1
|
Stefano GB, Pilonis N, Ptacek R, Kream RM. Reciprocal Evolution of Opiate Science from Medical and Cultural Perspectives. Med Sci Monit 2017; 23:2890-2896. [PMID: 28609429 PMCID: PMC5478244 DOI: 10.12659/msm.905167] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Over the course of human history, it has been common to use plants for medicinal purposes, such as for providing relief from particular maladies and self-medication. Opium represents one longstanding remedy that has been used to address a range of medical conditions, alleviating discomfort often in ways that have proven pleasurable. Opium is a combination of compounds obtained from the mature fruit of opium poppy, papaver somniferum. Morphine and its biosynthetic precursors thebaine and codeine constitute the main bioactive opiate alkaloids contained in opium. Opium usage in ancient cultures is well documented, as is its major extract morphine. The presence of endogenous opiate alkaloids and opioid peptides in animals owe their discovery to their consistent actions at particular concentrations via stereo select receptors. In vitro expression of morphine within a microbiological industrial setting underscores the role it plays as a multi-purpose pharmacological agent, as well as reinforcing why it can also lead to long-term social dependence. Furthermore, it clearly establishes a reciprocal effect of human intelligence on modifying evolutionary processes in papaver somniferum and related plant species.
Collapse
Affiliation(s)
- George B Stefano
- Department of Psychiatry, Charles University First Faculty of Medicine and General Teaching Hospital, Center for Cognitive Molecular Neuroscience, Prague, Czech Republic
| | - Nastazja Pilonis
- Warsaw Medical University, Public Central Teaching Hospital, Warsaw, Poland
| | - Radek Ptacek
- Department of Psychiatry, Charles University First Faculty of Medicine and General Teaching Hospital, Center for Cognitive Molecular Neuroscience, Prague, Czech Republic
| | - Richard M Kream
- Department of Psychiatry, Charles University First Faculty of Medicine and General Teaching Hospital, Center for Cognitive Molecular Neuroscience, Prague, Czech Republic
| |
Collapse
|
2
|
Zhu W, Mantione KJ, Kream RM, Cadet P, Stefano GB. Cholinergic Regulation of Morphine Release from Human White Blood Cells: Evidence for a Novel Nicotinic Receptor via Pharmacological and Micro Array Analysis. Int J Immunopathol Pharmacol 2016; 20:229-37. [PMID: 17624236 DOI: 10.1177/039463200702000203] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Recent work from our laboratory has demonstrated that human white blood cells make morphine and that substances of abuse, i.e. nicotine, alcohol and cocaine have the ability to release this endogenous substance, suggesting a common mechanism of action. We now demonstrate that the nicotinic process is more complex than formerly envisioned. The incorporation rate of 125I-labeled morphine into PMN and MN are 7.85±0.36%, 1.42±0.19%, respectfully, suggesting in MN this process is of low activity. Separate incubations of PMN with varying concentrations of nicotine or the nicotine agonist epibatidine resulted in a statistically significant enhancement of 125I-trace labeled morphine released into the extracellular medium. In order to ascertain the specificity of the nicotine stimulated morphine release the following experiments were performed. Co-incubation of hexamethonium dichloride (5 μg/ml and at 10 μg/ml), which preferentially blocks nicotinic receptors at autonomic ganglia, with nicotine, exerted a very weak inhibitory effect. Co-incubation of α-BuTx or atropine or chlorisondamine diiodide or dihydro-β-erythroidine hydrobromide, an α4β2 receptor antagonist, did not block nicotine induced morphine release alone or in combination, suggesting either the response was not specific or it was mediated by a novel nicotinic receptor. Human leukocyte total RNA isolated from whole blood were analyzed, using the Human Genome Survey microarray (Applied Biosystems), for cholinergic receptor expression. PMN nicotinic receptor gene expression was present and contained numerous variants (eight). The number of variants suggests that indeed a novel nicotinic receptor may be mediating this effect, while simultaneously demonstrating the significance of the cholinergic receptor expression in these immune cells.
Collapse
Affiliation(s)
- W Zhu
- Neuroscience Research Institute, State University of New York, College at Old Westbury, Old Westbury, NY 11568, USA
| | | | | | | | | |
Collapse
|
3
|
Laux-Biehlmann A, Mouheiche J, Vérièpe J, Goumon Y. Endogenous morphine and its metabolites in mammals: History, synthesis, localization and perspectives. Neuroscience 2013; 233:95-117. [DOI: 10.1016/j.neuroscience.2012.12.013] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2012] [Accepted: 12/07/2012] [Indexed: 10/27/2022]
|
4
|
Stefano GB, Mantione KJ, Králíčková M, Ptacek R, Kuzelova H, Esch T, Kream RM. Parkinson's disease, L-DOPA, and endogenous morphine: a revisit. Med Sci Monit 2012; 18:RA133-137. [PMID: 22847214 PMCID: PMC3560700 DOI: 10.12659/msm.883259] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2012] [Accepted: 06/04/2012] [Indexed: 11/09/2022] Open
Abstract
Clinical observations stemming from widespread employment of restorative L-3,4-dihydroxyphenylalanine (L-DOPA) therapy for management of dyskinesia in Parkinson's Disease (PD) patients implicate a regulatory role for endogenous morphine in central nervous system dopamine neurotransmission. Reciprocally, it appears that restorative L-DOPA administration has provided us with a compelling in vivo pharmacological model for targeting peripheral sites involved in endogenous morphine expression in human subjects. The biological activities underlying endogenous morphine expression and its interaction with its major precursor dopamine strongly suggest that endogenous morphine systems are reciprocally dysregulated in PD. These critical issues are examined from historical and current perspectives within our short review.
Collapse
Affiliation(s)
- George B. Stefano
- Neuroscience Research Institute, State University of New York – College at Old Westbury, Old Westbury, NY, U.S.A
- Clinic of Psychiatry, 1 Faculty of Medicine, Charles University in Prague, Czech Republic
| | - Kirk J. Mantione
- Neuroscience Research Institute, State University of New York – College at Old Westbury, Old Westbury, NY, U.S.A
| | - Milena Králíčková
- Department of Histology and Embryology, Faculty of Medicine in Pilsen, Charles University in Prague, Czech Republic
| | - Radek Ptacek
- Neuroscience Research Institute, State University of New York – College at Old Westbury, Old Westbury, NY, U.S.A
- Clinic of Psychiatry, 1 Faculty of Medicine, Charles University in Prague, Czech Republic
| | - Hana Kuzelova
- Clinic of Psychiatry, 1 Faculty of Medicine, Charles University in Prague, Czech Republic
- Department of Biology and Medical Genetics, 2 Faculty of Medicine, Charles University in Prague, Czech Republic
| | - Tobias Esch
- Neuroscience Research Institute, State University of New York – College at Old Westbury, Old Westbury, NY, U.S.A
- Division of Integrative Health Promotion, Coburg University of Applied Sciences, Germany
| | - Richard M. Kream
- Neuroscience Research Institute, State University of New York – College at Old Westbury, Old Westbury, NY, U.S.A
- Clinic of Psychiatry, 1 Faculty of Medicine, Charles University in Prague, Czech Republic
| |
Collapse
|
5
|
Hansen SH. Sample preparation and separation techniques for bioanalysis of morphine and related substances. J Sep Sci 2009; 32:825-34. [PMID: 19219840 DOI: 10.1002/jssc.200800623] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
In present time the use or misuse of morphine and its derivatives are monitored by assaying the presence of the drug and its metabolites in biofluids. In the present review, focus is placed on the sample preparation and on the separation techniques used in the current best practices of bioanalysis of morphine and its major metabolites. However, as methods for testing the misuse of heroin, a morphine derivative, often involve bioanalytical methods that cover a number of other illicit drug substances, such methods are also included in the review. Furthermore, the review also includes bioanalysis in a broader perspective as analysis of plant materials, cell cultures and environmental samples. The review is not intended to cover all publications that include bioanalysis of morphine but is more to be considered a view into the current best practices of bioanalysis of morphine, its metabolites and other related substances.
Collapse
Affiliation(s)
- Steen Honoré Hansen
- Department of Pharmaceutics and Analytical Chemsitry, Faculty of Pharmacy, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
6
|
|
7
|
Stefano GB, Cadet P, Kream RM, Zhu W. The presence of endogenous morphine signaling in animals. Neurochem Res 2008; 33:1933-9. [PMID: 18777209 DOI: 10.1007/s11064-008-9674-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2007] [Accepted: 03/13/2008] [Indexed: 11/28/2022]
Abstract
Recent empirical findings have contributed valuable mechanistic information in support of a regulated de novo biosynthetic pathway for chemically authentic morphine and related morphinan alkaloids within animal cells. Importantly, we and others have established that endogenously expressed morphine represents a key regulatory molecule effecting local circuit autocrine/paracrine cellular signaling via a novel mu(3) opiate receptor coupled to constitutive nitric oxide production and release. The present report provides an integrated review of the biochemical, pharmacological, and molecular demonstration of mu(3) opiate receptors in historical linkage to the elucidation of mechanisms of endogenous morphine production by animal cells and organ systems. Ongoing research in this exciting area provides a rare window of opportunity to firmly establish essential biochemical linkages between dopamine, a morphine precursor, and animal biosynthetic pathways involved in morphine biosynthesis that have been conserved throughout evolution.
Collapse
Affiliation(s)
- George B Stefano
- Neuroscience Research Institute, State University of New York-College at Old Westbury, P.O. Box 210, Old Westbury, NY 11568, USA.
| | | | | | | |
Collapse
|
8
|
Stefano GB, Kream RM, Mantione KJ, Sheehan M, Cadet P, Zhu W, Bilfinger TV, Esch T. Endogenous morphine/nitric oxide-coupled regulation of cellular physiology and gene expression: implications for cancer biology. Semin Cancer Biol 2007; 18:199-210. [PMID: 18203618 DOI: 10.1016/j.semcancer.2007.12.003] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2007] [Accepted: 12/05/2007] [Indexed: 12/19/2022]
Abstract
Cancer is a simplistic, yet complicated, process that promotes uncontrolled growth. In this regard, this unconstrained proliferation may represent primitive phenomena whereby cellular regulation is suspended or compromised. Given the new empirical evidence for a morphinergic presence and its profound modulatory actions on several cellular processes it is not an overstatement to hypothesize that morphine may represent a key chemical messenger in the process of modulating proliferation of diverse cells. This has been recently demonstrated by the finding of a novel opiate-alkaloid selective receptor subtype in human multilineage progenitor cells (MLPC). Adding to the significance of morphinergic signaling are the findings of its presence in plant, invertebrate and vertebrate cells, which also have been shown to synthesize this messenger as well. Interestingly, we and others have shown that some cancerous tissues contain morphine. Furthermore, in medullary histolytic reticulosis, which is exemplified by cells having hyperactivity, the mu3 (mu3) opiate select receptor was not present. Thus, it would appear that morphinergic signaling has inserted itself in many processes taking a long time to evolve, including those regulating the proliferation of cells across diverse phyla.
Collapse
Affiliation(s)
- George B Stefano
- Neuroscience Research Institute, State University of New York - SUNY College at Old Westbury, P.O. Box 210, Old Westbury, NY 11568, USA.
| | | | | | | | | | | | | | | |
Collapse
|
9
|
Zhu W, Mantione KJ, Shen L, Lee B, Stefano GB. Norlaudanosoline and nicotine increase endogenous ganglionic morphine levels: nicotine addiction. Cell Mol Neurobiol 2006; 26:1037-45. [PMID: 16645895 DOI: 10.1007/s10571-006-9021-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2005] [Accepted: 11/11/2005] [Indexed: 11/26/2022]
Abstract
1. Given the presence of morphine, its metabolites and precursors, e.g., norlaudanosoline, in mammalian and invertebrate tissues, it became important to determine if exposing normal excised ganglia to norlaudanosoline would result in increasing endogenous morphine levels. 2. Mytilus edulis pedal ganglia contain 2.2 +/- 0.41 ng/g wet weight morphine as determined by high pressure liquid chromatography coupled to electrochemical detection and radioimmunoassay. 3. Incubation of M. edulis pedal ganglia with norlaudanosoline, a morphine precursor, resulted in a concentration- and time-dependent statistical increase in endogenous morphine levels (6.9 +/- 1.24 ng/g). 4. Injection of animals with nicotine also increased endogenous morphine levels in a manner that was antagonized by atropine, suggesting that nicotine addiction may be related to altering endogenous morphine levels in mammals. 5. We surmise that norlaudanosoline is being converted to morphine, demonstrating that invertebrate neural tissue can synthesize morphine.
Collapse
Affiliation(s)
- Wei Zhu
- Neuroscience Research Institute, State University of New York, College at Old Westbury, P.O. Box 210, Old Westbury, New York 11568, USA
| | | | | | | | | |
Collapse
|
10
|
Goumon Y, Muller A, Glattard E, Marban C, Gasnier C, Strub JM, Chasserot-Golaz S, Rohr O, Stefano GB, Welters ID, Van Dorsselaer A, Schoentgen F, Aunis D, Metz-Boutigue MH. Identification of morphine-6-glucuronide in chromaffin cell secretory granules. J Biol Chem 2006; 281:8082-9. [PMID: 16434406 DOI: 10.1074/jbc.m502298200] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We report for the first time that morphine-6-glucuronide, a highly analgesic morphine-derived molecule, is present in adrenal chromaffin granules and secreted from chromaffin cells upon stimulation. We also demonstrate that phosphatidylethanolamine-binding protein (alternatively named Raf-1 kinase inhibitor protein or RKIP) acts as an endogenous morphine-6-glucuronide-binding protein. An UDP-glucuronosyltransferase 2B-like enzyme, described to transform morphine into morphine-6-glucuronide, has been immunodetected in the chromaffin granule matrix, and morphine-6-glucuronide de novo synthesis has been characterized, demonstrating the possible involvement of intragranular UDP-glucuronosyltransferase 2B-like enzyme in morphine-6-glucuronide metabolism. Once secreted into the circulation, morphine-6-glucuronide may mediate several systemic actions (e.g. on immune cells) based on its affinity for mu-opioid receptors. These activities could be facilitated by phosphatidylethanolamine-binding protein (PEBP), acting as a molecular shield and preventing morphine-6-glucuronide from rapid clearance. Taken together, our data represent an important observation on the role of morphine-6-glucuronide as a new endocrine factor.
Collapse
Affiliation(s)
- Yannick Goumon
- Physiopathologie du Système Nerveux, INSERM U575, 67084 Strasbourg, France.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Zhu W, Cadet P, Baggerman G, Mantione KJ, Stefano GB. Human white blood cells synthesize morphine: CYP2D6 modulation. THE JOURNAL OF IMMUNOLOGY 2006; 175:7357-62. [PMID: 16301642 DOI: 10.4049/jimmunol.175.11.7357] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Human plasma contains low, but physiologically significant, concentrations of morphine that can increase following trauma or exercise. We now demonstrate that normal, human white blood cells (WBC), specifically polymorphonuclear cells, contain and have the ability to synthesize morphine. We also show that WBC express CYP2D6, an enzyme capable of synthesizing morphine from tyramine, norlaudanosoline, and codeine. Significantly, we also show that morphine can be synthesized by another pathway via l-3,4-dihydroxyphenylalanine (L-DOPA). Finally, we show that WBC release morphine into their environment. These studies provide evidence that 1) the synthesis of morphine by various animal tissues is more widespread than previously thought and now includes human immune cells. 2) Moreover, another pathway for morphine synthesis exists, via L-DOPA, demonstrating an intersection between dopamine and morphine pathways. 3) WBC can release morphine into the environment to regulate themselves and other cells, suggesting involvement in autocrine signaling since these cells express the mu3 opiate receptor subtype.
Collapse
Affiliation(s)
- Wei Zhu
- Neuroscience Research Institute, State University of New York College at Old Westbury, Old Westbury, NY 11568, USA
| | | | | | | | | |
Collapse
|
12
|
Poeaknapo C, Schmidt J, Brandsch M, Dräger B, Zenk MH. Endogenous formation of morphine in human cells. Proc Natl Acad Sci U S A 2004; 101:14091-6. [PMID: 15383669 PMCID: PMC521124 DOI: 10.1073/pnas.0405430101] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Morphine is a plant (opium poppy)-derived alkaloid and one of the strongest known analgesic compounds. Studies from several laboratories have suggested that animal and human tissue or fluids contain trace amounts of morphine. Its origin in mammals has been believed to be of dietary origin. Here, we address the question of whether morphine is of endogenous origin or derived from exogenous sources. Benzylisoquinoline alkaloids present in human neuroblastoma cells (SH-SY5Y) and human pancreas carcinoma cells (DAN-G) were identified by GC/tandem MS (MS/MS) as norlaudanosoline (DAN-G), reticuline (DAN-G and SH-SY5Y), and morphine (10 nM, SH-SY5Y). The stereochemistry of reticuline was determined to be 1-(S). Growth of the SH-SY5Y cell line in the presence of (18)O(2) led to the [(18)O]-labeled morphine that had the molecular weight 4 mass units higher than if grown in (16)O(2), indicating the presence of two atoms of (18)O per molecule of morphine. Growth of DAN-G cells in an (18)O(2) atmosphere yielded norlaudanosoline and (S)-reticuline, both labeled at only two of the four oxygen atoms. This result clearly demonstrates that all three alkaloids are of biosynthetic origin and suggests that norlaudanosoline and (S)-reticuline are endogenous precursors of morphine. Feeding of [ring-(13)C(6)]-tyramine, [1-(13)C, N-(13)CH(3)]-(S)-reticuline and [N-CD(3)]-thebaine to the neuroblastoma cells led each to the position-specific labeling of morphine, as established by GC/MS/MS. Without doubt, human cells can produce the alkaloid morphine. The studies presented here serve as a platform for the exploration of the function of "endogenous morphine" in the neurosciences and immunosciences.
Collapse
Affiliation(s)
- Chotima Poeaknapo
- Biocenter, Martin Luther University Halle-Wittenberg, Weinbergweg 22, 06120 Halle, Germany
| | | | | | | | | |
Collapse
|
13
|
Zhu W, Pryor SC, Putnam J, Cadet P, Stefano GB. Opiate alkaloids and nitric oxide production in the nematode Ascaris suum. J Parasitol 2004; 90:15-22. [PMID: 15040662 DOI: 10.1645/ge-3208] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
The tissue distribution, course of secretion, and sex differences of morphine were delineated in Ascaris suum. Nitric oxide (NO) release in various tissues in response to morphine and its metabolite morphine-6-glucuronide (M6G) were also examined. Ascaris suum of both sexes along with their incubation fluid were analyzed for morphine concentrations by high-performance liquid chromatography (HPLC) over a 5-day period. Various tissues were also dissected for HPLC and NO analysis. Morphine was found to be most prevalent in the muscle tissue, and there is significantly more morphine in females than males, probably because of the large amounts present in the female uterus. Morphine (10(-9) M) and M6G (10(-9) M) stimulated the release of NO from muscles. Naloxone (10(-7) M) and N-nitro-L-arginine methyl ester (10(-6) M) blocked (P < 0.005) morphine-stimulated NO release from A. suum muscle tissue. D-Phe-Cys-Tyr-D-Trp-Om-Thr-Pen-Thr-NH2 (CTOP) (10(-7) M) did not block morphine's NO release. However, naloxone could not block M6G-stimulated NO release by muscles, whereas CTOP (10(-7) M) blocked its release. These findings were in seeming contradiction to our earlier inability to isolate a mu opiate receptor messenger RNA by reverse transcriptase-polymerase chain reaction using a human mu primer. This suggests that a novel mu opiate receptor was possibly present and selective toward M6G.
Collapse
Affiliation(s)
- Wei Zhu
- State University of New York, Old Westbury Neuroscience Research Institute, P.O. Box 210, Old Westbury, New York 11568, USA
| | | | | | | | | |
Collapse
|
14
|
Zhu W, Ma Y, Cadet P, Yu D, Bilfinger TV, Bianchi E, Stefano GB. Presence of reticuline in rat brain: a pathway for morphine biosynthesis. ACTA ACUST UNITED AC 2003; 117:83-90. [PMID: 14499484 DOI: 10.1016/s0169-328x(03)00323-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
We demonstrate the presence of reticuline, an isoquinoline alkaloid that was purified and identified in the rat brain. This was achieved by high-performance liquid chromatography coupled with electrochemical detection. This material was finally identified by nano-electrospray ionization quadrupole time-of-flight tandem mass spectrometry. The expression of this tetrahydroisoquinoline alkaloid in rat brain is at 12.7+/-5.4 ng/g wet tissue. Furthermore, rat chow, rat small and large intestine and bacteria cultured from these tissues did not contain either morphine or reticuline, eliminating the possibility of contamination or an exogenous source of these compounds. This finding adds information which suggests that morphine biosynthesis may occur in rat neural tissues, and that its biosynthesis pathway may be similar to that reported in the poppy plant.
Collapse
Affiliation(s)
- Wei Zhu
- Neuroscience Research Institute, State University of New York, College at Old Westbury, Old Westbury, NY 11568, USA
| | | | | | | | | | | | | |
Collapse
|
15
|
Yamada H, Ishii K, Ishii Y, Ieiri I, Nishio S, Morioka T, Oguri K. FORMATION OF HIGHLY ANALGESIC MORPHINE-6-GLUCURONIDE FOLLOWING PHYSIOLOGIC CONCENTRATION OF MORPHINE IN HUMAN BRAIN. J Toxicol Sci 2003; 28:395-401. [PMID: 14746343 DOI: 10.2131/jts.28.395] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
3H-Morphine at physiologic concentration was metabolized in vitro to its 3- and 6-glucuronides by human brain homogenate. Recombinant UGT2B7, one of the UDP-glucuronosyltransferase (UGT) isoforms, is able to glucuronidate the 3- and 6-hydroxy groups of morphine at nanomolar concentrations. These results suggest that endogenous morphine is converted to its 6-glucuronide, a more highly analgesic substance than the parent compound, to suppress effectively pain symptoms in humans.
Collapse
Affiliation(s)
- Hideyuki Yamada
- Laboratory of Molecular Life Science, Graduate School of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | | | | | | | | | | | | |
Collapse
|
16
|
Zhu W, Baggerman G, Secor WE, Casares F, Pryor SC, Fricchione GL, Ruiz-Tiben E, Eberhard ML, Bimi L, Stefano GB. Dracunculus medinensis and Schistosoma mansoni contain opiate alkaloids. ANNALS OF TROPICAL MEDICINE AND PARASITOLOGY 2002; 96:309-16. [PMID: 12061977 DOI: 10.1179/000349802125000808] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The results of analysis, by high-performance liquid chromatography coupled with electrochemical detection and by nano-electrospray-ionization, double quadrupole/orthogonal-acceleration, time-of-flight mass spectrometry, indicate that adult Dracunculus medinensis and Schistosoma mansoni both contain the opiate alkaloid morphine and that D. medinesis also contains the active metabolite of morphine, morphine 6-glucuronide. From these and previous observations, it would appear that many helminths are probably using opiate alkaloids as potent immunosuppressive and antinociceptive signal molecules, to down-regulate immunosurveillance responsiveness and pain signalling in their hosts.
Collapse
Affiliation(s)
- W Zhu
- Neuroscience Research Institute, State University of New York, College at Old Westbury, 11568, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Cadet P, Zhu W, Mantione KJ, Baggerman G, Stefano GB. Cold stress alters Mytilus edulis pedal ganglia expression of mu opiate receptor transcripts determined by real-time RT-PCR and morphine levels. BRAIN RESEARCH. MOLECULAR BRAIN RESEARCH 2002; 99:26-33. [PMID: 11869805 DOI: 10.1016/s0169-328x(01)00342-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Previous pharmacological, biochemical and molecular evidence prove that mu-subtype opiate receptors and opiate alkaloids, i.e. morphine, are present in the ganglionic nervous system of the mollusk Mytilus edulis (bivalve). We now present molecular evidence on the effect of rapid temperature changes on mu opiate receptor expression and morphine levels. Using primers, a labeled Taq-Man probe derived from the human neuronal mu1 opiate receptor, and real-time RT-PCR to measure the expression of mu transcripts from Mytilus pedal ganglia, we observe, in animals placed in cold water from room temperature, an enhanced morphine and morphine 6 glucuronide level in addition to a decrease in mu opiate receptor gene expression. This study provides further evidence that mu-type opiate receptors and morphine are expressed in mollusk ganglia and appear to be involved in physiological processes responding to thermal stress.
Collapse
Affiliation(s)
- Patrick Cadet
- Neuroscience Research Institute, State University of New York, College at Old Westbury, Old Westbury, NY 11568-0210, USA
| | | | | | | | | |
Collapse
|
18
|
Stefano GB, Ottaviani E. The biochemical substrate of nitric oxide signaling is present in primitive non-cognitive organisms. Brain Res 2002; 924:82-9. [PMID: 11743998 DOI: 10.1016/s0006-8993(01)03227-9] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Nitric oxide has been shown to have diverse actions in the mammalian nervous, immune and vascular systems. These include antimicrobial and antiviral activities as well as the modulation of cell adherence. In the nervous system, nitric oxide modulates neurotransmitter release, neurosecretion and behavioral activities such as feeding. In the present review, we discuss the finding that invertebrate organisms also contain nitric oxide and that they appear to use this multidimensional molecule in a similar manner as noted for mammals. Therefore, nitric oxide signaling appears to have emerged first in these primitive non-cognitive organisms. We conclude that basal nitric oxide functioning was established in these organisms and that this molecule was later employed in man, including its involvement in cognitive neural processes.
Collapse
Affiliation(s)
- George B Stefano
- Neuroscience Research Institute, State University of New York College at Old Westbury, Old Westbury, NY 11568-0210, USA.
| | | |
Collapse
|
19
|
Current literature in mass spectrometry. JOURNAL OF MASS SPECTROMETRY : JMS 2001; 36:976-987. [PMID: 11523099 DOI: 10.1002/jms.95] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
|