1
|
Brunet AA, James RE, Swanson P, Carvalho LS. A review of the 661W cell line as a tool to facilitate treatment development for retinal diseases. Cell Biosci 2025; 15:41. [PMID: 40170180 PMCID: PMC11959731 DOI: 10.1186/s13578-025-01381-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Accepted: 03/23/2025] [Indexed: 04/03/2025] Open
Abstract
Retinal diseases encompass a diverse group of disorders that affect the structure and function of the retina, leading to visual impairment and, in some cases, irreversible vision loss. The investigation of retinal diseases is crucial for understanding their underlying mechanisms, identifying potential therapeutic targets, and developing effective treatments. The use of in vitro cell models has become instrumental in advancing our knowledge of these disorders, but given that these conditions usually affect retinal neuronal cell types, access to appropriate cell models can be potentially challenging. Among the available in vitro cell models, the 661W cone-like cell line has emerged as a valuable tool for studying various retinal diseases, ranging from monogenic conditions, such as inherited retinal diseases, to complex conditions such as age-related macular degeneration (AMD), diabetic retinopathy, amongst others. Developed from immortalized murine photoreceptor cells, and freely available for academics from its creator, the 661W cell line has offered visual scientists and clinicians around the world a reliable and well-characterised platform for investigating disease pathogenesis, exploring disease-specific molecular signatures, and evaluating potential therapeutic interventions. This review aims to provide an overview of the 661W cell line and its applications in the study of both inherited and acquired retinal diseases. By examining the applications and limitations of this unique cell line, we may gain valuable insights into its contributions in unravelling the complexities of retinal diseases and its potential impact on the development of novel treatments for these diseases.
Collapse
Affiliation(s)
- Alicia A Brunet
- Centre for Ophthalmology and Visual Science, The University of Western Australia, Nedlands, WA, 6009, Australia
- Lions Eye Institute, 2 Verdun St, Nedlands, WA, 6009, Australia
| | - Rebekah E James
- Centre for Ophthalmology and Visual Science, The University of Western Australia, Nedlands, WA, 6009, Australia
- Lions Eye Institute, 2 Verdun St, Nedlands, WA, 6009, Australia
- Department of Optometry and Vision Sciences, University of Melbourne, Parkville, VIC, 3052, Australia
| | - Petria Swanson
- Lions Eye Institute, 2 Verdun St, Nedlands, WA, 6009, Australia
- School of Biomedical Sciences, The University of Western Australia, Crawley, WA, 6009, Australia
| | - Livia S Carvalho
- Centre for Ophthalmology and Visual Science, The University of Western Australia, Nedlands, WA, 6009, Australia.
- Lions Eye Institute, 2 Verdun St, Nedlands, WA, 6009, Australia.
- Department of Optometry and Vision Sciences, University of Melbourne, Parkville, VIC, 3052, Australia.
| |
Collapse
|
2
|
Gao S, Cheng Q, Hu Y, Fan X, Liang C, Niu C, Kang Q, Wei T. Melatonin antagonizes oxidative stress-induced apoptosis in retinal ganglion cells through activating the thioredoxin-1 pathway. Mol Cell Biochem 2024; 479:3393-3404. [PMID: 38353878 DOI: 10.1007/s11010-024-04924-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 01/05/2024] [Indexed: 03/28/2024]
Abstract
This study aimed to explore the role of melatonin in oxidative stress-induced injury on retinal ganglion cells and the underlying mechanisms. The immortalized RGC-5 cells were treated with H2O2 to induce oxidative injury. Cell viability was measured by Cell Counting Kit-8, and apoptosis was determined by flow cytometry and western blot assays. Reactive oxygen species (ROS), lactate dehydrogenase (LDH), and malondialdehyde (MDA) levels were examined to evaluate oxidative stress levels. In addition, Thioredoxin-1 (Trx1) was silenced in RGC-5 cells using small interfering RNA followed by signaling pathway examination to explore the underlying mechanisms of melatonin in alleviating oxidative injury. Melatonin pre-treatment significantly alleviated H2O2-induced apoptosis in RGC-5 cells. Melatonin also markedly reversed the upregulation of cleaved-caspase 3, cleaved-caspase 9, and Bax expression and downregulation of Bcl-2 expression induced by H2O2. Further analyses presented that melatonin significantly attenuated the increase of ROS, LDH, and MDA levels in RGC-5 cells after H2O2 treatment. Melatonin also abolished the downregulated expression of Superoxide dismutase type 1, Trx1, and Thioredoxin reductase 1, and the reduced activity of thioredoxin reductase in RGC-5 cells after H2O2 treatment. Notably, Trx1 knockdown significantly mitigated the protective effect of melatonin in alleviating H2O2-induced apoptosis and oxidative stress, while administration of compound C, a common inhibitor of c-Jun N-terminal kinase (JNK) signaling, partially reversed the effect of Trx1 silencing, thereby ameliorating the apoptosis and oxidative injury induced by H2O2 in RGC-5 cells. Melatonin could significantly alleviate oxidative stress-induced injury of retinal ganglion cells via modulating Trx1-mediated JNK signaling pathway.
Collapse
Affiliation(s)
- Shan Gao
- Department of Ophthalmology, the First Affiliated Hospital of Xi'an Jiaotong University, No.277 Yanta West Road, Yanta District, Xi'an, 710061, Shaanxi, China
| | - Qiaochu Cheng
- Department of Ophthalmology, the First Affiliated Hospital of Xi'an Jiaotong University, No.277 Yanta West Road, Yanta District, Xi'an, 710061, Shaanxi, China
| | - Yaguang Hu
- Department of Ophthalmology, the First Affiliated Hospital of Xi'an Jiaotong University, No.277 Yanta West Road, Yanta District, Xi'an, 710061, Shaanxi, China
| | - Xiaojuan Fan
- Department of Ophthalmology, the First Affiliated Hospital of Xi'an Jiaotong University, No.277 Yanta West Road, Yanta District, Xi'an, 710061, Shaanxi, China
| | - Chen Liang
- Department of Neurosurgery, the First Affiliated Hospital of Xi'an Jiaotong University, No.277 Yanta West Road, Yanta District, Xi'an, 710061, Shaanxi, China
| | - Chen Niu
- Department of Medical Imaging, the First Affiliated Hospital of Xi'an Jiaotong University, No.277 Yanta West Road, Yanta District, Xi'an, 710061, Shaanxi, China
| | - Qianyan Kang
- Department of Ophthalmology, the First Affiliated Hospital of Xi'an Jiaotong University, No.277 Yanta West Road, Yanta District, Xi'an, 710061, Shaanxi, China
| | - Ting Wei
- Department of Ophthalmology, the First Affiliated Hospital of Xi'an Jiaotong University, No.277 Yanta West Road, Yanta District, Xi'an, 710061, Shaanxi, China.
| |
Collapse
|
3
|
Hurst J, Attrodt G, Bartz-Schmidt KU, Mau-Holzmann UA, Spitzer MS, Schnichels S. A Case Study from the Past: "The RGC-5 vs. the 661W Cell Line: Similarities, Differences and Contradictions-Are They Really the Same?". Int J Mol Sci 2023; 24:13801. [PMID: 37762103 PMCID: PMC10531351 DOI: 10.3390/ijms241813801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 08/03/2023] [Accepted: 08/24/2023] [Indexed: 09/29/2023] Open
Abstract
In the pursuit of identifying the underlying pathways of ocular diseases, the use of cell lines such as (retinal ganglion cell-5) RGC-5 and 661W became a valuable tool, including pathologies like retinal degeneration and glaucoma. In 2001, the establishment of the RGC-5 cell line marked a significant breakthrough in glaucoma research. Over time, however, concerns arose about the true nature of RGC-5 cells, with conflicting findings in the literature regarding their identity as retinal ganglion cells or photoreceptor-like cells. This study aimed to address the controversy surrounding the RGC-5 cell line's origin and properties by comparing it with the 661W cell line, a known cone photoreceptor model. Both cell lines were differentiated according to two prior published redifferentiation protocols under the same conditions using 500 nM of trichostatin A (TSA) and investigated for their morphological and neuronal marker properties. The results demonstrated that both cell lines are murine, and they exhibited distinct morphological and neuronal marker properties. Notably, the RGC-5 cells showed higher expression of the neuronal marker β-III tubulin and increased Thy-1-mRNA compared with the 661W cells, providing evidence of their different properties. The findings emphasize the importance of verifying the authenticity of cell lines used in ocular research and highlight the risks of contamination and altered cell properties.
Collapse
Affiliation(s)
- José Hurst
- Center for Ophthalmology, University Eye Hospital Tübingen, Elfriede-Aulhorn-Str. 7, 72076 Tuebingen, Germany (K.-U.B.-S.); (S.S.)
| | - Gesine Attrodt
- Center for Ophthalmology, University Eye Hospital Tübingen, Elfriede-Aulhorn-Str. 7, 72076 Tuebingen, Germany (K.-U.B.-S.); (S.S.)
| | - Karl-Ulrich Bartz-Schmidt
- Center for Ophthalmology, University Eye Hospital Tübingen, Elfriede-Aulhorn-Str. 7, 72076 Tuebingen, Germany (K.-U.B.-S.); (S.S.)
| | - Ulrike Angelika Mau-Holzmann
- Institute for Medical Genetics and Applied Genomics, Center for Rare Diseases, University of Tuebingen, Calwerstrasse 7, 72076 Tübingen, Germany
| | - Martin Stephan Spitzer
- Department of Ophthalmology, University Medical Center Hamburg-Eppendorf (UKE), Martinistraße 52, 20251 Hamburg, Germany;
| | - Sven Schnichels
- Center for Ophthalmology, University Eye Hospital Tübingen, Elfriede-Aulhorn-Str. 7, 72076 Tuebingen, Germany (K.-U.B.-S.); (S.S.)
| |
Collapse
|
4
|
Liou RHC, Chen SW, Cheng HC, Wu PC, Chang YF, Wang AG, Fann MJ, Wong YH. The efficient induction of human retinal ganglion-like cells provides a platform for studying optic neuropathies. Cell Mol Life Sci 2023; 80:239. [PMID: 37540379 PMCID: PMC10403410 DOI: 10.1007/s00018-023-04890-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 06/29/2023] [Accepted: 07/19/2023] [Indexed: 08/05/2023]
Abstract
Retinal ganglion cells (RGCs) are essential for vision perception. In glaucoma and other optic neuropathies, RGCs and their optic axons undergo degenerative change and cell death; this can result in irreversible vision loss. Here we developed a rapid protocol for directly inducing RGC differentiation from human induced pluripotent stem cells (hiPSCs) by the overexpression of ATOH7, BRN3B, and SOX4. The hiPSC-derived RGC-like cells (iRGCs) show robust expression of various RGC-specific markers by whole transcriptome profiling. A functional assessment was also carried out and this demonstrated that these iRGCs display stimulus-induced neuronal activity, as well as spontaneous neuronal activity. Ethambutol (EMB), an effective first-line anti-tuberculosis agent, is known to cause serious visual impairment and irreversible vision loss due to the RGC degeneration in a significant number of treated patients. Using our iRGCs, EMB was found to induce significant dose-dependent and time-dependent increases in cell death and neurite degeneration. Western blot analysis revealed that the expression levels of p62 and LC3-II were upregulated, and further investigations revealed that EMB caused a blockade of lysosome-autophagosome fusion; this indicates that impairment of autophagic flux is one of the adverse effects of that EMB has on iRGCs. In addition, EMB was found to elevate intracellular reactive oxygen species (ROS) levels increasing apoptotic cell death. This could be partially rescued by the co-treatment with the ROS scavenger NAC. Taken together, our findings suggest that this iRGC model, which achieves both high yield and high purity, is suitable for investigating optic neuropathies, as well as being useful when searching for potential drugs for therapeutic treatment and/or disease prevention.
Collapse
Affiliation(s)
- Roxanne Hsiang-Chi Liou
- Department of Life Sciences and Institute of Genome Sciences, College of Life Sciences, National Yang Ming Chiao Tung University, Taipei, 112, Taiwan, ROC
| | - Shih-Wei Chen
- Brain Research Center, National Yang Ming Chiao Tung University, Taipei, 112, Taiwan, ROC
- Department of Life Sciences and Institute of Genome Sciences, College of Life Sciences, National Yang Ming Chiao Tung University, Taipei, 112, Taiwan, ROC
| | - Hui-Chen Cheng
- Brain Research Center, National Yang Ming Chiao Tung University, Taipei, 112, Taiwan, ROC
- Department of Life Sciences and Institute of Genome Sciences, College of Life Sciences, National Yang Ming Chiao Tung University, Taipei, 112, Taiwan, ROC
- Department of Ophthalmology, Taipei Veterans General Hospital, Taipei, 112, Taiwan, ROC
- Department of Ophthalmology, School of Medicine, National Yang Ming Chiao Tung University, Taipei, 112, Taiwan, ROC
- Program in Molecular Medicine, College of Life Sciences, National Yang Ming Chiao Tung University, Taipei, Taiwan, ROC
| | - Pei-Chun Wu
- Brain Research Center, National Yang Ming Chiao Tung University, Taipei, 112, Taiwan, ROC
| | - Yu-Fen Chang
- LumiSTAR Biotechnology, Inc., Taipei, 115, Taiwan, ROC
| | - An-Guor Wang
- Department of Ophthalmology, Taipei Veterans General Hospital, Taipei, 112, Taiwan, ROC
- Department of Ophthalmology, School of Medicine, National Yang Ming Chiao Tung University, Taipei, 112, Taiwan, ROC
| | - Ming-Ji Fann
- Brain Research Center, National Yang Ming Chiao Tung University, Taipei, 112, Taiwan, ROC
- Department of Life Sciences and Institute of Genome Sciences, College of Life Sciences, National Yang Ming Chiao Tung University, Taipei, 112, Taiwan, ROC
| | - Yu-Hui Wong
- Brain Research Center, National Yang Ming Chiao Tung University, Taipei, 112, Taiwan, ROC.
- Department of Life Sciences and Institute of Genome Sciences, College of Life Sciences, National Yang Ming Chiao Tung University, Taipei, 112, Taiwan, ROC.
| |
Collapse
|
5
|
New In Vitro Cellular Model for Molecular Studies of Retinitis Pigmentosa. Int J Mol Sci 2021; 22:ijms22126440. [PMID: 34208617 PMCID: PMC8235468 DOI: 10.3390/ijms22126440] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 06/04/2021] [Accepted: 06/13/2021] [Indexed: 02/05/2023] Open
Abstract
Retinitis pigmentosa (RP) is an inherited form of retinal degeneration characterized by primary rod photoreceptor cell death followed by cone loss. Mutations in several genes linked to the disease cause increased levels of cyclic guanosine monophosphate (cGMP) and calcium ion influxes. The purpose of this project was to develop a new in vitro photoreceptor degeneration model for molecular studies of RP. 661W cells were genetically modified to stably express the neural retina leucine zipper (NRL) transcription factor. One clone (661W-A11) was selected based on the expression of Nrl target genes. 661W-A11 showed a significant increase in expression of rod-specific genes but not of cone-specific genes, compared with 661W cells. Zaprinast was used to inhibit phosphodiesterase 6 (PDE6) activity to mimic photoreceptor degeneration in vitro. The activation of cell death pathways resulting from PDE6 inhibition was confirmed by detection of decreased viability and increased intracellular cGMP and calcium, as well as activation of protein kinase G (PKG) and calpains. In this new in vitro system, we validated the effects of previously published neuroprotective drugs. The 661W-A11 cells may serve as a new model for molecular studies of RP and for high-throughput drug screening.
Collapse
|
6
|
Zhao Y, Shen Y. Light-Induced Retinal Ganglion Cell Damage and the Relevant Mechanisms. Cell Mol Neurobiol 2020; 40:1243-1252. [PMID: 32107750 PMCID: PMC11448955 DOI: 10.1007/s10571-020-00819-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Accepted: 02/18/2020] [Indexed: 12/21/2022]
Abstract
While light is the basic element for inducing vision and modulating circadian rhythms, excessive light has been reported to have a negative effect on the survival of various types of retinal cells. Among them photoreceptors and retinal pigment epithelial (RPE) cells degeneration after light exposure is widely observed, but light-induced retinal ganglion cell (RGC) damage achieves relatively little attention. The purpose of this article is to summarize the experimental evidence for the possible negative effects of excessive light on RGCs. By searching the database, twenty-six related articles have been included. Taken together, excessive light may insult RGCs through the three main ways: (i) directly action on RGC mitochondria, as well as DNA, resulting in an upregulation of reactive oxygen species (ROS) and subsequently caspase-dependent or -independent cell death; (ii) mediation in gliotransmitters or relevant receptors of retinal glial cells; and (iii) a secondary event to photoreceptors and RPE cells degeneration and subsequent retinal remodeling. So RGCs can certainly be injured by excessive light, especially when they are already energetically compromised in some diseases. And more attentions should be paid to this topic to take timely measures to protect these frail RGCs from being damaged by excessive light.
Collapse
Affiliation(s)
- Yuan Zhao
- Department of Ophthalmology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Ye Shen
- Department of Ophthalmology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China.
| |
Collapse
|
7
|
Plasma Rich in Growth Factors Enhances Cell Survival after in Situ Retinal Degeneration. Int J Mol Sci 2020; 21:ijms21207442. [PMID: 33050198 PMCID: PMC7590176 DOI: 10.3390/ijms21207442] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 09/24/2020] [Accepted: 10/08/2020] [Indexed: 01/21/2023] Open
Abstract
PURPOSE The purpose of this study was to examine the effect of plasma rich in growth factors (PRGFs) under blue light conditions in an in vivo model of retinal degeneration. METHODS Male Wistar rats were exposed to dark/blue light conditions for 9 days. On day 7, right eyes were injected with saline and left eyes with PRGF. Electroretinography (ERG) and intraocular pressure (IoP) measurements were performed before and after the experiment. After sacrifice, retinal samples were collected. Hematoxylin and eosin staining was performed to analyze the structure of retinal sections. Immunofluorescence for brain-specific homeobox/POU domain protein 3A (Brn3a), choline acetyltransferase (ChAT), rhodopsin, heme oxygenase-1 (HO-1), and glial fibrillary acidic protein (GFAP) was performed to study the retinal conditions. RESULTS Retinal signaling measured by ERG was reduced by blue light and recovered with PRGF; however, IoP measurements did not show significant differences among treatments. Blue light reduced the expression for Brn3a, ChAT, and rhodopsin. Treatment with PRGF showed a recovery in their expressions. HO-1 and GFAP results showed that blue light increased their expression but the use of PRGF reduced the effect of light. CONCLUSIONS Blue light causes retinal degeneration. PRGF mitigated the injury, restoring the functionality of these cells and maintaining the tissue integrity.
Collapse
|
8
|
Pang Y, Qin M, Hu P, Ji K, Xiao R, Sun N, Pan X, Zhang X. Resveratrol protects retinal ganglion cells against ischemia induced damage by increasing Opa1 expression. Int J Mol Med 2020; 46:1707-1720. [PMID: 32901846 PMCID: PMC7521588 DOI: 10.3892/ijmm.2020.4711] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Accepted: 07/27/2020] [Indexed: 12/15/2022] Open
Abstract
Loss of idiopathic retinal ganglion cells (RGCs) leads to irreversible vision defects and is considered the primary characteristic of glaucoma. However, effective treatment strategies in terms of RGC neuroprotection remain elusive. In the present study, the protective effects of resveratrol on RGC apoptosis, and the mechanisms underlying its effects were investigated, with a particular emphasis on the function of optic atrophy 1 (Opa1). In an ischemia/reperfusion (I/R) injury model, the notable thinning of the retina, significant apoptosis of RGCs, reduction in Opa1 expression and long Opa1 isoform to short Opa1 isoform ratios (L-Opa1/S-Opa1 ratio) were observed, all of which were reversed by resveratrol administration. Serum deprivation resulted in reductions in R28 cell viability, superoxide dismutase (SOD) activity, Opa1 expression and induced apoptosis, which were also partially reversed by resveratrol treatment. To conclude, results from the present study suggest that resveratrol treatment significantly reduced retinal damage and RGC apoptosis in I/R injury and serum deprivation models. In addition, resveratrol reversed the downregulated expression of Opa1 and reduced SOD activity. Mechanistically, resveratrol influenced mitochondrial dynamics by regulating the L-Opa1/S-Opa1 ratio. Therefore, these observations suggest that resveratrol may exhibit potential as a therapeutic agent for RGC damage in the future.
Collapse
Affiliation(s)
- Yulian Pang
- Affiliated Eye Hospital of Nanchang University, Jiangxi Research Institute of Ophthalmology and Visual Science, Jiangxi Provincial Key Laboratory for Ophthalmology, Nanchang, Jiangxi 330006, P.R. China
| | - Mengqi Qin
- Affiliated Eye Hospital of Nanchang University, Jiangxi Research Institute of Ophthalmology and Visual Science, Jiangxi Provincial Key Laboratory for Ophthalmology, Nanchang, Jiangxi 330006, P.R. China
| | - Piaopiao Hu
- Affiliated Eye Hospital of Nanchang University, Jiangxi Research Institute of Ophthalmology and Visual Science, Jiangxi Provincial Key Laboratory for Ophthalmology, Nanchang, Jiangxi 330006, P.R. China
| | - Kaibao Ji
- Affiliated Eye Hospital of Nanchang University, Jiangxi Research Institute of Ophthalmology and Visual Science, Jiangxi Provincial Key Laboratory for Ophthalmology, Nanchang, Jiangxi 330006, P.R. China
| | - Ruihan Xiao
- Affiliated Eye Hospital of Nanchang University, Jiangxi Research Institute of Ophthalmology and Visual Science, Jiangxi Provincial Key Laboratory for Ophthalmology, Nanchang, Jiangxi 330006, P.R. China
| | - Nan Sun
- Affiliated Eye Hospital of Nanchang University, Jiangxi Research Institute of Ophthalmology and Visual Science, Jiangxi Provincial Key Laboratory for Ophthalmology, Nanchang, Jiangxi 330006, P.R. China
| | - Xinghui Pan
- Affiliated Eye Hospital of Nanchang University, Jiangxi Research Institute of Ophthalmology and Visual Science, Jiangxi Provincial Key Laboratory for Ophthalmology, Nanchang, Jiangxi 330006, P.R. China
| | - Xu Zhang
- Affiliated Eye Hospital of Nanchang University, Jiangxi Research Institute of Ophthalmology and Visual Science, Jiangxi Provincial Key Laboratory for Ophthalmology, Nanchang, Jiangxi 330006, P.R. China
| |
Collapse
|
9
|
Schnichels S, Paquet-Durand F, Löscher M, Tsai T, Hurst J, Joachim SC, Klettner A. Retina in a dish: Cell cultures, retinal explants and animal models for common diseases of the retina. Prog Retin Eye Res 2020; 81:100880. [PMID: 32721458 DOI: 10.1016/j.preteyeres.2020.100880] [Citation(s) in RCA: 77] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2019] [Revised: 06/23/2020] [Accepted: 06/26/2020] [Indexed: 12/11/2022]
Abstract
For many retinal diseases, including age-related macular degeneration (AMD), glaucoma, and diabetic retinopathy (DR), the exact pathogenesis is still unclear. Moreover, the currently available therapeutic options are often unsatisfactory. Research designed to remedy this situation heavily relies on experimental animals. However, animal models often do not faithfully reproduce human disease and, currently, there is strong pressure from society to reduce animal research. Overall, this creates a need for improved disease models to understand pathologies and develop treatment options that, at the same time, require fewer or no experimental animals. Here, we review recent advances in the field of in vitro and ex vivo models for AMD, glaucoma, and DR. We highlight the difficulties associated with studies on complex diseases, in which both the initial trigger and the ensuing pathomechanisms are unclear, and then delineate which model systems are optimal for disease modelling. To this end, we present a variety of model systems, ranging from primary cell cultures, over organotypic cultures and whole eye cultures, to animal models. Specific advantages and disadvantages of such models are discussed, with a special focus on their relevance to putative in vivo disease mechanisms. In many cases, a replacement of in vivo research will mean that several different in vitro models are used in conjunction, for instance to analyze and validate causative molecular pathways. Finally, we argue that the analytical decomposition into appropriate cell and tissue model systems will allow making significant progress in our understanding of complex retinal diseases and may furthermore advance the treatment testing.
Collapse
Affiliation(s)
- Sven Schnichels
- University Eye Hospital, Centre for Ophthalmology, University of Tübingen, Germany.
| | - François Paquet-Durand
- Institute for Ophthalmic Research, Centre for Ophthalmology, University of Tübingen, Germany
| | - Marina Löscher
- University Eye Hospital, Centre for Ophthalmology, University of Tübingen, Germany
| | - Teresa Tsai
- Experimental Eye Research Institute, University Eye Hospital, Ruhr-University Bochum, Germany
| | - José Hurst
- University Eye Hospital, Centre for Ophthalmology, University of Tübingen, Germany
| | - Stephanie C Joachim
- Experimental Eye Research Institute, University Eye Hospital, Ruhr-University Bochum, Germany
| | - Alexa Klettner
- Department of Ophthalmology, University Medical Center, University of Kiel, Kiel, Germany
| |
Collapse
|
10
|
Calzaferri F, Ruiz-Ruiz C, de Diego AMG, de Pascual R, Méndez-López I, Cano-Abad MF, Maneu V, de Los Ríos C, Gandía L, García AG. The purinergic P2X7 receptor as a potential drug target to combat neuroinflammation in neurodegenerative diseases. Med Res Rev 2020; 40:2427-2465. [PMID: 32677086 DOI: 10.1002/med.21710] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Revised: 06/22/2020] [Accepted: 06/27/2020] [Indexed: 12/25/2022]
Abstract
Neurodegenerative diseases (NDDs) represent a huge social burden, particularly in Alzheimer's disease (AD) in which all proposed treatments investigated in murine models have failed during clinical trials (CTs). Thus, novel therapeutic strategies remain crucial. Neuroinflammation is a common pathogenic feature of NDDs. As purinergic P2X7 receptors (P2X7Rs) are gatekeepers of inflammation, they could be developed as drug targets for NDDs. Herein, we review this challenging hypothesis and comment on the numerous studies that have investigated P2X7Rs, emphasizing their molecular structure and functions, as well as their role in inflammation. Then, we elaborate on research undertaken in the field of medicinal chemistry to determine potential P2X7R antagonists. Subsequently, we review the state of neuroinflammation and P2X7R expression in the brain, in animal models and patients suffering from AD, Parkinson's disease, amyotrophic lateral sclerosis, Huntington's disease, multiple sclerosis, and retinal degeneration. Next, we summarize the in vivo studies testing the hypothesis that by mitigating neuroinflammation, P2X7R blockers afford neuroprotection, increasing neuroplasticity and neuronal repair in animal models of NDDs. Finally, we reviewed previous and ongoing CTs investigating compounds directed toward targets associated with NDDs; we propose that CTs with P2X7R antagonists should be initiated. Despite the high expectations for putative P2X7Rs antagonists in various central nervous system diseases, the field is moving forward at a relatively slow pace, presumably due to the complexity of P2X7Rs. A better pharmacological approach to combat NDDs would be a dual strategy, combining P2X7R antagonism with drugs targeting a selective pathway in a given NDD.
Collapse
Affiliation(s)
- Francesco Calzaferri
- Departamento de Farmacología, Instituto-Fundación Teófilo Hernando, Facultad de Medicina, Universidad Autónoma de Madrid, Madrid, Spain
| | - Cristina Ruiz-Ruiz
- Departamento de Farmacología, Instituto-Fundación Teófilo Hernando, Facultad de Medicina, Universidad Autónoma de Madrid, Madrid, Spain
| | - Antonio M G de Diego
- Departamento de Farmacología, Instituto-Fundación Teófilo Hernando, Facultad de Medicina, Universidad Autónoma de Madrid, Madrid, Spain.,Instituto de Investigación Sanitaria, Hospital Universitario de La Princesa, Universidad Autónoma de Madrid, Madrid, Spain
| | - Ricardo de Pascual
- Departamento de Farmacología, Instituto-Fundación Teófilo Hernando, Facultad de Medicina, Universidad Autónoma de Madrid, Madrid, Spain
| | - Iago Méndez-López
- Departamento de Farmacología, Instituto-Fundación Teófilo Hernando, Facultad de Medicina, Universidad Autónoma de Madrid, Madrid, Spain
| | - María F Cano-Abad
- Departamento de Farmacología, Instituto-Fundación Teófilo Hernando, Facultad de Medicina, Universidad Autónoma de Madrid, Madrid, Spain.,Instituto de Investigación Sanitaria, Hospital Universitario de La Princesa, Universidad Autónoma de Madrid, Madrid, Spain
| | - Victoria Maneu
- Departamento de Óptica, Farmacología y Anatomía, Universidad de Alicante, San Vicente del Raspeig, Spain
| | - Cristóbal de Los Ríos
- Departamento de Farmacología, Instituto-Fundación Teófilo Hernando, Facultad de Medicina, Universidad Autónoma de Madrid, Madrid, Spain.,Instituto de Investigación Sanitaria, Hospital Universitario de La Princesa, Universidad Autónoma de Madrid, Madrid, Spain
| | - Luis Gandía
- Departamento de Farmacología, Instituto-Fundación Teófilo Hernando, Facultad de Medicina, Universidad Autónoma de Madrid, Madrid, Spain
| | - Antonio G García
- Departamento de Farmacología, Instituto-Fundación Teófilo Hernando, Facultad de Medicina, Universidad Autónoma de Madrid, Madrid, Spain.,Instituto de Investigación Sanitaria, Hospital Universitario de La Princesa, Universidad Autónoma de Madrid, Madrid, Spain
| |
Collapse
|
11
|
Delprat B, Crouzier L, Su TP, Maurice T. At the Crossing of ER Stress and MAMs: A Key Role of Sigma-1 Receptor? ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1131:699-718. [PMID: 31646531 DOI: 10.1007/978-3-030-12457-1_28] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Calcium exchanges and homeostasis are finely regulated between cellular organelles and in response to physiological signals. Besides ionophores, including voltage-gated Ca2+ channels, ionotropic neurotransmitter receptors, or Store-operated Ca2+ entry, activity of regulatory intracellular proteins finely tune Calcium homeostasis. One of the most intriguing, by its unique nature but also most promising by the therapeutic opportunities it bears, is the sigma-1 receptor (Sig-1R). The Sig-1R is a chaperone protein residing at mitochondria-associated endoplasmic reticulum (ER) membranes (MAMs), where it interacts with several partners involved in ER stress response, or in Ca2+ exchange between the ER and mitochondria. Small molecules have been identified that specifically and selectively activate Sig-1R (Sig-1R agonists or positive modulators) at the cellular level and that also allow effective pharmacological actions in several pre-clinical models of pathologies. The present review will summarize the recent data on the mechanism of action of Sig-1R in regulating Ca2+ exchanges and protein interactions at MAMs and the ER. As MAMs alterations and ER stress now appear as a common track in most neurodegenerative diseases, the intracellular action of Sig-1R will be discussed in the context of the recently reported efficacy of Sig-1R drugs in pathologies like Alzheimer's disease, Parkinson's disease, Huntington's disease, or amyotrophic lateral sclerosis.
Collapse
Affiliation(s)
- Benjamin Delprat
- MMDN, University of Montpellier, EPHE, INSERM, U1198, Montpellier, France.
| | - Lucie Crouzier
- MMDN, University of Montpellier, EPHE, INSERM, U1198, Montpellier, France
| | - Tsung-Ping Su
- Cellular Pathobiology Section, Integrative Neuroscience Branch, Intramural Research Program, National Institute on Drug Abuse, NIH, DHHS, IRP, NIDA/NIH, Baltimore, MD, USA
| | - Tangui Maurice
- MMDN, University of Montpellier, EPHE, INSERM, U1198, Montpellier, France
| |
Collapse
|
12
|
Wang S, Liu Y, Tan JW, Hu T, Zhang HF, Sorenson CM, Smith JA, Sheibani N. Tunicamycin-induced photoreceptor atrophy precedes degeneration of retinal capillaries with minimal effects on retinal ganglion and pigment epithelium cells. Exp Eye Res 2019; 187:107756. [PMID: 31421136 PMCID: PMC7412575 DOI: 10.1016/j.exer.2019.107756] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Revised: 08/10/2019] [Accepted: 08/13/2019] [Indexed: 12/13/2022]
Abstract
Endoplasmic reticulum (ER) stress is recognized as a contributing factor to various ocular neurovascular pathologies including retinitis pigmentosa, glaucoma, and diabetic retinopathy (DR). ER stress in particular is implicated in the development of DR, which is significantly influenced by inflammation driven retinal vascular degeneration and dysfunction. Ultimately, loss of vision occurs if left untreated. However, the identity of the target cells and their temporal involvement in diabetes-mediated dysfunction need further investigation. Early diabetes-induced stress in photoreceptor cells is proposed as the driver of inflammatory mediated neurovascular changes during diabetes. Although tunicamycin induced ER stress results in photoreceptor loss, its consequences for retinal vascular degeneration and retinal ganglion (RGC) and pigment epithelium (RPE) cell loss remains unclear. Here we show intravitreal delivery of tunicamycin primarily induced ER stress in photoreceptor cells resulting in their loss by apoptosis. This was concomitant with induced expression of the unfolded protein response marker CHOP in these cells. We also demonstrated significant degeneration of retinal capillaries following the loss of photoreceptor cells with minimal impact on loss of RGC and RPE cells. However, activation of retinal microglial and Muller cells were noticeable. Thus, our data support the notion that ER stress mediated dysfunction and/or loss of photoreceptor cells in response to inflammation and oxidative stress could precede retinal vascular and neuronal dysfunction and degeneration.
Collapse
Affiliation(s)
- Shoujian Wang
- Departments of Ophthalmology and Visual Sciences, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - Yiping Liu
- Pediatrics, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - Jin Wen Tan
- Pediatrics, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - Tiancheng Hu
- Pediatrics, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - Hao F Zhang
- Department of Biomedical Engineering, Northwestern University, Evanston, IL, USA
| | - Christine M Sorenson
- Pediatrics, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA; McPherson Eye Research Institute, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - Judith A Smith
- Pediatrics, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA.
| | - Nader Sheibani
- Departments of Ophthalmology and Visual Sciences, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA; McPherson Eye Research Institute, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA; Cell and Regenerative Biology, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA; Biomedical Engineering, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA.
| |
Collapse
|
13
|
Tsai T, Reinehr S, Maliha AM, Joachim SC. Immune Mediated Degeneration and Possible Protection in Glaucoma. Front Neurosci 2019; 13:931. [PMID: 31543759 PMCID: PMC6733056 DOI: 10.3389/fnins.2019.00931] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Accepted: 08/19/2019] [Indexed: 12/13/2022] Open
Abstract
The underlying pathomechanisms for glaucoma, one of the most common causes of blindness worldwide, are still not identified. In addition to increased intraocular pressure (IOP), oxidative stress, excitotoxicity, and immunological processes seem to play a role. Several pharmacological or molecular/genetic methods are currently investigated as treatment options for this disease. Altered autoantibody levels were detected in serum, aqueous humor, and tissue sections of glaucoma patients. To further analyze the role of the immune system, an IOP-independent, experimental autoimmune glaucoma (EAG) animal model was developed. In this model, immunization with ocular antigens leads to antibody depositions, misdirected T-cells, retinal ganglion cell death and degeneration of the optic nerve, similar to glaucomatous degeneration in patients. Moreover, an activation of the complement system and microglia alterations were identified in the EAG as well as in ocular hypertension models. The inhibition of these factors can alleviate degeneration in glaucoma models with and without high IOP. Currently, several neuroprotective approaches are tested in distinct models. It is necessary to have systems that cover underlying pathomechanisms, but also allow for the screening of new drugs. In vitro models are commonly used, including single cell lines, mixed-cultures, and even organoids. In ex vivo organ cultures, pathomechanisms as well as therapeutics can be investigated in the whole retina. Furthermore, animal models reveal insights in the in vivo situation. With all these models, several possible new drugs and therapy strategies were tested in the last years. For example, hypothermia treatment, neurotrophic factors or the blockage of excitotoxity. However, further studies are required to reveal the pressure independent pathomechanisms behind glaucoma. There is still an open issue whether immune mechanisms directly or indirectly trigger cell death pathways. Hence, it might be an imbalance between protective and destructive immune mechanisms. Moreover, identified therapy options have to be evaluated in more detail, since deeper insights could lead to better treatment options for glaucoma patients.
Collapse
Affiliation(s)
| | | | | | - Stephanie C. Joachim
- Experimental Eye Research, University Eye Hospital, Ruhr-University Bochum, Bochum, Germany
| |
Collapse
|
14
|
Madaan A, Chaudhari P, Nadeau-Vallée M, Hamel D, Zhu T, Mitchell G, Samuels M, Pundir S, Dabouz R, Howe Cheng CW, Mohammad Nezhady MA, Joyal JS, Rivera JC, Chemtob S. Müller Cell-Localized G-Protein-Coupled Receptor 81 (Hydroxycarboxylic Acid Receptor 1) Regulates Inner Retinal Vasculature via Norrin/Wnt Pathways. THE AMERICAN JOURNAL OF PATHOLOGY 2019; 189:1878-1896. [PMID: 31220454 DOI: 10.1016/j.ajpath.2019.05.016] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Revised: 05/13/2019] [Accepted: 05/28/2019] [Indexed: 12/23/2022]
Abstract
Ischemic retinopathies are characterized by a progressive microvascular degeneration followed by a postischemic aberrant neovascularization. To reinstate vascular supply and metabolic equilibrium to the ischemic tissue during ischemic retinopathies, a dysregulated production of growth factors and metabolic intermediates occurs, promoting retinal angiogenesis. Glycolysis-derived lactate, highly produced during ischemic conditions, has been associated with tumor angiogenesis and wound healing. Lactate exerts its biological effects via G-protein-coupled receptor 81 (GPR81) in several tissues; however, its physiological functions and mechanisms of action in the retina remain poorly understood. Herein, we show that GPR81, localized predominantly in Müller cells, governs deep vascular complex formation during development and in ischemic retinopathy. Lactate-stimulated GPR81 Müller cells produce numerous angiogenic factors, including Wnt ligands and particularly Norrin, which contributes significantly in triggering inner retinal blood vessel formation. Conversely, GPR81-null mice retina shows reduced inner vascular network formation associated with low levels of Norrin (and Wnt ligands). Lactate accumulation during ischemic retinopathy selectively activates GPR81-extracellular signal-regulated kinase 1/2-Norrin signaling to accelerate inner retinal vascularization in wild-type animals, but not in the retina of GPR81-null mice. Altogether, we reveal that lactate via GPR81-Norrin participates in inner vascular network development and in restoration of the vasculature in response to injury. These findings suggest a new potential therapeutic target to alleviate ischemic diseases.
Collapse
Affiliation(s)
- Ankush Madaan
- Departments of Pediatrics, Ophthalmology and Pharmacology, Centre Hospitalier Universitaire Sainte-Justine Research Center, Montréal, Quebec, Canada; Department of Pharmacology and Therapeutics, McGill University, Montréal, Quebec, Canada
| | - Prabhas Chaudhari
- Departments of Pediatrics, Ophthalmology and Pharmacology, Centre Hospitalier Universitaire Sainte-Justine Research Center, Montréal, Quebec, Canada; Department of Experimental Medicine, McGill University, Montréal, Quebec, Canada
| | - Mathieu Nadeau-Vallée
- Departments of Pediatrics, Ophthalmology and Pharmacology, Centre Hospitalier Universitaire Sainte-Justine Research Center, Montréal, Quebec, Canada; Department of Pharmacology, Université de Montréal, Montréal, Quebec, Canada
| | - David Hamel
- Departments of Pediatrics, Ophthalmology and Pharmacology, Centre Hospitalier Universitaire Sainte-Justine Research Center, Montréal, Quebec, Canada
| | - Tang Zhu
- Departments of Pediatrics, Ophthalmology and Pharmacology, Centre Hospitalier Universitaire Sainte-Justine Research Center, Montréal, Quebec, Canada
| | - Grant Mitchell
- Departments of Pediatrics, Ophthalmology and Pharmacology, Centre Hospitalier Universitaire Sainte-Justine Research Center, Montréal, Quebec, Canada
| | - Mark Samuels
- Departments of Pediatrics, Ophthalmology and Pharmacology, Centre Hospitalier Universitaire Sainte-Justine Research Center, Montréal, Quebec, Canada
| | - Sheetal Pundir
- Departments of Pediatrics, Ophthalmology and Pharmacology, Centre Hospitalier Universitaire Sainte-Justine Research Center, Montréal, Quebec, Canada
| | - Rabah Dabouz
- Departments of Pediatrics, Ophthalmology and Pharmacology, Centre Hospitalier Universitaire Sainte-Justine Research Center, Montréal, Quebec, Canada
| | - Colin Wayne Howe Cheng
- Department of Pharmacology and Therapeutics, McGill University, Montréal, Quebec, Canada
| | - Mohammad A Mohammad Nezhady
- Departments of Pediatrics, Ophthalmology and Pharmacology, Centre Hospitalier Universitaire Sainte-Justine Research Center, Montréal, Quebec, Canada
| | - Jean-Sébastien Joyal
- Departments of Pediatrics, Ophthalmology and Pharmacology, Centre Hospitalier Universitaire Sainte-Justine Research Center, Montréal, Quebec, Canada; Department of Pharmacology and Therapeutics, McGill University, Montréal, Quebec, Canada; Department of Pharmacology, Université de Montréal, Montréal, Quebec, Canada
| | - José Carlos Rivera
- Departments of Pediatrics, Ophthalmology and Pharmacology, Centre Hospitalier Universitaire Sainte-Justine Research Center, Montréal, Quebec, Canada; Research Center, Maisonneuve-Rosemont Hospital, Montréal, Quebec, Canada.
| | - Sylvain Chemtob
- Departments of Pediatrics, Ophthalmology and Pharmacology, Centre Hospitalier Universitaire Sainte-Justine Research Center, Montréal, Quebec, Canada; Department of Pharmacology and Therapeutics, McGill University, Montréal, Quebec, Canada; Department of Pharmacology, Université de Montréal, Montréal, Quebec, Canada; Research Center, Maisonneuve-Rosemont Hospital, Montréal, Quebec, Canada.
| |
Collapse
|
15
|
Shim MS, Kim KY, Noh M, Ko JY, Ahn S, An MA, Iwata T, Perkins GA, Weinreb RN, Ju WK. Optineurin E50K triggers BDNF deficiency-mediated mitochondrial dysfunction in retinal photoreceptor cell line. Biochem Biophys Res Commun 2018; 503:2690-2697. [PMID: 30100066 DOI: 10.1016/j.bbrc.2018.08.025] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Accepted: 08/03/2018] [Indexed: 10/28/2022]
Abstract
Optineurin (OPTN) mutations are linked to glaucoma pathology and E50K mutation shows massive cell death in photoreceptor cells and retinal ganglion cells. However, little is known about E50K-mediated mitochondrial dysfunction in photoreceptor cell degeneration. We here show that overexpression of E50K expression triggered BDNF deficiency, leading to Bax activation in RGC-5 cells. BDNF deficiency induced mitochondrial dysfunction by decreasing mitochondrial maximal respiration and reducing intracellular ATP level in RGC-5 cells. However, BDNF deficiency did not alter mitochondrial dynamics. Also, BDNF deficiency resulted in LC3-mediated mitophagosome formation in RGC-5 cells. These results strongly suggest that E50K-mediated BDNF deficiency plays a critical role in compromised mitochondrial function in glaucomatous photoreceptor cell degeneration.
Collapse
Affiliation(s)
- Myoung Sup Shim
- Hamilton Glaucoma Center, Shiley Eye Institute and Department of Ophthalmology, University of California San Diego, La Jolla, CA, 92039, USA
| | - Keun-Young Kim
- National Center for Microscopy and Imaging Research and Department of Neuroscience, University of California San Diego, La Jolla, CA, 92093, USA
| | - Mark Noh
- Hamilton Glaucoma Center, Shiley Eye Institute and Department of Ophthalmology, University of California San Diego, La Jolla, CA, 92039, USA
| | - Ji Yoon Ko
- Hamilton Glaucoma Center, Shiley Eye Institute and Department of Ophthalmology, University of California San Diego, La Jolla, CA, 92039, USA
| | - Sangphil Ahn
- Hamilton Glaucoma Center, Shiley Eye Institute and Department of Ophthalmology, University of California San Diego, La Jolla, CA, 92039, USA
| | - Michelle A An
- Hamilton Glaucoma Center, Shiley Eye Institute and Department of Ophthalmology, University of California San Diego, La Jolla, CA, 92039, USA
| | - Takeshi Iwata
- Division of Molecular and Cellular Biology, National Institute of Sensory Organs, National Hospital Organization Tokyo Medical Center, Tokyo, Japan
| | - Guy A Perkins
- National Center for Microscopy and Imaging Research and Department of Neuroscience, University of California San Diego, La Jolla, CA, 92093, USA
| | - Robert N Weinreb
- Hamilton Glaucoma Center, Shiley Eye Institute and Department of Ophthalmology, University of California San Diego, La Jolla, CA, 92039, USA
| | - Won-Kyu Ju
- Hamilton Glaucoma Center, Shiley Eye Institute and Department of Ophthalmology, University of California San Diego, La Jolla, CA, 92039, USA.
| |
Collapse
|
16
|
Fang L, Huang T, Tsilfidis C. Immunopanning purification and culture of retinal ganglion cells from mouse. J Neurosci Methods 2018; 303:81-85. [PMID: 29474821 DOI: 10.1016/j.jneumeth.2018.02.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2017] [Revised: 02/17/2018] [Accepted: 02/18/2018] [Indexed: 11/25/2022]
Affiliation(s)
- Lijun Fang
- Department of Ophthalmology, Fujian Medical University Union Hospital, 29 Xinquan Road, Fuzhou, Fujian 350001, China.
| | - Tianwen Huang
- Department of Neurology, Fujian Medical University Union Hospital, 29 Xinquan Road, Fuzhou, Fujian 350001, China.
| | - Catherine Tsilfidis
- Ottawa Hospital Research Institute, Regenerative Medicine Program, Department of Ophthalmology and Cellular and Molecular Medicine, University of Ottawa, 501 Smyth Road, Ottawa, Ontario K1H 8L6, Canada.
| |
Collapse
|
17
|
Protective Effects of Hesperidin (Citrus Flavonone) on High Glucose Induced Oxidative Stress and Apoptosis in a Cellular Model for Diabetic Retinopathy. Nutrients 2017; 9:nu9121312. [PMID: 29207476 PMCID: PMC5748762 DOI: 10.3390/nu9121312] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Revised: 11/20/2017] [Accepted: 11/20/2017] [Indexed: 12/13/2022] Open
Abstract
The aim of this study was to investigate the protective effects and mechanisms of hesperidin, a plant based active flavanone found in citrus fruits, under the oxidative stress and apoptosis induced by high levels of glucose in retinal ganglial cells (RGCs). RGC-5 cells were pretreated with hesperidin (12.5, 25, or 50 μmol/L) for 6 h followed by exposure to high (33.3 mmol/L) d-glucose for 48 h. The 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay was adopted to evaluate cell viability. Mitochondrial function was estimated by measuring the mitochondrial membrane potential (ΔΨm). A fluorescent probe was employed to evaluate the intercellular production of reactive oxygen species (ROS). Colorimetric assay kits were used to evaluate lipid peroxidation, antioxidant enzyme activities, and protein carbonyls formation. The expression of apoptosis-related proteins and mitogen-activated protein kinase (MAPK) were measured with Western blotting. Hesperidin inhibited high glucose-mediated cell loss and restored mitochondrial function including a reversion of ΔΨm loss and cytochrome c release. Treated with hesperidin, high glucose-induced increase in ROS, malondialdehyde, and protein carbonyl levels were blocked in RGC-5 cells. Hesperidin was found to elevate the activities of superoxide dismutase, catalase, glutathione peroxidase, and to recover glutathione levels. Hesperidin inhibited high glucose-induced cell apoptosis by attenuating the downregulation of caspase-9, caspase-3, and Bax/Bcl-2. Furthermore, the phosphorylation of c-Jun N-terminal kinases (JNK) and p38 MAPK triggered by high glucose were attenuated in RGC-5 cells after their incubation with hesperdin. We concluded that hesperidin may protect RGC-5 cells from high glucose-induced injury since it owns the properties of antioxidant action and blocks mitochondria-mediated apoptosis.
Collapse
|
18
|
Davis BM, Brenton J, Davis S, Shamsher E, Sisa C, Grgic L, Cordeiro MF. Assessing anesthetic activity through modulation of the membrane dipole potential. J Lipid Res 2017; 58:1962-1976. [PMID: 28818873 PMCID: PMC5625120 DOI: 10.1194/jlr.m073932] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2016] [Revised: 08/09/2017] [Indexed: 12/21/2022] Open
Abstract
There is great individual variation in response to general anesthetics (GAs) leading to difficulties in optimal dosing and sometimes even accidental awareness during general anesthesia (AAGA). AAGA is a rare, but potentially devastating, complication affecting between 0.1% and 2% of patients undergoing surgery. The development of novel personalized screening techniques to accurately predict a patient’s response to GAs and the risk of AAGA remains an unmet clinical need. In the present study, we demonstrate the principle of using a fluorescent reporter of the membrane dipole potential, di-8-ANEPPs, as a novel method to monitor anesthetic activity using a well-described inducer/noninducer pair. The membrane dipole potential has previously been suggested to contribute a novel mechanism of anesthetic action. We show that the fluorescence ratio of di-8-ANEPPs changed in response to physiological concentrations of the anesthetic, 1-chloro-1,2,2-trifluorocyclobutane (F3), but not the structurally similar noninducer, 1,2-dichlorohexafluorocyclobutane (F6), to artificial membranes and in vitro retinal cell systems. Modulation of the membrane dipole provides an explanation to overcome the limitations associated with the alternative membrane-mediated mechanisms of GA action. Furthermore, by combining this technique with noninvasive retinal imaging technologies, we propose that this technique could provide a novel and noninvasive technique to monitor GA susceptibility and identify patients at risk of AAGA.
Collapse
Affiliation(s)
| | - Jonathan Brenton
- University College London Institute of Ophthalmology, London EC1V 9EL, United Kingdom
| | - Sterenn Davis
- University College London Institute of Ophthalmology, London EC1V 9EL, United Kingdom
| | - Ehtesham Shamsher
- University College London Institute of Ophthalmology, London EC1V 9EL, United Kingdom
| | - Claudia Sisa
- University College London Institute of Ophthalmology, London EC1V 9EL, United Kingdom
| | - Ljuban Grgic
- University College London Institute of Ophthalmology, London EC1V 9EL, United Kingdom
| | - M Francesca Cordeiro
- University College London Institute of Ophthalmology, London EC1V 9EL, United Kingdom .,Western Eye Hospital, Imperial College Healthcare National Health Service Trust, and Imperial College Ophthalmic Research Group, Imperial College London, London NW1 5QH, United Kingdom
| |
Collapse
|
19
|
Tian SW, Ren Y, Pei JZ, Ren BC, He Y. Pigment epithelium-derived factor protects retinal ganglion cells from hypoxia-induced apoptosis by preventing mitochondrial dysfunction. Int J Ophthalmol 2017; 10:1046-1054. [PMID: 28730105 DOI: 10.18240/ijo.2017.07.05] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Accepted: 05/02/2017] [Indexed: 11/23/2022] Open
Abstract
AIM To investigate the potential of pigment epithelium-derived factor (PEDF) to protect the immortalized rat retinal ganglion cells-5 (RGC-5) exposed to CoCl2-induced chemical hypoxia. METHODS After being differentiated with staurosporine (SS), RGC-5 cells were cultured in four conditions: control group cells cultured in Dulbecco's modified eagle medium (DMEM) supplemented with 10% fetal bovine serum, 100 µmol/mL streptomycin and penicillin (named as normal conditions); hypoxia group cells cultured in DMEM containing 300 µmol/mL CoCl2; cells in the group protected by PEDF were first pretreated with 100 ng/mL PEDF for 2h and then cultured in the same condition as hypoxia group cells; and PEDF group cells that were cultured in the presence of 100 ng/mL PEDF under normal conditions. The cell viability was assessed by MTT assay, the percentage of apoptotic cells was quantified using Annexin V-FITC apoptosis kit, and intra-cellar reactive oxygen species (ROS) was measured by dichloro-dihydro-fluorescein diacetate (DCFH-DA) probe. The mitochondria-mediated apoptosis was also examined to further study the underlying mechanism of the protective effect of PEDF. The opening of mitochondrial permeability transition pores (mPTPs) and membrane potential (Δψm) were tested as cellular adenosine triphosphate (ATP) level and glutathione (GSH). Also, the expression and distribution of Cyt C and apoptosis inducing factor (AIF) were observed. RESULTS SS induced differentiation of RGC-5 cells resulting in elongation of their neurites and establishing contacts between outgrowths. Exposure to 300 µmol/mL CoCl2 triggered death of 30% of the total cells in cultures within 24h. At the same time, pretreatment with 100 ng/mL PEDF significantly suppressed the cell death induced by hypoxia (P<0.05). The apoptosis induced by treatment of CoCl2 was that induced cell death accompanied with increasing intra-cellar ROS and decreasing GSH and ATP level. PEDF pre-treatment suppressed these effects (P<0.05). Additionally, PEDF treatment inhibited the opening of mPTPs and suppressed decreasing of Δψm in RGC-5 cells, resulting in blocking of the mitochondrial apoptotic pathway. CONCLUSION Pretreatment of RGC-5 cells with 100 ng/mL PEDF significantly decreases the extent of apoptosis. PEDF inhibits the opening of mPTPs and suppresses decreasing of Δψm. Moreover, PEDF also reduces ROS production and inhibits cellular ATP level's reduction. Cyt C and AIF activation in PEDF-pretreated cultures are also reduced. These results demonstrate the potential for PEDF to protect RGCs against hypoxic damage in vitro by preventing mitochondrial dysfunction.
Collapse
Affiliation(s)
- Shu-Wei Tian
- Department of Ophthalmology, the Second Affiliated Hospital of Xi'an Medical Univeristy, Xi'an 710038, Shaanxi Province, China.,Department of Ophthalmology, the Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710000, Shaanxi Province, China
| | - Yuan Ren
- Department of Ophthalmology, the Second Affiliated Hospital of Xi'an Medical Univeristy, Xi'an 710038, Shaanxi Province, China
| | - Jin-Zhi Pei
- Department of Ophthalmology, the Second Affiliated Hospital of Xi'an Medical Univeristy, Xi'an 710038, Shaanxi Province, China
| | - Bai-Chao Ren
- Department of Ophthalmology, the Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710000, Shaanxi Province, China
| | - Yuan He
- Department of Ophthalmology, the Second Affiliated Hospital of Xi'an Medical Univeristy, Xi'an 710038, Shaanxi Province, China
| |
Collapse
|
20
|
Davis BM, Tian K, Pahlitzsch M, Brenton J, Ravindran N, Butt G, Malaguarnera G, Normando EM, Guo L, Cordeiro MF. Topical Coenzyme Q10 demonstrates mitochondrial-mediated neuroprotection in a rodent model of ocular hypertension. Mitochondrion 2017; 36:114-123. [PMID: 28549843 PMCID: PMC5645575 DOI: 10.1016/j.mito.2017.05.010] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2016] [Revised: 05/16/2017] [Accepted: 05/19/2017] [Indexed: 12/13/2022]
Abstract
Coenzyme Q10 (CoQ10) is a mitochondrial-targeted antioxidant with known neuroprotective activity. Its ocular effects when co-solubilised with α-tocopherol polyethylene glycol succinate (TPGS) were evaluated. In vitro studies confirmed that CoQ10 was significantly protective in different retinal ganglion cell (RGC) models. In vivo studies in Adult Dark Agouti (DA) rats with unilateral surgically-induced ocular hypertension (OHT) treated with either CoQ10/TPGS micelles or TPGS vehicle twice daily for three weeks were performed, following which retinal cell health was assessed in vivo using DARC (Detection of Apoptotic Retinal Cells) and post-mortem with Brn3a histological assessment on whole retinal mounts. CoQ10/TPGS showed a significant neuroprotective effect compared to control with DARC (p<0.05) and Brn3 (p<0.01). Topical CoQ10 appears an effective therapy preventing RGC apoptosis and loss in glaucoma-related models.
Collapse
Affiliation(s)
- Benjamin Michael Davis
- Department of Visual Neuroscience, UCL Institute of Ophthalmology, London EC1V 9EL, United Kingdom
| | - Kailin Tian
- Department of Visual Neuroscience, UCL Institute of Ophthalmology, London EC1V 9EL, United Kingdom
| | - Milena Pahlitzsch
- Department of Visual Neuroscience, UCL Institute of Ophthalmology, London EC1V 9EL, United Kingdom
| | - Jonathan Brenton
- Department of Visual Neuroscience, UCL Institute of Ophthalmology, London EC1V 9EL, United Kingdom
| | - Nivedita Ravindran
- Department of Visual Neuroscience, UCL Institute of Ophthalmology, London EC1V 9EL, United Kingdom
| | - Gibran Butt
- Department of Visual Neuroscience, UCL Institute of Ophthalmology, London EC1V 9EL, United Kingdom
| | - Giulia Malaguarnera
- Department of Visual Neuroscience, UCL Institute of Ophthalmology, London EC1V 9EL, United Kingdom
| | - Eduardo M Normando
- Department of Visual Neuroscience, UCL Institute of Ophthalmology, London EC1V 9EL, United Kingdom; Western Eye Hospital, Imperial College London, United Kingdom
| | - Li Guo
- Department of Visual Neuroscience, UCL Institute of Ophthalmology, London EC1V 9EL, United Kingdom
| | - M Francesca Cordeiro
- Department of Visual Neuroscience, UCL Institute of Ophthalmology, London EC1V 9EL, United Kingdom; Western Eye Hospital, Imperial College London, United Kingdom.
| |
Collapse
|
21
|
Yan P, Tang S, Zhang H, Guo Y, Zeng Z, Wen Q. Palmitic acid triggers cell apoptosis in RGC-5 retinal ganglion cells through the Akt/FoxO1 signaling pathway. Metab Brain Dis 2017; 32:453-460. [PMID: 27928692 DOI: 10.1007/s11011-016-9935-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Accepted: 11/29/2016] [Indexed: 12/31/2022]
Abstract
Hallmarks of the pathophysiology of glaucoma are oxidative stress and apoptotic death of retinal ganglion cells (RGCs). Lipotoxicity, involving a series of pathological cellular responses after exposure to elevated levels of fatty acids, leads to oxidative stress and cell death in various cell types. The phosphatidylinositol-3-kinase/protein kinase B/Forkhead box O1 (PI3K/Akt/FoxO1) pathway is crucial for cell survival and apoptosis. More importantly, FoxO1 gene has been reported to confer relatively higher risks for eye diseases including glaucoma. However, little information is available regarding the interaction between FoxO1 and RGC apoptosis, much less a precise mechanism. In the present study, immortalized rat retinal ganglion cell line 5 (RGC-5) was used as a model to study the toxicity of palmitic acid (PA), as well as underlying mechanisms. We found that PA exposure significantly decreased cell viability by enhancing apoptosis in RGC-5 cells, as measured by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay and flow cytometry. PA also induced a remarkable increase in reactive oxygen species and malondialdehyde. Moreover, PA significantly decreased the level of phospho-Akt and phospho-FoxO1 in cells. Finally, shRNA knockdown and plasmid overexpression studies displayed that downregulation of Akt protein or upregulation of FoxO1 protein augmented cell death, while knockdown of FoxO1 or overexpression of Akt1 abolished PA-induced cell death. Collectively, our results indicated that PA-induced cell death is mediated through modulation of Akt/FoxO1 pathway activity.
Collapse
Affiliation(s)
- Panshi Yan
- Department of Ophthalmology, First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450001, People's Republic of China
| | - Shu Tang
- Department of Pharmacy, First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450001, People's Republic of China
| | - Haifeng Zhang
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Zhengzhou University, Zhengzhou, Henan, 450001, People's Republic of China
| | - Yuanyuan Guo
- Shenzhen Mental Health Center and Shenzhen Key Lab for Psychological Healthcare, Shenzhen, 518020, People's Republic of China
| | - Zhiwen Zeng
- Shenzhen Mental Health Center and Shenzhen Key Lab for Psychological Healthcare, Shenzhen, 518020, People's Republic of China.
| | - Qiang Wen
- Department of Clinical Pharmacology, School of Basic Medicine, Zhengzhou University, Zhengzhou, Henan, 450001, People's Republic of China.
| |
Collapse
|
22
|
Wang J, Cui X, Roon P, Saul A, Smith SB. The Role of Sigma1R in Mammalian Retina. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 964:267-284. [PMID: 28315277 DOI: 10.1007/978-3-319-50174-1_18] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
This review article focuses on studies of Sigma 1 Receptor (Sigma1R) and retina . It provides a brief overview of the earliest pharmacological studies performed in the late 1990s that provided evidence of the presence of Sigma1R in various ocular tissues. It then describes work from a number of labs concerning the location of Sigma1R in several retinal cell types including ganglion, Müller glia , and photoreceptors . The role of Sigma1R ligands in retinal neuroprotection is emphasized. Early studies performed in vitro clearly showed that targeting Sigma1R could attenuate stress-induced retinal cell loss. These studies were followed by in vivo experiments. Data about the usefulness of targeting Sigma1R to prevent ganglion cell loss associated with diabetic retinopathy are reviewed. Mechanisms of Sigma1R-mediated retinal neuroprotection involving Müller cells , especially in modulating oxidative stress are described along with information about the retinal phenotype of mice lacking Sigma1R (Sigma1R -/- mice). The retina develops normally in Sigma1R -/- mice, but after many months there is evidence of apoptosis in the optic nerve head, decreased ganglion cell function and eventual loss of these cells. Additional studies using the Sigma1R -/- mice provide strong evidence that in the retina, Sigma1R plays a key role in modulating cellular stress. Recent work has shown that targeting Sigma1R may extend beyond protection of ganglion cells to include photoreceptor cell degeneration as well.
Collapse
Affiliation(s)
- Jing Wang
- Department of Cellular Biology and Anatomy, Medical College of Georgia, Augusta University, 1120 15th Street, CB 1114, Augusta, GA, 30912-2000, USA
- The James and Jean Culver Vision Discovery Institute, Augusta University, Augusta, GA, USA
| | - Xuezhi Cui
- Department of Cellular Biology and Anatomy, Medical College of Georgia, Augusta University, 1120 15th Street, CB 1114, Augusta, GA, 30912-2000, USA
- The James and Jean Culver Vision Discovery Institute, Augusta University, Augusta, GA, USA
| | - Penny Roon
- Department of Cellular Biology and Anatomy, Medical College of Georgia, Augusta University, 1120 15th Street, CB 1114, Augusta, GA, 30912-2000, USA
| | - Alan Saul
- Department of Cellular Biology and Anatomy, Medical College of Georgia, Augusta University, 1120 15th Street, CB 1114, Augusta, GA, 30912-2000, USA
- The James and Jean Culver Vision Discovery Institute, Augusta University, Augusta, GA, USA
| | - Sylvia B Smith
- Departments of Cellular Biology and Anatomy and Ophthalmology and the James and Jean Culver Vision Discovery Institute, Medical College of Georgia at Augusta University, Augusta, GA, 30912, USA.
| |
Collapse
|
23
|
Investigating Leber's hereditary optic neuropathy: Cell models and future perspectives. Mitochondrion 2016; 32:19-26. [PMID: 27847334 DOI: 10.1016/j.mito.2016.11.006] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2016] [Revised: 11/09/2016] [Accepted: 11/11/2016] [Indexed: 01/19/2023]
Abstract
Leber's hereditary optic neuropathy (LHON) was the first human disease found to be associated with a mitochondrial DNA (mtDNA) point mutation. The most common LHON mutations are 11778G>A, 3460G>A or 14484T>C. The most common clinical features of LHON are optic nerve and retina atrophy. The affected tissue is not available for studies, therefore a variety of other cell types are used. However, all models face difficulties and limitations in mitochondrial disease research. The advantages and disadvantages of different cell models used to study LHON, recent advances in animal model generation and novel approaches in this field are discussed.
Collapse
|
24
|
Taylor-Walker G, Lynn SA, Keeling E, Munday R, Johnston DA, Page A, Scott JA, Goverdhan S, Lotery AJ, Ratnayaka JA. The Alzheimer's-related amyloid beta peptide is internalised by R28 neuroretinal cells and disrupts the microtubule associated protein 2 (MAP-2). Exp Eye Res 2016; 153:110-121. [PMID: 27751744 PMCID: PMC5131630 DOI: 10.1016/j.exer.2016.10.013] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2016] [Revised: 09/12/2016] [Accepted: 10/11/2016] [Indexed: 11/15/2022]
Abstract
Age-related Macular Degeneration (AMD) is a common, irreversible blinding condition that leads to the loss of central vision. AMD has a complex aetiology with both genetic as well as environmental risks factors, and share many similarities with Alzheimer's disease. Recent findings have contributed significantly to unravelling its genetic architecture that is yet to be matched by molecular insights. Studies are made more challenging by observations that aged and AMD retinas accumulate the highly pathogenic Alzheimer's-related Amyloid beta (Aβ) group of peptides, for which there appears to be no clear genetic basis. Analyses of human donor and animal eyes have identified retinal Aβ aggregates in retinal ganglion cells (RGC), the inner nuclear layer, photoreceptors as well as the retinal pigment epithelium. Aβ is also a major drusen constituent; found correlated with elevated drusen-load and age, with a propensity to aggregate in retinas of advanced AMD. Despite this evidence, how such a potent driver of neurodegeneration might impair the neuroretina remains incompletely understood, and studies into this important aspect of retinopathy remains limited. In order to address this we exploited R28 rat retinal cells which due to its heterogeneous nature, offers diverse neuroretinal cell-types in which to study the molecular pathology of Aβ. R28 cells are also unaffected by problems associated with the commonly used RGC-5 immortalised cell-line, thus providing a well-established model in which to study dynamic Aβ effects at single-cell resolution. Our findings show that R28 cells express key neuronal markers calbindin, protein kinase C and the microtubule associated protein-2 (MAP-2) by confocal immunofluorescence which has not been shown before, but also calretinin which has not been reported previously. For the first time, we reveal that retinal neurons rapidly internalised Aβ1-42, the most cytotoxic and aggregate-prone amongst the Aβ family. Furthermore, exposure to physiological amounts of Aβ1-42 for 24 h correlated with impairment to neuronal MAP-2, a cytoskeletal protein which regulates microtubule dynamics in axons and dendrites. Disruption to MAP-2 was transient, and had recovered by 48 h, although internalised Aβ persisted as discrete puncta for as long as 72 h. To assess whether Aβ could realistically localise to living retinas to mediate such effects, we subretinally injected nanomolar levels of oligomeric Aβ1-42 into wildtype mice. Confocal microscopy revealed the presence of focal Aβ deposits in RGC, the inner nuclear and the outer plexiform layers 8 days later, recapitulating naturally-occurring patterns of Aβ aggregation in aged retinas. Our novel findings describe how retinal neurons internalise Aβ to transiently impair MAP-2 in a hitherto unreported manner. MAP-2 dysfunction is reported in AMD retinas, and is thought to be involved in remodelling and plasticity of post-mitotic neurons. Our insights suggest a molecular pathway by which this could occur in the senescent eye leading to complex diseases such as AMD. Molecular basis of complex retinopathies such as AMD is incompletely understood. The Alzheimer's-related Aβ peptides are rapidly internalised by retinal neurons. Internalised Aβ is retained within neurons and transiently impairs MAP-2. Subretinally injected Aβ mimics its naturally-occurring distribution in aged retinas.
Collapse
Affiliation(s)
- George Taylor-Walker
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, SGH, MP806, Tremona Road, Southampton, SO16 6YD, United Kingdom
| | - Savannah A Lynn
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, SGH, MP806, Tremona Road, Southampton, SO16 6YD, United Kingdom
| | - Eloise Keeling
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, SGH, MP806, Tremona Road, Southampton, SO16 6YD, United Kingdom
| | - Rosie Munday
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, SGH, MP806, Tremona Road, Southampton, SO16 6YD, United Kingdom
| | - David A Johnston
- Biomedical Imaging Unit, University of Southampton, SGH, MP12, Tremona Road, Southampton, SO16 6YD, United Kingdom
| | - Anton Page
- Biomedical Imaging Unit, University of Southampton, SGH, MP12, Tremona Road, Southampton, SO16 6YD, United Kingdom
| | - Jennifer A Scott
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, SGH, MP806, Tremona Road, Southampton, SO16 6YD, United Kingdom
| | - Srini Goverdhan
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, SGH, MP806, Tremona Road, Southampton, SO16 6YD, United Kingdom
| | - Andrew J Lotery
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, SGH, MP806, Tremona Road, Southampton, SO16 6YD, United Kingdom; Eye Unit, University Southampton NHS Trust, Southampton, SO16 6YD, United Kingdom
| | - J Arjuna Ratnayaka
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, SGH, MP806, Tremona Road, Southampton, SO16 6YD, United Kingdom.
| |
Collapse
|
25
|
Enriched retinal ganglion cells derived from human embryonic stem cells. Sci Rep 2016; 6:30552. [PMID: 27506453 PMCID: PMC4978994 DOI: 10.1038/srep30552] [Citation(s) in RCA: 72] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2015] [Accepted: 07/04/2016] [Indexed: 12/21/2022] Open
Abstract
Optic neuropathies are characterised by a loss of retinal ganglion cells (RGCs) that lead to vision impairment. Development of cell therapy requires a better understanding of the signals that direct stem cells into RGCs. Human embryonic stem cells (hESCs) represent an unlimited cellular source for generation of human RGCs in vitro. In this study, we present a 45-day protocol that utilises magnetic activated cell sorting to generate enriched population of RGCs via stepwise retinal differentiation using hESCs. We performed an extensive characterization of these stem cell-derived RGCs by examining the gene and protein expressions of a panel of neural/RGC markers. Furthermore, whole transcriptome analysis demonstrated similarity of the hESC-derived RGCs to human adult RGCs. The enriched hESC-RGCs possess long axons, functional electrophysiological profiles and axonal transport of mitochondria, suggestive of maturity. In summary, this RGC differentiation protocol can generate an enriched population of functional RGCs from hESCs, allowing future studies on disease modeling of optic neuropathies and development of cell therapies.
Collapse
|
26
|
Otsuka T, Shimazawa M, Inoue Y, Nakano Y, Ojino K, Izawa H, Tsuruma K, Ishibashi T, Hara H. Astaxanthin Protects Against Retinal Damage: Evidence from In Vivo and In Vitro Retinal Ischemia and Reperfusion Models. Curr Eye Res 2016; 41:1465-1472. [PMID: 27158842 DOI: 10.3109/02713683.2015.1127392] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
PURPOSE Astaxanthin exhibits various pharmacological activities, including anti-oxidative, anti-tumor, and anti-inflammatory effects, and is thought to exert a neuroprotective effect via these mechanisms. The purpose of this study was to investigate the protective effects of astaxanthin on neuronal cell death using a retinal ischemia/reperfusion model. METHODS In vivo, retinal ischemia was induced by 5 h unilateral ligation of the pterygopalatine artery (PPA) and the external carotid artery (ECA) in ddY mice. Astaxanthin (100 mg/kg) was administered orally 1 h before induction of ischemia, immediately after reperfusion, at 6 or 12 h after reperfusion, and twice daily for the following 4 days. Histological analysis and an electroretinogram (ERG) were performed 5 days after ischemia/reperfusion. In vitro, cell death was induced in the RGC-5 (retinal precursor cells) by oxygen-glucose deprivation (OGD), and the rates of cell death and production of intracellular reactive oxygen species (ROS) were measured using nuclear staining and a ROS reactive reagent, CM-H2DCFDA. RESULTS Histological studies revealed that astaxanthin significantly reduced retinal ischemic damage and ERG reduction. In in vitro studies, astaxanthin inhibited cell death and ROS production in a concentration-dependent manner. CONCLUSIONS Collectively, these results indicate that astaxanthin inhibits ischemia-induced retinal cell death via its antioxidant effect. Hence, astaxanthin might be effective in treating retinal ischemic pathologies.
Collapse
Affiliation(s)
- Tomohiro Otsuka
- a Molecular Pharmacology, Department of Biofunctional Evaluation , Gifu Pharmaceutical University , Gifu , Japan
| | - Masamitsu Shimazawa
- a Molecular Pharmacology, Department of Biofunctional Evaluation , Gifu Pharmaceutical University , Gifu , Japan
| | - Yuki Inoue
- a Molecular Pharmacology, Department of Biofunctional Evaluation , Gifu Pharmaceutical University , Gifu , Japan
| | - Yusuke Nakano
- a Molecular Pharmacology, Department of Biofunctional Evaluation , Gifu Pharmaceutical University , Gifu , Japan
| | - Kazuki Ojino
- a Molecular Pharmacology, Department of Biofunctional Evaluation , Gifu Pharmaceutical University , Gifu , Japan
| | - Hiroshi Izawa
- a Molecular Pharmacology, Department of Biofunctional Evaluation , Gifu Pharmaceutical University , Gifu , Japan
| | - Kazuhiro Tsuruma
- a Molecular Pharmacology, Department of Biofunctional Evaluation , Gifu Pharmaceutical University , Gifu , Japan
| | - Takashi Ishibashi
- b Specialty and Performance Chemicals Department 2, Biotechnology Business Section , JX Nippon Oil and Energy Corporation , Tokyo , Japan
| | - Hideaki Hara
- a Molecular Pharmacology, Department of Biofunctional Evaluation , Gifu Pharmaceutical University , Gifu , Japan
| |
Collapse
|
27
|
Zhang P, Huang C, Wang W, Wang M. Early changes in staurosporine-induced differentiated RGC-5 cells indicate cellular injury response to nonlethal blue light exposure. Photochem Photobiol Sci 2016; 14:1093-9. [PMID: 25877548 DOI: 10.1039/c4pp00456f] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
PURPOSE Blue light has been previously demonstrated to induce injury of retinal cells. The cellular responses to nonlethal blue light exposure for each type of retinal cell are of particular interest but remain undetermined. Based on the doses of blue light reported in previous research to be nonlethal to retinal pigment epithelial cells, here we investigated whether and to what extent such doses of blue light are cytotoxic to staurosporine-differentiated RGC-5 cells. METHODS RGC-5 cells were differentiated for 24 hours using 200 nM staurosporine. The resulting cells were cultured and exposed to blue light at three different energy levels (1, 10, and 50 J cm(-2)). Cellular morphologies were investigated with an inverted microscope and cell viability was assessed with a Cell Counting Kit-8 (CCK-8) assay. The generation of intracellular reactive oxygen species (ROS) was evaluated by H2DCFDA. After loading of MitoTracker Green FM dye, the mitochondrial contents were analyzed using flow cytometry. The lactate dehydrogenase (LDH) activities in the media were also measured. The level of lipid peroxidation was determined by measuring the amount of malondialdehyde (MDA). RESULTS Treatment of the cells for 24 hours with 200 nM staurosporine successfully induced the differentiation of RGC-5 cells. No morphological changes were observed in the ssdRGC-5 cells exposed to blue light at 50 J cm(-2), which was the highest energy level tested. Exposure of the ssdRGC-5 cells to this energy level of blue light did, however, decrease their numbers by approximately 72.1% compared to the numbers of such cells found after being left in the dark. Remarkably, the levels of ROS generation and mitochondrial contents were, respectively, increased to 142% and 118% of those of the control by a 10 J cm(-2) exposure of blue light. The LDH activities and MDA levels exhibited no obvious changes in the blue light-exposed ssdRGC-5 cells compared to the control cells. CONCLUSIONS In vitro nonlethal blue light exposure led to cellular damage of staurosporine-differentiated RGC-5 cells. These increases in oxidative stress and mitochondrial content were the early steps of the cellular response to the exposure of relatively low doses (10 J cm(-2)) of blue light.
Collapse
Affiliation(s)
- Pei Zhang
- Department of Ophthalmology, Peking University Third Hospital, 49 North Garden Road, Haidian District, Beijing 100191, China.
| | | | | | | |
Collapse
|
28
|
Wang DD, Zhu HZ, Li SW, Yang JM, Xiao Y, Kang QR, Li CY, Zhao YS, Zeng Y, Li Y, Zhang J, He ZD, Ying Y. Crude Saponins of Panax notoginseng Have Neuroprotective Effects To Inhibit Palmitate-Triggered Endoplasmic Reticulum Stress-Associated Apoptosis and Loss of Postsynaptic Proteins in Staurosporine Differentiated RGC-5 Retinal Ganglion Cells. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2016; 64:1528-1539. [PMID: 26832452 DOI: 10.1021/acs.jafc.5b05864] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Increased apoptosis of retinal ganglion cells (RGCs) contributes to the gradual loss of retinal neurons at the early phase of diabetic retinopathy (DR). There is an urgent need to search for drugs with neuroprotective effects against apoptosis of RGCs for the early treatment of DR. This study aimed to investigate the neuroprotective effects of saponins extracted from Panax notoginseng, a traditional Chinese medicine, on apoptosis of RGCs stimulated by palmitate, a metabolic factor for the development of diabetes and its complications, and to explore the potential molecular mechanism. We showed that crude saponins of P. notoginseng (CSPN) inhibited the increased apoptosis and loss of postsynaptic protein PSD-95 by palmitate in staurosporine-differentiated RGC-5 cells. Moreover, CSPN suppressed palmitate-induced reactive oxygen species generation and endoplasmic reticulum stress-associated eIF2α/ATF4/CHOP and caspase 12 pathways. Thus, our findings address the potential therapeutic significance of CSPN for the early stage of DR.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Yong Zeng
- The First Affiliated Hospital of Kunming Medical University , Kunming 650000, China
| | - Yan Li
- The First Affiliated Hospital of Kunming Medical University , Kunming 650000, China
| | | | | | | |
Collapse
|
29
|
Sugitani K, Koriyama Y, Ogai K, Wakasugi K, Kato S. A Possible Role of Neuroglobin in the Retina After Optic Nerve Injury: A Comparative Study of Zebrafish and Mouse Retina. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 854:671-5. [PMID: 26427474 DOI: 10.1007/978-3-319-17121-0_89] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Neuroglobin (Ngb) is a new member of the family of heme proteins and is specifically expressed in neurons of the central and peripheral nervous systems in all vertebrates. In particular, the retina has a 100-fold higher concentration of Ngb than do other nervous tissues. The role of Ngb in the retina is yet to be clarified. Therefore, to understand the functional role of Ngb in the retina after optic nerve injury (ONI), we used two types of retina, from zebrafish and mice, which have permissible and non-permissible capacity for nerve regeneration after ONI, respectively. After ONI, the Ngb protein in zebrafish was upregulated in the amacrine cells within 3 days, whereas in the mouse retina, Ngb was downregulated in the retinal ganglion cells (RGCs) within 3 days. Zebrafish Ngb (z-Ngb) significantly enhanced neurite outgrowth in retinal explant culture. According to these results, we designed an overexpression experiment with the mouse Ngb (m-Ngb) gene in RGC-5 cells (retinal precursor cells). The excess of m-Ngb actually rescued RGC-5 cells under hypoxic conditions and significantly enhanced neurite outgrowth in cell culture. These data suggest that mammalian Ngb has positive neuroprotective and neuritogenic effects that induce nerve regeneration after ONI.
Collapse
Affiliation(s)
- Kayo Sugitani
- Department of Clinical Laboratory Sciences, Graduate School of Medical Science, Kanazawa University, 5-11-80 Kodatsuno, 920-0942, Kanazawa, Japan.
| | - Yoshiki Koriyama
- Graduate School and Faculty of Pharmaceutical Sciences, Suzuka University of Medical Sciences, 3500-3 Minamitamagaki, 513-8670, Suzuka, Mie, Japan.
| | - Kazuhiro Ogai
- Wellness Promotion Science Center, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, 5-11-80 Kodatsuno, 920-0942, Kanazawa, Japan.
| | - Keisuke Wakasugi
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, 3-8-1 Komaba, 153-8902, Meguro-ku, Japan.
| | - Satoru Kato
- Department of Molecular Neurobiology, Graduate School of Medicine, Kanazawa University, 13-1 Takara-machi, 920-8640, Kanazawa, Japan.
| |
Collapse
|
30
|
Thompson AF, Crowe ME, Lieven CJ, Levin LA. Induction of Neuronal Morphology in the 661W Cone Photoreceptor Cell Line with Staurosporine. PLoS One 2015; 10:e0145270. [PMID: 26684837 PMCID: PMC4684327 DOI: 10.1371/journal.pone.0145270] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2015] [Accepted: 12/02/2015] [Indexed: 11/18/2022] Open
Abstract
PURPOSE RGC-5 cells undergo differentiation into a neuronal phenotype with low concentrations of staurosporine. Although the RGC-5 cell line was initially thought to be of retinal ganglion cell origin, recent evidence suggests that the RGC-5 line could have been the result of contamination with 661W mouse cone photoreceptor cells. This raised the possibility that a cone photoreceptor cell line could be multipotent and could be differentiated to a neuronal phenotype. METHODS 661W and RGC-5 cells, non-neuronal retinal astrocytes, retinal endothelial cells, retinal pericytes, M21 melanoma cells, K562 chronic myelogenous leukemia cells, and Daudi Burkitt lymphoma cells, were differentiated with staurosporine. The resulting morphology was quantitated using NeuronJ with respect to neurite counts and topology. RESULTS Treatment with staurosporine induced similar-appearing morphological differentiation in both 661W and RGC-5 cells. The following measures were not significantly different between 661W and RGC-5 cells: number of neurites per cell, total neurite field length, number of neurite branch points, and cell viability. Neuronal-like differentiation was not observed in the other cell lines tested. CONCLUSIONS 661W and RGC-5 cells have virtually identical and distinctive morphology when differentiated with low concentrations of staurosporine. This result demonstrates that a retinal neuronal precursor cell with cone photoreceptor lineage can be differentiated to express a neuronal morphology.
Collapse
Affiliation(s)
- Alex F. Thompson
- Department of Ophthalmology and Visual Sciences, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, United States of America
| | - Megan E. Crowe
- Department of Ophthalmology and Visual Sciences, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, United States of America
| | - Christopher J. Lieven
- Department of Ophthalmology and Visual Sciences, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, United States of America
| | - Leonard A. Levin
- Department of Ophthalmology and Visual Sciences, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, United States of America
- Department of Ophthalmology, McGill University, Montreal, Quebec, Canada
- * E-mail:
| |
Collapse
|
31
|
Kim KW, Park SH, Oh DH, Lee SH, Lim KS, Joo K, Chun YS, Chang SI, Min KM, Kim JC. Ribonuclease 5 coordinates signals for the regulation of intraocular pressure and inhibits neural apoptosis as a novel multi-functional anti-glaucomatous strategy. Biochim Biophys Acta Mol Basis Dis 2015; 1862:145-54. [PMID: 26581172 DOI: 10.1016/j.bbadis.2015.11.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2015] [Revised: 10/15/2015] [Accepted: 11/11/2015] [Indexed: 02/08/2023]
Abstract
Glaucoma is a vision-threatening disorder characterized by progressive death of retinal ganglion cells (RGCs), although little is known about therapeutic milestones. Due to its complex and multifactorial pathogenesis, multipronged therapeutic approach is needed. Angiogenin (ANG), now called ribonuclease (RNase) 5, has been previously known as angiogenic factor and more recently its biologic activity is extended to promoting cell survival via its ribonucleolytic activity. Here, we revealed the defect of ANG in human glaucomatous trabecular meshwork (TM) cells and identified novel multiple functions of ANG as an anti-glaucomatous strategy. ANG was highly expressed in normal eyes and normal TM cells compared to glaucomatous TM cells. ANG induced intraocular pressure (IOP) lowering in rat models of both normal and elevated IOP, and as a possible mechanism, activated Akt-mediated signals for nitric oxide (NO) production, an important regulator of IOP in glaucomatous TM cell. Moreover, we demonstrated ANG-induced production of matrix metalloproteinase (MMP)-1 and -3 and rho-kinase inhibition for TM remodeling. For anti-glaucomatous defense optimization, ANG not only elicited immune-modulative pathways via indolamine 2,3-dioxygenase (IDO) activation in TM cells and suppression of Jurkat T cells, but also rescued neural stem cells (NSCs) from apoptosis induced by glaucomatous stress. These results demonstrate that novel multi-functional effects of ANG may have benefits against glaucoma in ocular tissues.
Collapse
Affiliation(s)
- Kyoung Woo Kim
- Department of Ophthalmology, College of Medicine, Chung-Ang University Hospital, Seoul, Republic of Korea; Graduate School of Chung-Ang University, College of Medicine, Seoul, Republic of Korea
| | - Soo Hyun Park
- Department of Ophthalmology, College of Medicine, Chung-Ang University Hospital, Seoul, Republic of Korea
| | - Doo Hwan Oh
- Department of Ophthalmology, College of Medicine, Chung-Ang University Hospital, Seoul, Republic of Korea
| | - Seung Hoon Lee
- Department of Ophthalmology, College of Medicine, Chung-Ang University Hospital, Seoul, Republic of Korea
| | - Kyung Sub Lim
- Department of Ophthalmology, College of Medicine, Chung-Ang University Hospital, Seoul, Republic of Korea
| | - Kwangsic Joo
- Department of Ophthalmology, College of Medicine, Chung-Ang University Hospital, Seoul, Republic of Korea; Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea
| | - Yeoun Sook Chun
- Department of Ophthalmology, College of Medicine, Chung-Ang University Hospital, Seoul, Republic of Korea
| | - Soo-Ik Chang
- Department of Biochemistry, Chungbuk National University, Cheongju, Chungbuk, Republic of Korea
| | - Kyong-Mi Min
- Department of Biochemistry, Chungbuk National University, Cheongju, Chungbuk, Republic of Korea
| | - Jae Chan Kim
- Department of Ophthalmology, College of Medicine, Chung-Ang University Hospital, Seoul, Republic of Korea.
| |
Collapse
|
32
|
A Glaucoma-Associated Variant of Optineurin, M98K, Activates Tbk1 to Enhance Autophagosome Formation and Retinal Cell Death Dependent on Ser177 Phosphorylation of Optineurin. PLoS One 2015; 10:e0138289. [PMID: 26376340 PMCID: PMC4574030 DOI: 10.1371/journal.pone.0138289] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2015] [Accepted: 08/29/2015] [Indexed: 02/03/2023] Open
Abstract
Certain missense mutations in optineurin/OPTN and amplification of TBK1 are associated with normal tension glaucoma. A glaucoma-associated variant of OPTN, M98K, induces autophagic degradation of transferrin receptor (TFRC) and death in retinal cells. Here, we have explored the role of Tbk1 in M98K-OPTN-induced autophagy and cell death, and the effect of Tbk1 overexpression in retinal cells. Cell death induced by M98K-OPTN was dependent on Tbk1 as seen by the effect of Tbk1 knockdown and blocking of Tbk1 activity by a chemical inhibitor. Inhibition of Tbk1 also restores M98K-OPTN-induced transferrin receptor degradation. M98K-OPTN-induced autophagosome formation, autophagy and cell death were dependent on its phosphorylation at S177 by Tbk1. Knockdown of OPTN reduced starvation-induced autophagosome formation. M98K-OPTN expressing cells showed higher levels of Tbk1 activation and enhanced phosphorylation at Ser177 compared to WT-OPTN expressing cells. M98K-OPTN-induced activation of Tbk1 and its ability to be phosphorylated better by Tbk1 was dependent on ubiquitin binding. Phosphorylated M98K-OPTN localized specifically to autophagosomes and endogenous Tbk1 showed increased localization to autophagosomes in M98K-OPTN expressing cells. Overexpression of Tbk1 induced cell death and caspase-3 activation that were dependent on its catalytic activity. Tbk1-induced cell death possibly involves autophagy, as shown by the effect of Atg5 knockdown, and requirement of autophagic function of OPTN. Our results show that phosphorylation of Ser177 plays a crucial role in M98K-OPTN-induced autophagosome formation, autophagy flux and retinal cell death. In addition, we provide evidence for cross talk between two glaucoma associated proteins and their inter-dependence to mediate autophagy-dependent cell death.
Collapse
|
33
|
Bansal M, Swarup G, Balasubramanian D. Functional analysis of optineurin and some of its disease-associated mutants. IUBMB Life 2015; 67:120-8. [DOI: 10.1002/iub.1355] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2014] [Revised: 01/07/2015] [Accepted: 01/16/2015] [Indexed: 12/27/2022]
Affiliation(s)
- Megha Bansal
- Centre for Cellular and Molecular Biology; Hyderabad Telangana India
| | - Ghanshyam Swarup
- Centre for Cellular and Molecular Biology; Hyderabad Telangana India
| | - Dorairajan Balasubramanian
- Brien Holden Eye Research Centre, Hyderabad Eye Research Foundation, L.V. Prasad Eye Institute; Hyderabad Telangana India
| |
Collapse
|
34
|
GFAP antibodies show protective effect on oxidatively stressed neuroretinal cells via interaction with ERP57. J Pharmacol Sci 2015; 127:298-304. [DOI: 10.1016/j.jphs.2014.12.019] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2014] [Revised: 12/10/2014] [Accepted: 12/28/2014] [Indexed: 01/07/2023] Open
|
35
|
Aquaporin 9 expression is required for l-lactate to maintain retinal neuronal survival. Neurosci Lett 2015; 589:185-90. [PMID: 25637697 DOI: 10.1016/j.neulet.2015.01.063] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2014] [Revised: 11/09/2014] [Accepted: 01/25/2015] [Indexed: 11/22/2022]
Abstract
Aquaporin 9 (AQP9), an aquaglyceroporin, is not only permeable to water but also to non-charged solutes, such as lactate. Lactate can be an energy source for retinal neurons. This study aimed to evaluate the effect of the downregulation of AQP9 expression on the survival rates and reactive oxygen species accumulation in RGC-5 cells cultured in a medium containing lactate. The Live/Dead assay revealed that the cell death rate of RGC-5 cells transfected with the control siRNA (siControl) was 3.65%±0.75% in the 5-mM glucose medium. The death rate was significantly increased by five-fold in the no glucose and 10-mM d-lactate media but not in the 10-mM l-lactate medium. In comparison, the death rate of cells transfected with siRNA targeting AQP9 (siAQP9) was 8.07%±1.01% in the 5-mM glucose medium, which was significantly increased by two-fold in the other medium conditions, indicating that the downregulation of AQP9 expression eliminated the prosurvival effect of l-lactate. Few RGC-5 cells transfected with siControl showed dichlorofluorescein (DCF) fluorescence when cultured in 5-mM glucose and 10-mM l-lactate media. However, approximately 70% of those showed DCF fluorescence when cultured in the no glucose and 10-mM d-lactate media. The downregulation of AQP9 significantly increased the DCF fluorescence rate to 50.44%±6.13% in the 10-mM l-lactate medium, whereas, it did not increase the rate in the other medium conditions. These results demonstrate that AQP9 expression is required for l-lactate to maintain retinal neuronal survival.
Collapse
|
36
|
Song Y, Hong S, Iizuka Y, Kim CY, Seong GJ. The neuroprotective effect of maltol against oxidative stress on rat retinal neuronal cells. KOREAN JOURNAL OF OPHTHALMOLOGY 2015; 29:58-65. [PMID: 25646062 PMCID: PMC4309870 DOI: 10.3341/kjo.2015.29.1.58] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2014] [Accepted: 10/15/2014] [Indexed: 11/23/2022] Open
Abstract
PURPOSE Maltol (3-hydroxy-2-methyl-4-pyrone), formed by the thermal degradation of starch, is found in coffee, caramelized foods, and Korean ginseng root. This study investigated whether maltol could rescue neuroretinal cells from oxidative injury in vitro. METHODS R28 cells, which are rat embryonic precursor neuroretinal cells, were exposed to hydrogen peroxide (H2O2, 0.0 to 1.5 mM) as an oxidative stress with or without maltol (0.0 to 1.0 mM). Cell viability was monitored with the lactate dehydrogenase assay and apoptosis was examined by the terminal deoxynucleotide transferase-mediated terminal uridine deoxynucleotidyl transferase nick end-labeling (TUNEL) method. To investigate the neuroprotective mechanism of maltol, the expression and phosphorylation of nuclear factor-kappa B (NF-κB), extracellular signal-regulated kinase (ERK), c-Jun N-terminal kinase (JNK), and p38 were evaluated by Western immunoblot analysis. RESULTS R28 cells exposed to H2O2 were found to have decreased viability in a dose- and time-dependent manner. However, H2O2-induced cytotoxicity was decreased with the addition of maltol. When R28 cells were exposed to 1.0 mM H2O2 for 24 hours, the cytotoxicity was 60.69 ± 5.71%. However, the cytotoxicity was reduced in the presence of 1.0 mM maltol. This H2O2-induced cytotoxicity caused apoptosis of R28 cells, characterized by DNA fragmentation. Apoptosis of oxidatively-stressed R28 cells with 1.0 mM H2O2 was decreased with 1.0 mM maltol, as determined by the TUNEL method. Western blot analysis showed that treatment with maltol reduced phosphorylation of NF-κB, ERK, and JNK, but not p38. The neuroprotective effects of maltol seemed to be related to attenuated expression of NF-κB, ERK, and JNK. CONCLUSIONS Maltol not only increased cell viability but also attenuated DNA fragmentation. The results obtained here show that maltol has neuroprotective effects against hypoxia-induced neuroretinal cell damage in R28 cells, and its effects may act through the NF-κB and mitogen-activated protein kinase signaling pathways.
Collapse
Affiliation(s)
- Yookyung Song
- Institute of Vision Research, Department of Ophthalmology, Yonsei University College of Medicine, Seoul, Korea
| | - Samin Hong
- Institute of Vision Research, Department of Ophthalmology, Yonsei University College of Medicine, Seoul, Korea
| | - Yoko Iizuka
- Institute of Vision Research, Department of Ophthalmology, Yonsei University College of Medicine, Seoul, Korea
| | - Chan Yun Kim
- Institute of Vision Research, Department of Ophthalmology, Yonsei University College of Medicine, Seoul, Korea
| | - Gong Je Seong
- Institute of Vision Research, Department of Ophthalmology, Yonsei University College of Medicine, Seoul, Korea
| |
Collapse
|
37
|
de Silva SR, McClements ME, Hankins MW, MacLaren RE. Adeno-Associated Viral Gene Therapy for Retinal Disorders. NEUROMETHODS 2015. [DOI: 10.1007/978-1-4939-2306-9_9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
38
|
Wang H, Zhang C, Lu D, Shu X, Zhu L, Qi R, So KF, Lu D, Xu Y. Oligomeric proanthocyanidin protects retinal ganglion cells against oxidative stress-induced apoptosis. Neural Regen Res 2014; 8:2317-26. [PMID: 25206541 PMCID: PMC4146041 DOI: 10.3969/j.issn.1673-5374.2013.25.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2013] [Accepted: 08/29/2013] [Indexed: 01/14/2023] Open
Abstract
The death of retinal ganglion cells is a hallmark of many optic neurodegenerative diseases such as glaucoma and retinopathy. Oxidative stress is one of the major reasons to cause the cell death. Oligomeric proanthocyanidin has many health beneficial effects including antioxidative and neuroprotective actions. Here we tested whether oligomeric proanthocyanidin may protect retinal ganglion cells against oxidative stress induced-apoptosis in vitro. Retinal ganglion cells were treated with hydrogen peroxide with or without oligomeric proanthocyanidin. 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay showed that treating retinal ganglion cell line RGC-5 cells with 20 μmol/L oligomeric proanthocyanidin significantly decreased the hydrogen peroxide (H2O2) induced death. Results of flow cytometry and Hoechst staining demonstrated that the death of RGC-5 cells was mainly caused by cell apoptosis. We further found that expression of pro-apoptotic Bax and caspase-3 were significantly decreased while anti-apoptotic Bcl-2 was greatly increased in H2O2 damaged RGC-5 cells with oligomeric proanthocyanidin by western blot assay. Furthermore, in retinal explant culture, the number of surviving retinal ganglion cells in H2O2-damaged retinal ganglion cells with oligomeric proanthocyanidin was significantly increased. Our studies thus demonstrate that oligomeric proanthocyanidin can protect oxidative stress-injured retinal ganglion cells by inhibiting apoptotic process.
Collapse
Affiliation(s)
- Hui Wang
- Department of Pathophysiology, Key Laboratory of State Administration of Traditional Chinese Medicine of China, Jinan University School of Medicine, Guangzhou 510632, Guangdong Province, China ; GHM Institute of CNS Regeneration, Jinan University, Guangzhou 510632, Guangdong Province, China
| | - Chanjuan Zhang
- Department of Pathophysiology, Key Laboratory of State Administration of Traditional Chinese Medicine of China, Jinan University School of Medicine, Guangzhou 510632, Guangdong Province, China ; GHM Institute of CNS Regeneration, Jinan University, Guangzhou 510632, Guangdong Province, China
| | - Dan Lu
- Department of Pathophysiology, Key Laboratory of State Administration of Traditional Chinese Medicine of China, Jinan University School of Medicine, Guangzhou 510632, Guangdong Province, China ; GHM Institute of CNS Regeneration, Jinan University, Guangzhou 510632, Guangdong Province, China
| | - Xiaoming Shu
- Department of Pathophysiology, Key Laboratory of State Administration of Traditional Chinese Medicine of China, Jinan University School of Medicine, Guangzhou 510632, Guangdong Province, China
| | - Lihong Zhu
- Department of Pathophysiology, Key Laboratory of State Administration of Traditional Chinese Medicine of China, Jinan University School of Medicine, Guangzhou 510632, Guangdong Province, China ; GHM Institute of CNS Regeneration, Jinan University, Guangzhou 510632, Guangdong Province, China
| | - Renbing Qi
- Department of Pathophysiology, Key Laboratory of State Administration of Traditional Chinese Medicine of China, Jinan University School of Medicine, Guangzhou 510632, Guangdong Province, China
| | - Kwok-Fai So
- GHM Institute of CNS Regeneration, Jinan University, Guangzhou 510632, Guangdong Province, China
| | - Daxiang Lu
- Department of Pathophysiology, Key Laboratory of State Administration of Traditional Chinese Medicine of China, Jinan University School of Medicine, Guangzhou 510632, Guangdong Province, China
| | - Ying Xu
- GHM Institute of CNS Regeneration, Jinan University, Guangzhou 510632, Guangdong Province, China
| |
Collapse
|
39
|
Wang Z, Pan X, Wang D, Sun H, Han F, Lv C, Zhang X. Protective effects of protocatechuic acid on retinal ganglion cells from oxidative damage induced by H2O2. Neurol Res 2014; 37:159-66. [DOI: 10.1179/1743132814y.0000000421] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|
40
|
Giansanti F, Schiavone N, Papucci L, Bitossi A, Andreucci E, Pontenani F, Cutrì M, Menchini U. Safety Testing of Blue Vital Dyes Using Cell Culture Models. J Ocul Pharmacol Ther 2014; 30:406-12. [DOI: 10.1089/jop.2013.0213] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Fabrizio Giansanti
- Department of Translational Medicine and Surgery, Eye Clinic, University of Florence, Italy
| | - Nicola Schiavone
- Department of Experimental Pathology and Oncology, Section of Experimental Pathology and Oncology, University of Florence, Italy
| | - Laura Papucci
- Department of Experimental Pathology and Oncology, Section of Experimental Pathology and Oncology, University of Florence, Italy
| | - Alice Bitossi
- Department of Translational Medicine and Surgery, Eye Clinic, University of Florence, Italy
| | - Elena Andreucci
- Department of Experimental Pathology and Oncology, Section of Experimental Pathology and Oncology, University of Florence, Italy
| | - Federica Pontenani
- Department of Translational Medicine and Surgery, Eye Clinic, University of Florence, Italy
| | - Marco Cutrì
- Department of Experimental Pathology and Oncology, Section of Experimental Pathology and Oncology, University of Florence, Italy
| | - Ugo Menchini
- Department of Translational Medicine and Surgery, Eye Clinic, University of Florence, Italy
| |
Collapse
|
41
|
Non-invasive detection of early retinal neuronal degeneration by ultrahigh resolution optical coherence tomography. PLoS One 2014; 9:e93916. [PMID: 24776961 PMCID: PMC4002422 DOI: 10.1371/journal.pone.0093916] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2013] [Accepted: 03/12/2014] [Indexed: 12/20/2022] Open
Abstract
Optical coherence tomography (OCT) has revolutionises the diagnosis of retinal disease based on the detection of microscopic rather than subcellular changes in retinal anatomy. However, currently the technique is limited to the detection of microscopic rather than subcellular changes in retinal anatomy. However, coherence based imaging is extremely sensitive to both changes in optical contrast and cellular events at the micrometer scale, and can generate subtle changes in the spectral content of the OCT image. Here we test the hypothesis that OCT image speckle (image texture) contains information regarding otherwise unresolvable features such as organelle changes arising in the early stages of neuronal degeneration. Using ultrahigh resolution (UHR) OCT imaging at 800 nm (spectral width 140 nm) we developed a robust method of OCT image analyses, based on spatial wavelet and texture-based parameterisation of the image speckle pattern. For the first time we show that this approach allows the non-invasive detection and quantification of early apoptotic changes in neurons within 30 min of neuronal trauma sufficient to result in apoptosis. We show a positive correlation between immunofluorescent labelling of mitochondria (a potential source of changes in cellular optical contrast) with changes in the texture of the OCT images of cultured neurons. Moreover, similar changes in optical contrast were also seen in the retinal ganglion cell- inner plexiform layer in retinal explants following optic nerve transection. The optical clarity of the explants was maintained throughout in the absence of histologically detectable change. Our data suggest that UHR OCT can be used for the non-invasive quantitative assessment of neuronal health, with a particular application to the assessment of early retinal disease.
Collapse
|
42
|
Long-term blue light exposure induces RGC-5 cell death in vitro: involvement of mitochondria-dependent apoptosis, oxidative stress, and MAPK signaling pathways. Apoptosis 2014; 19:922-32. [DOI: 10.1007/s10495-014-0983-2] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
43
|
Li W, Yang C, Lu J, Huang P, Barnstable CJ, Zhang C, Zhang SS. Tetrandrine protects mouse retinal ganglion cells from ischemic injury. DRUG DESIGN DEVELOPMENT AND THERAPY 2014; 8:327-39. [PMID: 24711693 PMCID: PMC3968085 DOI: 10.2147/dddt.s55407] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
This study aimed to determine the protective effects of tetrandrine (Tet) on murine ischemia-injured retinal ganglion cells (RGCs). For this, we used serum deprivation cell model, glutamate and hydrogen peroxide (H2O2)-induced RGC-5 cell death models, and staurosporine-differentiated neuron-like RGC-5 in vitro. We also investigated cell survival of purified primary-cultured RGCs treated with Tet. An in vivo retinal ischemia/reperfusion model was used to examine RGC survival after Tet administration 1 day before ischemia. We found that Tet affected RGC-5 survival in a dose- and time-dependent manner. Compared to dimethyl sulfoxide treatment, Tet increased the numbers of RGC-5 cells by 30% at 72 hours. After 48 hours, Tet protected staurosporine-induced RGC-5 cells from serum deprivation-induced cell death and significantly increased the relative number of cells cultured with 1 mM H2O2 (P<0.01). Several concentrations of Tet significantly prevented 25-mM-glutamate-induced cell death in a dose-dependent manner. Tet also increased primary RGC survival after 72 and 96 hours. Tet administration (10 μM, 2 μL) 1 day before retinal ischemia showed RGC layer loss (greater survival), which was less than those in groups with phosphate-buffered saline intravitreal injection plus ischemia in the central (P=0.005, n=6), middle (P=0.018, n=6), and peripheral (P=0.017, n=6) parts of the retina. Thus, Tet conferred protective effects on serum deprivation models of staurosporine-differentiated neuron-like RGC-5 cells and primary cultured murine RGCs. Furthermore, Tet showed greater in vivo protective effects on RGCs 1 day after ischemia. Tet and ciliary neurotrophic factor maintained the mitochondrial transmembrane potential (ΔΨm) of primary cultured RGCs and inhibited the expression of activated caspase-3 and bcl-2 in ischemia/reperfusion-insult retinas.
Collapse
Affiliation(s)
- Weiyi Li
- Department of Ophthalmology, Peking University Third Hospital, Peking University Eye Center, Beijing, People's Republic of China ; Department of Neural and Behavioral Sciences, Penn State University, Hershey, PA, USA
| | - Chen Yang
- Department of Neural and Behavioral Sciences, Penn State University, Hershey, PA, USA
| | - Jing Lu
- Department of Neural and Behavioral Sciences, Penn State University, Hershey, PA, USA
| | - Ping Huang
- Department of Ophthalmology, Peking University Third Hospital, Peking University Eye Center, Beijing, People's Republic of China
| | - Colin J Barnstable
- Department of Neural and Behavioral Sciences, Penn State University, Hershey, PA, USA
| | - Chun Zhang
- Department of Ophthalmology, Peking University Third Hospital, Peking University Eye Center, Beijing, People's Republic of China
| | - Samuel S Zhang
- Department of Neural and Behavioral Sciences, Penn State University, Hershey, PA, USA ; Singapore Eye Research Institute, Singapore National Eye Centre, Singapore
| |
Collapse
|
44
|
Wilding C, Bell K, Beck S, Funke S, Pfeiffer N, Grus FH. γ-Synuclein antibodies have neuroprotective potential on neuroretinal cells via proteins of the mitochondrial apoptosis pathway. PLoS One 2014; 9:e90737. [PMID: 24595072 PMCID: PMC3940944 DOI: 10.1371/journal.pone.0090737] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2013] [Accepted: 02/05/2014] [Indexed: 01/11/2023] Open
Abstract
The family of synuclein proteins (α, β and γ) are related to neurodegenerative disease e.g. Parkinson disease and Morbus Alzheimer. Additionally, a connection between γ-synuclein and glaucoma, a neurodegenerative disease characterized by a progressive loss of retinal ganglion cells, which finally leads to blindness, exists. The reason for the development of glaucoma is still unknown. Recent studies evaluating the participation of immunological components, demonstrate complex changed antibody reactivities in glaucoma patients in comparison to healthy people, showing not only up-regulations (e.g. alpha-fodrin antibody) but also down-regulations (e.g. γ-synuclein antibody) of antibodies in glaucoma patients. Up-regulated antibodies could be auto-aggressive, but the role of down-regulated antibodies is still unclear. Previous studies show a significant influence of the serum and the antibodies of glaucoma patients on protein expression profiles of neuroretinal cells. The aim of this study was to investigate the effect of γ-synuclein antibody on the viability and reactive oxygen species levels of a neuroretinal cell line (RGC-5) as well as their interaction with cellular proteins. We found a protective effect of γ-synuclein antibody resulting in an increased viability (up to 15%) and decreased reactive oxygen species levels (up to −12%) of glutamate and oxidative stressed RGC-5. These can be traced back to anti-apoptotic altered protein expressions in the mitochondrial apoptosis pathway indicated by mass spectrometry and validated by microarray analysis such as active caspase 3, bcl-2 associated-x-protein, S100A4, voltage-dependent anion channel, extracellular-signal-regulated-kinase (down-regulated) and baculoviral IAP repeat-containing protein 6, phosphorylated extracellular-signal-regulated-kinase (up-regulated). These changed protein expression are triggered by the γ-synuclein antibody internalization of RGC-5 we could see in immunohistochemical stainings. These findings let us assume a novel physiological function of γ-synuclein antibodies and give insights in the role of autoantibodies in glaucoma. We hypothesize that the down-regulation of autoantibodies found in glaucoma patients lead to a loss of protective autoimmunity.
Collapse
Affiliation(s)
- Corina Wilding
- Experimental Ophthalmology, Department of Ophthalmology, Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Katharina Bell
- Experimental Ophthalmology, Department of Ophthalmology, Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Sabine Beck
- Experimental Ophthalmology, Department of Ophthalmology, Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Sebastian Funke
- Experimental Ophthalmology, Department of Ophthalmology, Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Norbert Pfeiffer
- Experimental Ophthalmology, Department of Ophthalmology, Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Franz H Grus
- Experimental Ophthalmology, Department of Ophthalmology, Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| |
Collapse
|
45
|
Ahn HR, Lee HJ, Kim KA, Kim CY, Nho CW, Jang H, Pan CH, Lee CY, Jung SH. Hydroxycinnamic acids in Crepidiastrum denticulatum protect oxidative stress-induced retinal damage. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2014; 62:1310-1323. [PMID: 24428171 DOI: 10.1021/jf4046232] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
We investigated the effects of an ethanol extract of C. denticulatum (EECD) in a mouse model of glaucoma established by optic nerve crush (ONC), and found that EECD significantly protected against retinal ganglion cell (RGC) death caused by ONC. Furthermore, EECD effectively protected against N-methyl-d-aspartate-induced damage to the rat retinas. In vitro, EECD attenuated transformed retinal ganglion cell (RGC-5) death and significantly blunted the up-regulation of apoptotic proteins and mRNA level induced by 1-buthionine-(S,R)-sulfoximine combined with glutamate, reduced reactive oxygen species production by radical species, and inhibited lipid peroxidation. The major EECD components were found to be chicoric acid and 3,5-dicaffeoylquinic acid (3,5-DCQA) that have shown beneficial effects on retinal degeneration both in vitro and in vivo studies. Thus, EECD could be used as a natural neuroprotective agent for glaucoma, and chicoric acid and 3,5-DCQA as mark compounds for the development of functional food.
Collapse
Affiliation(s)
- Hong Ryul Ahn
- Functional Food Center, Korea Institute of Science and Technology (KIST) , Daejeon-dong, Gangneung 210-340, Republic of Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Jang H, Ahn HR, Jo H, Kim KA, Lee EH, Lee KW, Jung SH, Lee CY. Chlorogenic acid and coffee prevent hypoxia-induced retinal degeneration. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2014; 62:182-191. [PMID: 24295042 DOI: 10.1021/jf404285v] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
This study explored whether chlorogenic acid (CGA) and coffee have protective effects against retinal degeneration. Under hypoxic conditions, the viability of transformed retinal ganglion (RGC-5) cells was significantly reduced by treatment with the nitric oxide (NO) donor S-nitroso-N-acetylpenicillamine (SNAP). However, pretreatment with CGA attenuated cell death in a concentration-dependent manner. In addition, CGA prevented the up-regulation of apoptotic proteins such as Bad and cleaved caspase-3. Similar beneficial effects of both CGA and coffee extracts were observed in mice that had undergone an optic nerve crush (ONC) procedure. CGA and coffee extract reduced cell death by preventing the down-regulation of Thy-1. Our in vitro and in vivo studies demonstrated that coffee and its major component, CGA, significantly reduce apoptosis of retinal cells induced by hypoxia and NO, and that coffee consumption may help in preventing retinal degeneration.
Collapse
Affiliation(s)
- Holim Jang
- Department of Food Science, Cornell University , Ithaca, New York 14850, United States
| | | | | | | | | | | | | | | |
Collapse
|
47
|
Martínez-Moreno C, Andres A, Giterman D, Karpinski E, Harvey S. Growth hormone and retinal ganglion cell function: QNR/D cells as an experimental model. Gen Comp Endocrinol 2014; 195:183-9. [PMID: 24239556 DOI: 10.1016/j.ygcen.2013.10.016] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2013] [Revised: 10/09/2013] [Accepted: 10/21/2013] [Indexed: 10/26/2022]
Abstract
Retinal ganglion cells (RGCs) have been shown to be sites of growth hormone (GH) production and GH action in the embryonic (embryo day 7, ED7) chick neural retina. Primary RGC cell cultures were previously used to determine autocrine or paracrine actions of GH in the retina, but the antibody used in their immunopanning (anti-Thy-1) is no longer available. We have therefore characterized an immortalized neural retina (QNR/D) cell line derived from ED7 embryonic quail as a replacement experimental model. These cells express the GH gene and have GH receptor (GHR)-immunoreactivity. They are also immunoreactive for RGC markers (islet-1, calretinin, RA4) and neural fibers (neurofilament, GAP 43, vimentin) and they express the genes for Thy-1, neurotrophin 3 (NTF3), neuritin 1 (NRN1) and brn3 (POU4F). These cells are also electrically active and therefore resemble the RGCs in the neural retina. They are also similarly responsive to exogenous GH, which induces overexpression of the neurotrophin 3 and insulin-like growth factor (IGF) 1 genes and stimulates cell survival, as in the chick embryo neural retina. QNR/D cells are therefore a useful experimental model to assess the actions of GH in retinal function.
Collapse
Affiliation(s)
| | - Alexis Andres
- Department of Physiology, University of Alberta, Edmonton T6G 2H7, Canada
| | - Daniel Giterman
- Department of Physiology, University of Alberta, Edmonton T6G 2H7, Canada
| | - Edward Karpinski
- Department of Physiology, University of Alberta, Edmonton T6G 2H7, Canada
| | - Steve Harvey
- Department of Physiology, University of Alberta, Edmonton T6G 2H7, Canada.
| |
Collapse
|
48
|
Sippl C, Tamm ER. What is the nature of the RGC-5 cell line? ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2014; 801:145-54. [PMID: 24664692 DOI: 10.1007/978-1-4614-3209-8_19] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The immortalized RGC-5 cell line has been widely used as a cell culture model to study the neurobiology of retinal ganglion cells (RGCs). The cells were originally introduced as derived from rat RGC showing expression of various neuronal markers, in particular the RGC-characteristic proteins Brn3 and Thy1. Recent data gave rise to concerns regarding the origin and nature of the cells. RGC-5 cells were identified to be of mouse origin and their expression of RGC characteristics was questioned by some laboratories. This article summarizes the available data on the properties of RGC-5, discusses common protocols for their differentiation and is aimed at providing researchers some guidelines on the benefits and limitations of RGC-5 for research.
Collapse
Affiliation(s)
- C Sippl
- Institute of Human Anatomy and Embryology, University of Regensburg, Universitätsstr. 31, 93053, Regensburg, Germany,
| | | |
Collapse
|
49
|
Zhou X, Su CF, Zhang Z, Wang CY, Luo JQ, Zhou XW, Cai L, Yan L, Zhang W, Luo HM. Neuroprotective Effects of Methyl 3,4-dihydroxybenzoate Against H2O2-Induced Apoptosis in RGC-5 Cells. J Pharmacol Sci 2014; 125:51-8. [DOI: 10.1254/jphs.13055fp] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
|
50
|
Dynamic mobilization of PGC-1α mediates mitochondrial biogenesis for the protection of RGC-5 cells by resveratrol during serum deprivation. Apoptosis 2013; 18:786-99. [PMID: 23525928 DOI: 10.1007/s10495-013-0837-3] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Mitochondrial dysfunction contributing to the pathogenesis of glaucomatous neurodegeneration has stimulated considerable interest recently. In this study, we explored the role of peroxisome proliferator activated receptor-γ co-activator 1α (PGC-1α) in resveratrol-triggered mitochondrial biogenesis for preventing apoptosis in a retinal ganglion cell line RGC-5. Our results showed that serum deprivation induced cell apoptosis in a time-dependent manner. Applying resveratrol maintained the normal mitochondrial membrane potential, decreased the levels of both total and cleaved caspase-3, and inhibited the release of cytochrome c, which subsequently enhanced cell survival. Moreover, resveratrol stimulated mitochondrial biogenesis by increasing the absolute quantity of mitochondria as well as their DNA copies. Treatment with resveratrol promoted the protein expression of SIRT1, but not PGC-1α; instead, resveratrol facilitated PGC-1α translocation from the cytoplasm to the nucleus and up-regulated NRF1 and TFAM, which were blocked by nicotinamide. Collectively, we demonstrate that the SIRT1-dependent PGC-1α subcellular translocation following resveratrol application potentially attenuates serum deprivation-elicited RGC-5 cell death, thereby raising the possibility of mitigating glaucomatous retinopathy by enhancement of mitochondrial biogenesis.
Collapse
|