, Spain
| |
Collapse
|
20
|
Patil AB, Vijay N. Repetitive genomic regions and the inference of demographic history. Heredity (Edinb) 2021; 127:151-166. [PMID: 34002046 PMCID: PMC8322061 DOI: 10.1038/s41437-021-00443-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Revised: 04/16/2021] [Accepted: 04/17/2021] [Indexed: 02/03/2023] Open
Abstract
Inference of demographic histories using whole-genome datasets has provided insights into diversification, adaptation, hybridization, and plant-pathogen interactions, and stimulated debate on the impact of anthropogenic interventions and past climate on species demography. However, the impact of repetitive genomic regions on these inferences has mostly been ignored by masking of repeats. We use the Populus trichocarpa genome (Pop_tri_v3) to show that masking of repeat regions leads to lower estimates of effective population size (Ne) in the distant past in contrast to an increase in Ne estimates in recent times. However, in human datasets, masking of repeats resulted in lower estimates of Ne at all time points. We demonstrate that repeats affect demographic inferences using diverse methods like PSMC, MSMC, SMC++, and the Stairway plot. Our genomic analysis revealed that the biases in Ne estimates were dependent on the repeat class type and its abundance in each atomic interval. Notably, we observed a weak, yet consistently significant negative correlation between the repeat abundance of an atomic interval and the Ne estimates for that interval, which potentially reflects the recombination rate variation within the genome. The rationale for the masking of repeats has been that variants identified within these regions are erroneous. We find that polymorphisms in some repeat classes occur in callable regions and reflect reliable coalescence histories (e.g., LTR Gypsy, LTR Copia). The current demography inference methods do not handle repeats explicitly, and hence the effect of individual repeat classes needs careful consideration in comparative analysis. Deciphering the repeat demographic histories might provide a clear understanding of the processes involved in repeat accumulation.
Collapse
Affiliation(s)
- Ajinkya Bharatraj Patil
- Computational Evolutionary Genomics Lab, Department of Biological Sciences, IISER Bhopal, Bhauri, Madhya Pradesh, India
| | - Nagarjun Vijay
- Computational Evolutionary Genomics Lab, Department of Biological Sciences, IISER Bhopal, Bhauri, Madhya Pradesh, India.
| |
Collapse
|
21
|
Yamada S, Anzawa K, Mochizuki T. Molecular epidemiology of Microsporum canis isolated from Japanese cats, dogs and pet owners by multilocus microsatellite typing fragment analysis. Jpn J Infect Dis 2021; 75:105-113. [PMID: 34334533 DOI: 10.7883/yoken.jjid.2020.809] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Multilocus microsatellite typing (MLMT) was performed on 93 strains of Microsporum canis isolated between 2012 and 2017 from 75 cats, eight dogs and 10 pet owners. These strains were derived from two major reservoirs: commercial breeding facilities and pet shops (PS), and stray cats and pet cats that went outdoors and came in contact with stray cats (Outdoor). Six microsatellite markers were used for genotyping. These 93 strains included 22 genotypes, 11 previously detected in Japan and 11 new genotypes. Strains belonging to the previously reported genotypes P and A were distributed widely throughout Japan. Genotype P was the most frequent, accounting for 37 (39.8%) of the 93 strains, most derived from Outdoor sources. Genotype A was the second most frequent, being present in 11 (11.8%) of the 93 strains, most derived from the PS reservoir. All new genotypes were detected in isolates from cats, with many of these derived from the Outdoor reservoir. The consistency of infection was shown in 18 of 19 familial cases. These findings indicate that genotypes differ in strains derived from PS and Outdoor reservoirs and that genotyping by MLMT is useful for tracking the routes of spread and transmission of M. canis in Japan.
Collapse
Affiliation(s)
| | - Kazushi Anzawa
- Department of Dermatology, Kanazawa Medical University, JAPAN
| | | |
Collapse
|
22
|
Aecyo P, Marques A, Huettel B, Silva A, Esposito T, Ribeiro E, Leal IR, Gagnon E, Souza G, Pedrosa-Harand A. Plastome evolution in the Caesalpinia group (Leguminosae) and its application in phylogenomics and populations genetics. PLANTA 2021; 254:27. [PMID: 34236509 DOI: 10.1007/s00425-021-03655-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Accepted: 06/03/2021] [Indexed: 06/13/2023]
Abstract
The chloroplast genomes of Caesalpinia group species are structurally conserved, but sequence level variation is useful for both phylogenomic and population genetic analyses. Variation in chloroplast genomes (plastomes) has been an important source of information in plant biology. The Caesalpinia group has been used as a model in studies correlating ecological and genomic variables, yet its intergeneric and infrageneric relationships are not fully solved, despite densely sampled phylogenies including nuclear and plastid loci by Sanger sequencing. Here, we present the de novo assembly and characterization of plastomes from 13 species from the Caesalpinia group belonging to eight genera. A comparative analysis was carried out with 13 other plastomes previously available, totalizing 26 plastomes and representing 15 of the 26 known Caesalpinia group genera. All plastomes showed a conserved quadripartite structure and gene repertoire, except for the loss of four ndh genes in Erythrostemon gilliesii. Thirty polymorphic regions were identified for inter- or intrageneric analyses. The 26 aligned plastomes were used for phylogenetic reconstruction, revealing a well-resolved topology, and dividing the Caesalpinia group into two fully supported clades. Sixteen microsatellite (cpSSR) loci were selected from Cenostigma microphyllum for primer development and at least two were cross-amplified in different Leguminosae subfamilies by in vitro or in silico approaches. Four loci were used to assess the genetic diversity of C. microphyllum in the Brazilian Caatinga. Our results demonstrate the structural conservation of plastomes in the Caesalpinia group, offering insights into its systematics and evolution, and provides new genomic tools for future phylogenetic, population genetics, and phylogeographic studies.
Collapse
Affiliation(s)
- Paulo Aecyo
- Laboratory of Plant Cytogenetics and Evolution, Department of Botany, Federal University of Pernambuco, Recife, Brazil
| | - André Marques
- Max Planck Institute for Plant Breeding Research, Cologne, Germany
| | - Bruno Huettel
- Max Planck Institute for Plant Breeding Research, Cologne, Germany
| | - Ana Silva
- Laboratory of Plant Cytogenetics and Evolution, Department of Botany, Federal University of Pernambuco, Recife, Brazil
| | - Tiago Esposito
- Laboratory of Plant Cytogenetics and Evolution, Department of Botany, Federal University of Pernambuco, Recife, Brazil
| | - Elâine Ribeiro
- Laboratory of Plant-Animal Interaction, Department of Botany, Federal University of Pernambuco, Recife, Brazil
- Laboratory of Biodiversity and Evolutionary Genetics, University of Pernambuco - Campus Petrolina, Petrolina, Brazil
| | - Inara R Leal
- Laboratory of Plant-Animal Interaction, Department of Botany, Federal University of Pernambuco, Recife, Brazil
| | - Edeline Gagnon
- Royal Botanic Garden of Edinburgh, University of Edinburgh, Edinburgh, UK
| | - Gustavo Souza
- Laboratory of Plant Cytogenetics and Evolution, Department of Botany, Federal University of Pernambuco, Recife, Brazil
| | - Andrea Pedrosa-Harand
- Laboratory of Plant Cytogenetics and Evolution, Department of Botany, Federal University of Pernambuco, Recife, Brazil.
| |
Collapse
|
23
|
Flucher SM, Krapf P, Arthofer W, Suarez AV, Crozier RH, Steiner FM, Schlick-Steiner BC. Effect of social structure and introduction history on genetic diversity and differentiation. Mol Ecol 2021; 30:2511-2527. [PMID: 33811410 DOI: 10.1111/mec.15911] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2020] [Revised: 03/03/2021] [Accepted: 03/19/2021] [Indexed: 12/31/2022]
Abstract
Invasive species are a global threat to biodiversity, and understanding their history and biology is a major goal of invasion biology. Population-genetic approaches allow insights into these features, as population structure is shaped by factors such as invasion history (number, origin and age of introductions) and life-history traits (e.g., mating system, dispersal capability). We compared the relative importance of these factors by investigating two closely related ants, Tetramorium immigrans and Tetramorium tsushimae, that differ in their social structure and invasion history in North America. We used mitochondrial DNA sequences and microsatellite alleles to estimate the source and number of introduction events of the two species, and compared genetic structure among native and introduced populations. Genetic diversity of both species was strongly reduced in introduced populations, which also differed genetically from native populations. Genetic differentiation between ranges and the reduction in microsatellite diversity were more severe in the more recently introduced and supercolonial T. tsushimae. However, the loss of mitochondrial haplotype diversity was more pronounced in T. immigrans, which has single-queen colonies and was introduced earlier. Tetramorium immigrans was introduced at least twice from Western Europe to North America and once independently to South America. Its monogyny might have limited genetic diversity per introduction, but new mutations and successive introductions over a long time may have added to the gene pool in the introduced range. Polygyny in T. tsushimae probably facilitated the simultaneous introduction of several queens from a Japanese population to St. Louis, USA. In addition to identifying introduction pathways, our results reveal how social structure can influence the population-genetic consequences of founder events.
Collapse
Affiliation(s)
- Sylvia M Flucher
- Molecular Ecology Group, Department of Ecology, University of Innsbruck, Innsbruck, Austria
| | - Patrick Krapf
- Molecular Ecology Group, Department of Ecology, University of Innsbruck, Innsbruck, Austria
| | - Wolfgang Arthofer
- Molecular Ecology Group, Department of Ecology, University of Innsbruck, Innsbruck, Austria
| | - Andrew V Suarez
- Department of Evolution, Ecology and Behavior, University of Illinois at Urbana-Champaign, Urbana, IL, USA.,Department of Entomology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Ross H Crozier
- School of Marine and Tropical Biology, James Cook University, Townsville, QLD, Australia
| | - Florian M Steiner
- Molecular Ecology Group, Department of Ecology, University of Innsbruck, Innsbruck, Austria
| | | |
Collapse
|
24
|
Fasching L, Jang Y, Tomasi S, Schreiner J, Tomasini L, Brady MV, Bae T, Sarangi V, Vasmatzis N, Wang Y, Szekely A, Fernandez TV, Leckman JF, Abyzov A, Vaccarino FM. Early developmental asymmetries in cell lineage trees in living individuals. Science 2021; 371:1245-1248. [PMID: 33737484 DOI: 10.1126/science.abe0981] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Accepted: 02/09/2021] [Indexed: 12/13/2022]
Abstract
Mosaic mutations can be used to track cell lineages in humans. We used cell cloning to analyze embryonic cell lineages in two living individuals and a postmortem human specimen. Of 10 reconstructed postzygotic divisions, none resulted in balanced contributions of daughter lineages to tissues. In both living individuals, one of two lineages from the first cleavage was dominant across tissues, with 90% frequency in blood. We propose that the efficiency of DNA repair contributes to lineage imbalance. Allocation of lineages in postmortem brain correlated with anterior-posterior axis, associating lineage history with cell fate choices in embryos. We establish a minimally invasive framework for defining cell lineages in any living individual, which paves the way for studying their relevance in health and disease.
Collapse
Affiliation(s)
- Liana Fasching
- Child Study Center, Yale University, New Haven, CT 06520, USA
| | - Yeongjun Jang
- Department of Quantitative Health Sciences, Center for Individualized Medicine, Mayo Clinic, Rochester, MN 55905, USA
| | - Simone Tomasi
- Child Study Center, Yale University, New Haven, CT 06520, USA
| | | | - Livia Tomasini
- Child Study Center, Yale University, New Haven, CT 06520, USA
| | - Melanie V Brady
- Child Study Center, Yale University, New Haven, CT 06520, USA
| | - Taejeong Bae
- Department of Quantitative Health Sciences, Center for Individualized Medicine, Mayo Clinic, Rochester, MN 55905, USA
| | - Vivekananda Sarangi
- Department of Quantitative Health Sciences, Center for Individualized Medicine, Mayo Clinic, Rochester, MN 55905, USA
| | - Nikolaos Vasmatzis
- Department of Quantitative Health Sciences, Center for Individualized Medicine, Mayo Clinic, Rochester, MN 55905, USA
| | - Yifan Wang
- Department of Quantitative Health Sciences, Center for Individualized Medicine, Mayo Clinic, Rochester, MN 55905, USA
| | - Anna Szekely
- Department of Neurology, Yale University, New Haven, CT 06520, USA
| | - Thomas V Fernandez
- Child Study Center, Yale University, New Haven, CT 06520, USA.,Department of Psychiatry, Yale University, New Haven, CT 06520, USA
| | - James F Leckman
- Child Study Center, Yale University, New Haven, CT 06520, USA.,Department of Psychiatry, Yale University, New Haven, CT 06520, USA
| | - Alexej Abyzov
- Department of Quantitative Health Sciences, Center for Individualized Medicine, Mayo Clinic, Rochester, MN 55905, USA.
| | - Flora M Vaccarino
- Child Study Center, Yale University, New Haven, CT 06520, USA. .,Department of Neuroscience, Yale University, New Haven, CT 06520, USA.,Yale Kavli Institute for Neuroscience, New Haven, CT 06520, USA
| |
Collapse
|
25
|
An alternate workflow for preparing Precision ID Ancestry and Identity Panel libraries for Illumina sequencing. Int J Legal Med 2021; 135:1717-1726. [PMID: 33665703 DOI: 10.1007/s00414-021-02549-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Accepted: 02/18/2021] [Indexed: 10/22/2022]
Abstract
Single nucleotide polymorphisms (SNPs) are well-established for forensic applications. Although they are not compatible with existing criminal databases, they offer some advantages over short tandem repeat (STR) markers including smaller amplicons, no stutter artifacts, and biogeographic ancestry and phenotype predictions. The Precision ID NGS System, a commercial workflow by Thermo Fisher Scientific, offers a streamlined solution for genotyping forensically relevant SNPs using next-generation sequencing. The Precision ID Ancestry and Identity Panels combined target 289 SNPs, and their sensitivity, reproducibility, and accuracy have been evaluated by the forensic community. The aim of this study was to develop an alternative workflow to genotype these SNP panels using Illumina chemistry. Commercial genomic DNAs (gDNAs) (n, 3) were amplified using three uracil-tolerant polymerase master mixes. Resulting amplicons were prepared into libraries using the KAPA Hyper Prep Kit (KAPA Biosystems) and sequenced via Illumina's MiniSeq. Reads were analyzed using a published analysis pipeline to compile final genotypes with read depth information. Phusion U Multiplex PCR Master Mix (Thermo Fisher Scientific) statistically outperformed the other master mixes tested (P <0.0001), with respect to the number of SNPs genotyped. To ensure a workflow using Phusion U would be compatible across diverse samples, we optimized PCR cycle number using the same commercial gDNAs (n, 3), reference buccal swabs (n, 3), and environmental (household dust) samples (n, 6). Using the developed workflow, 93.9% of all SNPs were successfully genotyped across sample types. Implementation of the developed workflow should be straightforward for forensic laboratories and suitable for processing reference and casework samples.
Collapse
|
26
|
Larranaga N, van Zonneveld M, Hormaza JI. Holocene land and sea-trade routes explain complex patterns of pre-Columbian crop dispersion. THE NEW PHYTOLOGIST 2021; 229:1768-1781. [PMID: 33089900 DOI: 10.1111/nph.16936] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Accepted: 09/06/2020] [Indexed: 05/17/2023]
Abstract
Pre-Columbian crop movement remains poorly understood, hampering a good interpretation of the domestication and diversification of Neotropical crops. To provide new insights into pre-Columbian crop movement, we applied spatial genetics to identify and compare dispersal routes of three American crops between Mesoamerica and the Andes, two important centres of pre-Columbian crop and cultural diversity. Our analysis included georeferenced simple-sequence repeats (SSR) marker datasets of 1852 genotypes of cherimoya (Annona cherimola Mill.), a perennial fruit crop that became underutilised in the Americas after the European conquest, 770 genotypes of maize (Zea mays L.) and 476 genotypes of common bean (Phaseolus vulgaris L.). Our findings show that humans brought cherimoya from Mesoamerica to present Peru through long-distance sea-trade routes across the Pacific Ocean at least 4700 yr bp, after more ancient dispersion of maize and other crops through the Mesoamerican isthmus over land and near-coastal waters. To our knowledge, this is the first evidence of pre-Columbian crop movement between Mesoamerica and the Andes across the Pacific Ocean providing new insights into pre-Columbian crop exchange in the Americas. We propose that cherimoya represents a wider group of perennial fruit crops dispersed by humans via sea-trade routes between Mesoamerica and the Andes across the Pacific Ocean.
Collapse
Affiliation(s)
- Nerea Larranaga
- Instituto de Hortofruticultura Subtropical y Mediterranea La Mayora (IHSM La Mayora - CSIC - UMA), Algarrobo, 29750, Spain
- IMAREFI, University of Guadalajara, Jalisco, 45110, México
| | - Maarten van Zonneveld
- Genetic Resources and Seed Unit, World Vegetable Center, Shanhua, 74151, Taiwan
- Bioversity International, Turrialba, Costa Rica, 7170, Spain
| | - Jose I Hormaza
- Instituto de Hortofruticultura Subtropical y Mediterranea La Mayora (IHSM La Mayora - CSIC - UMA), Algarrobo, 29750, Spain
| |
Collapse
|
27
|
Benestan LM, Rougemont Q, Senay C, Normandeau E, Parent E, Rideout R, Bernatchez L, Lambert Y, Audet C, Parent GJ. Population genomics and history of speciation reveal fishery management gaps in two related redfish species ( Sebastes mentella and Sebastes fasciatus). Evol Appl 2021; 14:588-606. [PMID: 33664797 PMCID: PMC7896722 DOI: 10.1111/eva.13143] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2020] [Revised: 08/27/2020] [Accepted: 09/01/2020] [Indexed: 12/18/2022] Open
Abstract
Understanding the processes shaping population structure and reproductive isolation of marine organisms can improve their management and conservation. Using genomic markers combined with estimation of individual ancestries, assignment tests, spatial ecology, and demographic modeling, we (i) characterized the contemporary population structure, (ii) assessed the influence of space, fishing depth, and sampling years on contemporary distribution, and (iii) reconstructed the speciation history of two cryptic redfish species, Sebastes mentella and S. fasciatus. We genotyped 860 individuals in the Northwest Atlantic Ocean using 24,603 filtered single nucleotide polymorphisms (SNPs). Our results confirmed the clear genetic distinctiveness of the two species and identified three ecotypes within S. mentella and five populations in S. fasciatus. Multivariate analyses highlighted the influence of spatial distribution and depth on the overall genomic variation, while demographic modeling revealed that secondary contact models best explained inter- and intragenomic divergence. These species, ecotypes, and populations can be considered as a rare and wide continuum of genomic divergence in the marine environment. This acquired knowledge pertaining to the evolutionary processes driving population divergence and reproductive isolation will help optimizing the assessment of demographic units and possibly to refine fishery management units.
Collapse
Affiliation(s)
- Laura M. Benestan
- CEFEUniv Montpellier, CNRS, EPHE‐PSL UniversityIRD, Univ Paul Valéry Montpellier 3MontpellierFrance
| | - Quentin Rougemont
- Département de biologie, Institut de Biologie Intégrative et des Systèmes (IBIS)Université LavalQuébecQCCanada
| | - Caroline Senay
- Fisheries and Oceans CanadaMaurice‐Lamontagne InstituteMont‐JoliQCCanada
| | - Eric Normandeau
- Département de biologie, Institut de Biologie Intégrative et des Systèmes (IBIS)Université LavalQuébecQCCanada
| | - Eric Parent
- Fisheries and Oceans CanadaMaurice‐Lamontagne InstituteMont‐JoliQCCanada
| | - Rick Rideout
- Fisheries and Oceans CanadaNorthwest Atlantic Fisheries CentreN.L.St. John’sCanada
| | - Louis Bernatchez
- Département de biologie, Institut de Biologie Intégrative et des Systèmes (IBIS)Université LavalQuébecQCCanada
| | - Yvan Lambert
- Fisheries and Oceans CanadaMaurice‐Lamontagne InstituteMont‐JoliQCCanada
| | - Céline Audet
- Institut des sciences de la mer de RimouskiUniversité du Québec à RimouskiRimouskiQCCanada
| | | |
Collapse
|
28
|
Ghazi MG, Sharma SP, Tuboi C, Angom S, Gurumayum T, Nigam P, Hussain SA. Population genetics and evolutionary history of the endangered Eld's deer (Rucervus eldii) with implications for planning species recovery. Sci Rep 2021; 11:2564. [PMID: 33510319 PMCID: PMC7844053 DOI: 10.1038/s41598-021-82183-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Accepted: 01/18/2021] [Indexed: 01/30/2023] Open
Abstract
Eld's deer (Rucervus eldii) with three recognised subspecies (R. e. eldii, R. e. thamin, and R. e. siamensis) represents one of the most threatened cervids found in Southeast Asia. The species has experienced considerable range contractions and local extinctions owing to habitat loss and fragmentation, hunting, and illegal trade across its distribution range over the last century. Understanding the patterns of genetic variation is crucial for planning effective conservation strategies. This study investigated the phylogeography, divergence events and systematics of Eld's deer subspecies using the largest mtDNA dataset compiled to date. We also analysed the genetic structure and demographic history of R. e. eldii using 19 microsatellite markers. Our results showed that R. e. siamensis exhibits two divergent mtDNA lineages (mainland and Hainan Island), which diverged around 0.2 Mya (95% HPD 0.1-0.2), possibly driven by the fluctuating sea levels of the Early Holocene period. The divergence between R. e. eldii and R. e. siamensis occurred around 0.4 Mya (95% HPD 0.3-0.5), potentially associated with the adaptations to warm and humid climate with open grassland vegetation that predominated the region. Furthermore, R. e. eldii exhibits low levels of genetic diversity and small contemporary effective population size (median = 7, 4.7-10.8 at 95% CI) with widespread historical genetic bottlenecks which accentuates its vulnerability to inbreeding and extinction. Based on the observed significant evolutionary and systematic distance between Eld's deer and other species of the genus Rucervus, we propose to classify Eld's deer (Cervus eldii) in the genus Cervus, which is in congruent with previous phylogenetic studies. This study provides important conservation implications required to direct the ongoing population recovery programs and planning future conservation strategies.
Collapse
Affiliation(s)
| | - Surya Prasad Sharma
- Wildlife Institute of India, Chandrabani, Post Box #18, Dehra Dun, Uttarakhand, 248002, India
| | - Chongpi Tuboi
- Wildlife Institute of India, Chandrabani, Post Box #18, Dehra Dun, Uttarakhand, 248002, India
| | - Sangeeta Angom
- Wildlife Institute of India, Chandrabani, Post Box #18, Dehra Dun, Uttarakhand, 248002, India
| | - Tennison Gurumayum
- Wildlife Institute of India, Chandrabani, Post Box #18, Dehra Dun, Uttarakhand, 248002, India
| | - Parag Nigam
- Wildlife Institute of India, Chandrabani, Post Box #18, Dehra Dun, Uttarakhand, 248002, India
| | - Syed Ainul Hussain
- Wildlife Institute of India, Chandrabani, Post Box #18, Dehra Dun, Uttarakhand, 248002, India.
| |
Collapse
|
29
|
Villa L, Maksimov P, Luttermann C, Tuschy M, Gazzonis AL, Zanzani SA, Mortarino M, Conraths FJ, Manfredi MT, Schares G. Spatial distance between sites of sampling associated with genetic variation among Neospora caninum in aborted bovine foetuses from northern Italy. Parasit Vectors 2021; 14:47. [PMID: 33441141 PMCID: PMC7805081 DOI: 10.1186/s13071-020-04557-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Accepted: 12/16/2020] [Indexed: 01/12/2023] Open
Abstract
BACKGROUND Neospora caninum, a coccidian protozoan, represents an important cause of bovine abortion. Available N. caninum strains show considerable variation in vitro and in vivo, including different virulence in cattle. To which extent sexual recombination, which is possible in the intestines of domestic dogs and closely related carnivores as definitive hosts, contributes to this variation is not clear yet. METHODS Aborted bovine foetuses were collected between 2015 and early 2019 from Italian Holstein Friesian dairy herds suffering from reproductive problems. A total of 198 samples were collected from 165 intensive farms located in Lombardy, northern Italy. N. caninum samples were subjected to multilocus-microsatellite genotyping using ten previously established microsatellite markers. In addition to our own data, those from a recent study providing data on five markers from other northern Italian regions were included and analysed. RESULTS Of the 55 samples finally subjected to genotyping, 35 were typed at all or 9 out of 10 loci and their individual multilocus-microsatellite genotype (MLMG) determined. Linear regression revealed a statistically significant association between the spatial distance of the sampling sites with the genetic distance of N. caninum MLMGs (P < 0.001). Including data from this and a previous North Italian study into eBURST analysis revealed that several of N. caninum MLMGs from northern Italy separate into four groups; most of the samples from Lombardy clustered in one of these groups. Principle component analysis revealed similar clusters and confirmed MLMG groups identified by eBURST. Variations observed between MLMGs were not equally distributed over all loci, but predominantly observed in MS7, MS6A, or MS10. CONCLUSIONS Our findings confirm the concept of local N. caninum subpopulations. The geographic distance of sampling was associated with the genetic distance as determined by microsatellite typing. Results suggest that multi-parental recombination in N. caninum is a rare event, but does not exclude uniparental mating. More comprehensive studies on microsatellites in N. caninum and related species like Toxoplasma gondii should be undertaken, not only to improve genotyping capabilities, but also to understand possible functions of these regions in the genomes of these parasites.
Collapse
Affiliation(s)
- Luca Villa
- Department of Veterinary Medicine, Università degli Studi di Milano, Via dell'Università 6, 26900, Lodi, Italy
| | - Pavlo Maksimov
- Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Institute of Epidemiology, Südufer 10, 17493, Greifswald-Insel Riems, Germany
| | - Christine Luttermann
- Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Institute for Immunology, Südufer 10, 17493, Greifswald-Insel Riems, Germany
| | - Mareen Tuschy
- Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Institute of Epidemiology, Südufer 10, 17493, Greifswald-Insel Riems, Germany
| | - Alessia L Gazzonis
- Department of Veterinary Medicine, Università degli Studi di Milano, Via dell'Università 6, 26900, Lodi, Italy
| | - Sergio A Zanzani
- Department of Veterinary Medicine, Università degli Studi di Milano, Via dell'Università 6, 26900, Lodi, Italy
| | - Michele Mortarino
- Department of Veterinary Medicine, Università degli Studi di Milano, Via dell'Università 6, 26900, Lodi, Italy
| | - Franz J Conraths
- Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Institute of Epidemiology, Südufer 10, 17493, Greifswald-Insel Riems, Germany
| | - Maria Teresa Manfredi
- Department of Veterinary Medicine, Università degli Studi di Milano, Via dell'Università 6, 26900, Lodi, Italy
| | - Gereon Schares
- Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Institute of Epidemiology, Südufer 10, 17493, Greifswald-Insel Riems, Germany.
| |
Collapse
|
30
|
Kpatènon MJ, Salako KV, Santoni S, Zekraoui L, Latreille M, Tollon-Cordet C, Mariac C, Jaligot E, Beulé T, Adéoti K. Transferability, development of simple sequence repeat (SSR) markers and application to the analysis of genetic diversity and population structure of the African fan palm (Borassus aethiopum Mart.) in Benin. BMC Genet 2020; 21:145. [PMID: 33272218 PMCID: PMC7713368 DOI: 10.1186/s12863-020-00955-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Accepted: 11/17/2020] [Indexed: 02/08/2023] Open
Abstract
Background In Sub-Saharan Africa, Borassus aethiopum Mart. (African fan palm) is an important non-timber forest product-providing palm that faces multiple anthropogenic threats to its genetic diversity. However, this species is so far under-studied, which prevents its sustainable development as a resource. The present work is a first attempt at characterizing the genetic diversity and population structure of B. aethiopum across nine collection sites spanning the three climatic regions of Benin, West Africa, through the use of microsatellite markers. Results During a first phase we relied on the reported transferability of primers developed in other palm species. We find that, in disagreement with previously published results, only 22.5% of the markers tested enable amplification of B. aethiopum DNA and polymorphism detection is very low. In a second phase, we generated a B. aethiopum-specific genomic dataset through high-throughput sequencing and used it for the de novo detection of microsatellite loci. Among the primer pairs targeting these, 11 detected polymorphisms and were further used for analyzing genetic diversity. Across the nine sites, expected heterozygosity (He) ranges from 0.263 to 0.451 with an overall average of 0.354, showing a low genetic diversity. Analysis of molecular variance (AMOVA) shows that within-site variation accounts for 53% of the genetic variation. Accordingly, the low number of migrants and positive values of the fixation index (F) in sites from both the Central (Sudano-Guinean) and the Southern (Guinean) climatic regions suggest limited gene flow between sites. The global correlation between genetic and geographic distances is weak; however, our clustering analyses indicate that B. aethiopum palms from Savè (Center) are genetically more similar to those from the North than to samples from other Central sites. Conclusions In the light of our results, we discuss the use of inter-species transfer vs. de novo development of microsatellite markers in genetic diversity analyses targeting under-studied species, and suggest future applications for our molecular resources. We propose that, while prominent short-range pollen and seed dispersal in Benin explain most of our results, gene flux between the Central and Northern regions, as a result of animal and/or human migrations, might underlie the Savè discrepancy. Supplementary Information The online version contains supplementary material available at 10.1186/s12863-020-00955-y.
Collapse
Affiliation(s)
- Mariano Joly Kpatènon
- Laboratoire de Microbiologie et de Technologie Alimentaire (LAMITA), Faculté des Sciences et Techniques, Université d'Abomey-Calavi, Cotonou, Bénin.,Biodiversité et Ecologie des Plantes (BDEP), Faculté des Sciences et Techniques, Université d'Abomey-Calavi, Cotonou, Bénin.,DIADE, Univ Montpellier, IRD, Montpellier, France
| | - Kolawolé Valère Salako
- Biodiversité et Ecologie des Plantes (BDEP), Faculté des Sciences et Techniques, Université d'Abomey-Calavi, Cotonou, Bénin.,Laboratoire de Biomathématiques et d'Estimations Forestières (LABEF), Faculté des Sciences Agronomiques, Université d'Abomey-Calavi, Cotonou, Bénin
| | - Sylvain Santoni
- AGAP, Univ Montpellier, CIRAD, INRAE, Montpellier SupAgro, Montpellier, France
| | | | - Muriel Latreille
- AGAP, Univ Montpellier, CIRAD, INRAE, Montpellier SupAgro, Montpellier, France
| | | | | | - Estelle Jaligot
- DIADE, Univ Montpellier, IRD, Montpellier, France.,CIRAD, UMR DIADE, Montpellier, France
| | - Thierry Beulé
- DIADE, Univ Montpellier, IRD, Montpellier, France.,CIRAD, UMR DIADE, Montpellier, France
| | - Kifouli Adéoti
- Laboratoire de Microbiologie et de Technologie Alimentaire (LAMITA), Faculté des Sciences et Techniques, Université d'Abomey-Calavi, Cotonou, Bénin. .,Biodiversité et Ecologie des Plantes (BDEP), Faculté des Sciences et Techniques, Université d'Abomey-Calavi, Cotonou, Bénin.
| |
Collapse
|
31
|
Garrido-Navas MC, Tippins F, Barwell J, Hoffman J, Codd V, Royle NJ. Telomere Instability in Lynch Syndrome Families Leads to Some Shorter Telomeres in MSH2+/- Carriers. Life (Basel) 2020; 10:life10110265. [PMID: 33142697 PMCID: PMC7692680 DOI: 10.3390/life10110265] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 10/27/2020] [Accepted: 10/29/2020] [Indexed: 12/17/2022] Open
Abstract
Lynch syndrome (LS) is an inherited predisposition to early onset of various cancers, caused by mutation in a DNA mismatch repair (MMR) gene. In heterozygous MMR+/− carriers, somatic mutation, loss or silencing of the wild type allele increases the mutation rate, facilitating the initiation of MMR-defective cancers. These cancers are characterized by instability at short tandem repeats (STRs) and in telomeric DNA. We have investigated telomere length in saliva DNA from LS and control families, using single telomere analysis at XpYp and 12q and by qPCR to measure total telomeric DNA. Single telomere analysis showed a trend for shorter XpYp telomeres in MSH2+/− carriers compared to MLH1+/− carriers or controls, but this was masked in the comparative analysis of total telomeric DNA. Comparison of age-adjusted telomere length within families showed that neither MSH2+/− or MLH1+/− children had consistently shorter or longer telomeres than their MMR+/− parent, indicating the absence of an inter-generational effect on telomere length. Unexpectedly however, wildtype children in families with MSH2 mutations, had significantly longer XpYp telomeres than their MMR+/− parent. Altogether our data suggest that MMR insufficiency, particularly in MSH2+/− carriers, increases telomere instability and somatic cell turnover during the lifetime of LS mutation carriers but has minimal consequences for telomere length in the germline.
Collapse
Affiliation(s)
- M. Carmen Garrido-Navas
- Department of Genetics and Genome Biology, University of Leicester, Leicester LE1 7RH, UK; (F.T.); (J.B.)
- Liquid Biopsies & Cancer Interception (LiqBiopCI) Group, Junta de Andalucía de Genómica Investigación Oncológica, GENYO–Centro Pfizer–Universidad de Granada, 18016 Granada, Spain
- Universidad Internacional de la Rioja, 137, 26006 Logroño, La Rioja, Spain
- Correspondence: (M.C.G.-N.); (N.J.R.)
| | - Frances Tippins
- Department of Genetics and Genome Biology, University of Leicester, Leicester LE1 7RH, UK; (F.T.); (J.B.)
| | - Julian Barwell
- Department of Genetics and Genome Biology, University of Leicester, Leicester LE1 7RH, UK; (F.T.); (J.B.)
| | - Jonathan Hoffman
- Clinical Genetics Unit, Birmingham Women’s Hospital, Birmingham B15 2TG, UK;
| | - Veryan Codd
- Department of Cardiovascular Sciences, University of Leicester, BHF Cardiovascular Research Centre, Glenfield Hospital, Leicester LE3 9QP, UK;
| | - Nicola J. Royle
- Department of Genetics and Genome Biology, University of Leicester, Leicester LE1 7RH, UK; (F.T.); (J.B.)
- Correspondence: (M.C.G.-N.); (N.J.R.)
| |
Collapse
|
32
|
Yamazaki H, Sekiya T, Nagayama S, Hirasawa K, Tokura K, Sasaki A, Ichiyanagi H, Tojo K. Development of microsatellite markers for a soricid water shrew, Chimarrogale platycephalus, and their successful use for individual identification. Genes Genet Syst 2020; 95:201-210. [PMID: 33012772 DOI: 10.1266/ggs.20-00017] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
The soricid water shrew Chimarrogale platycephalus is a mammalian species endemic to the Japanese Islands. The animals inhabit the islands of Honshu and Kyushu, and are considered to be extinct in Shikoku. Information on this water shrew from Honshu and Kyushu is scarce, and C. platycephalus is registered on many local governments' red lists as an endangered species. There are very few studies on their ethology, ecology or phylogenetics, due to difficulties related to the shrews being both nocturnal and aquatic: to study C. platycephalus, field research must be conducted in mountain streams at night. To overcome these challenges, we previously established a genetic analysis method using the feces of C. platycephalus, as a result of which the amount of phylogenetic and phylogeographic data has increased and our understanding of the species has improved. In this study, microsatellite markers were developed, and analyses using markers for 21 loci were performed. Moreover, to confirm the ability of these 21 microsatellite markers to differentiate individuals, all markers were tested using fecal and tissue specimens from 12 individuals reared separately in an aquarium. Using as few as 12 of these loci, individual differentiation with 100% accuracy should be achievable. The development of microsatellite markers in this study and the establishment of individual identification methods should greatly contribute to future ecological, ethological, population genetics and biogeographical research on C. platycephalus.
Collapse
Affiliation(s)
- Haruka Yamazaki
- Division of Science, Interdisciplinary Graduate School of Science and Technology, Shinshu University
| | - Tomohiro Sekiya
- Division of Science, Interdisciplinary Graduate School of Science and Technology, Shinshu University
| | | | | | | | | | | | - Koji Tojo
- Division of Science, Interdisciplinary Graduate School of Science and Technology, Shinshu University.,Department of Biology, Faculty of Science, Shinshu University.,Institute of Mountain Science, Shinshu University
| |
Collapse
|
33
|
Chapuis M, Raynal L, Plantamp C, Meynard CN, Blondin L, Marin J, Estoup A. A young age of subspecific divergence in the desert locust inferred by ABC random forest. Mol Ecol 2020; 29:4542-4558. [DOI: 10.1111/mec.15663] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 09/08/2020] [Accepted: 09/09/2020] [Indexed: 02/04/2023]
Affiliation(s)
- Marie‐Pierre Chapuis
- CBGP CIRAD Montpellier France
- CBGP CIRAD INRAE IRD Montpellier SupAgro University of Montpellier Montpellier France
| | - Louis Raynal
- IMAG CNRS University of Montpellier Montpellier France
| | | | - Christine N. Meynard
- CBGP INRAE CIRAD IRD Montpellier SupAgro University of Montpellier Montpellier France
| | | | | | - Arnaud Estoup
- CBGP INRAE CIRAD IRD Montpellier SupAgro University of Montpellier Montpellier France
| |
Collapse
|
34
|
Raeker MO, Carethers JM. Immunological Features with DNA Microsatellite Alterations in Patients with Colorectal Cancer. JOURNAL OF CANCER IMMUNOLOGY 2020; 2:116-127. [PMID: 33000102 DOI: 10.33696/cancerimmunol.2.024] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Competent human DNA mismatch repair (MMR) corrects DNA polymerase mistakes made during cell replication to maintain complete DNA fidelity in daughter cells; faulty DNA MMR occurs in the setting of inflammation and neoplasia, creating base substitutions (e.g. point mutations) and frameshift mutations at DNA microsatellite sequences in progeny cells. Frameshift mutations at DNA microsatellite sequences are a detected biomarker termed microsatellite instability (MSI) for human disease, as this marker can prognosticate and determine therapeutic approaches for patients with cancer. There are two types of MSI: MSI-High (MSI-H), defined by frameshifts at mono- and di-nucleotide microsatellite sequences, and elevated microsatellite alterations at selected tetranucleotide repeats or EMAST, defined by frameshifts in di- and tetranucleotide microsatellite sequences but not mononucleotide sequences. Patients with colorectal cancers (CRCs) manifesting MSI-H demonstrate improved survival over patients without an MSI-H tumor, driven by the generation of immunogenic neoantigens caused by novel truncated proteins from genes whose sequences contain coding microsatellites; these patients' tumors contain hundreds of somatic mutations, and show responsiveness to treatment with immune checkpoint inhibitors. Patients with CRCs manifesting EMAST demonstrate poor survival over patients without an EMAST tumor, and may be driven by a more dominant defect in double strand break repair attributed to the MMR protein MSH3 over its frameshift correcting function; these patients' tumors often have a component of inflammation (and are also termed inflammation-associated microsatellite alterations) and show less somatic mutations and lack coding mononucleotide frameshift mutations that seem to generate the neoantigens seen in the majority of MSI-H tumors. Overall, both types of MSI are biomarkers that can prognosticate patients with CRC, can be tested for simultaneously in marker panels, and informs the approach to specific therapy including immunotherapy for their cancers.
Collapse
Affiliation(s)
- Maide O Raeker
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan
| | - John M Carethers
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan.,Department of Human Genetics and Rogel Cancer Center, University of Michigan, Ann Arbor, Michigan
| |
Collapse
|
35
|
Sugiyama T, Iwaizumi M, Taniguchi T, Suzuki S, Tani S, Yamade M, Hamaya Y, Osawa S, Furuta T, Miyajima H, Ohta T, Baba S, Sugimura H, Maekawa M, Sugimoto K. Microsatellite frameshift variants in SGO1 of gastric cancer are not always associated with MSI status. J Clin Pathol 2020; 74:jclinpath-2020-206934. [PMID: 32817265 DOI: 10.1136/jclinpath-2020-206934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 07/17/2020] [Accepted: 07/20/2020] [Indexed: 12/24/2022]
Abstract
AIMS Although frameshift variants in the microsatellite area of shugoshin 1 (SGO1) have been reported in the context of microsatellite instability-high (MSI-H)/deficient mismatch repair gastrointestinal cancer, most have been evaluated only in early stage I-III patients, and only two of its five microsatellite regions have been evaluated. Therefore, we investigated the frequency and MSI status of microsatellite frameshift variants in gastric cancer cases, including stage IV. METHODS In a total of 55 cases, 30 gastric cancer resection and 25 non-resection cases, DNA was extracted from both tumour and normal parts and PCR was performed. The variant was confirmed by TA cloning, and MSI was evaluated using GeneMapper software. RESULTS A frameshift variant of c.973delA was observed in 16 of the 45 evaluable cases. Its frequency was 35.6%. Of the 25 cases that could be assessed for MSI status, two cases of MSI-H were associated with the c.973delA SGO1 variant. However, c.973delA SGO1 variant was also observed in four cases of microsatellite stable. CONCLUSION Our study shows that SGO1 frameshift variants are not always associated with MSI status.
Collapse
Affiliation(s)
- Tomohiro Sugiyama
- First Department of Medicine, Hamamatsu University School of Medicine, Hamamatsu, Shizuoka, Japan
| | - Moriya Iwaizumi
- Department of Laboratory Medicine, Hamamatsu University School of Medicine, Hamamatsu, Shizuoka, Japan
| | - Terumi Taniguchi
- Department of Laboratory Medicine, Hamamatsu University School of Medicine, Hamamatsu, Shizuoka, Japan
| | - Satoshi Suzuki
- Department of Endoscopic and Photodynamic Medicine, Hamamatsu University School of Medicine, Hamamatsu, Shizuoka, Japan
| | - Shinya Tani
- First Department of Medicine, Hamamatsu University School of Medicine, Hamamatsu, Shizuoka, Japan
| | - Mihoko Yamade
- First Department of Medicine, Hamamatsu University School of Medicine, Hamamatsu, Shizuoka, Japan
| | - Yasushi Hamaya
- First Department of Medicine, Hamamatsu University School of Medicine, Hamamatsu, Shizuoka, Japan
| | - Satoshi Osawa
- Department of Endoscopic and Photodynamic Medicine, Hamamatsu University School of Medicine, Hamamatsu, Shizuoka, Japan
| | - Takahisa Furuta
- Center for Clinical Research, Hamamatsu University School of Medicine, Hamamatsu, Shizuoka, Japan
| | - Hiroaki Miyajima
- First Department of Medicine, Hamamatsu University School of Medicine, Hamamatsu, Shizuoka, Japan
| | - Tsutomu Ohta
- Department of Physical Therapy, Faculty of Health and Medical Sciences, Tokoha University, Hamamatsu, Shizuoka, Japan
| | - Satoshi Baba
- Department of Diagnostic Pathology, Hamamatsu University School of Medicine, Hamamatsu, Shizuoka, Japan
| | - Haruhiko Sugimura
- Department of Tumor Pathology, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Masato Maekawa
- Department of Laboratory Medicine, Hamamatsu University School of Medicine, Hamamatsu, Shizuoka, Japan
| | - Ken Sugimoto
- First Department of Medicine, Hamamatsu University School of Medicine, Hamamatsu, Shizuoka, Japan
| |
Collapse
|
36
|
Mode and Tempo of Microsatellite Evolution across 300 Million Years of Insect Evolution. Genes (Basel) 2020; 11:genes11080945. [PMID: 32824315 PMCID: PMC7464534 DOI: 10.3390/genes11080945] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2020] [Revised: 08/11/2020] [Accepted: 08/14/2020] [Indexed: 01/02/2023] Open
Abstract
Microsatellites are short, repetitive DNA sequences that can rapidly expand and contract due to slippage during DNA replication. Despite their impacts on transcription, genome structure, and disease, relatively little is known about the evolutionary dynamics of these short sequences across long evolutionary periods. To address this gap in our knowledge, we performed comparative analyses of 304 available insect genomes. We investigated the impact of sequence assembly methods and assembly quality on the inference of microsatellite content, and we explored the influence of chromosome type and number on the tempo and mode of microsatellite evolution across one of the most speciose clades on the planet. Diploid chromosome number had no impact on the rate of microsatellite evolution or the amount of microsatellite content in genomes. We found that centromere type (holocentric or monocentric) is not associated with a difference in the amount of microsatellite content; however, in those species with monocentric chromosomes, microsatellite content tends to evolve faster than in species with holocentric chromosomes.
Collapse
|
37
|
Castelli G, Bruno F, Caputo V, Fiorella S, Sammarco I, Lupo T, Migliazzo A, Vitale F, Reale S. Genetic tools discriminate strains of Leishmania infantum isolated from humans and dogs in Sicily, Italy. PLoS Negl Trop Dis 2020; 14:e0008465. [PMID: 32706789 PMCID: PMC7406075 DOI: 10.1371/journal.pntd.0008465] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 08/05/2020] [Accepted: 06/09/2020] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Leishmaniasis is one of the most important vector-borne diseases and it represents a serious world health problem affecting millions of people. High levels of Leishmania infections, affecting both humans and animals, are recognized among Italian regions. Among these, Sicily has one of the highest prevalence of Leishmania infection. METHODOLOGY/PRINCIPAL FINDINGS Seventy-eight Leishmania strains isolated from human and animal samples across Sicily, were analyzed for the polymorphic k26-gene and genotypes were assigned according to the size of the PCR products. A multilocus microsatellite typing (MLMT) approach based on the analysis of 11 independent loci was used to investigate populations structure and genetic diversity of the isolated strains. Six L. infantum reference strains were included in the analysis for comparison. Bayesian clustering analysis of microsatellite data showed that all the isolated strains clustered in two genetically distinct populations, corresponding to human and canine isolates respectively. A further subdivision was observed between the two main groups, giving a good correlation between human strains and their geographic origin, conversely canine population showed a great genetic variability diffused in the territory. CONCLUSIONS/SIGNIFICANCE Among the 78 Leishmania isolates, K26 analysis detected 71 samples (91%) as MON-1 zymodeme, confirming it as the predominant strain in Mediterranean area and 7 human samples (9%) as non-MON-1. MLMT gives important insights into the epidemiology of leishmaniases and allows characterization of different strains to a higher resolution than possible with zymodeme typing. Two main populations presented a strong correlation respect to the different hosts, exhibiting a co-circulation of two distinct populations of L. infantum. The population found in infected humans exhibited a correlation with geographic origin. These clusters could represent a geographically restricted population of strains with the same or related genotypes. This study can contribute to an understanding of Leishmania epidemiology, including the spread of reservoirs and sand fly vectors in the different foci of infection, characterizing parasites within the different hosts.
Collapse
Affiliation(s)
- Germano Castelli
- National Reference Center for Leishmaniasis (C.Re.Na.L.), Istituto Zooprofilattico Sperimentale della Sicilia, Palermo, Italy
| | - Federica Bruno
- National Reference Center for Leishmaniasis (C.Re.Na.L.), Istituto Zooprofilattico Sperimentale della Sicilia, Palermo, Italy
| | - Valentina Caputo
- Section of Dermatology, Department of Health Promotion, Maternal-Infant, Internal Medicine and Specialization of Excellence “G. D’Alessandro” (PROMISE) University of Palermo, Palermo, Italy.
| | - Santi Fiorella
- Section of Dermatology, Department of Health Promotion, Maternal-Infant, Internal Medicine and Specialization of Excellence “G. D’Alessandro” (PROMISE) University of Palermo, Palermo, Italy.
| | - Ignazio Sammarco
- Tecnologie Diagnostiche Innovative, Istituto Zooprofilattico Sperimentale della Sicilia, Palermo, Italy
| | - Tiziana Lupo
- Tecnologie Diagnostiche Innovative, Istituto Zooprofilattico Sperimentale della Sicilia, Palermo, Italy
| | - Antonella Migliazzo
- National Reference Center for Leishmaniasis (C.Re.Na.L.), Istituto Zooprofilattico Sperimentale della Sicilia, Palermo, Italy
| | - Fabrizio Vitale
- National Reference Center for Leishmaniasis (C.Re.Na.L.), Istituto Zooprofilattico Sperimentale della Sicilia, Palermo, Italy
- * E-mail:
| | - Stefano Reale
- Tecnologie Diagnostiche Innovative, Istituto Zooprofilattico Sperimentale della Sicilia, Palermo, Italy
| |
Collapse
|
38
|
Weissensteiner MH, Bunikis I, Catalán A, Francoijs KJ, Knief U, Heim W, Peona V, Pophaly SD, Sedlazeck FJ, Suh A, Warmuth VM, Wolf JBW. Discovery and population genomics of structural variation in a songbird genus. Nat Commun 2020; 11:3403. [PMID: 32636372 PMCID: PMC7341801 DOI: 10.1038/s41467-020-17195-4] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Accepted: 06/16/2020] [Indexed: 02/07/2023] Open
Abstract
Structural variation (SV) constitutes an important type of genetic mutations providing the raw material for evolution. Here, we uncover the genome-wide spectrum of intra- and interspecific SV segregating in natural populations of seven songbird species in the genus Corvus. Combining short-read (N = 127) and long-read re-sequencing (N = 31), as well as optical mapping (N = 16), we apply both assembly- and read mapping approaches to detect SV and characterize a total of 220,452 insertions, deletions and inversions. We exploit sampling across wide phylogenetic timescales to validate SV genotypes and assess the contribution of SV to evolutionary processes in an avian model of incipient speciation. We reveal an evolutionary young (~530,000 years) cis-acting 2.25-kb LTR retrotransposon insertion reducing expression of the NDP gene with consequences for premating isolation. Our results attest to the wealth and evolutionary significance of SV segregating in natural populations and highlight the need for reliable SV genotyping.
Collapse
Affiliation(s)
- Matthias H Weissensteiner
- Department of Evolutionary Biology and Science for Life Laboratory, Uppsala University, 752 36, Uppsala, Sweden.
- Division of Evolutionary Biology, Faculty of Biology, LMU Munich, Grosshaderner Str. 2, 82152, Planegg-Martinsried, Germany.
- Department of Biology, Pennsylvania State University, 310 Wartik Lab, University Park, PA, 16802, USA.
| | - Ignas Bunikis
- Uppsala Genome Center, Science for Life Laboratory, Department of Immunology, Genetics and Pathology, Uppsala University, BMC, Box 815, 752 37, Uppsala, Sweden
| | - Ana Catalán
- Division of Evolutionary Biology, Faculty of Biology, LMU Munich, Grosshaderner Str. 2, 82152, Planegg-Martinsried, Germany
| | | | - Ulrich Knief
- Division of Evolutionary Biology, Faculty of Biology, LMU Munich, Grosshaderner Str. 2, 82152, Planegg-Martinsried, Germany
| | - Wieland Heim
- Institute of Landscsape Ecology, University of Münster, Heisenbergstrasse 2, 48149, Münster, Germany
| | - Valentina Peona
- Department of Evolutionary Biology and Science for Life Laboratory, Uppsala University, 752 36, Uppsala, Sweden
- Department of Organismal Biology - Systematic Biology, Uppsala University, 752 36, Uppsala, Sweden
| | - Saurabh D Pophaly
- Division of Evolutionary Biology, Faculty of Biology, LMU Munich, Grosshaderner Str. 2, 82152, Planegg-Martinsried, Germany
- Max Planck Institute for Plant Breeding Research, Carl-von-Linné-Weg 10, 50829, Cologne, Germany
| | - Fritz J Sedlazeck
- Human Genome Sequencing Center at Baylor College of Medicine, 1 Baylor Plaza, Houston, TX, 77030, USA
| | - Alexander Suh
- Department of Evolutionary Biology and Science for Life Laboratory, Uppsala University, 752 36, Uppsala, Sweden
- Department of Organismal Biology - Systematic Biology, Uppsala University, 752 36, Uppsala, Sweden
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich, NR4 7TU, UK
| | - Vera M Warmuth
- Division of Evolutionary Biology, Faculty of Biology, LMU Munich, Grosshaderner Str. 2, 82152, Planegg-Martinsried, Germany
| | - Jochen B W Wolf
- Department of Evolutionary Biology and Science for Life Laboratory, Uppsala University, 752 36, Uppsala, Sweden.
- Division of Evolutionary Biology, Faculty of Biology, LMU Munich, Grosshaderner Str. 2, 82152, Planegg-Martinsried, Germany.
| |
Collapse
|
39
|
Kimble SJA, Dorr BS, Hanson‐Dorr KC, Rhodes OE, Devault TL. Migratory Flyways May Affect Population Structure in Double‐Crested Cormorants. J Wildl Manage 2020. [DOI: 10.1002/jwmg.21848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Steven J. A. Kimble
- Department of Biological Sciences Towson University 8000 York Road Baltimore MD 21252 USA
| | - Brian S. Dorr
- USDA/APHIS/WS National Wildlife Research Center P.O. Box 6099 Mississippi State MS 39762 USA
| | - Katie C. Hanson‐Dorr
- USDA/APHIS/WS National Wildlife Research Center P.O. Box 6099 Mississippi State MS 39762 USA
| | - Olin E. Rhodes
- Savannah River Ecology Laboratory P.O. Drawer E Aiken SC 29802 USA
| | - Travis L. Devault
- USDA/APHIS/WS National Wildlife Research Center 6100 Columbus Avenue Sandusky OH 44870 USA
| |
Collapse
|
40
|
Genome-wide screening of microsatellites in golden snub-nosed monkey (Rhinopithecus roxellana), for the development of a standardized genetic marker system. Sci Rep 2020; 10:10614. [PMID: 32606319 PMCID: PMC7326997 DOI: 10.1038/s41598-020-67451-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Accepted: 05/27/2020] [Indexed: 11/08/2022] Open
Abstract
Golden snub-nosed monkey (Rhinopithecus roxellana) is an endangered primate endemic to China. The lack of standardized genetic markers limits its conservation works. In the present study, a total of 1,400,552 perfect STRs was identified in the reference genome of R. roxellana. By comparing it with the 12 resequencing genomes of four geographical populations, a total of 1,927 loci were identified as perfect tetranucleotides and shared among populations. We randomly selected 74 loci to design primer pairs. By using a total of 64 samples from the Chengdu Zoo captive population and the Pingwu wild population, a set of 14 novel STR loci were identified with good polymorphism, strong stability, high repeatability, low genotyping error rate that were suitable for non-invasive samples. These were used to establish a standardized marker system for golden snub-nosed monkeys. The genetic diversity analysis showed the average HO, HE, and PIC was 0.477, 0.549, and 0.485, respectively, in the Chengdu Zoo population; and 0.516, 0.473, and 0.406, respectively, in Pingwu wild population. Moreover, an individual identification method was established, which could effectively distinguish individuals with seven markers. The paternity tests were conducted on seven offspring with known mothers from two populations, and their fathers were determined with high confidence. A genotyping database for the captive population in the Chengdu Zoo (n = 25) and wild population in Pingwu country (n = 8) was acquired by using this marker system.
Collapse
|
41
|
Xu W, Wang Y, Zhang D, Wang D, Zhou L, Ye X, Zhu C, Shi Y. Mutation analysis of 21 autosomal short tandem repeats in Han population from Hunan, China. Ann Hum Biol 2020; 46:254-260. [PMID: 31264462 DOI: 10.1080/03014460.2019.1638966] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Background: Short tandem repeats (STRs) are powerful genetic markers widely used in human genetics. Population data and locus-specific mutation rates of STRs are crucial for the evaluation and interpretation of genetic evidence in forensic and population genetics.Aim: To investigate the mutation rates of 21 autosomal STRs in a population from central south China.Subjects and methods: This study analysed 3420 paternity cases with a Combined Paternity Index >10,000 from Han population in Hunan. A total of 68,743 meiotic transfers were analysed and 62 mutations were identified.Results: The overall mutation rate of STR loci was 0.9 × 10-3 (95% CI, 0.0007-0.0011) and the locus-specific mutation rates were estimated ranging from 0.0000-0.0023. Locus D1S1656 exhibited the highest mutation rate of 2.3 × 10-3 (95% CI, 0.0005-0.0006), followed by D12S391 with a mutation rate of 2.0 × 10-3 (95% CI, 0.0007-0.0044). No mutation was observed at TPOX, D2S1338 or Penta D. One-step mutation cases accounted for 96.77% of total mutations and the ratio of paternal vs maternal mutations was ∼4.85:1. Inter-population comparisons of locus-specific mutation rates of several STRs revealed significant differences between Han in Hunan and Han in other regions of China. Conclusion: The data justified the use of geographical data in further genetic applications.
Collapse
Affiliation(s)
- Wei Xu
- Institute of Translational Medicine, Hunan Provincial People's Hospital, the First Affiliated Hospital of Hunan Normal University, Changsha, PR China
| | - Yuequn Wang
- Institute of Life Science, Hunan Normal University, Changsha, PR China
| | - Dandan Zhang
- School of Public Health, University of South China, Hengyang, PR China
| | - Daixin Wang
- Center of Forensic Science, Hunan Provincial People's Hospital, the First Affiliated Hospital of Hunan School of Physical Sciences, Changsha, PR China
| | - Liang Zhou
- School of Public Health, Changsha Normal University, Changsha, PR China
| | - Xiangli Ye
- School of Medicine, Hunan Normal University, Changsha, PR China
| | - Chaogeng Zhu
- Translational Medicine Laboratory of Pancreatic Diseases, Hunan Provincial People's Hospital, the First Affiliated Hospital of Hunan Normal University, Changsha, PR China
| | - Yongzhong Shi
- Institute of Translational Medicine, Hunan Provincial People's Hospital, the First Affiliated Hospital of Hunan Normal University, Changsha, PR China
| |
Collapse
|
42
|
Ennos RA, Sjökvist EI, Piotrowska MJ, Riddell C, Hoebe PN. Using genome resequencing to investigate racial structure, genetic diversity, sexual reproduction and hybridisation in the pine pathogen Dothistroma septosporum. FUNGAL ECOL 2020. [DOI: 10.1016/j.funeco.2020.100921] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
43
|
Tomczyk PP, Kiedrzyński M, Jedrzejczyk I, Rewers M, Wasowicz P. The transferability of microsatellite loci from a homoploid to a polyploid hybrid complex: an example from fine-leaved Festuca species ( Poaceae). PeerJ 2020; 8:e9227. [PMID: 32547868 PMCID: PMC7271882 DOI: 10.7717/peerj.9227] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Accepted: 04/30/2020] [Indexed: 11/20/2022] Open
Abstract
Background Microsatellite loci, or single sequence repeats (SSR), are widely used as powerful markers in population genetics. They represent an attractive tool for studying plants such as grasses, whose evolution is driven by hybridisation and polyploidization. However, the development of microsatellite markers has been challenging and time-consuming, especially for non-model organisms lacking available genome-wide sequence data. One straightforward and low-cost approach is to transfer the SSR loci developed for one species, or complex, to another closely-related one. This work evaluates the transferability of microsatellite loci from homoploid to allopolyploid complexes of fine-leaved Festuca species and to assess their use in two new species. The studied complex (F. amethystina-F. tatrae) is a useful model for research on the local adaptability of grasses with different ploidy levels. Since both species can be considered as rare or threatened (F. tatrae-as a mountain and narrow endemic species and F. amethystina-a mountain species with relict lowland populations), any tool enabling studies on genetic diversity and population genetics, such as SSR markers, could also be very useful in a conservation context. Methods The ploidy level within populations was estimated using flow cytometry. One diploid and one tetraploid population of F. amethystina and a diploid population of F. tatrae were chosen to test the transferability of SSR loci. Because our work describes the transfer of SSR nuclear markers designed originally for F. gautieri, a phylogenetic tree was prepared based on the ITS marker to assess the genetic distance between the studied complexes. The PCR products were separated on a high-resolution agarose gel, intended for SSR marker analysis. Appropriate solutions for the allotetraploid population and whole mixed-ploidy complex were implemented. Results Flow cytometry confirmed earlier data regarding DNA content in the investigated species and cytotypes. The phylogenetic ITS tree indicated a small genetic distance between F. gautieri complexes and the studied species. Ten microsatellite markers were successfully transferred. All markers were polymorphic. In total, 163 different alleles were scored from the 10 SSR loci. PCoA of accessions revealed well-separated groups corresponding to studied populations. Over 60% of the total variance is explained by differentiation within populations and one third among them. Conclusions The transferred markers are valid tools for the study of population genetics and inheritance relationships within cytotypes and species and between them. The presented markers can be used to study inbreeding depression in the Festuca species, and variations in the degrees of genetic diversity between different cytotypes in mountain and lowland areas. Our findings can also be applied to study conservation strategies for ensuring biodiversity at the genetic level in polyploid complexes.
Collapse
Affiliation(s)
- Przemysław P Tomczyk
- Department of Geobotany and Plant Ecology, Faculty of Biology and Environmental Protection, University of Lodz, Lodz, Poland
| | - Marcin Kiedrzyński
- Department of Geobotany and Plant Ecology, Faculty of Biology and Environmental Protection, University of Lodz, Lodz, Poland
| | - Iwona Jedrzejczyk
- Laboratory of Molecular Biology and Cytometry, Department of Agricultural Biotechnology, UTP University of Science and Technology, Bydgoszcz, Poland
| | - Monika Rewers
- Laboratory of Molecular Biology and Cytometry, Department of Agricultural Biotechnology, UTP University of Science and Technology, Bydgoszcz, Poland
| | - Pawel Wasowicz
- Icelandic Institute of Natural History, Akureyri, Iceland
| |
Collapse
|
44
|
Hina F, Yisilam G, Wang S, Li P, Fu C. De novo Transcriptome Assembly, Gene Annotation and SSR Marker Development in the Moon Seed Genus Menispermum (Menispermaceae). Front Genet 2020; 11:380. [PMID: 32457795 PMCID: PMC7227793 DOI: 10.3389/fgene.2020.00380] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Accepted: 03/27/2020] [Indexed: 12/27/2022] Open
Abstract
The moonseed genus Menispermum L. (Menispermaceae) is disjunctly distributed in East Asia and eastern North America. Although Menispermum has important medicinal value, genetic and genomic information is scarce, with very few available molecular markers. In the current study, we used Illumina transcriptome sequencing and de novo assembly of the two Menispermum species to obtain in-depth genetic knowledge. From de novo assembly, 53,712 and 78,921 unigenes were generated for M. canadense and M. dauricum, with 37,527 (69.87%) and 55,211 (69.96%) showing significant similarities against the six functional databases, respectively. Moreover, 521 polymorphic EST-SSRs were identified. Of them, 23 polymorphic EST-SSR markers were selected to investigate the population genetic diversity within the genus. The newly developed EST-SSR markers also revealed high transferability among the three examined Menispermaceae species. Overall, we provide the very first transcriptomic analyses of this important medicinal genus. In addition, the novel microsatellite markers developed here will aid future studies on the population genetics and phylogeographic patterns of Menispermum at the intercontinental geographical scale.
Collapse
Affiliation(s)
- Faiza Hina
- Laboratory of Systematic and Evolutionary Botany and Biodiversity, College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Gulbar Yisilam
- Laboratory of Systematic and Evolutionary Botany and Biodiversity, College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Shenyi Wang
- Department of Botany, University of Wisconsin–Madison, Madison, WI, United States
| | - Pan Li
- Laboratory of Systematic and Evolutionary Botany and Biodiversity, College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Chengxin Fu
- Laboratory of Systematic and Evolutionary Botany and Biodiversity, College of Life Sciences, Zhejiang University, Hangzhou, China
| |
Collapse
|
45
|
La Rosa P, Petrillo S, Bertini ES, Piemonte F. Oxidative Stress in DNA Repeat Expansion Disorders: A Focus on NRF2 Signaling Involvement. Biomolecules 2020; 10:biom10050702. [PMID: 32369911 PMCID: PMC7277112 DOI: 10.3390/biom10050702] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 04/24/2020] [Accepted: 04/27/2020] [Indexed: 12/13/2022] Open
Abstract
DNA repeat expansion disorders are a group of neuromuscular and neurodegenerative diseases that arise from the inheritance of long tracts of nucleotide repetitions, located in the regulatory region, introns, or inside the coding sequence of a gene. Although loss of protein expression and/or the gain of function of its transcribed mRNA or translated product represent the major pathogenic effect of these pathologies, mitochondrial dysfunction and imbalance in redox homeostasis are reported as common features in these disorders, deeply affecting their severity and progression. In this review, we examine the role that the redox imbalance plays in the pathological mechanisms of DNA expansion disorders and the recent advances on antioxidant treatments, particularly focusing on the expression and the activity of the transcription factor NRF2, the main cellular regulator of the antioxidant response.
Collapse
|
46
|
Distribution of the CAG Triplet Repeat in ATXN1, ATXN3, and CACNA1A Loci in Peruvian Population. THE CEREBELLUM 2020; 19:527-535. [PMID: 32285347 DOI: 10.1007/s12311-020-01129-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Spinocerebellar ataxia subtypes 1, 3, and 6 (SCA1, MJD/SCA3, and SCA6) are among the most prevalent autosomal dominant cerebellar ataxias worldwide, but their relative frequencies in Peru are low. Frequency of large normal (LN) alleles at spinocerebellar ataxia-causative genes has been proposed to be associated with disease prevalence. To investigate the allelic distribution of the CAG repeat in ATXN1, ATXN3, and CACNA1A genes in a Peruvian mestizo population and examine their association with the relative frequency of SCA1, MJD/SCA3, and SCA6 across populations. We genotyped 213 healthy mestizo individuals from Northern Lima, Peru, for ATXN1, ATXN3, and CACNA1A using polymerase chain reaction (PCR) and polyacrylamide gel electrophoresis (PAGE). We compared the frequency of LN alleles and relative disease frequency between populations. We also tested 40 samples for CAT repeat interruptions within the CAG tract of ATXN1. We found no association between disease frequency and population frequency of LN alleles at ATXN1 and ATXN3. All 40 ATXN1 samples tested for CAT interruptions were positive. Frequency of LN alleles at CACNA1A correlates with SCA6 frequency across several populations, but this effect was largely driven by data from a single population. Low frequency of SCA1 and MJD/SCA3 in Peru is not explained by frequency of LN alleles at ATXN1 and ATXN3, respectively. The observed correlation between CACNA1A LN alleles and SCA6 frequency requires further assessment.
Collapse
|
47
|
Pelassa I, Cibelli M, Villeri V, Lilliu E, Vaglietti S, Olocco F, Ghirardi M, Montarolo PG, Corà D, Fiumara F. Compound Dynamics and Combinatorial Patterns of Amino Acid Repeats Encode a System of Evolutionary and Developmental Markers. Genome Biol Evol 2020; 11:3159-3178. [PMID: 31589292 PMCID: PMC6839033 DOI: 10.1093/gbe/evz216] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/27/2019] [Indexed: 01/05/2023] Open
Abstract
Homopolymeric amino acid repeats (AARs) like polyalanine (polyA) and polyglutamine (polyQ) in some developmental proteins (DPs) regulate certain aspects of organismal morphology and behavior, suggesting an evolutionary role for AARs as developmental "tuning knobs." It is still unclear, however, whether these are occasional protein-specific phenomena or hints at the existence of a whole AAR-based regulatory system in DPs. Using novel approaches to trace their functional and evolutionary history, we find quantitative evidence supporting a generalized, combinatorial role of AARs in developmental processes with evolutionary implications. We observe nonrandom AAR distributions and combinations in HOX and other DPs, as well as in their interactomes, defining elements of a proteome-wide combinatorial functional code whereby different AARs and their combinations appear preferentially in proteins involved in the development of specific organs/systems. Such functional associations can be either static or display detectable evolutionary dynamics. These findings suggest that progressive changes in AAR occurrence/combination, by altering embryonic development, may have contributed to taxonomic divergence, leaving detectable traces in the evolutionary history of proteomes. Consistent with this hypothesis, we find that the evolutionary trajectories of the 20 AARs in eukaryotic proteomes are highly interrelated and their individual or compound dynamics can sharply mark taxonomic boundaries, or display clock-like trends, carrying overall a strong phylogenetic signal. These findings provide quantitative evidence and an interpretive framework outlining a combinatorial system of AARs whose compound dynamics mark at the same time DP functions and evolutionary transitions.
Collapse
Affiliation(s)
- Ilaria Pelassa
- Department of Neuroscience Rita Levi Montalcini, University of Torino, Italy
| | - Marica Cibelli
- Department of Neuroscience Rita Levi Montalcini, University of Torino, Italy
| | - Veronica Villeri
- Department of Neuroscience Rita Levi Montalcini, University of Torino, Italy
| | - Elena Lilliu
- Department of Neuroscience Rita Levi Montalcini, University of Torino, Italy
| | - Serena Vaglietti
- Department of Neuroscience Rita Levi Montalcini, University of Torino, Italy
| | - Federica Olocco
- Department of Neuroscience Rita Levi Montalcini, University of Torino, Italy
| | - Mirella Ghirardi
- Department of Neuroscience Rita Levi Montalcini, University of Torino, Italy.,National Institute of Neuroscience (INN), Torino, Italy
| | - Pier Giorgio Montarolo
- Department of Neuroscience Rita Levi Montalcini, University of Torino, Italy.,National Institute of Neuroscience (INN), Torino, Italy
| | - Davide Corà
- Department of Translational Medicine, Piemonte Orientale University, Novara, Italy.,Center for Translational Research on Autoimmune and Allergic Disease (CAAD), Novara, Italy
| | - Ferdinando Fiumara
- Department of Neuroscience Rita Levi Montalcini, University of Torino, Italy.,National Institute of Neuroscience (INN), Torino, Italy
| |
Collapse
|
48
|
McCall BL, Fluker BL. Spatiotemporal population dynamics of the Caddo Madtom (Noturus taylori), a narrow-range endemic of the Ouachita Highlands. CONSERV GENET 2020. [DOI: 10.1007/s10592-020-01260-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
|
49
|
Sugiura N, Ochiai K, Yamamoto T, Kato T, Kawamoto Y, Omi T, Hayama SI. Examining multiple paternity in the raccoon dog (Nyctereutes procyonoides) in Japan using microsatellite analysis. J Vet Med Sci 2020; 82:479-482. [PMID: 32101823 PMCID: PMC7192729 DOI: 10.1292/jvms.19-0655] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
We analyzed the genotypes of three pregnant females and their litters to investigate the
phenomenon of multiple paternity in wild raccoon dogs (Nyctereutes
procyonoides) using 17 microsatellite markers. If a female has mated with only
one male during estrus, then the maximum number of paternal alleles will not exceed two
among littermates with the same father. The results revealed two out of three litters had
three or four paternal alleles at one or five microsatellite loci. Therefore, the female
had mated with more than one male during estrus. To the best of our knowledge, the present
study is the first to report the possibility of multiple paternity in wild raccoon
dogs.
Collapse
Affiliation(s)
- Natsuko Sugiura
- Laboratory of Wildlife Medicine, Nippon Veterinary and Life Science University, 1-7-1 Kyonan-cho, Musashino, Tokyo 180-8602, Japan.,Department of Basic Science, School of Veterinary Nursing and Technology, Nippon Veterinary and Life Science University, 1-7-1 Kyonan-cho, Musashino, Tokyo 180-8602, Japan
| | - Kazuhiko Ochiai
- Department of Basic Science, School of Veterinary Nursing and Technology, Nippon Veterinary and Life Science University, 1-7-1 Kyonan-cho, Musashino, Tokyo 180-8602, Japan
| | - Toshiaki Yamamoto
- Department of Applied Science, School of Veterinary Nursing and Technology, Nippon Veterinary and Life Science University, 1-7-1 Kyonan-cho, Musashino, Tokyo 180-8602, Japan
| | - Takuya Kato
- Laboratory of Wildlife Medicine, Nippon Veterinary and Life Science University, 1-7-1 Kyonan-cho, Musashino, Tokyo 180-8602, Japan
| | - Yoshi Kawamoto
- Laboratory of Wildlife Medicine, Nippon Veterinary and Life Science University, 1-7-1 Kyonan-cho, Musashino, Tokyo 180-8602, Japan
| | - Toshinori Omi
- Department of Basic Science, School of Veterinary Nursing and Technology, Nippon Veterinary and Life Science University, 1-7-1 Kyonan-cho, Musashino, Tokyo 180-8602, Japan
| | - Shin-Ichi Hayama
- Laboratory of Wildlife Medicine, Nippon Veterinary and Life Science University, 1-7-1 Kyonan-cho, Musashino, Tokyo 180-8602, Japan
| |
Collapse
|
50
|
Duan H, Guo J, Xuan L, Wang Z, Li M, Yin Y, Yang Y. Comparative chloroplast genomics of the genus Taxodium. BMC Genomics 2020; 21:114. [PMID: 32005143 PMCID: PMC6995153 DOI: 10.1186/s12864-020-6532-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Accepted: 01/23/2020] [Indexed: 12/03/2022] Open
Abstract
Background Chloroplast (cp) genome information would facilitate the development and utilization of Taxodium resources. However, cp genome characteristics of Taxodium were poorly understood. Results We determined the complete cp genome sequences of T. distichum, T. mucronatum, and T. ascendens. The cp genomes are 131,947 bp to 132,613 bp in length, encode 120 genes with the same order, and lack typical inverted repeat (IR) regions. The longest small IR, a 282 bp trnQ-containing IR, were involved in the formation of isomers. Comparative analysis of the 3 cp genomes showed that 91.57% of the indels resulted in the periodic variation of tandem repeat (TR) motifs and 72.46% single nucleotide polymorphisms (SNPs) located closely to TRs, suggesting a relationship between TRs and mutational dynamics. Eleven hypervariable regions were identified as candidates for DNA barcode development. Hypothetical cp open reading frame 1(Ycf1) was the only one gene that has an indel in coding DNA sequence, and the indel is composed of a long TR. When extended to cupressophytes, ycf1 genes have undergone a universal insertion of TRs accompanied by extreme length expansion. Meanwhile, ycf1 also located in rearrangement endpoints of cupressophyte cp genomes. All these characteristics highlight the important role of repeats in the evolution of cp genomes. Conclusions This study added new evidence for the role of repeats in the dynamics mechanism of cp genome mutation and rearrangement. Moreover, the information of TRs and hypervariable regions would provide reliable molecular resources for future research focusing on the infrageneric taxa identification, phylogenetic resolution, population structure and biodiversity for the genus Taxodium and Cupressophytes.
Collapse
Affiliation(s)
- Hao Duan
- Jiangsu Engineering Research Center for Taxodium Rich, Germplasm Innovation and Propagation, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem, Sun Yat-Sen), Nanjing, China
| | - Jinbo Guo
- Jiangsu Engineering Research Center for Taxodium Rich, Germplasm Innovation and Propagation, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem, Sun Yat-Sen), Nanjing, China
| | - Lei Xuan
- Jiangsu Engineering Research Center for Taxodium Rich, Germplasm Innovation and Propagation, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem, Sun Yat-Sen), Nanjing, China
| | - Ziyang Wang
- Jiangsu Engineering Research Center for Taxodium Rich, Germplasm Innovation and Propagation, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem, Sun Yat-Sen), Nanjing, China
| | - Mingzhi Li
- Biodata Biotechnology Co. Ltd, Hefei, China
| | - Yunlong Yin
- Jiangsu Engineering Research Center for Taxodium Rich, Germplasm Innovation and Propagation, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem, Sun Yat-Sen), Nanjing, China
| | - Ying Yang
- Jiangsu Engineering Research Center for Taxodium Rich, Germplasm Innovation and Propagation, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem, Sun Yat-Sen), Nanjing, China.
| |
Collapse
|