1
|
Silva MA, Salgueiro CA. Multistep Signaling in Nature: A Close-Up of Geobacter Chemotaxis Sensing. Int J Mol Sci 2021; 22:ijms22169034. [PMID: 34445739 PMCID: PMC8396549 DOI: 10.3390/ijms22169034] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 07/30/2021] [Accepted: 08/09/2021] [Indexed: 11/23/2022] Open
Abstract
Environmental changes trigger the continuous adaptation of bacteria to ensure their survival. This is possible through a variety of signal transduction pathways involving chemoreceptors known as methyl-accepting chemotaxis proteins (MCP) that allow the microorganisms to redirect their mobility towards favorable environments. MCP are two-component regulatory (or signal transduction) systems (TCS) formed by a sensor and a response regulator domain. These domains synchronize transient protein phosphorylation and dephosphorylation events to convert the stimuli into an appropriate cellular response. In this review, the variability of TCS domains and the most common signaling mechanisms are highlighted. This is followed by the description of the overall cellular topology, classification and mechanisms of MCP. Finally, the structural and functional properties of a new family of MCP found in Geobacter sulfurreducens are revisited. This bacterium has a diverse repertoire of chemosensory systems, which represents a striking example of a survival mechanism in challenging environments. Two G. sulfurreducens MCP—GSU0582 and GSU0935—are members of a new family of chemotaxis sensor proteins containing a periplasmic PAS-like sensor domain with a c-type heme. Interestingly, the cellular location of this domain opens new routes to the understanding of the redox potential sensing signaling transduction pathways.
Collapse
Affiliation(s)
- Marta A. Silva
- Associate Laboratory i4HB—Institute for Health and Bioeconomy, NOVA School of Science and Technology, NOVA University Lisbon, 2819-516 Caparica, Portugal;
- UCIBIO—Applied Molecular Biosciences Unit, Department of Chemistry, NOVA School of Science and Technology, NOVA University Lisbon, 2819-516 Caparica, Portugal
| | - Carlos A. Salgueiro
- Associate Laboratory i4HB—Institute for Health and Bioeconomy, NOVA School of Science and Technology, NOVA University Lisbon, 2819-516 Caparica, Portugal;
- UCIBIO—Applied Molecular Biosciences Unit, Department of Chemistry, NOVA School of Science and Technology, NOVA University Lisbon, 2819-516 Caparica, Portugal
- Correspondence:
| |
Collapse
|
2
|
Li J, Zhu F, Li J. Expression of the Histidine Kinase Gene Sshk Correlates with Dimethachlone Resistance in Sclerotinia sclerotiorum. PHYTOPATHOLOGY 2019; 109:395-401. [PMID: 30070619 DOI: 10.1094/phyto-05-18-0156-r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Histidine kinases (HK) are implicated in virulence, vegetative mycelial growth, and osmotic and oxidative responses in pathogenic fungi. Our previous work showed that transcriptional levels of the group III HK gene Sshk are higher in field dimethachlone-resistant isolates of Sclerotinia sclerotiorum compared with sensitive isolates. However, it is not clear whether the overexpression of Sshk is the major mechanism for resistance to dimethachlone. In this study, we constructed Sshk silencing and overexpression vectors and assessed dimethachlone resistance levels, virulence, mycelial growth, and sensitivity to osmotic stress for the Sshk-silenced and -overexpression transformants. Overexpression of Sshk resulted in resistance to dimethachlone and increased sensitivity to various stresses and to the cell-wall-perturbing agents sodium dodecyl sulfate (SDS) and Congo red (CR). Compared with the parent isolate, Sshk-silenced transformants had reduced resistance to dimethachlone, significantly higher (P < 0.05) mycelial growth and virulence, and lower sclerotium production, and were less sensitive to various exogenous stresses such as sodium chloride. Compared with the parent sensitive isolate HLJMG1, dimethachlone resistance ratios of the three overexpression transformants ∆C101, ∆C21, and ∆C10 increased 168.1-, 189.5-, and 221.2-fold, respectively. The three overexpression transformants were more sensitive to CR and SDS than their parent isolate. These findings suggest that overexpression of Sshk is a major mechanism for dimethachlone resistance in some isolates of S. sclerotiorum, and that Sshk plays an important role in maintaining the integrity of the cell wall. Our findings reveal a novel molecular mechanism for dimethachlone resistance in plant-pathogenic fungi.
Collapse
Affiliation(s)
- Jinli Li
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Fuxing Zhu
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Jianhong Li
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| |
Collapse
|
3
|
Heinrich D, Barnett R, Tweedy L, Insall R, Stallforth P, Winckler T. The Chemoattractant Glorin Is Inactivated by Ester Cleavage during Early Multicellular Development of Polysphondylium pallidum. ACS Chem Biol 2018; 13:1506-1513. [PMID: 29792671 DOI: 10.1021/acschembio.8b00046] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Among the amoebozoan species capable of forming fruiting bodies, the dictyostelid social amoebae stand out since they form true multicellular organisms by means of single cell aggregation. Upon food depletion, cells migrate across gradients of extracellular signals initiated by cells in aggregation centers. The model species that is widely used to study multicellular development of social amoebae, Dictyostelium discoideum, uses cyclic adenosine monophosphate (cAMP) as a chemoattractant to coordinate aggregation. Molecular phylogeny studies suggested that social amoebae evolved in four major groups, of which groups 1 and 2 are paraphyletic to groups 3 and 4. During early development, intercellular communication with cAMP appears to be restricted to group 4 species. Cells of group 1 and 2 taxa do not respond chemotactically to extracellular cAMP and likely use a dipeptide chemoattractant known as glorin ( N-propionyl-γ-L-glutamyl-L-ornithin-δ-lactam-ethylester) to regulate aggregation. Directional migration of glorin-responsive cells requires the periodic breakdown of the chemoattractant. Here, we identified an extracellular enzymatic activity (glorinase) in the glorin-responsive group 2 taxon Polysphondylium pallidum leading to the inactivation of glorin. We determined the inactivation mechanism to proceed via hydrolytic ethyl ester cleavage of the γ-glutamyl moiety of glorin. Synthetic glorinamide, in which the ethyl ester group was substituted by an ethyl amide group, had glorin-like biological activity but was resistant to degradation by glorinase. Our observations pave the way for future investigations toward an ancient eukaryotic chemotaxis system.
Collapse
Affiliation(s)
- Daniel Heinrich
- Pharmaceutical Biology, Institute of Pharmacy , Friedrich Schiller University , Jena , Germany
| | - Robert Barnett
- Junior Research Group 'Chemistry of Microbial Communication' , Leibniz Institute for Natural Product Research and Infection Biology - Hans Knöll Institute , Jena , Germany
| | - Luke Tweedy
- Cancer Research UK Beatson Institute , Glasgow , United Kingdom
| | - Robert Insall
- Cancer Research UK Beatson Institute , Glasgow , United Kingdom
| | - Pierre Stallforth
- Junior Research Group 'Chemistry of Microbial Communication' , Leibniz Institute for Natural Product Research and Infection Biology - Hans Knöll Institute , Jena , Germany
| | - Thomas Winckler
- Pharmaceutical Biology, Institute of Pharmacy , Friedrich Schiller University , Jena , Germany
| |
Collapse
|
4
|
Evolution and diversity of dictyostelid social amoebae. Protist 2011; 163:327-43. [PMID: 22209334 DOI: 10.1016/j.protis.2011.09.004] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2011] [Revised: 09/08/2011] [Accepted: 09/18/2011] [Indexed: 11/23/2022]
Abstract
Dictyostelid social amoebae are a large and ancient group of soil microbes with an unusual multicellular stage in their life cycle. Taxonomically, they belong to the eukaryotic supergroup Amoebozoa, the sister group to Opisthokonta (animals + fungi). Roughly half of the ~150 known dictyostelid species were discovered during the last five years and probably many more remain to be found. The traditional classification system of Dictyostelia was completely overturned by cladistic analyses and molecular phylogenies of the past six years. As a result, it now appears that, instead of three major divisions there are eight, none of which correspond to traditional higher-level taxa. In addition to the widely studied Dictyostelium discoideum, there are now efforts to develop model organisms and complete genome sequences for each major group. Thus Dictyostelia is becoming an excellent model for both practical, medically related research and for studying basic principles in cell-cell communication and developmental evolution. In this review we summarize the latest information about their life cycle, taxonomy, evolutionary history, genome projects and practical importance.
Collapse
|
5
|
Kamino K, Fujimoto K, Sawai S. Collective oscillations in developing cells: insights from simple systems. Dev Growth Differ 2011; 53:503-17. [PMID: 21585355 DOI: 10.1111/j.1440-169x.2011.01266.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
From hormonal secretion to gene expression, multicellular dynamics are rich in oscillatory regulation. When organized in space and time, periodic cell-cell signaling can give rise to long-range coordination of gene expression and cell movement in tissues. Lack of synchrony of the oscillations on the other hand can serve as a source of initial divergence of cell fate in stem cells. How properties of individual cells can account for collective rhythmic behaviors at the tissue level remains elusive in most cases. Recently, studies in chemical reactions, synthetic gene circuits, yeast and social amoeba Dictyostelium have greatly enhanced our view of collective oscillations in cell populations. From these relatively simple systems, a unified view of how excitable and oscillatory regulations could be tuned and coupled to give rise to tissue-level oscillations is emerging. The review focuses on recent progress in cyclic adenosine monophosphate oscillations in Dictyostelium and highlights similarities and differences with other systems. We will see that the autonomy of single-cell level oscillations and different ways in which cells are coupled influence how group-level information can be encoded in collective oscillations.
Collapse
Affiliation(s)
- Keita Kamino
- Graduate School of Arts and Sciences, University of Tokyo, 3-8-1 Komaba, Meguro-ku, Tokyo, Japan
| | | | | |
Collapse
|
6
|
Choi CH, Park SJ, Jeong SY, Yim HS, Kang SO. Methylglyoxal accumulation by glutathione depletion leads to cell cycle arrest inDictyostelium. Mol Microbiol 2008; 70:1293-304. [DOI: 10.1111/j.1365-2958.2008.06497.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
7
|
Núñez-Corcuera B, Serafimidis I, Arias-Palomo E, Rivera-Calzada A, Suarez T. A new protein carrying an NmrA-like domain is required for cell differentiation and development in Dictyostelium discoideum. Dev Biol 2008; 321:331-42. [PMID: 18638468 DOI: 10.1016/j.ydbio.2008.06.027] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2008] [Revised: 06/09/2008] [Accepted: 06/10/2008] [Indexed: 11/15/2022]
Abstract
We have isolated a Dictyostelium mutant unable to induce expression of the prestalk-specific marker ecmB in monolayer assays. The disrupted gene, padA, leads to a range of phenotypic defects in growth and development. We show that padA is essential for growth, and we have generated a thermosensitive mutant allele, padA(-). At the permissive temperature, mutant cells grow poorly; they remain longer at the slug stage during development and are defective in terminal differentiation. At the restrictive temperature, growth is completely blocked, while development is permanently arrested prior to culmination. padA(-) slugs are deficient in prestalk A cell differentiation and present an abnormal ecmB expression pattern. Sequence comparisons and predicted three-dimensional structure analyses show that PadA carries an NmrA-like domain. NmrA is a negative transcriptional regulator involved in nitrogen metabolite repression in Aspergillus nidulans. PadA predicted structure shows a NAD(P)(+)-binding domain, which we demonstrate that is essential for function. We show that padA(-) development is more sensitive to ammonia than wild-type cells and two ammonium transporters, amtA and amtC, appear derepressed during padA(-) development. Our data suggest that PadA belongs to a new family of NAD(P)(+)-binding proteins that link metabolic changes to gene expression and is required for growth and normal development.
Collapse
Affiliation(s)
- Beatriz Núñez-Corcuera
- Department of Cellular and Molecular Physiopathology, Centro de Investigaciones Biologicas (CSIC), 9, 28040 Madrid, Spain
| | | | | | | | | |
Collapse
|
8
|
Abstract
This unit describes culturing and imaging of D. discoideum amoebae to study fundamental cellular responses, such as motility and directed migration. The system displays powerful molecular genetics that can be used to link structural determinants of proteins with in vivo cellular functions.
Collapse
Affiliation(s)
- C A Parent
- National Cancer Institute, NIH, Bethesda, Maryland, USA
| |
Collapse
|
9
|
Choi CH, Kim BJ, Jeong SY, Lee CH, Kim JS, Park SJ, Yim HS, Kang SO. Reduced glutathione levels affect the culmination and cell fate decision in Dictyostelium discoideum. Dev Biol 2006; 295:523-33. [PMID: 16678813 DOI: 10.1016/j.ydbio.2006.03.038] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2005] [Revised: 03/04/2006] [Accepted: 03/28/2006] [Indexed: 10/24/2022]
Abstract
Glutaredoxins have been known to be glutathione-dependent oxidoreductases that participate in the redox regulation of various cellular processes. To understand the role of glutaredoxins in the development, we examined glutaredoxin 1 (Grx1) of Dictyostelium discoideum. Its mRNA was highly accumulated at the mound and the culmination stages. When Grx1-overexpressing cells were developed, their culmination was delayed, and the expression of marker genes for prespore and spore decreased. Interestingly, they had about 1.5-fold higher amount of reduced glutathione (GSH) compared with parental cells and their prolonged migration was repressed by the oxidant such as hydrogen peroxide. To confirm the effect of GSH on the culmination, glutathione reductase (Gsr) was overexpressed or underexpressed. Similar to Grx1-overexpressing cells, Gsr-overexpressing cells contained about 1.5-fold higher amount of GSH and exhibited the delayed culmination. In contrast, the knockdown mutant of Gsr had nearly 50% lower amount of GSH and showed accelerated culmination. Taken together, these data suggest that the culmination of Dictyostelium is controlled by GSH. In addition, the cells having higher GSH levels showed a prestalk tendency in the chimeric slugs with parental cells, indicating that the difference in the amount of GSH may affect the determination of cell fate.
Collapse
Affiliation(s)
- Chang-Hoon Choi
- Laboratory of Biophysics, School of Biological Sciences, and Institute of Microbiology, Seoul National University, Seoul 151-742, Republic of Korea
| | | | | | | | | | | | | | | |
Collapse
|
10
|
Goldberg JM, Manning G, Liu A, Fey P, Pilcher KE, Xu Y, Smith JL. The dictyostelium kinome--analysis of the protein kinases from a simple model organism. PLoS Genet 2006; 2:e38. [PMID: 16596165 PMCID: PMC1420674 DOI: 10.1371/journal.pgen.0020038] [Citation(s) in RCA: 132] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2005] [Accepted: 02/03/2006] [Indexed: 12/31/2022] Open
Abstract
Dictyostelium discoideum is a widely studied model organism with both unicellular and multicellular forms in its developmental cycle. The Dictyostelium genome encodes 285 predicted protein kinases, similar to the count of the much more advanced Drosophila. It contains members of most kinase classes shared by fungi and metazoans, as well as many previously thought to be metazoan specific, indicating that they have been secondarily lost from the fungal lineage. This includes the entire tyrosine kinase–like (TKL) group, which is expanded in Dictyostelium and includes several novel receptor kinases. Dictyostelium lacks tyrosine kinase group kinases, and most tyrosine phosphorylation appears to be mediated by TKL kinases. About half of Dictyostelium kinases occur in subfamilies not present in yeast or metazoa, suggesting that protein kinases have played key roles in the adaptation of Dictyostelium to its habitat. This study offers insights into kinase evolution and provides a focus for signaling analysis in this system. Protein kinases are eukaryotic enzymes involved in cell communication pathways, and transmit information from outside the cell or between subcellular components within the cell. About 2.5% of genes code for protein kinases, and mutations in many of these cause human disease. The authors characterize the complete set of protein kinases (kinome) from Dictyostelium discoideum, a social amoeba that responds to starvation by forming aggregates of cells, which then differentiate into multicellular fruiting bodies. Dictyostelium branched from the vertebrate lineage after plants but before fungi, and thus illuminates an interesting period in evolutionary history. By comparing the Dictyostelium kinome to those of other organisms, the authors find 46 types of kinases that appear to be conserved in all organisms, and are likely to be involved in fundamental cellular processes. Dictyostelium is an established model organism for studying many aspects of cell biology that are conserved in humans, and this exposition of conserved kinases will help to guide future studies. The Dictyostelium kinome also contains an impressive degree of creativity—almost half of the kinases are unique to Dictyostelium. Many of these Dictyostelium-specific kinases may be related to this organism's distinctive mechanism for coping with starvation.
Collapse
Affiliation(s)
- Jonathan M Goldberg
- Boston Biomedical Research Institute, Watertown, Massachusetts, United States of America
| | - Gerard Manning
- Razavi-Newman Center for Bioinformatics, Salk Institute for Biological Studies, La Jolla, California, United States of America
| | - Allen Liu
- Boston Biomedical Research Institute, Watertown, Massachusetts, United States of America
| | - Petra Fey
- Center for Genetic Medicine, Northwestern University, Chicago, Illinois, United States of America
| | - Karen E Pilcher
- Center for Genetic Medicine, Northwestern University, Chicago, Illinois, United States of America
| | - Yanji Xu
- Boston Biomedical Research Institute, Watertown, Massachusetts, United States of America
| | - Janet L Smith
- Boston Biomedical Research Institute, Watertown, Massachusetts, United States of America
- * To whom correspondence should be addressed. E-mail:
| |
Collapse
|
11
|
Thomason PA, Sawai S, Stock JB, Cox EC. The histidine kinase homologue DhkK/Sombrero controls morphogenesis in Dictyostelium. Dev Biol 2006; 292:358-70. [PMID: 16473345 DOI: 10.1016/j.ydbio.2006.01.010] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2005] [Revised: 08/31/2005] [Accepted: 01/09/2006] [Indexed: 11/29/2022]
Abstract
A key event in Dictyostelium development is the formation of the Mexican hat. This corresponds to a commitment step in morphogenesis that irreversibly signals progression from the slug stage to the fruiting body. We describe the characterization of the dhkK gene that controls this morphogenetic step. Null mutants of dhkK repeatedly attempt, and fail, to undergo morphogenesis from the slug to the Mexican hat, causing them to exhibit a "slugger" phenotype, which cannot be corrected by co-development with wild-type cells. The dhkK gene encodes a putative receptor histidine kinase whose expression is enriched in prestalk cells in the slug. Uniquely for a histidine kinase, DhkK is located in the nuclear envelope. Entry into culmination requires the DhkK response regulator domain, which appears to directly regulate cyclic AMP signaling.
Collapse
Affiliation(s)
- Peter A Thomason
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA.
| | | | | | | |
Collapse
|
12
|
Escalante R, Moreno N, Sastre L. Dictyostelium discoideum developmentally regulated genes whose expression is dependent on MADS box transcription factor SrfA. EUKARYOTIC CELL 2004; 2:1327-35. [PMID: 14665466 PMCID: PMC326651 DOI: 10.1128/ec.2.6.1327-1335.2003] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The MADS box transcription factor SrfA is required for spore differentiation in Dictyostelium discoideum. srfA null strains form rounded spores that do not resist adverse environmental conditions. Five genes whose expression is dependent on SrfA have been isolated by differential hybridization. One of these genes, sigC, is identical to phg1b, previously characterized in mutants with altered adhesive properties and found to encode a nine-transmembrane-domain protein. This gene is transcribed into two mRNAs as the result of alternative splicing of two internal exons. The slower-migrating mRNA codes for a shorter protein that lacks the first transmembrane fragment and is not expressed in srfA null strains. The other four genes (sigA, sigB, sigD, and 45D) are expressed only during late developmental stages. In situ hybridization experiments showed that expression of sigA, sigB, and sigD is restricted to the sorus of developing structures. sigA codes for a homologue of malate dehydrogenase that converts pyruvate to malate to replenish the tricarboxylic acid cycle. sigB encodes a protein with significant similarity to the GP63 metalloproteinase of Leishmania, leishmanolysin. The sequence of SigD is highly similar to that of several spore coat proteins of D. discoideum, and it may play a role in that structure. The gene 45D codes for an RNA-binding protein homologue whose expression is also dependent on the GATA transcription factor stalky (StkA). The expression of sigB is also dependent on both SrfA and StkA. The expression of 45D, but not of sigA, sigB, sigC, and sigD, can be induced in srfA null cells by constitutive protein kinase A activation. Strains in which either sigA, sigB, or sigD is disrupted were isolated and found to form spores that are not detectably different from those of wild-type strains.
Collapse
Affiliation(s)
- Ricardo Escalante
- Instituto de Investigaciones Biomédicas, CSIC/UAM, 28029 Madrid, Spain
| | | | | |
Collapse
|
13
|
Ma YF, Zhang Y, Kim K, Weiss LM. Identification and characterisation of a regulatory region in the Toxoplasma gondii hsp70 genomic locus. Int J Parasitol 2004; 34:333-46. [PMID: 15003494 PMCID: PMC3109639 DOI: 10.1016/j.ijpara.2003.11.020] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2003] [Revised: 11/21/2003] [Accepted: 11/24/2003] [Indexed: 11/19/2022]
Abstract
Toxoplasma gondii is an important human and veterinary pathogen. The induction of bradyzoite development in vitro has been linked to temperature, pH, mitochondrial inhibitors, sodium arsenite and many of the other stressors associated with heat shock protein induction. Heat shock or stress induced activation of a set of heat shock protein genes, is characteristic of almost all eukaryotic and prokaryotic cells. Studies in other organisms indicate that heat shock proteins are developmentally regulated. We have established that increases in the expression of bag1/hsp30 and hsp70 are associated with bradyzoite development. The T. gondii hsp70 gene locus was cloned and sequenced. The regulatory regions of this gene were analysed by deletion analysis using beta-galactosidase expression vectors transiently transfected into RH strain T. gondii. Expression was measured at pH 7.1 and 8.1 (i.e. pH shock) and compared to the expression obtained with similar constructs using BAG1 and SAG1 promoters. A pH-regulated region of the Tg-hsp70 gene locus was identified which has some similarities to heat shock elements described in other eukaryotic systems. Green fluorescent protein expression vectors driven by the Tg-hsp70 regulatory region were constructed and stably transfected into T. gondii. Expression of green fluorescent protein in these parasites was induced by pH shock in those lines carrying the Tg-hsp70 regulatory constructs. Gel shift analysis was carried out using oligomers corresponding to the pH-regulated region and a putative DNA binding protein was identified. These data support the identification of a pH responsive cis-regulatory element in the T. gondii hsp70 gene locus. A model of the interaction of hsp70 and small heat shock proteins (e.g. BAG1) in development is presented.
Collapse
Affiliation(s)
- Yan Fen Ma
- Division of Parasitology and Tropical Medicine, Department of Pathology, Albert Einstein College of Medicine of Yeshiva University, 1300 Morris Park Avenue, Room 504 Forchheimer Building, Bronx, New York, 10461 USA
| | - YiWei Zhang
- Division of Parasitology and Tropical Medicine, Department of Pathology, Albert Einstein College of Medicine of Yeshiva University, 1300 Morris Park Avenue, Room 504 Forchheimer Building, Bronx, New York, 10461 USA
| | - Kami Kim
- Division of Infectious Diseases, Department of Medicine, Albert Einstein College of Medicine, Bronx, NY 10461, USA
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Louis M. Weiss
- Division of Parasitology and Tropical Medicine, Department of Pathology, Albert Einstein College of Medicine of Yeshiva University, 1300 Morris Park Avenue, Room 504 Forchheimer Building, Bronx, New York, 10461 USA
- Division of Infectious Diseases, Department of Medicine, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| |
Collapse
|
14
|
Tekinay T, Ennis HL, Wu MY, Nelson M, Kessin RH, Ratner DI. Genetic interactions of the E3 ubiquitin ligase component FbxA with cyclic AMP metabolism and a histidine kinase signaling pathway during Dictyostelium discoideum development. EUKARYOTIC CELL 2003; 2:618-26. [PMID: 12796307 PMCID: PMC161463 DOI: 10.1128/ec.2.3.618-626.2003] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Dictyostelium discoideum amoebae with an altered fbxA gene, which is thought to encode a component of an SCF E3 ubiquitin ligase, have defective regulation of cell type proportionality. In chimeras with wild-type cells, the mutant amoebae form mainly spores, leaving the construction of stalks to wild-type cells. To examine the role of fbxA and regulated proteolysis, we have recovered the promoter of fbxA and shown that it is expressed in a pattern resembling that of a prestalk-specific gene until late in development, when it is also expressed in developing spore cells. Because fbxA cells are developmentally deficient in pure culture, we were able to select suppressor mutations that promote sporulation of the original mutant. One suppressor mutation resides within the gene regA, which encodes a cyclic AMP (cAMP) phosphodiesterase linked to an activating response regulator domain. In another suppressor, there has been a disruption of dhkA, a gene encoding a two-component histidine kinase known to influence Dictyostelium development. RegA appears precociously and in greater amounts in the fbxA mutant than in the wild type, but in an fbxA/dhkA double mutant, RegA is restored to wild-type levels. Because the basis of regA suppression might involve alterations in cAMP levels during development, the concentrations of cAMP in all strains were determined. The levels of cAMP are relatively constant during multicellular development in all strains except the dhkA mutant, in which it is reduced at least sixfold. The level of cAMP in the double mutant dhkA/fbxA is relatively normal. The levels of cAMP in the various mutants do not correlate with spore formation, as would be expected on the basis of our present understanding of the signaling pathway leading to the induction of spores. Altered amounts of RegA and cAMP early in the development of the mutants suggest that both fbxA and dhkA genes act earlier than previously thought.
Collapse
Affiliation(s)
- Turgay Tekinay
- Department of Anatomy and Cell Biology, Columbia University, New York, New York 10032, USA
| | | | | | | | | | | |
Collapse
|
15
|
Escalante R, Sastre L. Regulated expression of the MADS-box transcription factor SrfA mediates activation of gene expression by protein kinase A during Dictyostelium sporulation. Mech Dev 2002; 117:201-8. [PMID: 12204259 DOI: 10.1016/s0925-4773(02)00203-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Cell differentiation and morphogenesis are tightly regulated during sporulation in the lower eukaryote Dictyostelium discoideum. The control of the cyclic adenosine monophosphate (cAMP)-dependent protein kinase (PKA) is essential to coordinate these processes. Several signal transduction pathways are being recognized that lead to the regulation of intracellular cAMP levels. However, very little is known about the events lying downstream of PKA that are essential to activate late gene expression and terminal differentiation of the spores. We have studied the relationship between PKA and the MADS-box transcription factor SrfA, essential for spore differentiation. Constitutive activation of PKA was not able to rescue sporulation in a strain that lacks srfA suggesting the possibility that srfA functions downstream of PKA in a signal transduction pathway leading to spore maturation. A distal promoter region regulates the induction of srfA expression in the prespore region during culmination. We found that this promoter can be induced precociously by activating PKA with 8-Br-cAMP suggesting a transcriptional regulation by PKA. Moreover, precocious sporulation and expression of the spore marker spiA in a strain that overexpresses PKA, correlates with a precocious induction of srfA expression. The temporal and spatial pattern of expression was also studied in a mutant strain lacking the main adenylyl cyclase that functions during culmination, ACR. This strain is expected to have lower PKA activity and consistently, the level of srfA expression was reduced. Moreover, the temporal induction of srfA in the prespore region was also delayed during culmination. Our results strongly suggest that PKA activation during culmination leads to the induction of the expression of srfA. The correct temporal and spatial pattern of srfA expression appears to be part of a mechanism that ensures the adequate coordination of gene expression and morphogenesis.
Collapse
Affiliation(s)
- Ricardo Escalante
- Instituto de Investigaciones Biomédicas, CSIC/UAM, C/Arturo Duperier 4, 28029 Madrid, Spain.
| | | |
Collapse
|
16
|
Wang B, Kuspa A. CulB, a putative ubiquitin ligase subunit, regulates prestalk cell differentiation and morphogenesis in Dictyostelium spp. EUKARYOTIC CELL 2002; 1:126-36. [PMID: 12455979 PMCID: PMC118045 DOI: 10.1128/ec.1.1.126-136.2002] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Dictyostelium amoebae accomplish a starvation-induced developmental process by aggregating into a mound and forming a single fruiting body with terminally differentiated spores and stalk cells. culB was identified as the gene disrupted in a developmental mutant with an aberrant prestalk cell differentiation phenotype. The culB gene product appears to be a homolog of the cullin family of proteins that are known to be involved in ubiquitin-mediated protein degradation. The culB mutants form supernumerary prestalk tips atop each developing mound that result in the formation of multiple small fruiting bodies. The prestalk-specific gene ecmA is expressed precociously in culB mutants, suggesting that prestalk cell differentiation occurs earlier than normal. In addition, when culB mutant cells are mixed with wild-type cells, they display a cell-autonomous propensity to form stalk cells. Thus, CulB appears to ensure that the proper number of prestalk cells differentiate at the appropriate time in development. Activation of cyclic AMP-dependent protein kinase (PKA) by disruption of the regulatory subunit gene (pkaR) or by overexpression of the catalytic subunit gene (pkaC) enhances the prestalk/stalk cell differentiation phenotype of the culB mutant. For example, culB- pkaR- cells form stalk cells without obvious multicellular morphogenesis and are more sensitive to the prestalk O (pstO) cell inducer DIF-1. The sensitized condition of PKA activation reveals that CulB may govern prestalk cell differentiation in Dictyostelium, in part by controlling the sensitivity of cells to DIF-1, possibly by regulating the levels of one or more proteins that are rate limiting for prestalk differentiation.
Collapse
Affiliation(s)
- Bin Wang
- Vema and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, Texas 77030, USA
| | | |
Collapse
|
17
|
Arnoult D, Tatischeff I, Estaquier J, Girard M, Sureau F, Tissier JP, Grodet A, Dellinger M, Traincard F, Kahn A, Ameisen JC, Petit PX. On the evolutionary conservation of the cell death pathway: mitochondrial release of an apoptosis-inducing factor during Dictyostelium discoideum cell death. Mol Biol Cell 2001; 12:3016-30. [PMID: 11598188 PMCID: PMC60152 DOI: 10.1091/mbc.12.10.3016] [Citation(s) in RCA: 122] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Mitochondria play a pivotal role in apoptosis in multicellular organisms by releasing apoptogenic factors such as cytochrome c that activate the caspases effector pathway, and apoptosis-inducing factor (AIF) that is involved in a caspase-independent cell death pathway. Here we report that cell death in the single-celled organism Dictyostelium discoideum involves early disruption of mitochondrial transmembrane potential (DeltaPsim) that precedes the induction of several apoptosis-like features, including exposure of the phosphatidyl residues at the external surface of the plasma membrane, an intense vacuolization, a fragmentation of DNA into large fragments, an autophagy, and the release of apoptotic corpses that are engulfed by neighboring cells. We have cloned a Dictyostelium homolog of mammalian AIF that is localized into mitochondria and is translocated from the mitochondria to the cytoplasm and the nucleus after the onset of cell death. Cytoplasmic extracts from dying Dictyostelium cells trigger the breakdown of isolated mammalian and Dictyostelium nuclei in a cell-free system, and this process is inhibited by a polyclonal antibody specific for Dictyostelium discoideum apoptosis-inducing factor (DdAIF), suggesting that DdAIF is involved in DNA degradation during Dictyostelium cell death. Our findings indicate that the cell death pathway in Dictyostelium involves mitochondria and an AIF homolog, suggesting the evolutionary conservation of at least part of the cell death pathway in unicellular and multicellular organisms.
Collapse
Affiliation(s)
- D Arnoult
- EMI U-9922 (INSERM-Université Paris VII), CHU Bichat-Claude Bernard, 75018 Paris, France
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Hentschel U, Zündorf I, Dingermann T, Winckler T. On the problem of establishing the subcellular localization of Dictyostelium retrotransposon TRE5-A proteins by biochemical analysis of nuclear extracts. Anal Biochem 2001; 296:83-91. [PMID: 11520035 DOI: 10.1006/abio.2001.5207] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
At first sight a protein that is enriched in extracts prepared from nuclei by means of biochemical methods can be considered to be a nuclear protein in vivo. Although this assumption will hold true for most of the analyzed proteins, it could also lead to false interpretations. We analyzed the subcellular distribution of endogenous and plasmid-borne proteins derived from the retrotransposon TRE5-A of Dictyostelium discoideum. In biochemical fractionation experiments the proteins encoded by TRE5-A open reading frame 1 (ORF1p) and the putative endonuclease encoded in ORF2 (ENp) were found in the detergent-insoluble material containing the nuclei. However, salt extraction of isolated nuclei did not considerably release the TRE5-A proteins. Instead, the TRE5-A proteins were strongly enriched in a fraction that contained the chromosomal DNA after removal of most cytoskeletal and histone proteins. These observations implied that ORF1p and ENp were both attached to chromatin in vivo, but this conclusion was disproved by the expression of genetic fusions of green fluorescent protein with either ORF1p or ENp. We show conclusive evidence that both fusion proteins were located as large aggregates of native protein in the cytoplasm of D. discoideum cells.
Collapse
Affiliation(s)
- U Hentschel
- Institut für Pharmazeutische Biologie, Universität Frankfurt (Biozentrum), Marie-Curie-Strasse 9, Frankfurt am Main, D-60439, Germany
| | | | | | | |
Collapse
|
19
|
Abstract
The asexual spore, or conidium, is critical in the life cycle of many fungi because it is the primary means for dispersion and serves as a 'safe house' for the fungal genome in adverse environmental conditions. This review discusses the physiological process of germination, conidial adhesion and initiation of protein synthesis and also the regulatory pathways used to activate conidial germination. These include Ca(2+)/calmodulin-mediated signaling, the cyclic AMP/protein kinase A and the ras/mitogen-activated protein kinase pathways. Insights into the process of conidial germination will increase our understanding of the mechanisms of dormancy and sensing of environmental stimuli, and permit identification of novel therapeutic targets for the treatment of spore-borne fungal infections in plants and animals.
Collapse
Affiliation(s)
- N Osherov
- Division of Pathology and Laboratory Medicine, P.O. Box 54, The University of Texas, M.D. Anderson Cancer Center, 1515 Holcombe Blvd., Houston, TX 77030, USA
| | | |
Collapse
|
20
|
Affiliation(s)
- H Saito
- Dana-Farber Cancer Institute, and Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, 44 Binney Street, Boston, Massachusetts 02115, USA.
| |
Collapse
|
21
|
West AH, Stock AM. Histidine kinases and response regulator proteins in two-component signaling systems. Trends Biochem Sci 2001; 26:369-76. [PMID: 11406410 DOI: 10.1016/s0968-0004(01)01852-7] [Citation(s) in RCA: 683] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Phosphotransfer-mediated signaling pathways allow cells to sense and respond to environmental stimuli. Autophosphorylating histidine protein kinases provide phosphoryl groups for response regulator proteins which, in turn, function as molecular switches that control diverse effector activities. Structural studies of proteins involved in two-component signaling systems have revealed a modular architecture with versatile conserved domains that are readily adapted to the specific needs of individual systems.
Collapse
Affiliation(s)
- A H West
- Dept of Chemistry and Biochemistry, University of Oklahoma, 620 Parrington Oval, Norman, OK 73019, USA
| | | |
Collapse
|
22
|
Mohanty S, Lee S, Yadava N, Dealy MJ, Johnson RS, Firtel RA. Regulated protein degradation controls PKA function and cell-type differentiation in Dictyostelium. Genes Dev 2001; 15:1435-48. [PMID: 11390363 PMCID: PMC312710 DOI: 10.1101/gad.871101] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Cullins function as scaffolds that, along with F-box/WD40-repeat-containing proteins, mediate the ubiquitination of proteins to target them for degradation by the proteasome. We have identified a cullin CulA that is required at several stages during Dictyostelium development. culA null cells are defective in inducing cell-type-specific gene expression and exhibit defects during aggregation, including reduced chemotaxis. PKA is an important regulator of Dictyostelium development. The levels of intracellular cAMP and PKA activity are controlled by the rate of synthesis of cAMP and its degradation by the cAMP-specific phosphodiesterase RegA. We show that overexpression of the PKA catalytic subunit (PKAcat) rescues many of the culA null defects and those of cells lacking FbxA/ChtA, a previously described F-box/WD40-repeat-containing protein, suggesting CulA and FbxA proteins are involved in regulating PKA function. Whereas RegA protein levels drop as the multicellular organism forms in the wild-type strain, they remain high in culA null and fbxA null cells. Although PKA can suppress the culA and fbxA null developmental phenotypes, it does not suppress the altered RegA degradation, suggesting that PKA lies downstream of RegA, CulA, and FbxA. Finally, we show that CulA, FbxA, and RegA are found in a complex in vivo, and formation of this complex is dependent on the MAP kinase ERK2, which is also required for PKA function. We propose that CulA and FbxA regulate multicellular development by targeting RegA for degradation via a pathway that requires ERK2 function, leading to an increase in cAMP and PKA activity.
Collapse
Affiliation(s)
- S Mohanty
- Section of Cell and Developmental Biology and Center for Molecular Genetics, University of California, San Diego, La Jolla, California 92093, USA
| | | | | | | | | | | |
Collapse
|
23
|
|
24
|
Marée AF, Hogeweg P. How amoeboids self-organize into a fruiting body: multicellular coordination in Dictyostelium discoideum. Proc Natl Acad Sci U S A 2001; 98:3879-83. [PMID: 11274408 PMCID: PMC31146 DOI: 10.1073/pnas.061535198] [Citation(s) in RCA: 123] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2000] [Indexed: 11/18/2022] Open
Abstract
When individual amoebae of the cellular slime mold Dictyostelium discoideum are starving, they aggregate to form a multicellular migrating slug, which moves toward a region suitable for culmination. The culmination of the morphogenesis involves complex cell movements that transform a mound of cells into a globule of spores on a slender stalk. The movement has been likened to a "reverse fountain," whereby prestalk cells in the upper part form a stalk that moves downwards and anchors to the substratum, while prespore cells in the lower part move upwards to form the spore head. So far, however, no satisfactory explanation has been produced for this process. Using a computer simulation that we developed, we now demonstrate that the processes that are essential during the earlier stages of the morphogenesis are in fact sufficient to produce the dynamics of the culmination stage. These processes are cAMP signaling, differential adhesion, cell differentiation, and production of extracellular matrix. Our model clarifies the processes that generate the observed cell movements. More specifically, we show that periodic upward movements, caused by chemotactic motion, are essential for successful culmination, because the pressure waves they induce squeeze the stalk downwards through the cell mass. The mechanisms revealed by our model have a number of self-organizing and self-correcting properties and can account for many previously unconnected and unexplained experimental observations.
Collapse
Affiliation(s)
- A F Marée
- Theoretical Biology and Bioinformatics, University of Utrecht, Padualaan 8, 3584 CH Utrecht, The Netherlands.
| | | |
Collapse
|
25
|
Oehme F, Schuster SC. Osmotic stress-dependent serine phosphorylation of the histidine kinase homologue DokA. BMC BIOCHEMISTRY 2001; 2:2. [PMID: 11299049 PMCID: PMC31330 DOI: 10.1186/1471-2091-2-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/14/2001] [Accepted: 03/16/2001] [Indexed: 11/28/2022]
Abstract
BACKGROUND Two-component systems consisting of histidine kinases and their corresponding receivers are widespread in bacterial signal transduction. In the past few years, genes coding for homologues of two-component systems were also discovered in eukaryotic organisms. DokA, a homologue of bacterial histidine kinases, is an element of the osmoregulatory pathway in the amoeba Dictyostelium. The work described here addresses the question whether DokA is phosphorylated in vivo in response to osmotic stress. RESULTS We have endogenously overexpressed individual domains of DokA to investigate post-translational modification of the protein in response to osmotic shock in vivo. Dictyostelium cells were labeled with [32P]-orthophosphate, exposed to osmotic stress and DokA fragments were subsequently isolated by immunoprecipitation. Thus, a stress-dependent phosphorylation could be demonstrated, with the site of phosphorylation being located in the kinase domain. We demonstrate biochemically that the phosphorylated amino acid is serine, and by mutational analysis that the phosphorylation reaction is not due to an autophosphorylation of DokA. Furthermore, mutation of the conserved histidine did not affect the osmostress-dependent phosphorylation reaction. CONCLUSIONS A stimulus-dependent serine phosphorylation of a eukaryotic histidine kinase homologue was demonstrated for the first time in vivo. That implies that DokA, although showing typical structural features of a bacterial two-component system, might be part of a eukaryotic signal transduction pathway that involves serine/threonine kinases.
Collapse
Affiliation(s)
- Felix Oehme
- Max-Planck-Institut für Biochemie, 82152 Martinsried, Germany
- Bayer AG Institut für Herz-Kreislaufforschung, D-42096 Wuppertal Germany
| | - Stephan C Schuster
- Max-Planck-Institut für Biochemie, 82152 Martinsried, Germany
- Max-Planck-Institut für Entwicklungsbiologie, D-72076 Tübingen, Germany
| |
Collapse
|
26
|
Abstract
Most prokaryotic signal-transduction systems and a few eukaryotic pathways use phosphotransfer schemes involving two conserved components, a histidine protein kinase and a response regulator protein. The histidine protein kinase, which is regulated by environmental stimuli, autophosphorylates at a histidine residue, creating a high-energy phosphoryl group that is subsequently transferred to an aspartate residue in the response regulator protein. Phosphorylation induces a conformational change in the regulatory domain that results in activation of an associated domain that effects the response. The basic scheme is highly adaptable, and numerous variations have provided optimization within specific signaling systems. The domains of two-component proteins are modular and can be integrated into proteins and pathways in a variety of ways, but the core structures and activities are maintained. Thus detailed analyses of a relatively small number of representative proteins provide a foundation for understanding this large family of signaling proteins.
Collapse
Affiliation(s)
- A M Stock
- Center for Advanced Biotechnology and Medicine and Howard Hughes Medical Institute, University of Medicine and Dentistry of New Jersey-Robert Wood Johnson Medical School, Piscataway, New Jersey 08854, USA.
| | | | | |
Collapse
|
27
|
Liu Z, Peng J, Mo R, Hui C, Huang CH. Rh type B glycoprotein is a new member of the Rh superfamily and a putative ammonia transporter in mammals. J Biol Chem 2001; 276:1424-33. [PMID: 11024028 DOI: 10.1074/jbc.m007528200] [Citation(s) in RCA: 133] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Ammonium transporters play a key functional role in nitrogen uptake and assimilation in microorganisms and plants; however, little is known about their structural counterpart in mammals. Here, we report the molecular cloning and biochemical characterization of Rh type B glycoproteins, human RhBG and mouse Rhbg, two new members of the Rh family with distinct tissue specificities. The RhBG orthologues possess a conserved 12-transmembrane topology and most resemble bacterial and archaeal ammonium transporters. Human RHBG resides at chromosome 1q21.3, which harbors candidate genes for medullary cystic kidney disease, whereas mouse Rhbg is syntenic on chromosome 3. Northern blot and in situ hybridization revealed that RHBG and Rhbg are predominantly expressed in liver, kidney, and skin, the specialized organs involving ammonia genesis, excretion, or secretion. Confocal microscopy showed that RhBG is located in the plasma membrane and in some intracellular granules. Western blots of membrane proteins from stable HEK293 cells and from mouse kidney and liver confirmed this distribution. N-Glycanase digestion showed that RhBG/Rhbg has a carbohydrate moiety probably attached at the NHS motif on exoloop 1. Phylogenetic clustering, tissue-specific expression, and plasma membrane location suggest that RhBG homologous proteins are the long sought major ammonium transporters in mammalians.
Collapse
Affiliation(s)
- Z Liu
- Laboratory of Biochemistry and Molecular Genetics, Lindsley F. Kimball Research Institute, New York Blood Center, New York, New York 10021 , USA
| | | | | | | | | |
Collapse
|
28
|
Kishi Y, Mahadeo D, Cervi DN, Clements C, Cotter DA, Sameshima M. Glucose-induced pathways for actin tyrosine dephosphorylation during Dictyostelium spore germination. Exp Cell Res 2000; 261:187-98. [PMID: 11082289 DOI: 10.1006/excr.2000.5061] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
In the presence of germination signals, dormant spores of Dictyostelium discoideum rapidly germinate to start a new life cycle. Previously we have shown that half of the actin molecules in spores are maintained in a tyrosine-phosphorylated state, and a decline of the actin phosphorylation levels is a prerequisite for spore swelling. In this study, we have established d-glucose as a trigger molecule for the actin dephosphorylation. Present in a nutrient germination medium, d-glucose both may act as a trigger molecule and/or may serve as a substrate within a pathway for actin dephosphorylation depending upon spore age. However, the glucose-induced actin dephosphorylation was insufficient for spores to swell. Other factors in the nutrient medium were required for complete germination of young spores aged 1 to 5 days. In contrast, dispersion in nonnutrient buffer was necessary and sufficient for a decline of actin phosphorylation levels and even the emergence of amoebae in older spores (6 days and beyond). Moreover, the dephosphorylation pathway in the older spores was independent of energy production. We propose that the diversification of the actin dephosphorylation pathway may enable spores to increase their probability of germination upon spore aging.
Collapse
Affiliation(s)
- Y Kishi
- Department of Physics, Rikkyo (St. Paul's) University, 3-34-1 Nishi-ikebukuro, Toshima-ku, Tokyo, 171-0021, Japan
| | | | | | | | | | | |
Collapse
|
29
|
Macielag MJ, Goldschmidt R. Inhibitors of bacterial two-component signalling systems. Expert Opin Investig Drugs 2000; 9:2351-69. [PMID: 11060812 DOI: 10.1517/13543784.9.10.2351] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Bacterial two-component regulatory systems (TCS) play a pivotal role in the process of infection. These signal transduction systems enable bacterial pathogens to mount an adaptive response and cope with diverse environmental stresses, including nutrient deprivation, antibiotic onslaught and phagocytosis. Interest in these systems as novel bacterial targets has been rekindled by the recent discovery of several essential systems in important Gram-positive and Gram-negative pathogens. Several series of TCS inhibitors derived from broad screening approaches have been reported in the literature, however, most appear to suffer from poor selectivity, excessive protein binding and/or limited bioavailability. Consequently, pharmaceutical chemists have turned to alternate strategies, such as the design of substrate-based inhibitors, the generation of combinatorial libraries and the isolation of natural products, to identify inhibitors with more desirable properties. Recent structural studies of the histidine protein kinase and response regulator proteins that constitute TCS may provide a foundation for a structure-based design approach to TCS inhibitors.
Collapse
Affiliation(s)
- M J Macielag
- Antimicrobial Agents Research, RW Johnson Pharmaceutical Research Institute, 1000 US Rte 202 South, PO Box 300, Raritan NJ 08869, USA.
| | | |
Collapse
|
30
|
Affiliation(s)
- D M Ferkey
- Department of Biochemistry, University of Washington, Seattle, Washington 98195-7350, USA
| | | |
Collapse
|
31
|
Thomason P, Kay R. Eukaryotic signal transduction via histidine-aspartate phosphorelay. J Cell Sci 2000; 113 ( Pt 18):3141-50. [PMID: 10954413 DOI: 10.1242/jcs.113.18.3141] [Citation(s) in RCA: 78] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Transmembrane signal transduction is a feature common to all eukaryotic and prokaryotic cells. We now understand that a subset of the signalling mechanisms used by eukaryotes and prokaryotes are not just similar in principle, but actually use homologous proteins. These are the histidine-aspartate phosphorelays, signalling systems of eubacterial origin, now known to be widespread in eukaryotes outside the animal kingdom. Genome projects are revealing that His-Asp phosphorelays are present as multigene families in lower eukaryotes and in plants. A major challenge is to understand how these ‘novel’ signal transduction systems form integrated networks with the more familiar signalling mechanisms also present in eukaryotic cells. Already, phosphorelays have been characterised that regulate MAP kinase cascades and the cAMP/PKA pathway. The probable absence of His-Asp phosphorelays from animals has generated interest in their potential as targets for anti-microbial therapy, including antifungals. Recent findings suggest that this approach holds promise.
Collapse
Affiliation(s)
- P Thomason
- Division of Cell Biology, MRC Laboratory of Molecular Biology, Hills Road, Cambridge CB2 2QH, UK.
| | | |
Collapse
|
32
|
Cotter DA, Mahadeo DC, Cervi DN, Kishi Y, Gale K, Sands T, Sameshima M. Environmental regulation of pathways controlling sporulation, dormancy and germination utilizes bacterial-like signaling complexes in Dictyostelium discoideum. Protist 2000; 151:111-26. [PMID: 10965951 DOI: 10.1078/1434-4610-00012] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- D A Cotter
- Department of Biological Sciences, University of Windsor, Ontario, Canada.
| | | | | | | | | | | | | |
Collapse
|
33
|
Srinivasan S, Alexander H, Alexander S. Crossing the finish line of development: regulated secretion of Dictyostelium proteins. Trends Cell Biol 2000; 10:215-9. [PMID: 10802536 DOI: 10.1016/s0962-8924(00)01758-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
The genesis of the spore coat of Dictyostelium represents an exquisite example of developmentally regulated protein secretion. The proteins that are destined to be assembled into the extracellular matrix of the spore coat are stored in unique prespore vesicles that are triggered to secrete their contents at terminal differentiation. The regulation of this process is being revealed by the identification of the individual proteins in these vesicles.
Collapse
Affiliation(s)
- S Srinivasan
- Division of Biological Sciences, University of Missouri, Columbia 65211-7400, USA
| | | | | |
Collapse
|
34
|
|
35
|
Solomon JM, Rupper A, Cardelli JA, Isberg RR. Intracellular growth of Legionella pneumophila in Dictyostelium discoideum, a system for genetic analysis of host-pathogen interactions. Infect Immun 2000; 68:2939-47. [PMID: 10768992 PMCID: PMC97507 DOI: 10.1128/iai.68.5.2939-2947.2000] [Citation(s) in RCA: 177] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Conditions were established in which Legionella pneumophila, an intracellular bacterial pathogen, could replicate within the unicellular organism Dictyostelium discoideum. By several criteria, L. pneumophila grew by the same mechanism within D. discoideum as it does in amoebae and macrophages. Bacteria grew within membrane-bound vesicles associated with rough endoplasmic reticulum, and L. pneumophila dot/icm mutants, blocked for growth in macrophages and amoebae, also did not grow in D. discoideum. Internalized L. pneumophila avoided degradation by D. discoideum and showed evidence of reduced fusion with endocytic compartments. The ability of L. pneumophila to grow within D. discoideum depended on the growth state of the cells. D. discoideum grown as adherent monolayers was susceptible to L. pneumophila infection and to contact-dependent cytotoxicity during high-multiplicity infections, whereas D. discoideum grown in suspension was relatively resistant to cytotoxicity and did not support intracellular growth. Some known D. discoideum mutants were examined for their effect on growth of L. pneumophila. The coronin mutant and the myoA/B double myosin I mutant were more permissive than wild-type strains for intracellular growth. Growth of L. pneumophila in a G(beta) mutant was slightly reduced compared to the parent strain. This work demonstrates the usefulness of the L. pneumophila-D. discoideum system for genetic analysis of host-pathogen interactions.
Collapse
Affiliation(s)
- J M Solomon
- Howard Hughes Medical Institute, Department of Molecular Biology and Microbiology, Tufts University Medical School, Boston, Massachusetts 02111, USA
| | | | | | | |
Collapse
|
36
|
Weiss LM, Kim K. The development and biology of bradyzoites of Toxoplasma gondii. FRONTIERS IN BIOSCIENCE : A JOURNAL AND VIRTUAL LIBRARY 2000; 5:D391-405. [PMID: 10762601 PMCID: PMC3109641 DOI: 10.2741/weiss] [Citation(s) in RCA: 160] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Toxoplasma gondii is a protozoan parasite of mammals and birds that is an important human pathogen. Infection with this Apicomplexan parasite results in its dissemination throughout its host via the tachyzoite life-stage. After dissemination these tachyzoites differentiate into bradyzoites within cysts that remain latent. These bradyzoites can transform back into tachyzoites and in immunosupressed individuals this often results in symptomatic disease. Both tachyzoites and bradyzoites develop in tissue culture and thus this crucial differentiation event can be studied. Recent advances in the genetic manipulation of T. gondii have expanded the molecular tools that can be applied to studies on bradyzoite differentiation. Evidence is accumulating that this differentiation event is stress mediated and may share common pathways with other stress-induced differentiation events in other eukaryotic organisms. Study of the stress response and signaling pathways are areas of active research in this organism. In addition, characterization of unique bradyzoite-specific structures, such as the cyst wall, should lead to a further understanding of T. gondii biology. This review focuses on the biology and development of bradyzoites and current approaches to the study of the tachyzoite to bradyzoite differentiation process.
Collapse
Affiliation(s)
- Louis M. Weiss
- Department of Medicine, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, New York, 10461
- Department of Pathology, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, New York, 10461
| | - Kami Kim
- Department of Medicine, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, New York, 10461
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, New York, 10461
| |
Collapse
|
37
|
Schaloske R, Schlatterer C, Malchow D. A Xestospongin C-sensitive Ca(2+) store is required for cAMP-induced Ca(2+) influx and cAMP oscillations in Dictyostelium. J Biol Chem 2000; 275:8404-8. [PMID: 10722673 DOI: 10.1074/jbc.275.12.8404] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Xestospongin C (XeC) is known to bind to the inositol 1,4, 5-trisphosphate (IP(3))-sensitive store in mammalian cells and to inhibit IP(3)- and thapsigargin-induced Ca(2+) release. In this study we show that this is also true for Dictyostelium. In addition, XeC inhibited Ca(2+) uptake into purified vesicle fractions and induced Ca(2+) release. This suggests that, in the case of Dictyostelium, XeC opens rather than plugs the IP(3) receptor channel as was proposed for mammalian cells (Gafni, J., Munsch, J. A. , Lam, T. H., Catlin, M. C., Costa, L. G., Molinski, T. F., and Pessah, I. N. (1997) Neuron 19, 723-733). In order to elucidate the function of the XeC-sensitive Ca(2+) store in Dictyostelium during differentiation, we applied XeC to the cells and found that it caused a time-dependent increase of basal [Ca(2+)](i) and inhibited cAMP-induced Ca(2+) influx in single cells as well as in cell suspensions. Moreover, XeC blocked light scattering spikes and pulsatile cAMP signaling.
Collapse
Affiliation(s)
- R Schaloske
- Faculty of Biology, University of Konstanz, Postfach 55 60, 78457 Konstanz, Germany.
| | | | | |
Collapse
|
38
|
Noegel AA, Schleicher M. The actin cytoskeleton of Dictyostelium: a story told by mutants. J Cell Sci 2000; 113 ( Pt 5):759-66. [PMID: 10671366 DOI: 10.1242/jcs.113.5.759] [Citation(s) in RCA: 78] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Actin-binding proteins are effectors of cell signalling and coordinators of cellular behaviour. Research on the Dictyostelium actin cytoskeleton has focused both on the elucidation of the function of bona fide actin-binding proteins as well as on proteins involved in signalling to the cytoskeleton. A major part of this work is concerned with the analysis of Dictyostelium mutants. The results derived from these investigations have added to our understanding of the role of the actin cytoskeleton in growth and development. Furthermore, the studies have identified several cellular and developmental stages that are particularly sensitive to an unbalanced cytoskeleton. In addition, use of GFP fusion proteins is revealing the spatial and temporal dynamics of interactions between actin-associated proteins and the cytoskeleton.
Collapse
Affiliation(s)
- A A Noegel
- Institut für Biochemie I, Medizinische Fakultät, Universität zu Köln, Joseph-Stelzmann-Str. 52, Germany.
| | | |
Collapse
|
39
|
Urao T, Yamaguchi-Shinozaki K, Shinozaki K. Two-component systems in plant signal transduction. TRENDS IN PLANT SCIENCE 2000; 5:67-74. [PMID: 10664616 DOI: 10.1016/s1360-1385(99)01542-3] [Citation(s) in RCA: 115] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
In plants, two-component systems play important roles in signal transduction in response to environmental stimuli and growth regulators. Genetic and biochemical analyses indicate that sensory hybrid-type histidine kinases, ETR1 and its homologs, function as ethylene receptors and negative regulators in ethylene signaling. Two other hybrid-type histidine kinases, CKI1 and ATHK1, are implicated in cytokinin signaling and osmosensing processes, respectively. A data base search of Arabidopsis ESTs and genome sequences has identified many homologous genes encoding two-component regulators. We discuss the possible origins and functions of these two-component systems in plants.
Collapse
Affiliation(s)
- T Urao
- Biological Resources Division, Japan International Research Center for Agricultural Science, Ministry of Agriculture, Forestry and Fisheries, 1-2 Ohwashi, Tsukuba, Ibaraki 305, Japan
| | | | | |
Collapse
|
40
|
Abstract
The actin cytoskeleton is an essential structure for most movements at the cellular and intracellular level. Whereas for contraction a muscle cell requires a rather static organisation of cytoskeletal proteins, cell motility of amoeboid cells relies on a tremendously dynamic turnover of filamentous networks in a matter of seconds and at distinct regions inside the cell. The best model system for studying cell motility is Dictyostelium discoideum. The cells live as single amoebae but can also start a developmental program that leads to multicellular stages and differentiation into simple types of tissues. Thus, cell motility can be studied on single cells and on cells in a tissue-like aggregate. The ability to combine protein purification and biochemistry with fairly easy molecular genetics is a unique feature for investigation of the cytoskeleton and cell motility. The actin cytoskeleton in Dictyostelium harbours essentially all classes of actin-binding proteins that have been found throughout eukaryotes. By conventional mutagenesis, gene disruption, antisense approaches, or gene replacements many genes that code for cytoskeletal proteins have been disrupted, and altered phenotypes in transformants that lacked one or more of those cytoskeletal proteins allowed solid conclusions about their in vivo function. In addition, tagging the proteins or selected domains with green fluorescent protein allows the monitoring of protein redistribution during cell movement. Gene tagging by restriction enzyme mediated integration of vectors and the ongoing international genome and cDNA sequencing projects offer the chance to understand the dynamics of the cytoskeleton by identification and functional characterisation of all proteins involved.
Collapse
Affiliation(s)
- L Eichinger
- Adolf-Butenandt-Institut/Zellbiologie, Ludwig-Maximilians-Universität, 80336 München, Germany.
| | | | | |
Collapse
|
41
|
Thomason PA, Traynor D, Stock JB, Kay RR. The RdeA-RegA system, a eukaryotic phospho-relay controlling cAMP breakdown. J Biol Chem 1999; 274:27379-84. [PMID: 10488068 DOI: 10.1074/jbc.274.39.27379] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The regA and rdeA gene products of Dictyostelium are involved in the regulation of cAMP signaling. The response regulator, RegA, is composed of an N-terminal receiver domain linked to a C-terminal cAMP-phosphodiesterase domain. RdeA may be a phospho-transfer protein that supplies phosphates to RegA. We show genetically that phospho-RegA is the activated form of the enzyme in vivo, in that the predicted site of aspartate phosphorylation is required for full activity. We show biochemically that RdeA and RegA communicate, as evidenced by phospho-transfer between the two proteins in vitro. Phospho-transfer is dependent on the presumed phospho-accepting amino acids, histidine 65 of RdeA and aspartate 212 of RegA, and occurs in both directions. Phosphorylation of RegA by a heterologous phospho-donor protein activates RegA phosphodiesterase activity at least 20-fold. Our results suggest that the histidine phosphotransfer protein, RdeA, and the response regulator, RegA, constitute two essential elements in a eukaryotic His-Asp phospho-relay network that regulates Dictyostelium development and fruiting body maturation.
Collapse
Affiliation(s)
- P A Thomason
- Medical Research Council Laboratory of Molecular Biology, Hills Road, Cambridge, CB2 2QH, United Kingdom.
| | | | | | | |
Collapse
|
42
|
Abstract
Dictyostelium allows some of the general problems of eukaryotic biology to be addressed by using molecular genetic tools that are more normally associated with yeast. The genome project, now underway, marks an important increase in the attractiveness of Dictyostelium as an experimental organism and will invite increased 'species hopping' by experimenters. We provide a brief guide to the problems that are being addressed in Dictyostelium, to the genome project itself and to the molecular genetic tools available for its exploitation.
Collapse
Affiliation(s)
- R R Kay
- MRC Laboratory of Molecular Biology, Hills Road, Cambridge, UK CB2 2QH.
| | | |
Collapse
|