1
|
Barker JS, Hines RM. Regulation of GABA A Receptor Subunit Expression in Substance Use Disorders. Int J Mol Sci 2020; 21:ijms21124445. [PMID: 32580510 PMCID: PMC7352578 DOI: 10.3390/ijms21124445] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 06/17/2020] [Accepted: 06/19/2020] [Indexed: 01/02/2023] Open
Abstract
The modulation of neuronal cell firing is mediated by the release of the neurotransmitter GABA (γ-aminobuytric acid), which binds to two major families of receptors. The ionotropic GABAA receptors (GABAARs) are composed of five distinct subunits that vary in expression by brain region and cell type. The action of GABA on GABAARs is modulated by a variety of clinically and pharmacologically important drugs such as benzodiazepines and alcohol. Exposure to and abuse of these substances disrupts homeostasis and induces plasticity in GABAergic neurotransmission, often via the regulation of receptor expression. Here, we review the regulation of GABAAR subunit expression in adaptive and pathological plasticity, with a focus on substance use. We examine the factors influencing the expression of GABAAR subunit genes including the regulation of the 5′ and 3′ untranslated regions, variations in DNA methylation, immediate early genes and transcription factors that regulate subunit expression, translational and post-translational modifications, and other forms of receptor regulation beyond expression. Advancing our understanding of the factors regulating GABAAR subunit expression during adaptive plasticity, as well as during substance use and withdrawal will provide insight into the role of GABAergic signaling in substance use disorders, and contribute to the development of novel targeted therapies.
Collapse
|
2
|
Lundin E, Wu C, Widmark A, Behm M, Hjerling-Leffler J, Daniel C, Öhman M, Nilsson M. Spatiotemporal mapping of RNA editing in the developing mouse brain using in situ sequencing reveals regional and cell-type-specific regulation. BMC Biol 2020; 18:6. [PMID: 31937309 PMCID: PMC6961268 DOI: 10.1186/s12915-019-0736-3] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Accepted: 12/23/2019] [Indexed: 01/01/2023] Open
Abstract
Background Adenosine-to-inosine (A-to-I) RNA editing is a process that contributes to the diversification of proteins that has been shown to be essential for neurotransmission and other neuronal functions. However, the spatiotemporal and diversification properties of RNA editing in the brain are largely unknown. Here, we applied in situ sequencing to distinguish between edited and unedited transcripts in distinct regions of the mouse brain at four developmental stages, and investigate the diversity of the RNA landscape. Results We analyzed RNA editing at codon-altering sites using in situ sequencing at single-cell resolution, in combination with the detection of individual ADAR enzymes and specific cell type marker transcripts. This approach revealed cell-type-specific regulation of RNA editing of a set of transcripts, and developmental and regional variation in editing levels for many of the targeted sites. We found increasing editing diversity throughout development, which arises through regional- and cell type-specific regulation of ADAR enzymes and target transcripts. Conclusions Our single-cell in situ sequencing method has proved useful to study the complex landscape of RNA editing and our results indicate that this complexity arises due to distinct mechanisms of regulating individual RNA editing sites, acting both regionally and in specific cell types. Electronic supplementary material The online version of this article (10.1186/s12915-019-0736-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Elin Lundin
- Department of Biochemistry and Biophysics, Science for Life Laboratory, Stockholm University, SE-171 21, Solna, Sweden.
| | - Chenglin Wu
- Department of Biochemistry and Biophysics, Science for Life Laboratory, Stockholm University, SE-171 21, Solna, Sweden
| | - Albin Widmark
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Svante Arrheniusväg 20C, 106 91, Stockholm, Sweden
| | - Mikaela Behm
- German Cancer Center (DKFZ), Im Neuenheimer Feld 280, 69120, Heidelberg, Germany
| | - Jens Hjerling-Leffler
- Laboratory of Molecular Neurobiology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Chammiran Daniel
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Svante Arrheniusväg 20C, 106 91, Stockholm, Sweden
| | - Marie Öhman
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Svante Arrheniusväg 20C, 106 91, Stockholm, Sweden
| | - Mats Nilsson
- Department of Biochemistry and Biophysics, Science for Life Laboratory, Stockholm University, SE-171 21, Solna, Sweden.
| |
Collapse
|
3
|
Skewing of the genetic architecture at the ZMYM3 human-specific 5' UTR short tandem repeat in schizophrenia. Mol Genet Genomics 2018; 293:747-752. [PMID: 29332164 DOI: 10.1007/s00438-018-1415-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2017] [Accepted: 01/02/2018] [Indexed: 02/06/2023]
Abstract
Differential expansion of a number of human short tandem repeats (STRs) at the critical core promoter and 5' untranslated region (UTR) support the hypothesis that at least some of these STRs may provide a selective advantage in human evolution. Following a genome-wide screen of all human protein-coding gene 5' UTRs based on the Ensembl database ( http://www.ensembl.org ), we previously reported that the longest STR in this interval is a (GA)32, which belongs to the X-linked zinc finger MYM-type containing 3 (ZMYM3) gene. In the present study, we analyzed the evolutionary implication of this region across evolution and examined the allele and genotype distribution of the "exceptionally long" STR by direct sequencing of 486 Iranian unrelated male subjects consisting of 196 cases of schizophrenia (SCZ) and 290 controls. We found that the ZMYM3 transcript containing the STR is human-specific (ENST00000373998.5). A significant allele variance difference was observed between the cases and controls (Levene's test for equality of variances F = 4.00, p < 0.03). In addition, six alleles were observed in the SCZ patients that were not detected in the control group ("disease-only" alleles) (mid p exact < 0.0003). Those alleles were at the extreme short and long ends of the allele distribution curve and composed 4% of the genotypes in the SCZ group. In conclusion, we found skewing of the genetic architecture at the ZMYM3 STR in SCZ. Further, we found a bell-shaped distribution of alleles and selection against alleles at the extreme ends of this STR. The ZMYM3 STR sets a prototype, the evolutionary course of which determines the range of alleles in a particular species. Extreme "disease-only" alleles and genotypes may change our perspective of adaptive evolution and complex disorders. The ZMYM3 gene "exceptionally long" STR should be sequenced in SCZ and other human-specific phenotypes/characteristics.
Collapse
|
4
|
Valipour E, Kowsari A, Bayat H, Banan M, Kazeminasab S, Mohammadparast S, Ohadi M. Polymorphic core promoter GA-repeats alter gene expression of the early embryonic developmental genes. Gene 2013; 531:175-9. [PMID: 24055488 DOI: 10.1016/j.gene.2013.09.032] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2013] [Revised: 09/05/2013] [Accepted: 09/06/2013] [Indexed: 12/20/2022]
Abstract
Protein complexes that bind to 'GAGA' DNA elements are necessary to replace nucleosomes to create a local chromatin environment that facilitates a variety of site-specific regulatory responses. Three to four elements are required for the disruption of a preassembled nucleosome. We have previously identified human protein-coding gene core promoters that are composed of exceptionally long GA-repeats. The functional implication of those GA-repeats is beginning to emerge in the core promoter of the human SOX5 gene, which is involved in multiple developmental processes. In the current study, we analyze the functional implication of GA-repeats in the core promoter of two additional genes, MECOM and GABRA3, whose expression is largely limited to embryogenesis. We report a significant difference in gene expression as a result of different alleles across those core promoters in the HEK-293 cell line. Across-species homology check for the GABRA3 GA-repeats revealed that those repeats are evolutionary conserved in mouse and primates (p<1 × 10(-8)). The MECOM core promoter GA-repeats are also conserved in numerous species, of which human has the longest repeat and complexity. We propose a novel role for GA-repeat core promoters to regulate gene expression in the genes involved in development and evolution.
Collapse
Affiliation(s)
- E Valipour
- Genetics Research Center, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran
| | | | | | | | | | | | | |
Collapse
|
5
|
Machuca-Parra AI, Miledi R, Martínez-Torres A. Identification of the minimal promoter for specific expression of the GABAρ1 receptor in retinal bipolar cells. J Neurochem 2013; 124:175-88. [PMID: 23106649 DOI: 10.1111/jnc.12067] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2012] [Revised: 09/26/2012] [Accepted: 10/23/2012] [Indexed: 11/29/2022]
Abstract
γ-aminobutyric acid (GABA)ρ receptors regulate rapid synaptic ion currents in the axon end of retinal ON bipolar neurons, acting as a point of control along the visual pathway. In the GABAρ1 subunit knock out mouse, inhibition mediated by this receptor is totally eliminated, showing its role in neural transmission in retina. GABAρ1 mRNA is expressed in mouse retina after post-natal day 7, but little is known about its transcriptional regulation. To identify the GABAρ1 promoter, in silico analyses were performed and indicated that a 0.290-kb fragment, flanking the 5'-end of the GABAρ1 gene, includes putative transcription factor-binding sites, two Inr elements, and lacks a TATA-box. A rapid amplification of cDNA ends (RACE) assay showed three transcription start sites (TSS) clustered in the first exon. Luciferase reporter assays indicated that a 0.232-kb fragment upstream from the ATG is the minimal promoter in transfected cell lines and in vitro electroporated retinae. The second Inr and AP1 site are important to activate transcription in secretin tumor cells (STC-1) and retina. Finally, the 0.232-kb fragment drives green fluorescent protein (GFP) expression to the inner nuclear layer, where bipolar cells are present. This first work paves the way for further studies of molecular elements that control GABAρ1 transcription and regulate its expression during retinal development.
Collapse
Affiliation(s)
- Arturo Israel Machuca-Parra
- Departamento de Neurobiología Celular y Molecular, Universidad Nacional Autónoma de México, Instituto de Neurobiología, Querétaro, Mexico
| | | | | |
Collapse
|
6
|
Miller BH, Schultz LE, Long BC, Pletcher MT. Quantitative trait locus analysis identifies Gabra3 as a regulator of behavioral despair in mice. Mamm Genome 2010; 21:247-57. [PMID: 20512339 PMCID: PMC2890984 DOI: 10.1007/s00335-010-9266-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2009] [Accepted: 05/06/2010] [Indexed: 11/30/2022]
Abstract
The Tail Suspension Test (TST), which measures behavioral despair, is widely used as an animal model of human depressive disorders and antidepressant efficacy. In order to identify novel genes involved in the regulation of TST performance, we crossed an inbred strain exhibiting low immobility in the TST (RIIIS/J) with two high-immobility strains (C57BL/6J and NZB/BlNJ) to create two distinct F2 hybrid populations. All F2 offspring (n = 655) were genotyped at high density with a panel of SNP markers. Whole-genome interval mapping of the F2 populations identified statistically significant quantitative trait loci (QTLs) on mouse chromosomes (MMU) 4, 6, and X. Microarray analysis of hippocampal gene expression in the three parental strains was used to identify potential candidate genes within the MMUX QTLs identified in the NZB/BlNJ × RIIIS/J cross. Expression of Gabra3, which encodes the GABAA receptor α3 subunit, was robust in the hippocampus of B6 and RIIIS mice but absent from NZB hippocampal tissue. To verify the role of Gabra3 in regulating TST behavior in vivo, mice were treated with SB-205384, a positive modulator of the α3 subunit. SB-205384 significantly reduced TST immobility in B6 mice without affecting general activity, but it had no effect on behavior in NZB mice. This work suggests that GABRA3 regulates a behavioral endophenotype of depression and establishes this gene as a viable new target for the study and treatment of human depression.
Collapse
Affiliation(s)
- Brooke H. Miller
- Department of Neuroscience, Scripps Florida, Jupiter, FL 33458 USA
| | - Laura E. Schultz
- Department of Neuroscience, Scripps Florida, Jupiter, FL 33458 USA
| | - Bradley C. Long
- Department of Neuroscience, Scripps Florida, Jupiter, FL 33458 USA
| | - Mathew T. Pletcher
- Department of Neuroscience, Scripps Florida, Jupiter, FL 33458 USA
- Compound Safety Prediction, Pfizer Global Research and Development, Groton, CT 06340 USA
| |
Collapse
|
7
|
Luan X, Ito Y, Zhang Y, Diekwisch TGH. Characterization of the mouse CP27 promoter and NF-Y mediated gene regulation. Gene 2010; 460:8-19. [PMID: 20388536 DOI: 10.1016/j.gene.2010.03.014] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2008] [Revised: 03/26/2010] [Accepted: 03/27/2010] [Indexed: 01/02/2023]
Abstract
The cp27 gene is a highly conserved and unique gene with important roles related to craniofacial organogenesis. The present study is a first analysis of the CP27 promoter and its regulation. Here, we have cloned the promoter of the mouse cp27 gene, examined its transcriptional activity, and identified transcription factor binding sites in the proximal promoter region. Two major transcription start sites were mapped adjacent to exon 1. Promoter function analysis of the 5' flanking region by progressive 5' deletion mutations localized transcription repression elements between -1993bp and -969bp and several positive elements between -968bp and the preferred transcription start site. EMSA and functional studies indicated two function-cooperative CCAAT boxes and identified the NF-Y transcription factor as the CCAAT activator controlling transactivation of the CP27 promoter. In addition, this study demonstrated that for its effective binding and function, NF-Y required not only the minimal DNA segment length identified by deletion studies, but also a defined nucleotide sequence in the distal 3' flanking region of the CP27 proximal promoter CCAAT box. These results provide a basis for our understanding of the specific regulation of the cp27 gene in the NF-Y-mediated gene transcription network.
Collapse
Affiliation(s)
- Xianghong Luan
- Brodie Laboratory for Craniofacial Genetics, University of Illinois at Chicago, 801 South Paulina Street, Chicago, IL 60612, USA
| | | | | | | |
Collapse
|
8
|
Poulter MO, Du L, Zhurov V, Palkovits M, Faludi G, Merali Z, Anisman H. Altered Organization of GABA(A) Receptor mRNA Expression in the Depressed Suicide Brain. Front Mol Neurosci 2010; 3:3. [PMID: 20407580 PMCID: PMC2854532 DOI: 10.3389/neuro.02.003.2010] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2009] [Accepted: 01/24/2010] [Indexed: 11/16/2022] Open
Abstract
Inter-relationships ordinarily exist between mRNA expression of GABAA subunits in the frontopolar cortex (FPC) of individuals that had died suddenly from causes other than suicide. However, these correlations were largely absent in persons that had died by suicide. In the present investigation, these findings were extended by examining GABAA receptor expression patterns (of controls and depressed individuals that died by suicide) in the orbital frontal cortex (OFC), hippocampus, amygdala. locus coeruleus (LC) and paraventricular nucleus (PVN), all of which have been implicated in either depression, anxiety or stress responsivity. Using QPCR analysis, we found that in controls the inter-relations between GABAA subunits varied across brain regions, being high in the hippocampus and amygdala, intermediate in the LC, and low in the OFC and PVN. The GABAA subunit inter-relations were markedly different in persons that died by suicide, being reduced in hippocampus and amygdala, stable in the LC, but more coordinated in the OFC and to some extent in the PVN. It seems that altered brain region-specific inhibitory signaling, stemming from altered GABAA subunit coordination, are associated with depression/suicide. Although, it is unknown whether GABAA subunit re-organization was specifically tied to depression, suicide, or the accompanying distress, these data show that the coordinated expression of this transcriptome does vary depending on brain region and is plastic.
Collapse
Affiliation(s)
- Michael O Poulter
- Molecular Brain Research Group, Department of Physiology and Pharmacology, Robarts Research Institute, University of Western Ontario London, Ontario, Canada
| | | | | | | | | | | | | |
Collapse
|
9
|
Jongjaroenprasert W, Chanprasertyotin S, Butadej S, Nakasatien S, Charatcharoenwitthaya N, Himathongkam T, Ongphiphadhanakul B. Association of genetic variants in GABRA3 gene and thyrotoxic hypokalaemic periodic paralysis in Thai population. Clin Endocrinol (Oxf) 2008; 68:646-51. [PMID: 17970773 DOI: 10.1111/j.1365-2265.2007.03083.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
BACKGROUND Genetic predisposition has been suggested to play role in the pathogenesis of thyrotoxic hypokalaemic periodic paralysis (THPP). OBJECTIVES In this study, we assessed the differences of single-nucleotide polymorphisms (SNP) allelic frequency between THPP patients and well-characterized controls in order to find the susceptibility genetic variants related to THPP using microarray-based assessments on pooled DNA. METHODS Fifty cases of THPP and 50 male hyperthyroid patients without hypokalaemia as controls were recruited. Equal amounts of individual genomic DNA were pooled from each group. Estimated allele frequencies of SNPs were derived by averaging relative allele signal score obtained by Affymetrix GeneChip(R) Mapping 10K Arrays. RESULTS Sixty-nine loci that display robust allele frequency differences between THPP and controls were identified. SNP rs750841 (A > T) in intron 3 of the gamma-aminobutyric acid (GABA) receptor alpha3 subunit (GABRA3) gene possessed the most significant difference in allele frequency (27% in THPP case and 5% in controls, P = 0.007). Actual allele frequencies obtained from genotyping in each individual were very similar to the estimated frequency from the pools (28% in THPP and 2% in controls, and P = 0.0002). Nearby DNA sequences of GABRA3 were sequenced and an additional two SNPs were found (A > C at exon 1 and G > T of rs12688128). Allele A of rs750841 and allele G of rs12688128 in intron 3 were predominantly found in THPP with significant genetic relative risk of 19 (P < 0.0002; 95%CI 2.4-151.6). CONCLUSIONS Whole-genome scanning on pooled DNA provides an accurate, useful screening tool for elucidating genetic underpinnings of THPP. SNPs at intron 3 of GABRA3 are found to be associated with THPP.
Collapse
|
10
|
Joyce CJ. In silico comparative genomic analysis of GABAA receptor transcriptional regulation. BMC Genomics 2007; 8:203. [PMID: 17603907 PMCID: PMC1934366 DOI: 10.1186/1471-2164-8-203] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2007] [Accepted: 06/30/2007] [Indexed: 11/30/2022] Open
Abstract
Background Subtypes of the GABAA receptor subunit exhibit diverse temporal and spatial expression patterns. In silico comparative analysis was used to predict transcriptional regulatory features in individual mammalian GABAA receptor subunit genes, and to identify potential transcriptional regulatory components involved in the coordinate regulation of the GABAA receptor gene clusters. Results Previously unreported putative promoters were identified for the β2, γ1, γ3, ε, θ and π subunit genes. Putative core elements and proximal transcriptional factors were identified within these predicted promoters, and within the experimentally determined promoters of other subunit genes. Conserved intergenic regions of sequence in the mammalian GABAA receptor gene cluster comprising the α1, β2, γ2 and α6 subunits were identified as potential long range transcriptional regulatory components involved in the coordinate regulation of these genes. A region of predicted DNase I hypersensitive sites within the cluster may contain transcriptional regulatory features coordinating gene expression. A novel model is proposed for the coordinate control of the gene cluster and parallel expression of the α1 and β2 subunits, based upon the selective action of putative Scaffold/Matrix Attachment Regions (S/MARs). Conclusion The putative regulatory features identified by genomic analysis of GABAA receptor genes were substantiated by cross-species comparative analysis and now require experimental verification. The proposed model for the coordinate regulation of genes in the cluster accounts for the head-to-head orientation and parallel expression of the α1 and β2 subunit genes, and for the disruption of transcription caused by insertion of a neomycin gene in the close vicinity of the α6 gene, which is proximal to a putative critical S/MAR.
Collapse
|
11
|
Steiger JL, Russek SJ. GABAA receptors: building the bridge between subunit mRNAs, their promoters, and cognate transcription factors. Pharmacol Ther 2004; 101:259-81. [PMID: 15031002 DOI: 10.1016/j.pharmthera.2003.12.002] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
The type A gamma-aminobutyric acid (GABA(A)) receptors mediate the majority of fast inhibitory neurotransmission in the CNS, and alterations in GABA(A) receptor function is believed to be involved in the pathology of several neurological and psychiatric illnesses, such as epilepsy, anxiety, Alzheimer's disease, and schizophrenia. GABA(A) receptors can be assembled from eight distinct subunit families defined by sequence similarity: alpha(1-6), beta(1-3), gamma(1-3), delta, pi, theta, and rho(1-3). The regulation of GABA(A) receptor function in the brain is a highly compensating system, influencing both the number and the composition of receptors at the cell surface. While transcriptional and translational points of control operate in parallel, it is becoming increasingly evident that many functional changes in GABA(A) receptors reflect the differential gene regulation of its subunits. The fact that certain GABA(A) receptor subunit genes are transcribed in distinct cell types during specific periods of development strongly suggests that genetic control plays a major role in the choice of subunit variants available for receptor assembly. This review focuses on the physiological conditions that alter subunit mRNA levels, the promoters that may control such levels, and the use of a conceptual framework created by bioinformatics to study coordinate and independent GABA(A) receptor subunit gene regulation. As this exciting field moves closer to identifying the language hidden inside the chromatin of GABA(A) receptor subunit gene clusters, future experiments will be aimed at testing models generated by computational analysis with biologically relevant in vivo and in vitro assays. It is hoped that through this functional genomic approach there will be the identification of new targets for therapeutic intervention.
Collapse
Affiliation(s)
- Janine L Steiger
- Laboratory of Molecular Neurobiology, Department of Pharmacology, Boston University School of Medicine, Boston, MA 02118, USA
| | | |
Collapse
|
12
|
Abstract
Migraine is a common complex disorder that affects a large portion of the population and thus incurs a substantial economic burden on society. The disorder is characterized by recurrent headaches that are unilateral and usually accompanied by nausea, vomiting, photophobia, and phonophobia. The range of clinical characteristics is broad and there is evidence of comorbidity with other neurological diseases, complicating both the diagnosis and management of the disorder. Although the class of drugs known as the triptans (serotonin 5-HT(1B/1D) agonists) has been shown to be effective in treating a significant number of patients with migraine, treatment may in the future be further enhanced by identifying drugs that selectively target molecular mechanisms causing susceptibility to the disease.Genetically, migraine is a complex familial disorder in which the severity and susceptibility of individuals is most likely governed by several genes that may be different among families. Identification of the genomic variants involved in genetic predisposition to migraine should facilitate the development of more effective diagnostic and therapeutic applications. Genetic profiling, combined with our knowledge of therapeutic response to drugs, should enable the development of specific, individually-tailored treatment.
Collapse
Affiliation(s)
- Kelly L Rogers
- Genomics Research Centre, Griffith University Gold Coast, Gold Coast Mail Centre, Southport, Queensland 9726, Australia
| | | | | |
Collapse
|
13
|
Fuchs K, Celepirovic N. The 5'-flanking region of the rat GABA(A) receptor alpha2-subunit gene (Gabra2). J Neurochem 2002; 82:1512-23. [PMID: 12354299 DOI: 10.1046/j.1471-4159.2002.01098.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The GABA(A) receptor alpha2-subunit gene (Gabra2) has a specific spatial and temporal pattern of expression in rat brain. As a first step towards understanding the molecular mechanism underlying this regulation, we have investigated the structural properties of the 5'- flanking region of the rat Gabra2 gene. We identified six alpha2 transcript isoforms, each of which differs only in the 5'-untranslated region (UTR). Alignment of cDNA and genomic DNA sequences revealed that six 5'-UTRs are generated from three alternative first exons by alternative splicing using internal and terminal 5'-splice donor sites present in these exons. Promoter regions containing multiple transcription initiation sites were identified in the 5' proximity of each first exon. Two of these promoters lack TATA and CCAAT sequences. Finally, we have shown that differential activation of alternative promoters is used for the expression of the alpha2 mRNA isoforms during brain development, and that the diversity at the 5'-end of these transcripts affects GABA(A) receptor expression. Taken together, these results suggest that the expression of the Gabra2 gene can be influenced at both the transcriptional and post-transcriptional levels.
Collapse
Affiliation(s)
- Karoline Fuchs
- Division of Biochemistry and Molecular Biology, Brain Research Institute, University of Vienna, Austria.
| | | |
Collapse
|
14
|
Zheng Z, Wang ZM, Delbono O. Charge movement and transcription regulation of L-type calcium channel alpha(1S) in skeletal muscle cells. J Physiol 2002; 540:397-409. [PMID: 11956331 PMCID: PMC2290248 DOI: 10.1113/jphysiol.2001.013464] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Several factors, such as Ca(2+), trophic factors and ageing, regulate dihydropyridine-sensitive receptor (DHPR) alpha(1) subunit expression. However, basic mechanisms of DHPR alpha(1S) expression are unknown. To better understand the regulatory elements that control transcription, the 1.2 kb 5'-flanking region fragment immediately upstream of the mouse L-type Ca(2+) channel or DHPR alpha(1S) gene was isolated and sequenced. Luciferase reporter constructs driven by different promoter regions of mouse DHPR alpha(1S) gene were used for transient transfection assays in muscle C2C12 cells. In these preparations we found that three regions corresponding to CREB, GATA-2 and SOX-5 consensus sequence within the 5'-flanking region of the DHPR alpha(1S) gene are important for DHPR alpha(1S) gene transcription. Antisense oligonucleotides against CREB, GATA-2 and SOX-5 significantly reduced charge movement in C2C12 cells. Charge movement was recorded in the whole-cell configuration of the patch clamp technique. Results from cells transfected with antisense (AS) and sense (S) oligonucleotides and nontransfected cells were compared. Charge movement experiments were fitted to a Boltzmann equation. Maximum charge movement (Q(max)) (nC microF(-1), mean +/- S.E.M.) for S- and AS-CREB was 70.3 +/- 2.9 and 52.8 +/- 3.3, respectively (P < 0.05). The same parameter for S- and AS-GATA-2 was 71.3 +/- 3.9 and 48.2 +/- 2.3, respectively (P < 0.05) and for S- and AS-SOX-5 was 70.4 +/- 4.2 and 45.1 +/- 3.2, respectively (P < 0.05). Values recorded in cells transfected with sense S-CREB, S-GATA-2 and S-SOX-5 oligonucleotides were not significantly different from those recorded in nontransfected cells. This study demonstrates that the transcription factors CREB, GATA-2 and SOX-5 play a significant role in the expression of the skeletal muscle DHPR or L-type Ca(2+) channel alpha(1S).
Collapse
Affiliation(s)
- Zhenlin Zheng
- Department of Physiology and PharmacologyWinston-Salem, NC 27157, USA
| | - Zhong-Min Wang
- Department of Physiology and PharmacologyWinston-Salem, NC 27157, USA
| | - Osvaldo Delbono
- Department of Physiology and PharmacologyWinston-Salem, NC 27157, USA
- Department of Internal Medicine, GerontologyWinston-Salem, NC 27157, USA
- Department of Neuroscience Program, Wake Forest University School of MedicineWinston-Salem, NC 27157, USA
| |
Collapse
|
15
|
Kusek JC, Greene RM, Pisano MM. Expression of the E2F and retinoblastoma families of proteins during neural differentiation. Brain Res Bull 2001; 54:187-98. [PMID: 11275408 DOI: 10.1016/s0361-9230(00)00447-0] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Development of the brain is determined by a strictly orchestrated program of proliferation, migration, apoptosis, differentiation, synaptogenesis, tract formation, and myelination. The E2F family of transcription factors, whose activity and functions are regulated in large part through interactions with the retinoblastoma (Rb) family of tumor suppressor proteins, has been implicated as a key regulator of proliferation, differentiation, and apoptosis in a variety of tissues. We have examined levels of the E2F and Rb families of proteins during both brain development and neural differentiation of P19 cells, and found the expression profiles during these two processes of neural development and maturation to be quite similar, i.e., strong up-regulation of p130, pronounced down-regulation of p107, moderate up-regulation of pRb, and significant down-regulation of most species of E2F and dimerization protein (DP). However, several specific isoforms, namely a 30 kDa form of DP-2, a 57 kDa species of E2F-3, a 59 kDa form of E2F-5 and the isoforms of E2F-1 recognized by the E2F-1 (KH-95) antibody were up-regulated suggesting that these particular isoforms of E2F and DP play a tissue-specific function in differentiation and maturation of nervous tissue. The potential role of the E2F/DP family of transcription factors in aspects of neural development and differentiation are considered.
Collapse
Affiliation(s)
- J C Kusek
- Department of Molecular, Cellular and Craniofacial Biology, ULSD, University of Louisville, Birth Defects Center, Louisville, KY, USA
| | | | | |
Collapse
|