1
|
Latina V, Atlante A, Malerba F, La Regina F, Balzamino BO, Micera A, Pignataro A, Stigliano E, Cavallaro S, Calissano P, Amadoro G. The Cleavage-Specific Tau 12A12mAb Exerts an Anti-Amyloidogenic Action by Modulating the Endocytic and Bioenergetic Pathways in Alzheimer's Disease Mouse Model. Int J Mol Sci 2023; 24:ijms24119683. [PMID: 37298634 DOI: 10.3390/ijms24119683] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 05/27/2023] [Accepted: 05/31/2023] [Indexed: 06/12/2023] Open
Abstract
Beyond deficits in hippocampal-dependent episodic memory, Alzheimer's Disease (AD) features sensory impairment in visual cognition consistent with extensive neuropathology in the retina. 12A12 is a monoclonal cleavage specific antibody (mAb) that in vivo selectively neutralizes the AD-relevant, harmful N-terminal 20-22 kDa tau fragment(s) (i.e., NH2htau) without affecting the full-length normal protein. When systemically injected into the Tg2576 mouse model overexpressing a mutant form of Amyloid Precursor Protein (APP), APPK670/671L linked to early onset familial AD, this conformation-specific tau mAb successfully reduces the NH2htau accumulating both in their brain and retina and, thus, markedly alleviates the phenotype-associated signs. By means of a combined biochemical and metabolic experimental approach, we report that 12A12mAb downregulates the steady state expression levels of APP and Beta-Secretase 1 (BACE-1) and, thus, limits the Amyloid beta (Aβ) production both in the hippocampus and retina from this AD animal model. The local, antibody-mediated anti-amyloidogenic action is paralleled in vivo by coordinated modulation of the endocytic (BIN1, RIN3) and bioenergetic (glycolysis and L-Lactate) pathways. These findings indicate for the first time that similar molecular and metabolic retino-cerebral pathways are modulated in a coordinated fashion in response to 12A12mAb treatment to tackle the neurosensorial Aβ accumulation in AD neurodegeneration.
Collapse
Affiliation(s)
- Valentina Latina
- European Brain Research Institute (EBRI), Viale Regina Elena 295, 00161 Rome, Italy
| | - Anna Atlante
- Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies (IBIOM), National Research Council (CNR), Via Amendola 122/O, 70126 Bari, Italy
| | - Francesca Malerba
- European Brain Research Institute (EBRI), Viale Regina Elena 295, 00161 Rome, Italy
| | - Federico La Regina
- European Brain Research Institute (EBRI), Viale Regina Elena 295, 00161 Rome, Italy
| | - Bijorn Omar Balzamino
- Research Laboratories in Ophthalmology, IRCCS-Fondazione Bietti, Via Santo Stefano Rotondo 6, 00184 Rome, Italy
| | - Alessandra Micera
- Research Laboratories in Ophthalmology, IRCCS-Fondazione Bietti, Via Santo Stefano Rotondo 6, 00184 Rome, Italy
| | - Annabella Pignataro
- Institute of Translational Pharmacology (IFT), National Research Council (CNR), Via Fosso del Cavaliere 100, 00133 Rome, Italy
| | - Egidio Stigliano
- Area of Pathology, Department of Woman and Child Health and Public Health, Fondazione Policlinico Universitario A. Gemelli IRCCS, Istituto di Anatomia Patologica, Università Cattolica del Sacro Cuore, Largo Francesco Vito 1, 00168 Rome, Italy
| | - Sebastiano Cavallaro
- Institute for Biomedical Research and Innovation (IRIB), National Research Council (CNR), Via P. Gaifami 18, 95126 Catania, Italy
| | - Pietro Calissano
- European Brain Research Institute (EBRI), Viale Regina Elena 295, 00161 Rome, Italy
| | - Giuseppina Amadoro
- European Brain Research Institute (EBRI), Viale Regina Elena 295, 00161 Rome, Italy
- Institute of Translational Pharmacology (IFT), National Research Council (CNR), Via Fosso del Cavaliere 100, 00133 Rome, Italy
| |
Collapse
|
2
|
Corsi A, Bombieri C, Valenti MT, Romanelli MG. Tau Isoforms: Gaining Insight into MAPT Alternative Splicing. Int J Mol Sci 2022; 23:ijms232315383. [PMID: 36499709 PMCID: PMC9735940 DOI: 10.3390/ijms232315383] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 11/27/2022] [Accepted: 12/04/2022] [Indexed: 12/13/2022] Open
Abstract
Tau microtubule-associated proteins, encoded by the MAPT gene, are mainly expressed in neurons participating in axonal transport and synaptic plasticity. Six major isoforms differentially expressed during cell development and differentiation are translated by alternative splicing of MAPT transcripts. Alterations in the expression of human Tau isoforms and their aggregation have been linked to several neurodegenerative diseases called tauopathies, including Alzheimer's disease, progressive supranuclear palsy, Pick's disease, and frontotemporal dementia with parkinsonism linked to chromosome 17. Great efforts have been dedicated in recent years to shed light on the complex regulatory mechanism of Tau splicing, with a perspective to developing new RNA-based therapies. This review summarizes the most recent contributions to the knowledge of Tau isoform expression and experimental models, highlighting the role of cis-elements and ribonucleoproteins that regulate the alternative splicing of Tau exons.
Collapse
|
3
|
Robbins M, Clayton E, Kaminski Schierle GS. Synaptic tau: A pathological or physiological phenomenon? Acta Neuropathol Commun 2021; 9:149. [PMID: 34503576 PMCID: PMC8428049 DOI: 10.1186/s40478-021-01246-y] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Accepted: 08/12/2021] [Indexed: 12/17/2022] Open
Abstract
In this review, we discuss the synaptic aspects of Tau pathology occurring during Alzheimer's disease (AD) and how this may relate to memory impairment, a major hallmark of AD. Whilst the clinical diagnosis of AD patients is a loss of working memory and long-term declarative memory, the histological diagnosis is the presence of neurofibrillary tangles of hyperphosphorylated Tau and Amyloid-beta plaques. Tau pathology spreads through synaptically connected neurons to impair synaptic function preceding the formation of neurofibrillary tangles, synaptic loss, axonal retraction and cell death. Alongside synaptic pathology, recent data suggest that Tau has physiological roles in the pre- or post- synaptic compartments. Thus, we have seen a shift in the research focus from Tau as a microtubule-stabilising protein in axons, to Tau as a synaptic protein with roles in accelerating spine formation, dendritic elongation, and in synaptic plasticity coordinating memory pathways. We collate here the myriad of emerging interactions and physiological roles of synaptic Tau, and discuss the current evidence that synaptic Tau contributes to pathology in AD.
Collapse
|
4
|
Nguyen PH, Ramamoorthy A, Sahoo BR, Zheng J, Faller P, Straub JE, Dominguez L, Shea JE, Dokholyan NV, De Simone A, Ma B, Nussinov R, Najafi S, Ngo ST, Loquet A, Chiricotto M, Ganguly P, McCarty J, Li MS, Hall C, Wang Y, Miller Y, Melchionna S, Habenstein B, Timr S, Chen J, Hnath B, Strodel B, Kayed R, Lesné S, Wei G, Sterpone F, Doig AJ, Derreumaux P. Amyloid Oligomers: A Joint Experimental/Computational Perspective on Alzheimer's Disease, Parkinson's Disease, Type II Diabetes, and Amyotrophic Lateral Sclerosis. Chem Rev 2021; 121:2545-2647. [PMID: 33543942 PMCID: PMC8836097 DOI: 10.1021/acs.chemrev.0c01122] [Citation(s) in RCA: 403] [Impact Index Per Article: 134.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Protein misfolding and aggregation is observed in many amyloidogenic diseases affecting either the central nervous system or a variety of peripheral tissues. Structural and dynamic characterization of all species along the pathways from monomers to fibrils is challenging by experimental and computational means because they involve intrinsically disordered proteins in most diseases. Yet understanding how amyloid species become toxic is the challenge in developing a treatment for these diseases. Here we review what computer, in vitro, in vivo, and pharmacological experiments tell us about the accumulation and deposition of the oligomers of the (Aβ, tau), α-synuclein, IAPP, and superoxide dismutase 1 proteins, which have been the mainstream concept underlying Alzheimer's disease (AD), Parkinson's disease (PD), type II diabetes (T2D), and amyotrophic lateral sclerosis (ALS) research, respectively, for many years.
Collapse
Affiliation(s)
- Phuong H Nguyen
- CNRS, UPR9080, Université de Paris, Laboratory of Theoretical Biochemistry, IBPC, Fondation Edmond de Rothschild, PSL Research University, Paris 75005, France
| | - Ayyalusamy Ramamoorthy
- Biophysics and Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109-1055, United States
| | - Bikash R Sahoo
- Biophysics and Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109-1055, United States
| | - Jie Zheng
- Department of Chemical & Biomolecular Engineering, The University of Akron, Akron, Ohio 44325, United States
| | - Peter Faller
- Institut de Chimie, UMR 7177, CNRS-Université de Strasbourg, 4 rue Blaise Pascal, 67000 Strasbourg, France
| | - John E Straub
- Department of Chemistry, Boston University, 590 Commonwealth Avenue, Boston, Massachusetts 02215, United States
| | - Laura Dominguez
- Facultad de Química, Departamento de Fisicoquímica, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico
| | - Joan-Emma Shea
- Department of Chemistry and Biochemistry, and Department of Physics, University of California, Santa Barbara, California 93106, United States
| | - Nikolay V Dokholyan
- Department of Pharmacology and Biochemistry & Molecular Biology, Penn State University College of Medicine, Hershey, Pennsylvania 17033, United States
- Department of Chemistry, and Biomedical Engineering, Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Alfonso De Simone
- Department of Life Sciences, Imperial College London, London SW7 2AZ, U.K
- Molecular Biology, University of Naples Federico II, Naples 80138, Italy
| | - Buyong Ma
- Basic Science Program, Leidos Biomedical Research, Inc., Cancer and Inflammation Program, National Cancer Institute, Frederick, Maryland 21702, United States
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai, China
| | - Ruth Nussinov
- Basic Science Program, Leidos Biomedical Research, Inc., Cancer and Inflammation Program, National Cancer Institute, Frederick, Maryland 21702, United States
- Sackler Institute of Molecular Medicine, Department of Human Genetics and Molecular Medicine Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Saeed Najafi
- Department of Chemistry and Biochemistry, and Department of Physics, University of California, Santa Barbara, California 93106, United States
| | - Son Tung Ngo
- Laboratory of Theoretical and Computational Biophysics & Faculty of Applied Sciences, Ton Duc Thang University, 33000 Ho Chi Minh City, Vietnam
| | - Antoine Loquet
- Institute of Chemistry & Biology of Membranes & Nanoobjects, (UMR5248 CBMN), CNRS, Université Bordeaux, Institut Européen de Chimie et Biologie, 33600 Pessac, France
| | - Mara Chiricotto
- Department of Chemical Engineering and Analytical Science, University of Manchester, Manchester M13 9PL, U.K
| | - Pritam Ganguly
- Department of Chemistry and Biochemistry, and Department of Physics, University of California, Santa Barbara, California 93106, United States
| | - James McCarty
- Chemistry Department, Western Washington University, Bellingham, Washington 98225, United States
| | - Mai Suan Li
- Institute for Computational Science and Technology, SBI Building, Quang Trung Software City, Tan Chanh Hiep Ward, District 12, Ho Chi Minh City 700000, Vietnam
- Institute of Physics, Polish Academy of Sciences, Al. Lotnikow 32/46, 02-668 Warsaw, Poland
| | - Carol Hall
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina 27695-7905, United States
| | - Yiming Wang
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina 27695-7905, United States
| | - Yifat Miller
- Department of Chemistry and The Ilse Katz Institute for Nanoscale Science & Technology, Ben-Gurion University of the Negev, Be'er Sheva 84105, Israel
| | | | - Birgit Habenstein
- Institute of Chemistry & Biology of Membranes & Nanoobjects, (UMR5248 CBMN), CNRS, Université Bordeaux, Institut Européen de Chimie et Biologie, 33600 Pessac, France
| | - Stepan Timr
- CNRS, UPR9080, Université de Paris, Laboratory of Theoretical Biochemistry, IBPC, Fondation Edmond de Rothschild, PSL Research University, Paris 75005, France
| | - Jiaxing Chen
- Department of Pharmacology and Biochemistry & Molecular Biology, Penn State University College of Medicine, Hershey, Pennsylvania 17033, United States
| | - Brianna Hnath
- Department of Pharmacology and Biochemistry & Molecular Biology, Penn State University College of Medicine, Hershey, Pennsylvania 17033, United States
| | - Birgit Strodel
- Institute of Complex Systems: Structural Biochemistry (ICS-6), Forschungszentrum Jülich, 52425 Jülich, Germany
| | - Rakez Kayed
- Mitchell Center for Neurodegenerative Diseases, and Departments of Neurology, Neuroscience and Cell Biology, University of Texas Medical Branch, Galveston, Texas 77555, United States
| | - Sylvain Lesné
- Department of Neuroscience, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Guanghong Wei
- Department of Physics, State Key Laboratory of Surface Physics, and Key Laboratory for Computational Physical Science, Multiscale Research Institute of Complex Systems, Fudan University, Shanghai 200438, China
| | - Fabio Sterpone
- CNRS, UPR9080, Université de Paris, Laboratory of Theoretical Biochemistry, IBPC, Fondation Edmond de Rothschild, PSL Research University, Paris 75005, France
| | - Andrew J Doig
- Division of Neuroscience and Experimental Psychology, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PT, U.K
| | - Philippe Derreumaux
- CNRS, UPR9080, Université de Paris, Laboratory of Theoretical Biochemistry, IBPC, Fondation Edmond de Rothschild, PSL Research University, Paris 75005, France
- Laboratory of Theoretical Chemistry, Ton Duc Thang University, 33000 Ho Chi Minh City, Vietnam
- Faculty of Pharmacy, Ton Duc Thang University, 33000 Ho Chi Minh City, Vietnam
| |
Collapse
|
5
|
Verelst J, Geukens N, Eddarkaoui S, Vliegen D, De Smidt E, Rosseels J, Franssens V, Molenberghs S, Francois C, Stoops E, Bjerke M, Engelborghs S, Laghmouchi M, Carmans S, Buée L, Vanmechelen E, Winderickx J, Thomas D. A Novel Tau Antibody Detecting the First Amino-Terminal Insert Reveals Conformational Differences Among Tau Isoforms. Front Mol Biosci 2020; 7:48. [PMID: 32296712 PMCID: PMC7136581 DOI: 10.3389/fmolb.2020.00048] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Accepted: 03/09/2020] [Indexed: 11/30/2022] Open
Abstract
As human Tau undergoes pathologically relevant post-translational modifications when expressed in yeast, the use of humanized yeast models for the generation of novel Tau monoclonal antibodies has previously been proven to be successful. In this study, human Tau2N4R-ΔK280 purified from yeast was used for the immunization of mice and subsequent selection of high affinity Tau-specific monoclonal antibodies. The characterization of four novel antibodies in different Tau model systems yielded a phosphorylation-dependent antibody (15A10), an antibody directed to the first microtubule-binding repeat domain (16B12), a carboxy-terminal antibody (20G10) and an antibody targeting an epitope on the hinge of the first and second amino-terminal insert (18F12). The latter was found to be conformation-dependent, suggesting structural differences between the Tau splicing isoforms and allowing insight in the roles played by the amino-terminal inserts. As this monoclonal antibody also has the capacity to detect tangle-like structures in different transgenic Tau mice and neurofibrillary tangles in brain sections of patients diagnosed with Alzheimer's disease, we also tested the diagnostic potential of 18F12 in a pilot study and found this monoclonal antibody to have the ability to discriminate Alzheimer's disease patients from control individuals based on increased Tau levels in the cerebrospinal fluid.
Collapse
Affiliation(s)
- Joke Verelst
- Functional Biology, KU Leuven, Heverlee, Belgium
| | | | - Sabiha Eddarkaoui
- Univ. Lille, Inserm, CHU-Lille, UMRS1172, Lille Neuroscience & Cognition, LabEx DISTALZ, Alzheimer & Tauopathies, Lille, France
| | | | | | | | | | | | | | | | - Maria Bjerke
- Reference Center for Biological Markers of Dementia (BIODEM), Institute Born-Bunge, University of Antwerp, Wilrijk, Belgium.,Department of Neurology and Center for Neurosciences, UZ Brussel and Vrije Universtieit Brussel (VUB), Brussels, Belgium
| | - Sebastiaan Engelborghs
- Reference Center for Biological Markers of Dementia (BIODEM), Institute Born-Bunge, University of Antwerp, Wilrijk, Belgium.,Department of Neurology and Center for Neurosciences, UZ Brussel and Vrije Universtieit Brussel (VUB), Brussels, Belgium
| | | | | | - Luc Buée
- Univ. Lille, Inserm, CHU-Lille, UMRS1172, Lille Neuroscience & Cognition, LabEx DISTALZ, Alzheimer & Tauopathies, Lille, France
| | | | | | | |
Collapse
|
6
|
Chen JL, Moss WN, Spencer A, Zhang P, Childs-Disney JL, Disney MD. The RNA encoding the microtubule-associated protein tau has extensive structure that affects its biology. PLoS One 2019; 14:e0219210. [PMID: 31291322 PMCID: PMC6619747 DOI: 10.1371/journal.pone.0219210] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Accepted: 06/18/2019] [Indexed: 12/31/2022] Open
Abstract
Tauopathies are neurodegenerative diseases that affect millions of people worldwide including those with Alzheimer’s disease. While many efforts have focused on understanding the role of tau protein in neurodegeneration, there has been little done to systematically analyze and study the structures within tau’s encoding RNA and their connection to disease pathology. Knowledge of RNA structure can provide insights into disease mechanisms and how to affect protein production for therapeutic benefit. Using computational methods based on thermodynamic stability and evolutionary conservation, we identified structures throughout the tau pre-mRNA, especially at exon-intron junctions and within the 5′ and 3′ untranslated regions (UTRs). In particular, structures were identified at twenty exon-intron junctions. The 5′ UTR contains one structured region, which lies within a known internal ribosome entry site. The 3′ UTR contains eight structured regions, including one that contains a polyadenylation signal. A series of functional experiments were carried out to assess the effects of mutations associated with mis-regulation of alternative splicing of exon 10 and to identify regions of the 3′ UTR that contain cis-regulatory elements. These studies defined novel structural regions within the mRNA that affect stability and pre-mRNA splicing and may lead to new therapeutic targets for treating tau-associated diseases.
Collapse
Affiliation(s)
- Jonathan L. Chen
- Department of Chemistry, The Scripps Research Institute, Jupiter, Florida, United States of America
| | - Walter N. Moss
- Roy J. Carver Department of Biochemistry, Biophysics & Molecular Biology, Iowa State University, Ames, Iowa, United States of America
| | - Adam Spencer
- Department of Chemistry, The Scripps Research Institute, Jupiter, Florida, United States of America
| | - Peiyuan Zhang
- Department of Chemistry, The Scripps Research Institute, Jupiter, Florida, United States of America
| | - Jessica L. Childs-Disney
- Department of Chemistry, The Scripps Research Institute, Jupiter, Florida, United States of America
| | - Matthew D. Disney
- Department of Chemistry, The Scripps Research Institute, Jupiter, Florida, United States of America
- * E-mail:
| |
Collapse
|
7
|
Press-Sandler O, Miller Y. Molecular mechanisms of membrane-associated amyloid aggregation: Computational perspective and challenges. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2018; 1860:1889-1905. [DOI: 10.1016/j.bbamem.2018.03.014] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Revised: 03/07/2018] [Accepted: 03/12/2018] [Indexed: 01/02/2023]
|
8
|
Discovery and characterization of stable and toxic Tau/phospholipid oligomeric complexes. Nat Commun 2017; 8:1678. [PMID: 29162800 PMCID: PMC5698329 DOI: 10.1038/s41467-017-01575-4] [Citation(s) in RCA: 98] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2016] [Accepted: 09/29/2017] [Indexed: 11/13/2022] Open
Abstract
The microtubule-associated protein Tau plays a central role in the pathogenesis of Alzheimer’s disease. Although Tau interaction with membranes is thought to affect some of its physiological functions and its aggregation properties, the sequence determinants and the structural and functional consequences of such interactions remain poorly understood. Here, we report that the interaction of Tau with vesicles results in the formation of highly stable protein/phospholipid complexes. These complexes are toxic to primary hippocampal cultures and are detected by MC-1, an antibody recognizing pathological Tau conformations. The core of these complexes is comprised of the PHF6* and PHF6 hexapeptide motifs, the latter in a β-strand conformation. Studies using Tau-derived peptides enabled the design of mutants that disrupt Tau interactions with phospholipids without interfering with its ability to form fibrils, thus providing powerful tools for uncoupling these processes and investigating the role of membrane interactions in regulating Tau function, aggregation and toxicity. The Alzheimer protein Tau interacts with biological membranes, but the role of these interactions in regulating Tau function in health and disease remains unexplored. Here, the authors report on the discovery and characterization of neurotoxic oligomeric protein/phospholipid complexes.
Collapse
|
9
|
Arendt T, Stieler JT, Holzer M. Tau and tauopathies. Brain Res Bull 2016; 126:238-292. [DOI: 10.1016/j.brainresbull.2016.08.018] [Citation(s) in RCA: 333] [Impact Index Per Article: 41.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2016] [Revised: 08/31/2016] [Accepted: 08/31/2016] [Indexed: 12/11/2022]
|
10
|
Carpentier C, Ghanem D, Fernandez-Gomez FJ, Jumeau F, Philippe JV, Freyermuth F, Labudeck A, Eddarkaoui S, Dhaenens CM, Holt I, Behm-Ansmant I, Marmier-Gourrier N, Branlant C, Charlet-Berguerand N, Marie J, Schraen-Maschke S, Buée L, Sergeant N, Caillet-Boudin ML. Tau exon 2 responsive elements deregulated in myotonic dystrophy type I are proximal to exon 2 and synergistically regulated by MBNL1 and MBNL2. Biochim Biophys Acta Mol Basis Dis 2014; 1842:654-64. [PMID: 24440524 DOI: 10.1016/j.bbadis.2014.01.004] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2013] [Revised: 12/09/2013] [Accepted: 01/07/2014] [Indexed: 01/21/2023]
Abstract
The splicing of the microtubule-associated protein Tau is regulated during development and is found to be deregulated in a growing number of pathological conditions such as myotonic dystrophy type I (DM1), in which a reduced number of isoforms is expressed in the adult brain. DM1 is caused by a dynamic and unstable CTG repeat expansion in the DMPK gene, resulting in an RNA bearing long CUG repeats (n>50) that accumulates in nuclear foci and sequesters CUG-binding splicing factors of the muscle blind-like (MBNL) family, involved in the splicing of Tau pre-mRNA among others. However, the precise mechanism leading to Tau mis-splicing and the role of MBNL splicing factors in this process are poorly understood. We therefore used new Tau minigenes that we developed for this purpose to determine how MBNL1 and MBNL2 interact to regulate Tau exon 2 splicing. We demonstrate that an intronic region 250 nucleotides downstream of Tau exon 2 contains cis-regulatory splicing enhancers that are sensitive to MBNL and that bind directly to MBNL1. Both MBNL1 and MBNL2 act as enhancers of Tau exon 2 inclusion. Intriguingly, the interaction of MBNL1 and MBNL2 is required to fully reverse the mis-splicing of Tau exon 2 induced by the trans-dominant effect of long CUG repeats, similar to the DM1 condition. In conclusion, both MBNL1 and MBNL2 are involved in the regulation of Tau exon 2 splicing and the mis-splicing of Tau in DM1 is due to the combined inactivation of both.
Collapse
Affiliation(s)
- C Carpentier
- Inserm UMR837-1 and Univ. Lille Nord de France, Jean-Pierre Aubert Research Center, Alzheimer & Tauopathies, F-59045 Lille, France; Regional University Hospital of Lille, France
| | - D Ghanem
- Inserm UMR837-1 and Univ. Lille Nord de France, Jean-Pierre Aubert Research Center, Alzheimer & Tauopathies, F-59045 Lille, France; Regional University Hospital of Lille, France
| | - F J Fernandez-Gomez
- Inserm UMR837-1 and Univ. Lille Nord de France, Jean-Pierre Aubert Research Center, Alzheimer & Tauopathies, F-59045 Lille, France; Regional University Hospital of Lille, France
| | - F Jumeau
- Inserm UMR837-1 and Univ. Lille Nord de France, Jean-Pierre Aubert Research Center, Alzheimer & Tauopathies, F-59045 Lille, France; Regional University Hospital of Lille, France
| | - J V Philippe
- Laboratory of Molecular Engineering and Articular Pathophysiology (IMoPA), Nancy University - CNRS, UMR 7214, 7365 Vandoeuvre-les-Nancy, France
| | - F Freyermuth
- Department de Neurobiology & Genetics, IGBMC, Inserm U964, CNRS UMR7104, University of Strasbourg, Illkirch, France
| | - A Labudeck
- Inserm UMR837-1 and Univ. Lille Nord de France, Jean-Pierre Aubert Research Center, Alzheimer & Tauopathies, F-59045 Lille, France; Regional University Hospital of Lille, France
| | - S Eddarkaoui
- Inserm UMR837-1 and Univ. Lille Nord de France, Jean-Pierre Aubert Research Center, Alzheimer & Tauopathies, F-59045 Lille, France; Regional University Hospital of Lille, France
| | - C M Dhaenens
- Inserm UMR837-1 and Univ. Lille Nord de France, Jean-Pierre Aubert Research Center, Alzheimer & Tauopathies, F-59045 Lille, France; Regional University Hospital of Lille, France
| | - I Holt
- Wolfson Centre for Inherited Neuromuscular Disease, RJAH Orthopaedic Hospital, Oswestry, Shropshire, UK; Institute for Science and Technology in Medicine, Keele University, Keele, Staffordshire, UK
| | - I Behm-Ansmant
- Laboratory of Molecular Engineering and Articular Pathophysiology (IMoPA), Nancy University - CNRS, UMR 7214, 7365 Vandoeuvre-les-Nancy, France
| | - N Marmier-Gourrier
- Laboratory of Molecular Engineering and Articular Pathophysiology (IMoPA), Nancy University - CNRS, UMR 7214, 7365 Vandoeuvre-les-Nancy, France
| | - C Branlant
- Laboratory of Molecular Engineering and Articular Pathophysiology (IMoPA), Nancy University - CNRS, UMR 7214, 7365 Vandoeuvre-les-Nancy, France
| | - N Charlet-Berguerand
- Department de Neurobiology & Genetics, IGBMC, Inserm U964, CNRS UMR7104, University of Strasbourg, Illkirch, France
| | - J Marie
- Therapy of muscular diseases - Myology Institute, UPMC Univ. Paris 6, UM76/Inserm, U974/CNRS, UMR 7215, G.H. Pitié-Salpétrière - Bâtiment Babinski, Paris, France
| | - S Schraen-Maschke
- Inserm UMR837-1 and Univ. Lille Nord de France, Jean-Pierre Aubert Research Center, Alzheimer & Tauopathies, F-59045 Lille, France; Regional University Hospital of Lille, France
| | - L Buée
- Inserm UMR837-1 and Univ. Lille Nord de France, Jean-Pierre Aubert Research Center, Alzheimer & Tauopathies, F-59045 Lille, France; Regional University Hospital of Lille, France
| | - N Sergeant
- Inserm UMR837-1 and Univ. Lille Nord de France, Jean-Pierre Aubert Research Center, Alzheimer & Tauopathies, F-59045 Lille, France; Regional University Hospital of Lille, France.
| | - M L Caillet-Boudin
- Inserm UMR837-1 and Univ. Lille Nord de France, Jean-Pierre Aubert Research Center, Alzheimer & Tauopathies, F-59045 Lille, France; Regional University Hospital of Lille, France.
| |
Collapse
|
11
|
Ladd AN. CUG-BP, Elav-like family (CELF)-mediated alternative splicing regulation in the brain during health and disease. Mol Cell Neurosci 2012; 56:456-64. [PMID: 23247071 DOI: 10.1016/j.mcn.2012.12.003] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2012] [Revised: 12/01/2012] [Accepted: 12/06/2012] [Indexed: 11/27/2022] Open
Abstract
Alternative splicing is an important mechanism for generating transcript and protein diversity. In the brain, alternative splicing is particularly prevalent, and alternative splicing factors are highly enriched. These include the six members of the CUG-BP, Elav-like family (CELF). This review summarizes what is known about the expression of different CELF proteins in the nervous system and the evidence that they are important in neural development and function. The involvement of CELF proteins in the pathogenesis of a number of neurodegenerative disorders, including myotonic dystrophy, spinocerebellar ataxia, fragile X syndrome, spinal muscular atrophy, and spinal and bulbar muscular atrophy is discussed. Finally, the known targets of CELF-mediated alternative splicing regulation in the nervous system and the functional consequences of these splicing events are reviewed. This article is part of a Special Issue entitled "RNA and splicing regulation in neurodegeneration."
Collapse
Affiliation(s)
- Andrea N Ladd
- Department of Cellular and Molecular Medicine, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA.
| |
Collapse
|
12
|
Dasgupta T, Ladd AN. The importance of CELF control: molecular and biological roles of the CUG-BP, Elav-like family of RNA-binding proteins. WILEY INTERDISCIPLINARY REVIEWS-RNA 2011; 3:104-21. [PMID: 22180311 DOI: 10.1002/wrna.107] [Citation(s) in RCA: 168] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
RNA processing is important for generating protein diversity and modulating levels of protein expression. The CUG-BP, Elav-like family (CELF) of RNA-binding proteins regulate several steps of RNA processing in the nucleus and cytoplasm, including pre-mRNA alternative splicing, C to U RNA editing, deadenylation, mRNA decay, and translation. In vivo, CELF proteins have been shown to play roles in gametogenesis and early embryonic development, heart and skeletal muscle function, and neurosynaptic transmission. Dysregulation of CELF-mediated programs has been implicated in the pathogenesis of human diseases affecting the heart, skeletal muscles, and nervous system.
Collapse
Affiliation(s)
- Twishasri Dasgupta
- Department of Cell Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | | |
Collapse
|
13
|
Smith PY, Delay C, Girard J, Papon MA, Planel E, Sergeant N, Buée L, Hébert SS. MicroRNA-132 loss is associated with tau exon 10 inclusion in progressive supranuclear palsy. Hum Mol Genet 2011; 20:4016-24. [PMID: 21807765 DOI: 10.1093/hmg/ddr330] [Citation(s) in RCA: 122] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Tauopathies represent a large class of neurological and movement disorders characterized by abnormal intracellular deposits of the microtubule-associated protein tau. It is now well established that mis-splicing of tau exon 10, causing an imbalance between three-repeat (3R) and four-repeat (4R) tau isoforms, can cause disease; however, the underlying mechanisms affecting tau splicing in neurons remain poorly understood. The small noncoding microRNAs (miRNAs), known for their critical role in posttranscriptional gene expression regulation, are increasingly acknowledged as important regulators of alternative splicing. Here, we identified a number of brain miRNAs, including miR-124, miR-9, miR-132 and miR-137, which regulate 4R:3R-tau ratios in neuronal cells. Analysis of miRNA expression profiles from sporadic progressive supranuclear palsy (PSP) patients, a major 4R-tau tauopathy, showed that miR-132 is specifically down-regulated in disease. We demonstrate that miR-132 directly targets the neuronal splicing factor polypyrimidine tract-binding protein 2 (PTBP2), which protein levels were increased in PSP patients. miR-132 overexpression or PTBP2 knockdown similarly affected endogenous 4R:3R-tau ratios in neuronal cells. Finally, we provide evidence that miR-132 is inversely correlated with PTBP2 during post-natal brain development at the time when 4R-tau becomes expressed. Taken together, these results suggest that changes in the miR-132/PTBP2 pathway could contribute to the abnormal splicing of tau exon 10 in the brain, and sheds light into the potential role played by miRNAs in a subset of tauopathies.
Collapse
Affiliation(s)
- Pascal Y Smith
- Centre de recherche du CHUQ, Axe Neurosciences, Québec, Canada
| | | | | | | | | | | | | | | |
Collapse
|
14
|
Alternative splicing regulatory network reconstruction from exon array data. J Theor Biol 2010; 263:471-80. [DOI: 10.1016/j.jtbi.2009.12.025] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2009] [Revised: 11/14/2009] [Accepted: 12/22/2009] [Indexed: 11/17/2022]
|
15
|
Ghanem D, Tran H, Dhaenens CM, Schraen-Maschke S, Sablonnière B, Buée L, Sergeant N, Caillet-Boudin ML. Altered splicing of Tau in DM1 is different from the foetal splicing process. FEBS Lett 2009; 583:675-9. [PMID: 19166838 DOI: 10.1016/j.febslet.2008.12.065] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2008] [Revised: 12/18/2008] [Accepted: 12/30/2008] [Indexed: 11/30/2022]
Abstract
Among the different mechanisms underlying the etiopathogenesis of myotonic dystrophy type 1 (DM1), a backward reprogramming to a foetal splicing machinery is an interesting hypothesis. To address this possibility, Tau splicing, which is regulated during development and modified in DM1, was analyzed. Indeed, a preferential expression of the foetal Tau isoform, instead of the six normally found, is observed in adult DM1 brains. By using two cell lines, we show here that the cis-regulating elements necessary to generate the unique foetal Tau isoform are dispensable to reproduce the trans-dominant effect induced by DM1 mutation on Tau exon 2 inclusion. Our results suggest that the mis-splicing of Tau in DM1 is resulting from a disease-associated mechanism.
Collapse
Affiliation(s)
- Dana Ghanem
- Inserm U837 - Jean-Pierre Aubert Research Centre, Université de Lille, Institut de Médecine Prédictive et Recherche Thérapeutique, Place de Verdun, F-59045 Lille Cedex, France
| | | | | | | | | | | | | | | |
Collapse
|
16
|
Baudet ML, Hassanali Z, Sawicki G, List EO, Kopchick JJ, Harvey S. Growth hormone action in the developing neural retina: A proteomic analysis. Proteomics 2008; 8:389-401. [DOI: 10.1002/pmic.200700952] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
17
|
Andreadis A. Misregulation of tau alternative splicing in neurodegeneration and dementia. PROGRESS IN MOLECULAR AND SUBCELLULAR BIOLOGY 2006; 44:89-107. [PMID: 17076266 DOI: 10.1007/978-3-540-34449-0_5] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Tau is a microtubule-associated protein that fulfills several functions critical for neuronal formation and health. Tau discharges its functions by producing multiple isoforms via intricately regulated alternative splicing. These isoforms modulate tau function in normal brain by altering the domains of the protein, thereby influencing its conformation and post-translational modifications and hence its affinity for microtubules and other ligands. Disturbances in tau expression result in disruption of the neuronal cytoskeleton and formation of pathological tau structures (neurofibrillary tangles) found in brains of dementia sufferers. More specifically, aberrations in tau splicing regulation directly cause several neurodegenerative diseases that lead to dementia. This review briefly presents our cumulative knowledge of tau splicing regulation in connection with the alterations in tau splicing seen in neurodegeneration.
Collapse
Affiliation(s)
- Athena Andreadis
- Department of Cell Biology, University of Massachusetts Medical School, Worcester, MA 06155, USA
| |
Collapse
|
18
|
Leroy O, Dhaenens CM, Schraen-Maschke S, Belarbi K, Delacourte A, Andreadis A, Sablonnière B, Buée L, Sergeant N, Caillet-Boudin ML. ETR-3 represses Tau exons 2/3 inclusion, a splicing event abnormally enhanced in myotonic dystrophy type I. J Neurosci Res 2006; 84:852-9. [PMID: 16862542 DOI: 10.1002/jnr.20980] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Altered splicing of transcripts, including the insulin receptor (IR) and the cardiac troponin (cTNT), is a key feature of myotonic dystrophy type I (DM1). CELF and MBNL splicing factor members regulate the splicing of those transcripts. We have previously described an alteration of Tau exon 2 splicing in DM1 brain, resulting in the favored exclusion of exon 2. However, the factors required for alternative splicing of Tau exon 2 remain undetermined. Here we report a decreased expression of CELF family member and MBNL transcripts in DM1 brains as assessed by RT-PCR. By using cellular models with a control- or DM1-like splicing pattern of Tau transcripts, we demonstrate that ETR-3 promotes selectively the exclusion of Tau exon 2. These results together with the analysis of Tau exon 6 and IR exon 11 splicing in brain, muscle, and cell models suggest that DM1 splicing alteration of several transcripts involves various factors.
Collapse
|
19
|
Kuyumcu-Martinez NM, Cooper TA. Misregulation of alternative splicing causes pathogenesis in myotonic dystrophy. PROGRESS IN MOLECULAR AND SUBCELLULAR BIOLOGY 2006; 44:133-59. [PMID: 17076268 PMCID: PMC4127983 DOI: 10.1007/978-3-540-34449-0_7] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Myotonic dystrophy (DM), the most common form of adult onset muscular dystrophy, affects skeletal muscle, heart, and the central nervous system (CNS). Mortality results primarily from muscle wasting and cardiac arrhythmias. There are two forms of the disease: DM1 and DM2. DM1, which constitutes 98% of cases, is caused by a CTG expansion in the 3' untranslated region (UTR) of the DMPK gene. DM2 is caused by a CCTG expansion in the first intron of the ZNF9 gene. RNA containing CUG- or CCUG-expanded repeats are transcribed but are retained in the nucleus in foci. Disease pathogenesis results primarily from a gain of function of the expanded RNAs, which alter developmentally regulated alternative splicing as well as pathways of muscle differentiation. The toxic RNA has been implicated in sequestration of splicing regulators and transcription factors thereby causing specific symptoms of the disease. Here we review the proposed mechanisms for the toxic effects of the expanded repeats and discuss the molecular mechanisms of splicing misregulation and disease pathogenesis.
Collapse
|
20
|
Leroy O, Wang J, Maurage CA, Parent M, Cooper T, Buée L, Sergeant N, Andreadis A, Caillet-Boudin ML. Brain-specific change in alternative splicing of Tau exon 6 in myotonic dystrophy type 1. Biochim Biophys Acta Mol Basis Dis 2005; 1762:460-7. [PMID: 16487687 DOI: 10.1016/j.bbadis.2005.12.003] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2005] [Revised: 11/21/2005] [Accepted: 12/01/2005] [Indexed: 12/18/2022]
Abstract
Alternative splicing is altered in myotonic dystrophy of type 1 (DM1), a syndrome caused by an increase of CTG triplet repeats in the 3' untranslated region of the myotonic dystrophy protein kinase gene. Previously, we reported the preferential skipping of Tau exon 2 in DM1 brains. In this study, we analyze the alternative splicing of Tau exon 6 which can be inserted in three different forms (c, p and d) depending on the 3' splice site used. In fact, inclusion of exon 6c decreases in DM1 brains compared to control brains whereas inclusion of 6d increases. Alteration of exon 6 splicing was not observed in DM1 muscle although this exon was inserted in RNAs from normal muscle and DM1 splicing alterations were first described in this organ. In contrast, alteration of exon 2 of Tau mRNA was observed in both muscle and brain. However, co-transfections of a minigene containing exon 6 with CELF or MBNL1 cDNAs, two splicing factor families suspected to be involved in DM1, showed that they influence exon 6 splicing. Altogether, these results show the importance of determining all the exons and organs targeted by mis-splicing to determine the dysregulation mechanisms of mis-splicing in DM1.
Collapse
Affiliation(s)
- Olivier Leroy
- INSERM U422, Pl. de Verdun. 59045 Lille Cedex- France
| | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Ladd AN, Stenberg MG, Swanson MS, Cooper TA. Dynamic balance between activation and repression regulates pre-mRNA alternative splicing during heart development. Dev Dyn 2005; 233:783-93. [PMID: 15830352 DOI: 10.1002/dvdy.20382] [Citation(s) in RCA: 99] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
Cardiac troponin T (cTNT) exon 5 splicing is developmentally regulated such that it is included in embryonic but not adult heart. CUG-BP and ETR-3-like factor (CELF) proteins promote exon inclusion, whereas polypyrimidine tract binding protein (PTB) and muscleblind-like (MBNL) proteins repress inclusion. In this study, we addressed what happens to these regulatory proteins during heart development to shift the regulatory balance of cTNT alternative splicing. Using dominant-negative proteins, we found that both CELF and PTB activities are required for appropriate splicing in cardiomyocytes. Two CELF proteins, CUG-BP and ETR-3, are nuclear and cytoplasmic in embryonic heart but are down-regulated in adult heart concomitant with loss of exon inclusion. In contrast, PTB and MBNL1 are expressed throughout heart development. The patterns of cTNT splicing and expression of its regulatory factors are conserved between mouse and chicken. Thus, alternative splicing is determined by a balance between positive and negative regulation, and modulation of expression levels of auxiliary splicing regulators may drive developmental splicing changes. ETR-3 and CUG-BP proteins are also down-regulated in other tissues during development, suggesting that CELF proteins play a broad role in developmental splicing regulation.
Collapse
Affiliation(s)
- Andrea N Ladd
- Department of Pathology, Baylor College of Medicine, Houston, Texas 77030, USA
| | | | | | | |
Collapse
|
22
|
Cohen CD, Doran PP, Blattner SM, Merkle M, Wang GQ, Schmid H, Mathieson PW, Saleem MA, Henger A, Rastaldi MP, Kretzler M. Sam68-like mammalian protein 2, identified by digital differential display as expressed by podocytes, is induced in proteinuria and involved in splice site selection of vascular endothelial growth factor. J Am Soc Nephrol 2005; 16:1958-65. [PMID: 15901763 DOI: 10.1681/asn.2005020204] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
Podocytes, the glomerular epithelial cells of the kidney, share important features with neuronal cells. In addition to phenotypical and functional similarities, a number of gene products have been found to be expressed exclusively or predominantly by both cell types. With the hypothesis of a common transcriptome shared by podocytes and neurons, digital differential display was used to identify novel podocyte-expressed gene products. Comparison of brain and kidney cDNA libraries with those of other organs identified Sam68-like mammalian protein 2 (SLM-2), a member of the STAR family of RNA processing proteins, as expressed by podocytes. SLM-2 expression was found to be restricted in the kidney to podocytes. In proteinuric diseases, SLM-2, a known regulator of neuronal mRNA splice site selection, was found significantly upregulated on mRNA and protein levels. Knockdown of SLM-2 by short interfering RNA in podocytes was performed to evaluate its biologic role. RNA splicing of vascular endothelial growth factor (VEGF), a key regulator of the filtration barrier and expressed as functionally distinct splice isoforms, was evaluated. VEGF(165) expression was found to be reduced by 25% after SLM-2 knockdown. In vivo, the glomerular expression of SLM-2 correlated with the mRNA levels of VEGF(165). This study demonstrates the power of digital differential display to predict cell type-specific gene expression by hypothesis-driven analysis of tissue cDNA libraries. SLM-2-dependent VEGF splicing indicates the importance of mRNA splice site selection for glomerular filtration barrier function.
Collapse
Affiliation(s)
- Clemens D Cohen
- Medizinische Poliklinik, Ludwig-Maximilians-University, Pettenkoferstrasse 8A, Munich, 80336, Germany.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Andreadis A. Tau gene alternative splicing: expression patterns, regulation and modulation of function in normal brain and neurodegenerative diseases. Biochim Biophys Acta Mol Basis Dis 2005; 1739:91-103. [PMID: 15615629 DOI: 10.1016/j.bbadis.2004.08.010] [Citation(s) in RCA: 204] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2004] [Accepted: 08/27/2004] [Indexed: 12/12/2022]
Abstract
Organization of cytoskeletal elements is critical for cellular migration and maintenance of morphology. Tau protein, which binds to and organizes microtubules, is instrumental in forming and maintaining the neuronal axon. Disturbances in tau expression result in disruption of the neuronal cytoskeleton and formation of pathological tau structures (neurofibrillary tangles, NFTs) found in brains of dementia sufferers. Null tau mice, although viable, exhibit developmental and cognitive defects and transgenic mice which overexpress tau develop severe neuropathies. The neuron-specific tau transcript produces multiple isoforms by intricately regulated alternative splicing. These isoforms modulate tau function in normal brain. Moreover, aberrations in tau splicing regulation directly cause several neurodegenerative diseases. Thus, tau splicing regulation is vital to neuronal health and correct brain function. This review briefly presents our cumulative knowledge of tau splicing-cis elements and trans factors which influence it at the RNA level, its effect on the structure and roles of the tau protein and its repercussions on neuronal morphology and neurodegeneration.
Collapse
Affiliation(s)
- Athena Andreadis
- Department of Cell Biology, University of Massachusetts Medical School, Worcester, MA 06155, USA.
| |
Collapse
|
24
|
Wang Y, Wang J, Gao L, Lafyatis R, Stamm S, Andreadis A. Tau exons 2 and 10, which are misregulated in neurodegenerative diseases, are partly regulated by silencers which bind a SRp30c.SRp55 complex that either recruits or antagonizes htra2beta1. J Biol Chem 2005; 280:14230-9. [PMID: 15695522 DOI: 10.1074/jbc.m413846200] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Tau is a microtubule-associated protein whose transcript undergoes complex regulated splicing in the mammalian nervous system. Exon 2 modulates the tau N-terminal domain, which interacts with the axonal membrane. Exon 10 codes for a microtubule binding domain, increasing the affinity of tau for microtubules. Both exons are excluded from fetal brain, but their default behavior is inclusion, suggesting that silencers are involved in their regulation. Exon 2 is significantly reduced in myotonic dystrophy type 1, whose symptoms include dementia. Mutations that affect exon 10 splicing cause frontotemporal dementia (FTDP). In this study, we investigated three regulators of exon 2 and 10 splicing: serine/arginine-rich (SR) proteins SRp55, SRp30c, and htra2beta1. The first two inhibit both exons; htra2beta1 inhibits exon 2 but activates exon 10. By deletion analysis, we identified splicing silencers located at the 5' end of each exon. Furthermore, we demonstrated that SRp30c and SRp55 bind to both silencers and to each other. In exon 2, htra2beta1 binds to the inhibitory heterodimer through its RS1 domain but not to exon 2, whereas in exon 10 the heterodimer may sterically interfere with htra2beta1 binding to a purine-rich enhancer (defined by FTDP mutation E10-Delta5 = Delta280K) directly downstream of the silencer. Increased exon 10 inclusion in FTDP mutant ENH (N279K) may arise from abolishing SRp30c binding. Also, htra2beta3, a naturally occurring variant of htra2beta1, no longer inhibits exon 2 splicing but can partially rescue splicing of exon 10 in FTDP mutation E10-Delta5. This work provides interesting insights into the splicing regulation of the tau gene.
Collapse
Affiliation(s)
- Yingzi Wang
- Shriver Center at University of Massachusetts Medical School, Waltham, Massachusetts 02452, USA
| | | | | | | | | | | |
Collapse
|
25
|
Yu Q, Guo J, Zhou J. A minimal length between tau exon 10 and 11 is required for correct splicing of exon 10. J Neurochem 2004; 90:164-72. [PMID: 15198676 DOI: 10.1111/j.1471-4159.2004.02477.x] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Mutations that stimulate exon 10 inclusion into the human tau mRNA cause frontotemporal dementia with parkinsonism, associated with chromosome 17 (FTDP-17), and other tauopathies. This suggests that the ratio of exon 10 inclusion to exclusion in adult brain is one of the factors to determine biological functions of the tau protein. To investigate the underlying splicing mechanism and identify potential therapeutic targets for tauopathies, we generated a series of mini-gene constructs with intron deletions from the full length of tau exons 9-11 mini-gene construct. RT-PCR results demonstrate that there is a minimum distance requirement between exon 10 and 11 for correct splicing of the exon 10. In addition, SRp20, a member of serine-arginine (SR) protein family of splicing factors was found to facilitate exclusion of exon 10 in a dosage-dependent manner. Significantly, SRp20 also induced exon 10 skipping from pre-mRNAs containing mutations identified in FTDP-17 patients. Based on those results, we generated a cell-based system to measure inclusion to exclusion of exon 10 in the tau mRNA using the luciferase reporter. The firefly luciferase was fused into exon 11 in frame, and a stop code was also created in exon 10. Inclusion of exon 10 prevents luciferase expression, whereas exclusion of exon 10 generates luciferase activity. To minimize baseline luciferase expression, our reporter construct also contains a FTDP-17 mutation that increases exon 10 inclusion. We demonstrate that the splicing pattern of our reporter construct mimics that of endogenous tau gene. Co-transfection of SRp20 and SRp55, two SR proteins that promote exon 10 exclusion, increases production of luciferase. We conclude that this cell-based system can be used to identify biological substances that modulate exon 10 splicing.
Collapse
Affiliation(s)
- Qingming Yu
- Department of Medicine and Program in Neuroscience, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | | | | |
Collapse
|
26
|
Wang J, Gao QS, Wang Y, Lafyatis R, Stamm S, Andreadis A. Tau exon 10, whose missplicing causes frontotemporal dementia, is regulated by an intricate interplay of cis elements and trans factors. J Neurochem 2004; 88:1078-90. [PMID: 15009664 DOI: 10.1046/j.1471-4159.2003.02232.x] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Tau is a microtubule-associated protein whose transcript undergoes complex regulated splicing in the mammalian nervous system. In humans, exon 10 of the gene is an alternatively spliced cassette which is adult-specific and which codes for a microtubule binding domain. Mutations that affect splicing of exon 10 have been shown to cause inherited frontotemporal dementia (FTDP). In this study, we reconstituted naturally occurring exon 10 FTDP mutants and classified their effects on its splicing. We also carried out a comprehensive survey of the influence of splicing regulators on exon 10 inclusion and tentatively identified the site of action for several of these factors. Lastly, we identified the domains of regulators SWAP and hnRNPG, which are required for regulation of exon 10 splicing.
Collapse
Affiliation(s)
- Junning Wang
- Shriver Center at UMMS, Waltham, Massachusetts 02452, USA
| | | | | | | | | | | |
Collapse
|