1
|
Amorim-Vaz S, Coste AT, Tran VDT, Pagni M, Sanglard D. Function Analysis of MBF1, a Factor Involved in the Response to Amino Acid Starvation and Virulence in Candida albicans. FRONTIERS IN FUNGAL BIOLOGY 2021; 2:658899. [PMID: 37744106 PMCID: PMC10512259 DOI: 10.3389/ffunb.2021.658899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Accepted: 02/15/2021] [Indexed: 09/26/2023]
Abstract
Candida albicans is a commensal of human mucosae, but also one of the most common fungal pathogens of humans. Systemic infections caused by this fungus, mostly affecting immunocompromised patients, are associated to fatality rates as high as 50% despite the available treatments. In order to improve this situation, it is necessary to fully understand how C. albicans is able to cause disease and how it copes with the host defenses. Our previous studies have revealed the importance of the C. albicans gene MBF1 in virulence and ability to colonize internal organs of mammalian and insect hosts. MBF1 encodes a putative transcriptional regulator, and as such it likely has an impact in the regulation of C. albicans gene expression during host infection. Here, recent advances in RNA-seq technologies were used to obtain a detailed analysis of the impact of MBF1 on C. albicans gene expression both in vitro and during infection. MBF1 was involved in the regulation of several genes with a role in glycolysis and response to stress, particularly to nutritional stress. We also investigated whether an interaction existed between MBF1 and GCN4, a master regulator of response to starvation, and found that both genes were needed for resistance to amino acid starvation, suggesting some level of interaction between the two. Reinforcing this idea, we showed that the proteins encoded by both genes could interact. Consistent with the role of MBF1 in virulence, we also established that GCN4 was necessary for virulence in the mouse model of systemic infection as well as in the Galleria mellonella infection model.
Collapse
Affiliation(s)
- Sara Amorim-Vaz
- Institute of Microbiology, Lausanne University Hospital, Lausanne, Switzerland
| | - Alix T. Coste
- Institute of Microbiology, Lausanne University Hospital, Lausanne, Switzerland
| | - Van Du T. Tran
- Vital-IT Group, SIB Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Marco Pagni
- Vital-IT Group, SIB Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Dominique Sanglard
- Institute of Microbiology, Lausanne University Hospital, Lausanne, Switzerland
| |
Collapse
|
2
|
Babini E, Hu X, Parigi G, Vignali M. Human multiprotein bridging factor 1 and Calmodulin do not interact in vitro as confirmed by NMR spectroscopy and CaM-agarose affinity chromatography. Protein Expr Purif 2011; 80:1-7. [PMID: 21782027 DOI: 10.1016/j.pep.2011.07.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2011] [Revised: 06/28/2011] [Accepted: 07/05/2011] [Indexed: 10/18/2022]
Abstract
The human multiprotein bridging factor 1 (hMBF1) has been established in different cellular types to have the role of transcriptional coactivator. It is also reported to be a putative Calmodulin (CaM) target, able to bind CaM in its calcium-free state, but little is known about the structural features and the biological relevance of this interaction. We applied NMR to investigate the interaction between the two proteins in solution and compared the results with those obtained with CaM-agarose affinity chromatography. No changes in ¹H-¹⁵N HSQC spectrum of both apo-CaM and Ca²⁺-CaM upon addition of hMBF1 prove that the two proteins do not interact in vitro. These results were confirmed by CaM-agarose affinity chromatography when operating under the same conditions. The discrepancy between present and previous experiments performed with CaM-agarose affinity chromatography depends on different experimental parameters suggesting that particular attention must be paid when CaM, or other immobilized proteins, are used to measure their affinity with putative partners. These results also imply that if an interaction between the two proteins exists in vivo, as reported for hMBF1 of endothelial cells, it might involve a posttranslational modified form of the proteins or it relies on other conditions imposed by the cellular environment.
Collapse
Affiliation(s)
- Elena Babini
- Department of Food Science, University of Bologna, Piazza Goidanich 60, 47521 Cesena, Italy.
| | | | | | | |
Collapse
|
3
|
Marrero Coto J, Ehrenhofer-Murray AE, Pons T, Siebers B. Functional analysis of archaeal MBF1 by complementation studies in yeast. Biol Direct 2011; 6:18. [PMID: 21392374 PMCID: PMC3062615 DOI: 10.1186/1745-6150-6-18] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2011] [Accepted: 03/10/2011] [Indexed: 11/21/2022] Open
Abstract
Background Multiprotein-bridging factor 1 (MBF1) is a transcriptional co-activator that bridges a sequence-specific activator (basic-leucine zipper (bZIP) like proteins (e.g. Gcn4 in yeast) or steroid/nuclear-hormone receptor family (e.g. FTZ-F1 in insect)) and the TATA-box binding protein (TBP) in Eukaryotes. MBF1 is absent in Bacteria, but is well- conserved in Eukaryotes and Archaea and harbors a C-terminal Cro-like Helix Turn Helix (HTH) domain, which is the only highly conserved, classical HTH domain that is vertically inherited in all Eukaryotes and Archaea. The main structural difference between archaeal MBF1 (aMBF1) and eukaryotic MBF1 is the presence of a Zn ribbon motif in aMBF1. In addition MBF1 interacting activators are absent in the archaeal domain. To study the function and therefore the evolutionary conservation of MBF1 and its single domains complementation studies in yeast (mbf1Δ) as well as domain swap experiments between aMBF1 and yMbf1 were performed. Results In contrast to previous reports for eukaryotic MBF1 (i.e. Arabidopsis thaliana, insect and human) the two archaeal MBF1 orthologs, TMBF1 from the hyperthermophile Thermoproteus tenax and MMBF1 from the mesophile Methanosarcina mazei were not functional for complementation of an Saccharomyces cerevisiae mutant lacking Mbf1 (mbf1Δ). Of twelve chimeric proteins representing different combinations of the N-terminal, core domain, and the C-terminal extension from yeast and aMBF1, only the chimeric MBF1 comprising the yeast N-terminal and core domain fused to the archaeal C-terminal part was able to restore full wild-type activity of MBF1. However, as reported previously for Bombyx mori, the C-terminal part of yeast Mbf1 was shown to be not essential for function. In addition phylogenetic analyses revealed a common distribution of MBF1 in all Archaea with available genome sequence, except of two of the three Thaumarchaeota; Cenarchaeum symbiosum A and Nitrosopumilus maritimus SCM1. Conclusions The absence of MBF1-interacting activators in the archaeal domain, the presence of a Zn ribbon motif in the divergent N-terminal domain of aMBF1 and the complementation experiments using archaeal- yeast chimeric proteins presented here suggests that archaeal MBF1 is not able to functionally interact with the transcription machinery and/or Gcn4 of S. cerevisiae. Based on modeling and structural prediction it is tempting to speculate that aMBF1 might act as a single regulator or non-essential transcription factor, which directly interacts with DNA via the positive charged linker or the basal transcription machinery via its Zn ribbon motif and the HTH domain. However, also alternative functions in ribosome biosynthesis and/or functionality have been discussed and therefore further experiments are required to unravel the function of MBF1 in Archaea. Reviewers This article was reviewed by William Martin, Patrick Forterre, John van der Oost and Fabian Blombach (nominated by Eugene V Koonin (United States)). For the full reviews, please go to the Reviewer's Reports section.
Collapse
Affiliation(s)
- Jeannette Marrero Coto
- Faculty of Chemistry, Biofilm Centre, Molecular Enzyme Technology and Biochemistry, University of Duisburg-Essen, Universitätsstr. 5, (S05 V03 F41), 45141 Essen, Germany
| | | | | | | |
Collapse
|
4
|
Romanova EV, Lee JE, Kelleher NL, Sweedler JV, Gulley JM. Mass spectrometry screening reveals peptides modulated differentially in the medial prefrontal cortex of rats with disparate initial sensitivity to cocaine. AAPS JOURNAL 2010; 12:443-54. [PMID: 20490734 DOI: 10.1208/s12248-010-9204-2] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2010] [Accepted: 05/03/2010] [Indexed: 01/06/2023]
Abstract
To better understand why certain individuals are more vulnerable to cocaine abuse and addiction, we identify peptide markers associated with individual variation in sensitivity to the behavioral effects of cocaine. Previous studies in rats show that low, compared to high, cocaine responders are more sensitive to cocaine-induced behavioral plasticity (sensitization), exhibit enhanced conditioning to cocaine's rewarding effects, and are more motivated to self administer cocaine. In the current study, we combine matrix-assisted laser desorption/ionization mass spectrometry with multivariate statistical methods to analyze tissue extracts from rat dorsal striatum, nucleus accumbens, and medial prefrontal cortex (mPFC) to examine trends in peptide changes that coincide with behavioral phenotype. Peptide profiles of these three regions from individual animals were characterized via mass spectrometry. Resulting mass peaks that were statistically different between these groups were identified using principal component analysis. The mass peaks were then identified in pooled samples via multistage liquid chromatography mass spectrometry. A total of 74 peptides from 28 proteins were sequenced from defined brain regions. Statistically significant changes in peak intensities for seven peptides were found in the mPFC of rats given a single injection of 10 mg/kg cocaine, with low cocaine responders showing approximately 2-fold increase in peak intensities for the acetylated N terminus peptides of stathmin and Hint 1, as well as truncated ATP synthase. These results suggest that distinct peptide profiles in the mPFC are associated with individuals that exhibit reduced sensitivity to the behavioral effects of cocaine.
Collapse
Affiliation(s)
- Elena V Romanova
- Department of Chemistry and the Beckman Institute, University of Illinois at Urbana-Champaign, 600 S. Mathews Ave., Urbana, Illinois 61801, USA
| | | | | | | | | |
Collapse
|
5
|
Abstract
MBF1 (multiprotein bridging factor 1) is a highly conserved protein in archaea and eukaryotes. It was originally identified as a mediator of the eukaryotic transcription regulator BmFTZ-F1 (Bombyx mori regulator of fushi tarazu). MBF1 was demonstrated to enhance transcription by forming a bridge between distinct regulatory DNA-binding proteins and the TATA-box-binding protein. MBF1 consists of two parts: a C-terminal part that contains a highly conserved helix-turn-helix, and an N-terminal part that shows a clear divergence: in eukaryotes, it is a weakly conserved flexible domain, whereas, in archaea, it is a conserved zinc-ribbon domain. Although its function in archaea remains elusive, its function as a transcriptional co-activator has been deduced from thorough studies of several eukaryotic proteins, often indicating a role in stress response. In addition, MBF1 was found to influence translation fidelity in yeast. Genome context analysis of mbf1 in archaea revealed conserved clustering in the crenarchaeal branch together with genes generally involved in gene expression. It points to a role of MBF1 in transcription and/or translation. Experimental data are required to allow comparison of the archaeal MBF1 with its eukaryotic counterpart.
Collapse
|
6
|
Kanazawa Y, Makino M, Morishima Y, Yamada K, Nabeshima T, Shirasaki Y. Degradation of PEP-19, a calmodulin-binding protein, by calpain is implicated in neuronal cell death induced by intracellular Ca2+ overload. Neuroscience 2008; 154:473-81. [PMID: 18502590 DOI: 10.1016/j.neuroscience.2008.03.044] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2008] [Revised: 03/13/2008] [Accepted: 03/18/2008] [Indexed: 10/22/2022]
Abstract
Excessive elevation of intracellular Ca2+ levels and, subsequently, hyperactivation of Ca2+/calmodulin-dependent processes might play an important role in the pathologic events following cerebral ischemia. PEP-19 is a neuronally expressed polypeptide that acts as an endogenous negative regulator of calmodulin by inhibiting the association of calmodulin with enzymes and other proteins. The aims of the present study were to investigate the effect of PEP-19 overexpression on cell death triggered by Ca2+ overload and how the polypeptide levels are affected by glutamate-induced excitotoxicity and cerebral ischemia. Expression of PEP-19 in HEK293T cells suppressed calmodulin-dependent signaling and protected against cell death elicited by Ca2+ ionophore. Likewise, primary cortical neurons overexpressing PEP-19 became resistant to glutamate-induced cell death. In immunoprecipitation assay, wild type PEP-19 associated with calmodulin, whereas mutated PEP-19, which contains mutations within the calmodulin binding site of PEP-19, failed to associate with calmodulin. We found that the mutation abrogates both the ability to suppress calmodulin-dependent signaling and to protect cells from death. Additionally, the endogenous PEP-19 levels in neurons were significantly reduced following glutamate exposure, this reduction precedes neuronal cell death and can be blocked by treatment with calpain inhibitors. These data suggest that PEP-19 is a substrate for calpain, and that the decreased PEP-19 levels result from its degradation by calpain. A similar reduction of PEP-19 also occurred in the hippocampus of gerbils subjected to transient global ischemia. In contrast to the reduction in PEP-19, no changes in calmodulin occurred following excitotoxicity, suggesting the loss of negative regulation of calmodulin by PEP-19. Taken together, these results provide evidence that PEP-19 overexpression enhances resistance to Ca2+-mediated cytotoxicity, which might be mediated through calmodulin inhibition, and also raises the possibility that PEP-19 degradation by calpain might produce an aberrant activation of calmodulin functions, which in turn causes neuronal cell death.
Collapse
Affiliation(s)
- Y Kanazawa
- Biological Research Laboratories 1, Daiichi Sankyo Co., Ltd., Tokyo, Japan
| | | | | | | | | | | |
Collapse
|
7
|
Liu QX, Nakashima-Kamimura N, Ikeo K, Hirose S, Gojobori T. Compensatory change of interacting amino acids in the coevolution of transcriptional coactivator MBF1 and TATA-box-binding protein. Mol Biol Evol 2007; 24:1458-63. [PMID: 17440176 DOI: 10.1093/molbev/msm073] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
To elucidate the transcriptional regulation in eukaryotic genome network, it is important to understand coevolution of transcription factors, transcriptional coactivators, and TATA-box-binding protein (TBP). In this study, coevolution of transcriptional coactivator multiprotein-bridging factor 1 and its interacting target TBP was first evaluated experimentally by examining if compensatory amino acid changes took place at interacting sites of both proteins. The experiments were conducted by identifying interaction sites and comparing the amino acids at these sites among different organisms. Here, we provide evidence for compensatory changes of transcription coactivator and its interacting target, presenting the 1st report that transcription coactivator may have undergone coevolution with TBP.
Collapse
Affiliation(s)
- Qing-Xin Liu
- Center for Information Biology and DNA Data Bank of Japan, National Institute of Genetics, Mishima, Shizuoka, Japan
| | | | | | | | | |
Collapse
|
8
|
Busk PK, Wulf-Andersen L, Strøm CC, Enevoldsen M, Thirstrup K, Haunsø S, Sheikh SP. Multiprotein bridging factor 1 cooperates with c-Jun and is necessary for cardiac hypertrophy in vitro. Exp Cell Res 2003; 286:102-14. [PMID: 12729799 DOI: 10.1016/s0014-4827(03)00091-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Cardiac hypertrophy is induced by a number of stimuli and can lead to cardiomyopathy and heart failure. Cardiomyocyte hypertrophy is characterized by increased cell size and altered gene expression. By differential-display polymerase chain reaction and Western blotting we found that the transcriptional coactivator MBF1 was upregulated during hypertrophy in cardiomyocyte cultures. Furthermore, MBF1 protein level increased in two animal models of hypertrophy, angiotensin II treatment and aortic banding. MBF1 antisense oligodeoxynuclotides blocked phenylephrine-induced hypertrophy, suggesting MBF1 plays a key role in hypertrophic growth. In contrast, overexpression of MBF1 potentiated the hormone-induced response of the atrial natriuretic peptide promoter. MBF1 overexpressed by transient transfection cooperated with the transcription factor c-Jun in activation of transcription but not with GATA4. MBF1 and c-Jun induced the activity of a transiently transfected atrial natriuretic peptide promoter, whereas neither MBF1 nor c-Jun could induce the promoter alone. Moreover, MBF1 bound to c-Jun in vitro. These data suggest that MBF1 is a transcriptional coactivator of c-Jun regulating hypertrophic gene expression. Inhibitor studies suggested that MBF1 activates the atrial natriuretic peptide promoter independently of the calcineurin and CaMK signaling pathways. Our results indicate that MBF1 participates in hormone-induced cardiomyocyte hypertrophy and activates hypertrophic gene expression as a coactivator of c-Jun.
Collapse
Affiliation(s)
- Peter K Busk
- Laboratory of Molecular Cardiology, Medical Department B, H:S Rigshospitalet, University of Copenhagen, Juliane Mariesvej 20, DK-2100 Copenhagen Ø, Denmark
| | | | | | | | | | | | | |
Collapse
|
9
|
Liu QX, Jindra M, Ueda H, Hiromi Y, Hirose S. Drosophila MBF1 is a co-activator for Tracheae Defective and contributes to the formation of tracheal and nervous systems. Development 2003; 130:719-28. [PMID: 12506002 DOI: 10.1242/dev.00297] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
During gene activation, the effect of binding of transcription factors to cis-acting DNA sequences is transmitted to RNA polymerase by means of co-activators. Although co-activators contribute to the efficiency of transcription, their developmental roles are poorly understood. We used Drosophila to conduct molecular and genetic dissection of an evolutionarily conserved but unique co-activator, Multiprotein Bridging Factor 1 (MBF1), in a multicellular organism. Through immunoprecipitation, MBF1 was found to form a ternary complex including MBF1, TATA-binding protein (TBP) and the bZIP protein Tracheae Defective (TDF)/Apontic. We have isolated a Drosophila mutant that lacks the mbf1 gene in which no stable association between TBP and TDF is detectable, and transcription of a TDF-dependent reporter gene is reduced by 80%. Although the null mutants of mbf1 are viable, tdf becomes haploinsufficient in mbf1-deficient background, causing severe lesions in tracheae and the central nervous system, similar to those resulting from a complete loss of tdf function. These data demonstrate a crucial role of MBF1 in the development of tracheae and central nervous system.
Collapse
Affiliation(s)
- Qing-Xin Liu
- Department of Developmental Genetics, National Institute of Genetics, Graduate University for Advanced Studies, Mishima, Shizuoka-ken 411-8540, Japan
| | | | | | | | | |
Collapse
|
10
|
Dunker AK, Lawson JD, Brown CJ, Williams RM, Romero P, Oh JS, Oldfield CJ, Campen AM, Ratliff CM, Hipps KW, Ausio J, Nissen MS, Reeves R, Kang C, Kissinger CR, Bailey RW, Griswold MD, Chiu W, Garner EC, Obradovic Z. Intrinsically disordered protein. J Mol Graph Model 2002; 19:26-59. [PMID: 11381529 DOI: 10.1016/s1093-3263(00)00138-8] [Citation(s) in RCA: 1776] [Impact Index Per Article: 77.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Proteins can exist in a trinity of structures: the ordered state, the molten globule, and the random coil. The five following examples suggest that native protein structure can correspond to any of the three states (not just the ordered state) and that protein function can arise from any of the three states and their transitions. (1) In a process that likely mimics infection, fd phage converts from the ordered into the disordered molten globular state. (2) Nucleosome hyperacetylation is crucial to DNA replication and transcription; this chemical modification greatly increases the net negative charge of the nucleosome core particle. We propose that the increased charge imbalance promotes its conversion to a much less rigid form. (3) Clusterin contains an ordered domain and also a native molten globular region. The molten globular domain likely functions as a proteinaceous detergent for cell remodeling and removal of apoptotic debris. (4) In a critical signaling event, a helix in calcineurin becomes bound and surrounded by calmodulin, thereby turning on calcineurin's serine/threonine phosphatase activity. Locating the calcineurin helix within a region of disorder is essential for enabling calmodulin to surround its target upon binding. (5) Calsequestrin regulates calcium levels in the sarcoplasmic reticulum by binding approximately 50 ions/molecule. Disordered polyanion tails at the carboxy terminus bind many of these calcium ions, perhaps without adopting a unique structure. In addition to these examples, we will discuss 16 more proteins with native disorder. These disordered regions include molecular recognition domains, protein folding inhibitors, flexible linkers, entropic springs, entropic clocks, and entropic bristles. Motivated by such examples of intrinsic disorder, we are studying the relationships between amino acid sequence and order/disorder, and from this information we are predicting intrinsic order/disorder from amino acid sequence. The sequence-structure relationships indicate that disorder is an encoded property, and the predictions strongly suggest that proteins in nature are much richer in intrinsic disorder than are those in the Protein Data Bank. Recent predictions on 29 genomes indicate that proteins from eucaryotes apparently have more intrinsic disorder than those from either bacteria or archaea, with typically > 30% of eucaryotic proteins having disordered regions of length > or = 50 consecutive residues.
Collapse
Affiliation(s)
- A K Dunker
- School of Molecular Biosciences, Washington State University, Pullman, WA 99164-4660, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Caride AJ, Penheiter AR, Filoteo AG, Bajzer Z, Enyedi A, Penniston JT. The plasma membrane calcium pump displays memory of past calcium spikes. Differences between isoforms 2b and 4b. J Biol Chem 2001; 276:39797-804. [PMID: 11514555 DOI: 10.1074/jbc.m104380200] [Citation(s) in RCA: 81] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
To understand how the plasma membrane Ca(2+) pump (PMCA) behaves under changing Ca(2+) concentrations, it is necessary to obtain information about the Ca(2+) dependence of the rate constants for calmodulin activation (k(act)) and for inactivation by calmodulin removal (k(inact)). Here we studied these constants for isoforms 2b and 4b. We measured the ATPase activity of these isoforms expressed in Sf9 cells. For both PMCA4b and 2b, k(act) increased with Ca(2+) along a sigmoidal curve. At all Ca(2+) concentrations, 2b showed a faster reaction with calmodulin than 4b but a slower off rate. On the basis of the measured rate constants, we simulated mathematically the behavior of these pumps upon repetitive changes in Ca(2+) concentration and also tested these simulations experimentally; PMCA was activated by 500 nm Ca(2+) and then exposed to 50 nm Ca(2+) for 10 to 150 s, and then Ca(2+) was increased again to 500 nm. During the second exposure to 500 nm Ca(2+), the activity reached steady state faster than during the first exposure at 500 nm Ca(2+). This memory effect is longer for PMCA2b than for 4b. In a separate experiment, a calmodulin-binding peptide from myosin light chain kinase, which has no direct interaction with the pump, was added during the second exposure to 500 nm Ca(2+). The peptide inhibited the activity of PMCA2b when the exposure to 50 nm Ca(2+) was 150 s but had little or no effect when this exposure was only 15 s. This suggests that the memory effect is due to calmodulin remaining bound to the enzyme during the period at low Ca(2+). The memory effect observed in PMCA2b and 4b will allow cells expressing either of them to remove Ca(2+) more quickly in subsequent spikes after an initial activating spike.
Collapse
Affiliation(s)
- A J Caride
- Department of Biochemistry and Molecular Biology, Mayo Foundation, 200 First St. SW, Rochester, MN 55905, USA
| | | | | | | | | | | |
Collapse
|
12
|
Abstract
Murine endothelial differentiation-related factor (mEDF-1) encodes a basic intracellular protein of 148 amino acids which is highly homologous to the human and rat polypeptides. mEDF-1 is expressed in most murine tissues tested and is evolutionary conserved. mEDF-1 expression is modulated in mouse development, since its expression is high early in development and decreases thereafter. Because EDF-1 has been isolated as a gene differentially expressed by exposure of endothelial cells to the Tat protein of HIV, we evaluated mEDF-1 expression in different cell lines derived from tumors which spontaneously develop in Tat transgenic mice. Cells isolated from adenocarcinomas and leiomyosarcomas express very high amounts of EDF-1, independently from their capability to secrete Tat. Tat transgenic mice also develop skin lesions which closely resemble human Kaposi's sarcoma. Since Kaposi spindle cells, which are the proliferative component of the sarcoma, differentiate from an endothelial precursor, it is noteworthy that spindle cells derived from Kaposi-like lesions of the Tat transgenic mice downregulate EDF-1 when compared to microvascular endothelial cells isolated from the same tissue.
Collapse
MESH Headings
- 3T3 Cells
- Amino Acid Sequence
- Animals
- Base Sequence
- Blotting, Northern
- Calmodulin-Binding Proteins/genetics
- Cell Line
- Cloning, Molecular
- DNA/genetics
- DNA, Complementary/chemistry
- DNA, Complementary/genetics
- Embryo, Mammalian/metabolism
- Evolution, Molecular
- Exons
- Gene Expression
- Gene Expression Regulation, Developmental
- Genes/genetics
- Humans
- Introns
- Male
- Mice
- Molecular Sequence Data
- RNA/genetics
- RNA/metabolism
- Sequence Alignment
- Sequence Analysis, DNA
- Sequence Homology, Amino Acid
- Tissue Distribution
- Tumor Cells, Cultured
Collapse
Affiliation(s)
- L De Benedictis
- Dipartimento di Scienze Precliniche LITA-Vialba, Università di Milano, Via G.B. Grassi, 74 20157 Milan, Italy
| | | | | | | |
Collapse
|
13
|
O'Day DH, Lydan M, Watchus J, Fleming AS. Decreases in calmodulin binding proteins and calmodulin dependent protein phosphorylation in the medial preoptic area at the onset of maternal behavior in the rat. J Neurosci Res 2001; 64:599-605. [PMID: 11398183 DOI: 10.1002/jnr.1112] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
The onset of maternal behavior is characterized by the action of certain hormones, neuropeptides and neurotransmitters and a concomitant increase in the expression of c-Fos in the medial preoptic area (MPOA) but the signaling events that lie between have not been characterized. Because several of these hormones, neuropeptides and neurotransmitters function by activating Ca(2+)/calmodulin (CaM) mediated signaling pathways, many of which can lead to c-Fos expression, the goal of the current work was to identify calmodulin binding proteins (CaMBPs) or specific CaM-dependent phosphoproteins that might be involved. Probing of SDS-PAGE gels of extracts from the hippocampus, parietal cortex, basolateral amygdala and MPOA with recombinant (35)S-VU1-calmodulin (CaM) revealed 30 Ca(2+)-dependent and 4-6 Ca(2+)-independent CaMBPs. Statistically significant maternal behavior-related decreases in four Ca(2+)-dependent CaMBPs ( approximately 31 kDa, 50% decrease; approximately 33 kDa, 32%; approximately 50 kDa, 35%; approximately 60 kDa, 33%) were observed specifically in the MPOA. Numerous proteins were phosphorylated in a Ca(2+) CaM-dependent manner with two (MWs approximately 61 Da, approximately 58 kDa) showing a lack of phosphophorylation only in the MPOA. The selective decrease in CaMBPs coupled with the absence of CaM-dependent phosphoproteins implies that changes in Ca(2+)/CaM-mediated signaling may mediate some of the MPOA-specific processes during the onset of maternal behavior in the rat.
Collapse
Affiliation(s)
- D H O'Day
- Department of Zoology, University of Toronto at Mississauga, Mississauga, Ontario, Canada.
| | | | | | | |
Collapse
|
14
|
Mariotti M, De Benedictis L, Avon E, Maier JA. Interaction between endothelial differentiation-related factor-1 and calmodulin in vitro and in vivo. J Biol Chem 2000; 275:24047-51. [PMID: 10816571 DOI: 10.1074/jbc.m001928200] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Calmodulin (CaM) is the principal Ca(2+) receptor protein inside the cell. When activated by Ca(2+), CaM binds and activates target proteins, thus altering the metabolism and physiology of the cell. Under basal conditions, calcium-free CaM binds to other proteins termed CaM-binding proteins. Recently, we described endothelial differentiation-related factor (EDF)-1 as a protein involved in the repression of endothelial cell differentiation (Dragoni, I., Mariotti, M., Consalez, G. G., Soria, M., and Maier, J. A. M. (1998) J. Biol. Chem. 273, 31119-31124). Here we report that (i) EDF-1 binds CaM in vitro and in vivo; (ii) EDF-1 is phosphorylated in vitro and in vivo by protein kinase C; and (iii) EDF-1-CaM interaction is modulated by the concentrations of Ca(2+) and by the phosphorylation of EDF-1 by protein kinase C both in vitro and in vivo. In addition, 12-O-tetradecanoylphorbol-13-acetate treatment of human umbilical vein endothelial cell stimulates the nuclear translocation of EDF-1. On the basis of the high homology of EDF-1 with multiprotein bridging factor-1, a transcriptional coactivator that binds TATA-binding protein (TBP), we also demonstrate that EDF-1 interacts with TBP in vitro and in human endothelial cells. We hypothesize that EDF-1 serves two main functions in endothelial cells as follows: (i) to bind CaM in the cytosol at physiologic concentrations of Ca(2+) and (ii) to act in the nucleus as a transcriptional coactivator through its binding to TBP.
Collapse
Affiliation(s)
- M Mariotti
- Department of Biomedical Sciences and Technologies, University of Milan, Italy
| | | | | | | |
Collapse
|
15
|
Abstract
Calmodulin is the best studied and prototypical example of the E-F-hand family of Ca2+-sensing proteins. Changes in intracellular Ca2+ concentration regulate calmodulin in three distinct ways. First, at the cellular level, by directing its subcellular distribution. Second, at the molecular level, by promoting different modes of association with many target proteins. Third, by directing a variety of conformational states in calmodulin that result in target-specific activation. The calmodulin-dependent regulation of protein kinases illustrates the potential mechanisms by which Ca2+-sensing proteins can recognize and generate affinity and specificity for effectors in a Ca2+-dependent manner.
Collapse
Affiliation(s)
- D Chin
- Dept of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, NC 27710, USA.
| | | |
Collapse
|
16
|
Slemmon JR, Feng B, Erhardt JA. Small proteins that modulate calmodulin-dependent signal transduction: effects of PEP-19, neuromodulin, and neurogranin on enzyme activation and cellular homeostasis. Mol Neurobiol 2000; 22:99-113. [PMID: 11414283 DOI: 10.1385/mn:22:1-3:099] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Neuromodulin (GAP-43), neurogranin (RC3), and PEP-19 are small acid-stable proteins that bind calcium-poor calmodulin through a loosely conserved IQ-motif. Even though these proteins have been known for many years, much about their function in cells is not understood. It has recently become appreciated that calmodulin activity in cells is tightly controlled and that pools of otherwise free calmodulin are sequestered so as to restrict its availability for activating calcium/calmodulin-dependent enzymes. Neuromodulin, neurogranin, and PEP-19 appear to be major participants in this type of regulation. One way in which they do this is by providing localized increases in the concentration of calmodulin in cells so that the maximal level of target activation is increased. Additionally, they can function as calmodulin antagonists by directly inhibiting the association of calcium/calmodulin with enzymes and other proteins. Although neuromodulin, neurogranin, and PEP-19 were early representatives of the small IQ-motif-containing protein family, newer examples have come to light that expand the number of cellular systems through which the IQ-peptide/calmodulin interaction could regulate biological processes including gene transcription. It is the purpose of this review to examine the behavior of neuromodulin, neurogranin, and PEP-19 in paradigms that include both in vitro and in situ systems in order to summarize possible biological consequences that are linked to the expression of this type of protein. The use of protein:protein interaction chromatography is also examined in the recovery of a new calmodulin-binding peptide, CAP-19 (ratMBF1). Consistent with earlier predictions, at least one function of small IQ-motif proteins appears to be that they lessen the extent to which calcium-calmodulin-dependent enzymes become or stay activated. It also appears that these polypeptides can function to selectively inhibit activation of intracellular targets by some agonists while simultaneously permitting activation of these same targets by other agonists. Much of the mechanism for how this occurs is unknown, and possible explanations are examined. One of the biological consequences for a cell that expresses a calmodulin-regulatory protein could be an increased resistance to calcium-mediated toxicity. This possibility is examined for cells expressing PEP-19 and both anatomical and cell-biological data is described. The study of IQ-motif-containing small proteins has stimulated considerable thought as to how calcium signaling is refined in neurons. Current evidence suggests that signaling through calmodulin is not a fulminating and homogenous process but a spatially limited and highly regulated one. Data from studies on neuromodulin, neurogranin, and PEP-19 suggest that they play an important role in establishing some of the processes by which this regulation is accomplished.
Collapse
Affiliation(s)
- J R Slemmon
- Department of Protein Biochemistry, SmithKline Beecham Pharmaceuticals Research and Development, King of Prussia, PA 19406, USA.
| | | | | |
Collapse
|
17
|
Houben MP, Lankhorst AJ, van Dalen JJ, Veldman H, Joosten EA, Hamers FP, Gispen WH, Schrama LH. Pre- and postsynaptic localization of RC3/neurogranin in the adult rat spinal cord: an immunohistochemical study. J Neurosci Res 2000; 59:750-9. [PMID: 10700012 DOI: 10.1002/(sici)1097-4547(20000315)59:6<750::aid-jnr7>3.0.co;2-b] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
RC3 (neurogranin; BICKS) is a neuron-specific calmodulin-binding protein kinase C substrate. Thus far, immunohistochemical studies on the localization of RC3 revealed its presence in all neuronal phenotypes, which were restricted to specific areas in the neostriatum, the neocortex, and the hippocampus. RC3 was mostly found in cell bodies and dendrites, with some infrequent presence in axonal profiles, i.e. in the internal capsule. Until now, RC3 expression was reported to be absent in the adult rat spinal cord. RC3 might, however, act as an intermediate of protein kinase C-mediated signaling pathways during synaptic development and plasticity. We hypothesized a role for this 78-amino-acid protein in dendritic plasticity occurring after spinal cord injury. To our surprise, an immunohistological analysis of the uninjured adult rat spinal cord revealed the presence of RC3-positive cell bodies and dendrites in specific regions in the gray matter. Interestingly, axon-containing structures, such as the dorsal and ventral corticospinal tract, were also found to be RC3-positive. This axonal labeling was confirmed by preembedding electron microscopy. In conclusion, we demonstrate here that RC3 is present in the adult rat spinal cord in pre- and postsynaptic structures.
Collapse
Affiliation(s)
- M P Houben
- Department of Medical Pharmacology, Rudolf Magnus Institute for Neurosciences, University Medical Center, University of Utrecht, Utrecht, The Netherlands
| | | | | | | | | | | | | | | |
Collapse
|