1
|
Yun EJ, Kim S, Hsieh JT, Baek ST. Wnt/β-catenin signaling pathway induces autophagy-mediated temozolomide-resistance in human glioblastoma. Cell Death Dis 2020; 11:771. [PMID: 32943609 PMCID: PMC7498596 DOI: 10.1038/s41419-020-02988-8] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 09/02/2020] [Accepted: 09/04/2020] [Indexed: 01/04/2023]
Abstract
Temozolomide (TMZ) is widely used for treating glioblastoma multiforme (GBM), however, the treatment of such brain tumors remains a challenge due to the development of resistance. Increasing studies have found that TMZ treatment could induce autophagy that may link to therapeutic resistance in GBM, but, the precise mechanisms are not fully understood. Understanding the molecular mechanisms underlying the response of GBM to chemotherapy is paramount for developing improved cancer therapeutics. In this study, we demonstrated that the loss of DOC-2/DAB2 interacting protein (DAB2IP) is responsible for TMZ-resistance in GBM through ATG9B. DAB2IP sensitized GBM to TMZ and suppressed TMZ-induced autophagy by negatively regulating ATG9B expression. A higher level of ATG9B expression was associated with GBM compared to low-grade glioma. The knockdown of ATG9B expression in GBM cells suppressed TMZ-induced autophagy as well as TMZ-resistance. Furthermore, we showed that DAB2IP negatively regulated ATG9B expression by blocking the Wnt/β-catenin pathway. To enhance the benefit of TMZ and avoid therapeutic resistance, effective combination strategies were tested using a small molecule inhibitor blocking the Wnt/β-catenin pathway in addition to TMZ. The combination treatment synergistically enhanced the efficacy of TMZ in GBM cells. In conclusion, the present study identified the mechanisms of TMZ-resistance of GBM mediated by DAB2IP and ATG9B which provides insight into a potential strategy to overcome TMZ chemo-resistance.
Collapse
Affiliation(s)
- Eun-Jin Yun
- POSTECH Biotech Center, POSTECH, Pohang, Republic of Korea.
| | - Sangwoo Kim
- Department of Biomedical Systems Informatics and Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Jer-Tsong Hsieh
- Department of Urology, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Department of Biotechnology, Kaohsiung Medical University, Kaohsiung, Taiwan, Republic of China
| | - Seung Tae Baek
- Institute for Convergence Research and Education in Advanced Technology, Yonsei University, Seoul, Republic of Korea.
- Department of Life Sciences, POSTECH, Pohang, Republic of Korea.
| |
Collapse
|
2
|
Jossin Y. Reelin Functions, Mechanisms of Action and Signaling Pathways During Brain Development and Maturation. Biomolecules 2020; 10:biom10060964. [PMID: 32604886 PMCID: PMC7355739 DOI: 10.3390/biom10060964] [Citation(s) in RCA: 110] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 06/24/2020] [Accepted: 06/24/2020] [Indexed: 12/14/2022] Open
Abstract
During embryonic development and adulthood, Reelin exerts several important functions in the brain including the regulation of neuronal migration, dendritic growth and branching, dendritic spine formation, synaptogenesis and synaptic plasticity. As a consequence, the Reelin signaling pathway has been associated with several human brain disorders such as lissencephaly, autism, schizophrenia, bipolar disorder, depression, mental retardation, Alzheimer’s disease and epilepsy. Several elements of the signaling pathway are known. Core components, such as the Reelin receptors very low-density lipoprotein receptor (VLDLR) and Apolipoprotein E receptor 2 (ApoER2), Src family kinases Src and Fyn, and the intracellular adaptor Disabled-1 (Dab1), are common to most but not all Reelin functions. Other downstream effectors are, on the other hand, more specific to defined tasks. Reelin is a large extracellular protein, and some aspects of the signal are regulated by its processing into smaller fragments. Rather than being inhibitory, the processing at two major sites seems to be fulfilling important physiological functions. In this review, I describe the various cellular events regulated by Reelin and attempt to explain the current knowledge on the mechanisms of action. After discussing the shared and distinct elements of the Reelin signaling pathway involved in neuronal migration, dendritic growth, spine development and synaptic plasticity, I briefly outline the data revealing the importance of Reelin in human brain disorders.
Collapse
Affiliation(s)
- Yves Jossin
- Laboratory of Mammalian Development & Cell Biology, Institute of Neuroscience, Université Catholique de Louvain, 1200 Brussels, Belgium
| |
Collapse
|
3
|
Shah B, Püschel AW. Regulation of Rap GTPases in mammalian neurons. Biol Chem 2017; 397:1055-69. [PMID: 27186679 DOI: 10.1515/hsz-2016-0165] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2016] [Accepted: 05/06/2016] [Indexed: 12/15/2022]
Abstract
Small GTPases are central regulators of many cellular processes. The highly conserved Rap GTPases perform essential functions in the mammalian nervous system during development and in mature neurons. During neocortical development, Rap1 is required to regulate cadherin- and integrin-mediated adhesion. In the adult nervous system Rap1 and Rap2 regulate the maturation and plasticity of dendritic spine and synapses. Although genetic studies have revealed important roles of Rap GTPases in neurons, their regulation by guanine nucleotide exchange factors (GEFs) that activate them and GTPase activating proteins (GAPs) that inactivate them by stimulating their intrinsic GTPase activity is just beginning to be explored in vivo. Here we review how GEFs and GAPs regulate Rap GTPases in the nervous system with a focus on their in vivo function.
Collapse
|
4
|
Block one, unleash a hundred. Mechanisms of DAB2IP inactivation in cancer. Cell Death Differ 2016; 24:15-25. [PMID: 27858941 DOI: 10.1038/cdd.2016.134] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2016] [Revised: 09/26/2016] [Accepted: 10/12/2016] [Indexed: 02/07/2023] Open
Abstract
One of the most defining features of cancer is aberrant cell communication; therefore, a molecular understanding of the intricate network established among tumor cells and their microenvironment could significantly improve comprehension and clinical management of cancer. The tumor suppressor DAB2IP (Disabled homolog 2 interacting protein), also known as AIP1 (ASK1 interacting protein), has an important role in this context, as it modulates signal transduction by multiple inflammatory cytokines and growth factors. DAB2IP is a Ras-GAP, and negatively controls Ras-dependent mitogenic signals. In addition, acting as a signaling adaptor, DAB2IP modulates other key oncogenic pathways, including TNFα/NF-κB, WNT/β-catenin, PI3K/AKT, and androgen receptors. Therefore, DAB2IP inactivation can provide a selective advantage to tumors initiated by a variety of driver mutations. In line with this role, DAB2IP expression is frequently impaired by methylation in cancer. Interestingly, recent studies reveal that tumor cells can employ other sophisticated mechanisms to disable DAB2IP at the post-transcriptional level. We review the mechanisms and consequences of DAB2IP inactivation in cancer, with the purpose to support and improve research aimed to counteract such mechanisms. We suggest that DAB2IP reactivation in cancer cells could be a strategy to coordinately dampen multiple oncogenic pathways, potentially limiting progression of a wide spectrum of tumors.
Collapse
|
5
|
Bock HH, May P. Canonical and Non-canonical Reelin Signaling. Front Cell Neurosci 2016; 10:166. [PMID: 27445693 PMCID: PMC4928174 DOI: 10.3389/fncel.2016.00166] [Citation(s) in RCA: 73] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2016] [Accepted: 06/08/2016] [Indexed: 12/11/2022] Open
Abstract
Reelin is a large secreted glycoprotein that is essential for correct neuronal positioning during neurodevelopment and is important for synaptic plasticity in the mature brain. Moreover, Reelin is expressed in many extraneuronal tissues; yet the roles of peripheral Reelin are largely unknown. In the brain, many of Reelin's functions are mediated by a molecular signaling cascade that involves two lipoprotein receptors, apolipoprotein E receptor-2 (Apoer2) and very low density-lipoprotein receptor (Vldlr), the neuronal phosphoprotein Disabled-1 (Dab1), and members of the Src family of protein tyrosine kinases as crucial elements. This core signaling pathway in turn modulates the activity of adaptor proteins and downstream protein kinase cascades, many of which target the neuronal cytoskeleton. However, additional Reelin-binding receptors have been postulated or described, either as coreceptors that are essential for the activation of the "canonical" Reelin signaling cascade involving Apoer2/Vldlr and Dab1, or as receptors that activate alternative or additional signaling pathways. Here we will give an overview of canonical and alternative Reelin signaling pathways, molecular mechanisms involved, and their potential physiological roles in the context of different biological settings.
Collapse
Affiliation(s)
- Hans H Bock
- Clinic of Gastroenterology and Hepatology, Heinrich-Heine-University Düsseldorf Düsseldorf, Germany
| | - Petra May
- Clinic of Gastroenterology and Hepatology, Heinrich-Heine-University Düsseldorf Düsseldorf, Germany
| |
Collapse
|
6
|
Xu H, Wei D, Xue J, Hu L. A Novel Monoclonal Antibody Against Human DAB2IP. Monoclon Antib Immunodiagn Immunother 2015; 34:251-6. [PMID: 26301928 DOI: 10.1089/mab.2015.0011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
DAB2 interactive protein (DAB2IP), also known as ASK1-interacting protein-1 (AIP1), a novel member of the RasGTPase-activating protein family, plays a key role in tumor suppression during cancer progression and is highly expressed in vascular smooth muscle cells (VSMCs) and endothelial cells (ECs). To further explore its function as a cancer suppressor, in this study, we immunized BALB/c mice with synthesized human DAB2IP polypeptide and obtained a novel monoclonal antibody (MAb) against human DAB2IP. A stable strain of hybridoma was screened and successfully established by the hybridoma technique. The immunohistochemistry, immunocytochemistry, and Western blot analysis revealed that the MAb was directed against human DAB2IP with high specificity. Therefore, this MAb may be a useful tool and facilitate studies on tumorigenesis associated with DAB2IP.
Collapse
Affiliation(s)
- He Xu
- 1 Department of Immunology, West China School of Preclinical and Forensic Medicine, Sichuan University , Chengdu, China
| | - Dapeng Wei
- 1 Department of Immunology, West China School of Preclinical and Forensic Medicine, Sichuan University , Chengdu, China
| | - Jianxin Xue
- 2 Department of Thoracic Oncology, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University , Chengdu, China
| | - Lijuan Hu
- 1 Department of Immunology, West China School of Preclinical and Forensic Medicine, Sichuan University , Chengdu, China
| |
Collapse
|
7
|
Salami F, Qiao S, Homayouni R. Expression of mouse Dab2ip transcript variants and gene methylation during brain development. Gene 2015; 568:19-24. [PMID: 25958345 DOI: 10.1016/j.gene.2015.05.012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2014] [Revised: 04/15/2015] [Accepted: 05/05/2015] [Indexed: 11/24/2022]
Abstract
Dab2ip (DOC-2/DAB2 interacting protein) is a RasGAP protein which shows a growth-inhibitory effect in human prostate cancer cell lines. Recent studies have shown that Dab2ip also plays an important role in regulating dendrite development and neuronal migration during brain development. In this study, we provide a more complete description of the mouse Dab2ip (mDab2ip) gene locus and examined DNA methylation and expression of Dab2ip during cerebellar development. Analysis of cDNA sequences in public databases revealed a total of 20 possible exons for mDab2ip gene, spanning over 172kb. Using Cap Analysis of Gene Expression (CAGE) data available through FANTOM5 project, we deduced five different transcription start sites for mDab2ip. Here, we characterized three different mDab2ip transcript variants beginning with exon 1. These transcripts varied by the presence or absence of exons 3 and 5, which encode a putative nuclear localization signal and the N-terminal region of a PH-domain, respectively. The 5' region of the mDab2ip gene contains three putative CpG islands (CpG131, CpG54, and CpG85). Interestingly, CpG54 and CpG85 are localized on exons 3 and 5. Bisulfate DNA sequencing showed that methylation level of CpG54 remained constant whereas methylation of CpG85 increased during cerebellar development. Real-time PCR analysis showed that the proportion of PH-domain containing mDab2ip transcripts increased during cerebellar development, in correlation with the increase in CpG85 methylation. These data suggest that site-specific methylation of mDab2ip gene during cerebellar development may play a role in inclusion of exon 5, resulting in a Dab2ip transcript variant that encodes a full pleckstrin homology (PH) domain.
Collapse
Affiliation(s)
- Farimah Salami
- Department of Biological Sciences, University of Memphis, Memphis, TN, United States
| | - Shuhong Qiao
- Department of Biological Sciences, University of Memphis, Memphis, TN, United States
| | - Ramin Homayouni
- Department of Biological Sciences, University of Memphis, Memphis, TN, United States.
| |
Collapse
|
8
|
Qiao S, Homayouni R. Dab2IP Regulates Neuronal Positioning, Rap1 Activity and Integrin Signaling in the Developing Cortex. Dev Neurosci 2015; 37:131-41. [PMID: 25721469 DOI: 10.1159/000369092] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2014] [Accepted: 10/15/2014] [Indexed: 01/10/2023] Open
Abstract
Dab2IP (DOC-2/DAB2 interacting protein) is a GTPase-activating protein which is involved in various aspects of brain development in addition to its roles in tumor formation and apoptosis in other systems. In this study, we carefully examined the expression profile of Dab2IP and investigated its physiological role during brain development using a Dab2IP-knockdown (KD) mouse model created by retroviral insertion of a LacZ-encoding gene-trapping cassette. LacZ staining revealed that Dab2IP is expressed in the ventricular zone as well as the cortical plate and the intermediate zone. Immunohistochemical analysis showed that Dab2IP protein is localized in the leading process and proximal cytoplasmic regions of migrating neurons in the intermediate zone. Bromodeoxyuridine birth dating experiments in combination with immunohistochemical analysis using layer-specific markers showed that Dab2IP is important for proper positioning of a subset of layer II-IV neurons in the developing cortex. Notably, neuronal migration was not completely disrupted in the cerebral cortex of Dab2IP-KD mice and disruption of migration was not strictly layer specific. Previously, we found that Dab2IP regulates multipolar transition in cortical neurons. Others have shown that Rap1 regulates the transition from multipolar to bipolar morphology in migrating postmitotic neurons through N-cadherin signaling and somal translocation in the superficial layer of the cortical plate through integrin signaling. Therefore, we examined whether Rap1 and integrin signaling were affected in Dab2IP-KD brains. We found that Dab2IP-KD resulted in higher levels of activated Rap1 and integrin in the developing cortex. Taken together, our results suggest that Dab2IP plays an important role in the migration and positioning of a subpopulation of later-born (layers II-IV) neurons, likely through the regulation of Rap1 and integrin signaling.
Collapse
Affiliation(s)
- Shuhong Qiao
- Department of Biological Sciences, University of Memphis, Memphis Tenn., USA
| | | |
Collapse
|
9
|
Reelin in the Years: Controlling Neuronal Migration and Maturation in the Mammalian Brain. ACTA ACUST UNITED AC 2014. [DOI: 10.1155/2014/597395] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The extracellular protein Reelin was initially identified as an essential factor in the control of neuronal migration and layer formation in the developing mammalian brain. In the years following its discovery, however, it became clear that Reelin is a multifunctional protein that controls not only the positioning of neurons in the developing brain, but also their growth, maturation, and synaptic activity in the adult brain. In this review, we will highlight the major discoveries of the biological activities of Reelin and the underlying molecular mechanisms that affect the development and function of the mammalian brain, from embryonic ages to adulthood.
Collapse
|
10
|
Chang SLY, Chou RH, Zeng HJ, Lin YH, Chiu TY, Yang DM, Hung SC, Lai CH, Hsieh JT, Shyu WC, Yu YL. Downregulation of DAB2IP promotes mesenchymal-to-neuroepithelial transition and neuronal differentiation of human mesenchymal stem cells. PLoS One 2013; 8:e75884. [PMID: 24073285 PMCID: PMC3779184 DOI: 10.1371/journal.pone.0075884] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2013] [Accepted: 08/16/2013] [Indexed: 12/05/2022] Open
Abstract
The DOC-2/DAB2 interactive protein (DAB2IP) is a new member of the Ras GTPase–activating protein family. Recent studies have shown that, in addition to its tumor suppressive role in various tumors, DAB2IP also plays an important role in regulating neuronal migration and positioning during brain development. In this study, we determined the roles of DAB2IP in the neuronal differentiation of human mesenchymal stem cells (hMSCs). We found that lentiviral short hairpin RNA (shRNA)-mediated knockdown of DAB2IP promoted the mesenchymal-to-neuroepithelial stem cell transition (MtNeST) and neuronal differentiation, which were accompanied by a reduction of cell proliferation but not apoptosis or cellular senescence. This suggests that DAB2IP plays an important role in the neuronal induction of hMSCs. Moreover, our finding that reduction of glycogen synthase kinase 3 beta (GSK3β) activity upon LiCl pretreatment inhibited both the MtNeST and production of MAP2-positive cells upon DAB2IP knockdown suggests that this transition is most likely mediated by regulation of the GSK3β signaling pathway. Our study demonstrates that DAB2IP participates in the first step of neuron induction of hMSCs, which implies a potentially important role for DAB2IP in the MtNeST during neurogenesis.
Collapse
Affiliation(s)
- Sunny Li-Yun Chang
- Graduate Institute of Basic Medical Science, and Graduate Institute of Molecular Systems Biomedicine, China Medical University, Taichung, Taiwan
| | - Ruey-Hwang Chou
- Graduate Institute of Cancer Biology, and Center for Molecular Medicine, China Medical University, Taichung, Taiwan
- Department of Biotechnology, Asia University, Taichung, Taiwan
| | - Hong-Jie Zeng
- Graduate Institute of Cancer Biology, and Center for Molecular Medicine, China Medical University, Taichung, Taiwan
| | - Yu-Hsuan Lin
- Graduate Institute of Cancer Biology, and Center for Molecular Medicine, China Medical University, Taichung, Taiwan
| | - Tai-Yu Chiu
- Department of Medical Research and Education, Taipei Veterans General Hospital, Taipei, Taiwan
- Institute of Biophotonics, School of Medical Technology and Engineering and Biophotonics and Molecular Imaging Research Center, National Yang-Ming University, Taipei, Taiwan
| | - De-Ming Yang
- Department of Medical Research and Education, Taipei Veterans General Hospital, Taipei, Taiwan
- Institute of Biophotonics, School of Medical Technology and Engineering and Biophotonics and Molecular Imaging Research Center, National Yang-Ming University, Taipei, Taiwan
| | - Shih-Chieh Hung
- Stem Cell Laboratory, Department of Medical Research and Education, Orthopaedics and Traumatology, Taipei Veterans General Hospital and Institute of Clinical Medicine, Institute of Pharmacology, National Yang-Ming University, Taipei, Taiwan
| | - Chih-Ho Lai
- Department of Microbiology, School of Medicine, Graduate Institute of Basic Medical Science, China Medical University, Taichung, Taiwan
| | - Jer-Tsong Hsieh
- University of Texas, Department of Urology, Southwestern Medical Center, Dallas, Texas, United States of America
| | - Woei-Cherng Shyu
- Graduate Institute of Immunology, China Medical University, Taichung, Taiwan
- Translational Medicine Research Center and Center for Neuropsychiatry, China Medical University Hospital, Taichung, Taiwan
- * E-mail: (YLY); (WCS)
| | - Yung-Luen Yu
- Graduate Institute of Cancer Biology, and Center for Molecular Medicine, China Medical University, Taichung, Taiwan
- Department of Biotechnology, Asia University, Taichung, Taiwan
- * E-mail: (YLY); (WCS)
| |
Collapse
|
11
|
Qiao S, Kim SH, Heck D, Goldowitz D, LeDoux MS, Homayouni R. Dab2IP GTPase activating protein regulates dendrite development and synapse number in cerebellum. PLoS One 2013; 8:e53635. [PMID: 23326475 PMCID: PMC3541190 DOI: 10.1371/journal.pone.0053635] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2012] [Accepted: 12/03/2012] [Indexed: 01/08/2023] Open
Abstract
DOC-2/DAB-2 interacting protein (Dab2IP) is a GTPase activating protein that binds to Disabled-1, a cytosolic adapter protein involved in Reelin signaling and brain development. Dab2IP regulates PI3K-AKT signaling and is associated with metastatic prostate cancer, abdominal aortic aneurysms and coronary heart disease. To date, the physiological function of Dab2IP in the nervous system, where it is highly expressed, is relatively unknown. In this study, we generated a mouse model with a targeted disruption of Dab2IP using a retrovirus gene trap strategy. Unlike reeler mice, Dab2IP knock-down mice did not exhibit severe ataxia or cerebellar hypoplasia. However, Dab2IP deficiency produced a number of cerebellar abnormalities such as a delay in the development of Purkinje cell (PC) dendrites, a decrease in the parallel fiber synaptic marker VGluT1, and an increase in the climbing fiber synaptic marker VGluT2. These findings demonstrate for the first time that Dab2IP plays an important role in dendrite development and regulates the number of synapses in the cerebellum.
Collapse
Affiliation(s)
- Shuhong Qiao
- Department of Biological Sciences, University of Memphis, Memphis, Tennessee, United States of America
| | - Sun-Hong Kim
- Department of Anatomy and Neurobiology, University of Tennessee Health Science Center, Memphis, Tennessee, United States of America
| | - Detlef Heck
- Department of Anatomy and Neurobiology, University of Tennessee Health Science Center, Memphis, Tennessee, United States of America
| | - Daniel Goldowitz
- Department of Anatomy and Neurobiology, University of Tennessee Health Science Center, Memphis, Tennessee, United States of America
| | - Mark S. LeDoux
- Department of Neurology, University of Tennessee Health Science Center, Memphis, Tennessee, United States of America
| | - Ramin Homayouni
- Department of Biological Sciences, University of Memphis, Memphis, Tennessee, United States of America
- Department of Anatomy and Neurobiology, University of Tennessee Health Science Center, Memphis, Tennessee, United States of America
- Department of Neurology, University of Tennessee Health Science Center, Memphis, Tennessee, United States of America
- * E-mail:
| |
Collapse
|
12
|
Dab2ip regulates neuronal migration and neurite outgrowth in the developing neocortex. PLoS One 2012; 7:e46592. [PMID: 23056358 PMCID: PMC3464295 DOI: 10.1371/journal.pone.0046592] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2012] [Accepted: 09/02/2012] [Indexed: 12/15/2022] Open
Abstract
Dab2ip (DOC-2/DAB2 interacting protein) is a member of the Ras GTPase-activating protein (GAP) family that has been previously shown to function as a tumor suppressor in several systems. Dab2ip is also highly expressed in the brain where it interacts with Dab1, a key mediator of the Reelin pathway that controls several aspects of brain development and function. We found that Dab2ip is highly expressed in the developing cerebral cortex, but that mutations in the Reelin signaling pathway do not affect its expression. To determine whether Dab2ip plays a role in brain development, we knocked down or over expressed it in neuronal progenitor cells of the embryonic mouse neocortex using in utero electroporation. Dab2ip down-regulation severely disrupts neuronal migration, affecting preferentially late-born principal cortical neurons. Dab2ip overexpression also leads to migration defects. Structure-function experiments in vivo further show that both PH and GRD domains of Dab2ip are important for neuronal migration. A detailed analysis of transfected neurons reveals that Dab2ip down- or up-regulation disrupts the transition from a multipolar to a bipolar neuronal morphology in the intermediate zone. Knock down of Dab2ip in neurons ex-vivo indicates that this protein is necessary for proper neurite development and for the expression of several major neuronal microtubule associated proteins (MAPs), which are important for neurite growth and stabilization. Thus, our study identifies, for the first time, a critical role for Dab2ip in mammalian cortical development and begins to reveal molecular mechanisms that underlie this function.
Collapse
|
13
|
Smits M, van Rijn S, Hulleman E, Biesmans D, van Vuurden DG, Kool M, Haberler C, Aronica E, Vandertop WP, Noske DP, Würdinger T. EZH2-regulated DAB2IP is a medulloblastoma tumor suppressor and a positive marker for survival. Clin Cancer Res 2012; 18:4048-58. [PMID: 22696229 DOI: 10.1158/1078-0432.ccr-12-0399] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
PURPOSE Medulloblastoma is the most common malignant brain tumor in children. Despite recent improvements, the molecular mechanisms driving medulloblastoma are not fully understood and further elucidation could provide cues to improve outcome prediction and therapeutic approaches. EXPERIMENTAL DESIGN Here, we conducted a meta-analysis of mouse and human medulloblastoma gene expression data sets, to identify potential medulloblastoma tumor suppressor genes. RESULTS We identified DAB2IP, a member of the RAS-GTPase-activating protein family (RAS GAP), and showed that DAB2IP expression is repressed in medulloblastoma by EZH2-induced trimethylation. Moreover, we observed that reduced DAB2IP expression correlates significantly with a poor overall survival of patients with medulloblastoma, independent of metastatic stage. Finally, we showed that ectopic DAB2IP expression enhances stress-induced apoptosis in medulloblastoma cells and that reduced expression of DAB2IP in medulloblastoma cells conveys resistance to irradiation-induced cell death. CONCLUSION These results suggest that repression of DAB2IP may at least partly protect medulloblastoma cells from apoptotic cell death. Moreover, DAB2IP may represent a molecular marker to distinguish patients with medulloblastoma at high risk from those with a longer survival prognosis.
Collapse
Affiliation(s)
- Michiel Smits
- Neuro-oncology Research Group, Department of Neurosurgery, Cancer Center Amsterdam, VU University Medical Center, Amsterdam, The Netherlands
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Xia CH, Lu E, Liu H, Du X, Beutler B, Gong X. The role of Vldlr in intraretinal angiogenesis in mice. Invest Ophthalmol Vis Sci 2011; 52:6572-9. [PMID: 21757581 DOI: 10.1167/iovs.10-7082] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
PURPOSE. To identify and characterize the r26 mouse line, which displays depigmented patches in the retina, and to determine the causative gene mutation and study the underlying mechanism. METHODS. Fundus examination, fluorescein angiography, histology, and immunostaining were used to determine the retinal phenotypes. Genome-wide linkage analysis, DNA sequencing, and an allelic test were used to identify the causative gene mutation. Wild-type and mutant gene products were examined by Western blot and transient transfection. RESULTS. Homozygous r26/r26 mice displayed depigmented patches in the fundus that overlapped the hyperfluorescent spots in the angiogram. Histology showed overgrown retinal vessels in the subretinal space. Immunostaining verified the presence of endothelial cells in the photoreceptor layer. Chromosome mapping and DNA sequencing revealed a point mutation, c.2239C>T, in the very-low-density lipoprotein receptor (Vldlr) gene. An allelic test in Vldlr knockout (-/-) mice confirmed that r26/(-) mice display a phenotype similar to that of r26/r26 mice. The Vldlr protein was predominantly localized at the plasma membrane of transfected cells, whereas the truncated Vldlr was diffusely expressed in the cell cytosol. The r26 truncated Vldlr was undetectable in mutant retinas by Western blot. CONCLUSIONS. The r26 is a recessive mutant caused by a missense mutation in the Vldlr gene. This results in a truncated Vldlr protein that lacks the C-terminal 127 amino acid residues including the single transmembrane domain and fails to localize at the plasma membrane. Thus, the r26 is a loss-of-function Vldlr mutation. Vldlr on the cell surface probably mediates an antiangiogenic signal to prevent retinal endothelial cells from migrating into the photoreceptor cell layer.
Collapse
Affiliation(s)
- Chun-Hong Xia
- School of Optometry and Vision Science Program, University of California, Berkeley, USA.
| | | | | | | | | | | |
Collapse
|
15
|
He L, Lu Y, Wang P, Zhang J, Yin C, Qu S. Up-regulated expression of type II very low density lipoprotein receptor correlates with cancer metastasis and has a potential link to β-catenin in different cancers. BMC Cancer 2010; 10:601. [PMID: 21047397 PMCID: PMC2988033 DOI: 10.1186/1471-2407-10-601] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2010] [Accepted: 11/03/2010] [Indexed: 11/24/2022] Open
Abstract
Background Very low density lipoprotein receptor (VLDLR) has been considered as a multiple function receptor due to binding numerous ligands, causing endocytosis and regulating cellular signaling. Our group previously reported that enhanced activity of type II VLDLR (VLDLR II), one subtype of VLDLR, promotes adenocarcinoma SGC7901 cells proliferation and migration. The aim of this study is to explore the expression levels of VLDLR II in human gastric, breast and lung cancer tissues, and to investigate its relationship with clinical characteristics and β-catenin expression status. Methods VLDLR II expression was examined using immunohistochemistry (IHC) and Western blot in tumor tissues from 213 gastric, breast and lung cancer patients, tumor adjacent noncancerous tissues by same methods. Correlations between VLDLR II and clinical features, as well as β-catenin expression status were evaluated by statistical analysis. Results The immunohistochemical staining of VLDLR II showed statistical difference between tumor tissues and tumor adjacent noncancerous tissues in gastric, breast and lung cancers (P = 0.034, 0.018 and 0.043, respectively). Moreover, using Western, we found higher VLDLR II expression levels were associated with lymph node and distant metastasis in gastric and breast cancer (P < 0.05). Furthermore, highly significant positive correlations were found between VLDLR II and β-catenin in gastric cancer (r = 0.689; P < 0.001)breast cancer (r = 0.594; P < 0.001). Conclusions According to the results of the current study, high VLDLR II expression is correlated with lymph node and distant metastasis in gastric and breast cancer patients, the data suggest that VLDLR II may be a clinical marker in cancers, and has a potential link with β-catenin signaling pathway. This is the first to reveal the closer relationship of VLDLR II with clinical information.
Collapse
Affiliation(s)
- Lei He
- Department of Biochemistry and Molecular Biology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | | | | | | | | | | |
Collapse
|
16
|
Coon BG, Burgner J, Camonis JH, Aguilar RC. The epsin family of endocytic adaptors promotes fibrosarcoma migration and invasion. J Biol Chem 2010; 285:33073-33081. [PMID: 20709745 DOI: 10.1074/jbc.m110.124123] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Abnormalities in the process of endocytosis are classically linked to malignant transformation through the deficient down-regulation of signaling receptors. The present study describes a non-classical mechanism that does not require internalization by which endocytic proteins affect cell migration and basement membrane invasion. Specifically, we found that the endocytic adaptor epsin binds and regulates the biological properties of the signaling molecule RalBP1 (Ral-binding protein 1). Epsin interacted with the N terminus of RalBP1 via its characteristic epsin N-terminal homology (ENTH) domain. A combination of siRNA-mediated knock-down and transfection of siRNA-resistant constructs in fibrosarcoma cells demonstrated that impairment of the epsin-RalBP1 interaction led to cell migration and basement membrane invasion defects. We found the ENTH domain was necessary and sufficient to sustain normal cell migration and invasion. Because all the epsin endocytic motifs reside in the C-terminal part of the molecule, these results suggest that this novel regulatory circuit does not require endocytosis. In addition, cells depleted of epsin-RalBP1 complex displayed deficient activation of Rac1 and Arf6 suggesting a signaling function for this novel interaction. Further, overexpression of either epsin or RalBP1 enhanced migration and invasion of fibrosarcoma cells. Collectively, our results indicate that epsin regulates RalBP1 function in Rac1- and Arf6-dependent pathways to ultimately affect cell migration and invasion. We propose that the observed up-regulation of both epsin and RalBP1 in certain cancers contributes to their invasive characteristics.
Collapse
Affiliation(s)
- Brian G Coon
- From the Department of Biological Sciences, Purdue Center for Cancer Research, West Lafayette, Indiana 47907
| | - John Burgner
- Bindley Biosciences Center, Purdue University, West Lafayette, Indiana 47907
| | - Jacques H Camonis
- Institut Curie, 75248 Paris Cedex 05, France; Inserm U830, 75248 Paris Cedex 05, France
| | - R Claudio Aguilar
- From the Department of Biological Sciences, Purdue Center for Cancer Research, West Lafayette, Indiana 47907.
| |
Collapse
|
17
|
Panguluri SK, Li B, Hormann RE, Palli SR. Effect of ecdysone receptor gene switch ligands on endogenous gene expression in 293 cells. FEBS J 2007; 274:5669-89. [PMID: 17922837 DOI: 10.1111/j.1742-4658.2007.06089.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Regulated gene expression may substantially enhance gene therapy. Correlated with structural differences between insect ecdysteroids and mammalian steroids, the ecdysteroids appear to have a benign pharmacology without adversely interfering with mammalian signaling systems. Consequently, the ecdysone receptor-based gene switches are attractive for application in medicine. In the present study, the effect of inducers of ecdysone receptor switches on the expression of endogenous genes in HEK 293 cells was determined. Four ligand chemotypes, represented by a tetrahydroquinoline (RG-120499), one amidoketone (RG-121150), two ecdysteroids [20-hydroxyecdysone (20E) and ponasterone A (Pon A)], and four diacylhydrazines (RG-102240, RG-102277, RG-102398 and RG-100864), were tested in HEK 293 cells. The cells were exposed to ligands at concentrations of 1 microm (RG-120499) or 10 microm (all others) for 72 h and the total RNA was isolated and analyzed using microarrays. Microarray data showed that the tetrahydroquinoline ligand, RG-120499 caused cell death at concentrations > or = 10 microm. At 1 microm, this ligand caused changes in the expression of genes such as TNF, MAF, Rab and Reprimo. At 10 microm, the amidoketone, RG-121150, induced changes in the expression of genes such as v-jun, FBJ and EGR, but was otherwise noninterfering. Of the two steroids tested, 20E did not affect gene expression, but Pon A caused some changes in the expression of endogenous genes. At lower concentrations pharmacologically relevant for gene therapy, intrinsic gene expression effects of ecdysteroids and amidoketones may actually be insignificant. A fortiori, even at 10 microm, the four diacylhydrazine ligands did not cause significant changes in expression of endogenous genes in 293 cells and therefore should have minimum pleiotropic effects when used as ligands for the ecdysone receptor gene switch.
Collapse
Affiliation(s)
- Siva K Panguluri
- Department of Entomology, College of Agriculture, University of Kentucky, Lexington, KY 40546, USA
| | | | | | | |
Collapse
|
18
|
Jossin Y, Goffinet AM. Reelin signals through phosphatidylinositol 3-kinase and Akt to control cortical development and through mTor to regulate dendritic growth. Mol Cell Biol 2007; 27:7113-24. [PMID: 17698586 PMCID: PMC2168915 DOI: 10.1128/mcb.00928-07] [Citation(s) in RCA: 178] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Reelin is an extracellular matrix protein with various functions during development and in the mature brain. It activates different signaling cascades in target cells, one of which is the phosphatidylinositol 3-kinase (PI3K) pathway, which we investigated further using pathway inhibitors and in vitro brain slice and neuronal cultures. We show that the mTor (mammalian target of rapamycin)-S6K1 (S6 kinase 1) pathway is activated by Reelin and that this depends on Dab1 (Disabled-1) phosphorylation and activation of PI3K and Akt (protein kinase B). PI3K and Akt are required for the effects of Reelin on the organization of the cortical plate, but their downstream partners mTor and glycogen synthase kinase 3beta (GSK3beta) are not. On the other hand, mTor, but not GSK3beta, mediates the effects of Reelin on the growth and branching of dendrites of hippocampal neurons. In addition, PI3K fosters radial migration of cortical neurons through the intermediate zone, an effect that is independent of Reelin and Akt.
Collapse
Affiliation(s)
- Yves Jossin
- Université Catholique de Louvain, Center for Neurosciences, Avenue E. Mounier, 73, DENE 7382, B1200 Brussels, Belgium
| | | |
Collapse
|
19
|
Stolt PC, Bock HH. Modulation of lipoprotein receptor functions by intracellular adaptor proteins. Cell Signal 2006; 18:1560-71. [PMID: 16725309 DOI: 10.1016/j.cellsig.2006.03.008] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2006] [Accepted: 03/21/2006] [Indexed: 10/24/2022]
Abstract
Members of the low density lipoprotein (LDL) receptor gene family are critically involved in a wide range of physiological processes including lipid and vitamin homeostasis, cellular migration, neurodevelopment, and synaptic plasticity, to name a few. Lipoprotein receptors exert these diverse biological functions by acting as cellular uptake receptors or by inducing intracellular signaling cascades. It was discovered that a short sequence in the intracellular region of all lipoprotein receptors, Asn-Pro-X-Tyr (NPXY) is important for mediating either endocytosis or signal transduction events, and that this motif serves as a binding site for phosphotyrosine-binding (PTB) domain containing scaffold proteins. These molecular adaptors connect the transmembrane receptors with the endocytosis machinery and regulate cellular trafficking, or function as assembly sites for dynamic multi-protein signaling complexes. Whereas the LDL receptor represents the archetype of an endocytic lipoprotein receptor, the structurally closely related apolipoprotein E receptor 2 (apoER2) and very low density lipoprotein (VLDL) receptor activate a kinase-dependent intracellular signaling cascade after binding to the neuronal signaling molecule Reelin. This review focuses on two related PTB domain containing adaptor proteins that mediate these divergent lipoprotein receptor responses, ARH (autosomal recessive hypercholesterolemia protein) and Dab1 (disabled-1), and discusses the structural and molecular basis of this different behaviour.
Collapse
Affiliation(s)
- Peggy C Stolt
- Max Planck Institute for Biophysics, Max-von-Laue Str. 3, D-60438 Frankfurt/Main, Germany
| | | |
Collapse
|
20
|
Chen H, Karam JA, Schultz R, Zhang Z, Duncan C, Hsieh JT. Cloning of mouse Dab2ip gene, a novel member of the RasGTPase-activating protein family and characterization of its regulatory region in prostate. DNA Cell Biol 2006; 25:232-45. [PMID: 16629596 DOI: 10.1089/dna.2006.25.232] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Disabled homolog 2 (Drosophila) interacting protein (DAB2IP/Dab2IP) is a member of the GTPase-activating protein for downregulating the Ras-mediated signal pathway and TNF-mediated apoptosis. The downregulation of human DAB2IP mRNA levels was detected in prostate cancer cells due to the epigenetic regulation. Here, we isolated a mouse Dab2ip gene with a highly homologous sequence to that of the human and rat gene and mapped it at chromosome 2B. The mDab2ip gene contains 14 exons and 13 introns and spans approximately 65 kb. Exon1 contains at least three splicing variants (Ia, Ib, and Ic). The deduced amino acid sequence of mouse Dab2IP encompasses 1065 residues containing several unique protein interaction motifs as well as a Ras-like GAP-related domain, which shares a high homology with both humans and rats. Data from real-time RT-PCR analysis revealed a diverse expression pattern of the mDab2ip gene in various organs, implying differential regulation of this gene from various tissues. We have mapped a 1.3-kb segment containing a 5'-upstream region from exon Ia as a promoter region (-147/+545) in prostatic epithelial cell lines (TRAMP-C); this region is highly GC-rich, and mDab2ip appears to be a TATA-less promoter. It appears that epigenetic regulation, particularly histone acetylation of the Dab2ip gene promoter, plays an important role in modulating its gene expression in the mouse prostate cancer cell.
Collapse
MESH Headings
- Adaptor Proteins, Signal Transducing
- Adaptor Proteins, Vesicular Transport/genetics
- Adenocarcinoma/genetics
- Adenocarcinoma/metabolism
- Adenocarcinoma/pathology
- Amino Acid Sequence
- Animals
- Apoptosis Regulatory Proteins
- Cell Line, Tumor
- Chromatin Immunoprecipitation
- Chromosome Mapping
- Chromosomes, Artificial, Bacterial
- Chromosomes, Mammalian
- Cloning, Molecular
- Conserved Sequence
- Epigenesis, Genetic
- Exons
- Gene Expression Regulation, Neoplastic
- Gene Library
- Genes, Reporter
- In Situ Hybridization, Fluorescence
- Introns
- Luciferases/metabolism
- Male
- Mice
- Mice, Transgenic
- Molecular Sequence Data
- Promoter Regions, Genetic
- Prostate/metabolism
- Prostatic Neoplasms/genetics
- Prostatic Neoplasms/metabolism
- Prostatic Neoplasms/pathology
- Protein Structure, Tertiary
- Regulatory Sequences, Nucleic Acid
- Reverse Transcriptase Polymerase Chain Reaction
- Sequence Analysis, DNA
- Sequence Homology, Amino Acid
- Transcription Initiation Site
Collapse
Affiliation(s)
- Hong Chen
- Department of Urology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | | | | | | | | | | |
Collapse
|
21
|
Simó S, Pujadas L, Segura MF, La Torre A, Del Río JA, Ureña JM, Comella JX, Soriano E. Reelin induces the detachment of postnatal subventricular zone cells and the expression of the Egr-1 through Erk1/2 activation. ACTA ACUST UNITED AC 2006; 17:294-303. [PMID: 16514107 DOI: 10.1093/cercor/bhj147] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Reelin binds to very low-density lipoprotein receptor and apolipoprotein E receptor 2, thereby inducing mDab1 phosphorylation and activation of the phosphatidylinositide 3 kinase (PI3K) pathway. Here we demonstrate that Reelin activates the mitogen-activated protein kinase/extracellular signal-regulated kinase (ERK) pathway, which leads to the phosphorylation of Erk1/2 proteins. The inhibition of Src family kinases (SFK) blocked Reelin-dependent Erk1/2 activation. This was also shown in neuronal cultures from mDab1-deficient mice. Although rat sarcoma viral oncogene was weakly activated upon Reelin treatment, pharmacological inhibition of the PI3K pathway blocked Reelin-dependent ERK activation, which indicates cross talk between the ERK and PI3K pathways. We show that blockade of the ERK pathway does not prevent the chain migration of neurons from the subventricular zone (SVZ) but does inhibit the Reelin-dependent detachment of migrating neurons. We also show that Reelin induces the transcription of the early growth response 1 transcription factor. Our findings demonstrate that Reelin triggers ERK signaling in an SFK/mDab1- and PI3K-dependent manner and that ERK activation is required for Reelin-dependent transcriptional activation and the detachment of neurons migrating from the SVZ.
Collapse
Affiliation(s)
- Sergi Simó
- Developmental Neurobiology and Regeneration Laboratory, Barcelona Science Park-IRB and Department of Cell Biology, University of Barcelona, E-08028 Barcelona, Spain
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Reiner O, Sapir T. Similarities and differences between the Wnt and reelin pathways in the forming brain. Mol Neurobiol 2006; 31:117-34. [PMID: 15953816 DOI: 10.1385/mn:31:1-3:117] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2004] [Accepted: 11/15/2004] [Indexed: 12/17/2022]
Abstract
One of the key features in development is the reutilization of successful signaling pathways. Here, we emphasize the involvement of the Wnt pathway, one of the five kinds of signal transduction pathway predominating early embryonic development of all animals, in regulating the formation of brain structure. We discuss the interrelationships between the Wnt and reelin pathways in the regulation of cortical layering. We summarize data emphasizing key molecules, which, when mutated, result in abnormal brain development. This integrated view, which is based on conservation of pathways, reveals the relative position of participants in the pathway, points to control mechanisms, and allows raising testable working hypotheses. Nevertheless, although signaling pathways are highly conserved from flies to humans, the overall morphology is not. We propose that future studies directed at understanding of diversification will provide fruitful insights on mammalian brain formation.
Collapse
Affiliation(s)
- Orly Reiner
- Department of Molecular Genetics, The Weizmann Institute of Science, Rehovot, Israel.
| | | |
Collapse
|
23
|
Chen T, Wu F, Chen FM, Tian J, Qu S. Variations of very low-density lipoprotein receptor subtype expression in gastrointestinal adenocarcinoma cells with various differentiations. World J Gastroenterol 2005; 11:2817-21. [PMID: 15884130 PMCID: PMC4305924 DOI: 10.3748/wjg.v11.i18.2817] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: This study is aimed at investigating the expression and possible significances of very low-density lipoprotein receptor (VLDLR) subtypes in gastroenteric adenocarcinoma tissues and cells with various differentiations.
METHODS: Thirty-one cases of gastroenteric carcinoma/adjacent normal tissues were enrolled in the study, which were diagnosed and classified by the clinicopathological diagnosis. The expression of VLDLR subtypes was detected in gastroenteric carcinoma/adjacent normal tissues and three various differentiated human gastric adenocarcinoma cell lines (MKN28, SGC7901 and MKN45) by reverse transcription polymerase chain reaction (RT-PCR) and Western blot analysis.
RESULTS: Two VLDLR subtypes, namely, type II VLDLR and type I VLDLR, were found to express changes in gastroenteric carcinoma tissues, their adjacent normal tissue, and gastric adenocarcinoma cell lines as well. Type II VLDLR is predominantly expressed in poorly- or moderately-differentiated gastroenteric carcinoma tissues and gastric adenocarcinoma cell lines, whereas type I VLDLR is mainly detected in well-differentiated intestinal carcinoma tissues and gastric adenocarcinoma cells compared with the adjacent normal tissues.
CONCLUSION: The results suggested that the variations of the VLDLR subtype expression might be correlated with the progress and differentiation of gastroenteric carcinoma.
Collapse
Affiliation(s)
- Tao Chen
- Department of Biochemistry and Molecular Biology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei Province, China
| | | | | | | | | |
Collapse
|
24
|
Affiliation(s)
- Gabriella D'Arcangelo
- The Cain Foundation Laboratories, Texas Children's Hospital, Department of Pediatrics, Program in Developmental Biology, Baylor College of Medicine, Houston 77030, USA
| |
Collapse
|
25
|
Bielas S, Higginbotham H, Koizumi H, Tanaka T, Gleeson JG. CORTICAL NEURONAL MIGRATION MUTANTS SUGGEST SEPARATE BUT INTERSECTING PATHWAYS. Annu Rev Cell Dev Biol 2004; 20:593-618. [PMID: 15473853 DOI: 10.1146/annurev.cellbio.20.082503.103047] [Citation(s) in RCA: 106] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
During brain development, neurons migrate great distances from proliferative zones to generate the cortical gray matter. A series of studies has identified genes that are critical for migration and targeting of neurons to specific brain regions. These genes encode three basic groups of proteins and produce three distinct phenotypes. The first group encodes cytoskeletal molecules and produces graded and dosage-dependent effects, with a significant amount of functional redundancy. This group also appears to play important roles during the initiation and ongoing progression of neuronal movement. The second group encodes signaling molecules for which homozygous mutations lead to an inverted cortex. In addition, this group is responsible for movement of neurons through anatomic boundaries to specific cortical layers. The third group encodes enzymatic regulators of glycosylation and appears to delineate where neuronal migration will arrest. There is significant cross-talk among these different groups of molecules, suggesting possible points of pathway convergence.
Collapse
Affiliation(s)
- Stephanie Bielas
- Neurogenetics Laboratory, Department of Neurosciences, University of California-San Diego, La Jolla, CA 92093-0624, USA.
| | | | | | | | | |
Collapse
|