1
|
Leng G, Duan B, Liu J, Li S, Zhao W, Wang S, Hou G, Qu J. The advancements and prospective developments in anti-tumor targeted therapy. Neoplasia 2024; 56:101024. [PMID: 39047659 PMCID: PMC11318541 DOI: 10.1016/j.neo.2024.101024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 07/01/2024] [Accepted: 07/03/2024] [Indexed: 07/27/2024]
Abstract
Cancer poses a major threat to human health worldwide. The development of anti-tumor materials provides new modalities for cancer diagnosis and treatment. In this review, we comprehensively summarize the research progress and clinical applications of anti-tumor materials. First, we introduce the etiology and pathogenesis of cancer, and the significance and challenges of anti-tumor materials research. Then, we classify anti-tumor materials and discuss their mechanisms of action. After that, we elaborate the research advances and clinical applications of anti-tumor materials, including those targeting tumor cells and therapeutic instruments. Finally, we discuss the future perspectives and challenges in the field of anti-tumor materials. This review aims to provide an overview of the current status of anti-tumor materials research and application, and to offer insights into future directions in this rapidly evolving field, which holds promise for more precise, efficient and customized treatment of cancer.
Collapse
Affiliation(s)
- Guorui Leng
- School of Special Education and Rehabilitation, Binzhou Medical University, Yantai 264003, China
| | - Baorong Duan
- Research Center for Leather and Protein of College of Chemistry & Chemical Engineering, Yantai University, Yantai 264005, China
| | - Junjie Liu
- Department of Physics, Binzhou Medical University, Yantai 264003, China
| | - Song Li
- School of Special Education and Rehabilitation, Binzhou Medical University, Yantai 264003, China
| | - Wenwen Zhao
- School of Special Education and Rehabilitation, Binzhou Medical University, Yantai 264003, China
| | - Shanshan Wang
- School of Pharmacy, Binzhou Medical University, Yantai 264003, China
| | - Guige Hou
- School of Pharmacy, Binzhou Medical University, Yantai 264003, China.
| | - Jiale Qu
- School of Pharmacy, Binzhou Medical University, Yantai 264003, China; Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research (YIC), Chinese Academy of Sciences (CAS); Shandong Provincial Key Laboratory of Coastal Environmental Processes, YICCAS, Yantai 264003, China.
| |
Collapse
|
2
|
Gui C, Kalkreuter E, Lauterbach L, Yang D, Shen B. Enediyne natural product biosynthesis unified by a diiodotetrayne intermediate. Nat Chem Biol 2024; 20:1210-1219. [PMID: 38831037 DOI: 10.1038/s41589-024-01636-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 05/08/2024] [Indexed: 06/05/2024]
Abstract
Enediyne natural products are renowned for their potent cytotoxicities but the biosynthesis of their defining 1,5-diyne-3-ene core moiety remains largely enigmatic. Since the discovery of the enediyne polyketide synthase cassette in 2002, genome sequencing has revealed thousands of distinct enediyne biosynthetic gene clusters, each harboring the conserved enediyne polyketide synthase cassette. Here we report that (1) the products of this cassette are an iodoheptaene, a diiodotetrayne and two pentaynes; (2) the diiodotetrayne represents a common biosynthetic intermediate for all known enediynes; and (3) cryptic iodination can be exploited to increase enediyne titers. These findings establish a unified biosynthetic pathway for the enediynes, set the stage to further advance enediyne core biosynthesis and enable fundamental breakthroughs in chemistry, enzymology and translational applications of enediyne natural products.
Collapse
Affiliation(s)
- Chun Gui
- Department of Chemistry, The Herbert Wertheim UF Scripps Institute for Biomedical Innovation and Technology, University of Florida, Jupiter, FL, USA
| | - Edward Kalkreuter
- Department of Chemistry, The Herbert Wertheim UF Scripps Institute for Biomedical Innovation and Technology, University of Florida, Jupiter, FL, USA
| | - Lukas Lauterbach
- Department of Chemistry, The Herbert Wertheim UF Scripps Institute for Biomedical Innovation and Technology, University of Florida, Jupiter, FL, USA
| | - Dong Yang
- Department of Chemistry, The Herbert Wertheim UF Scripps Institute for Biomedical Innovation and Technology, University of Florida, Jupiter, FL, USA
- Natural Products Discovery Center, The Herbert Wertheim UF Scripps Institute for Biomedical Innovation and Technology, University of Florida, Jupiter, FL, USA
| | - Ben Shen
- Department of Chemistry, The Herbert Wertheim UF Scripps Institute for Biomedical Innovation and Technology, University of Florida, Jupiter, FL, USA.
- Natural Products Discovery Center, The Herbert Wertheim UF Scripps Institute for Biomedical Innovation and Technology, University of Florida, Jupiter, FL, USA.
- Department of Molecular Medicine, The Herbert Wertheim UF Scripps Institute for Biomedical Innovation and Technology, University of Florida, Jupiter, FL, USA.
| |
Collapse
|
3
|
Feng X, Wen Z, Zhu X, Yan X, Duan Y, Huang Y. Anti-HER2 Immunoliposomes: Antitumor Efficacy Attributable to Targeted Delivery of Anthraquinone-Fused Enediyne. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2307865. [PMID: 38355309 PMCID: PMC11077693 DOI: 10.1002/advs.202307865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 12/24/2023] [Indexed: 02/16/2024]
Abstract
Although natural products are essential sources of small-molecule antitumor drugs, some can exert substantial toxicities, limiting their clinical utility. Anthraquinone-fused enediyne natural products are remarkably potent antitumor drug candidates, and uncialamycin and tiancimycin (TNM) A are under development as antibody-drug conjugates. Herein, a novel drug delivery system is introduced for TNM A using anti-human epidermal growth factor receptor 2 (HER2) immunoliposomes (ILs). Trastuzumab-coated TNM A-loaded ILs (HER2-TNM A-ILs) is engineered with an average particle size of 182.8 ± 2.1 nm and a zeta potential of 1.75 ± 0.12 mV. Compared with liposomes lacking trastuzumab, HER2-TNM A-ILs exhibited selective toxicity against HER2-positive KPL-4 and SKBR3 cells. Coumarin-6, a fluorescent TNM A surrogate, is encapsulated within anti-HER2 ILs; the resultant ILs have enhanced cellular uptake in KPL-4 and SKBR3 cells when compared with control liposomes. Furthermore, ILs loaded with more Cy5.5 accumulated in KPL-4 mouse tumors. A single HER2-TNM A-IL dose (0.02 mg kg-1) suppressed the growth of HER2-positive KPL-4 mouse tumors without apparent toxicity. This study not only provides a straightforward method for the effective delivery of TNM A against HER2-positive breast tumors but also underscores the potential of IL-based drug delivery systems when employing highly potent cytotoxins as payloads.
Collapse
Affiliation(s)
- Xueqiong Feng
- Xiangya International Academy of Translational MedicineCentral South UniversityChangshaHunan410013China
| | - Zhongqing Wen
- Xiangya International Academy of Translational MedicineCentral South UniversityChangshaHunan410013China
| | - Xiangcheng Zhu
- Xiangya International Academy of Translational MedicineCentral South UniversityChangshaHunan410013China
- Hunan Engineering Research Center of Combinatorial Biosynthesis and Natural Product Drug DiscoverChangshaHunan410011China
| | - Xiaohui Yan
- State Key Laboratory of Component‐based Chinese MedicineTianjin University of Traditional Chinese MedicineTianjin301617China
| | - Yanwen Duan
- Xiangya International Academy of Translational MedicineCentral South UniversityChangshaHunan410013China
- Hunan Engineering Research Center of Combinatorial Biosynthesis and Natural Product Drug DiscoverChangshaHunan410011China
- National Engineering Research Center of Combinatorial Biosynthesis for Drug DiscoveryChangshaHunan410011China
| | - Yong Huang
- Xiangya International Academy of Translational MedicineCentral South UniversityChangshaHunan410013China
- National Engineering Research Center of Combinatorial Biosynthesis for Drug DiscoveryChangshaHunan410011China
- Institute of Health and MedicineHefei Comprehensive National Science CenterHefeiAnhui230093China
| |
Collapse
|
4
|
Iannotta D, A A, Lai A, Nair S, Koifman N, Lappas M, Salomon C, Wolfram J. Chemically-Induced Lipoprotein Breakdown for Improved Extracellular Vesicle Purification. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2307240. [PMID: 38100284 DOI: 10.1002/smll.202307240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 11/08/2023] [Indexed: 12/17/2023]
Abstract
Extracellular vesicles (EVs) are nanosized biomolecular packages involved in intercellular communication. EVs are released by all cells, making them broadly applicable as therapeutic, diagnostic, and mechanistic components in (patho)physiology. Sample purity is critical for correctly attributing observed effects to EVs and for maximizing therapeutic and diagnostic performance. Lipoprotein contaminants represent a major challenge for sample purity. Lipoproteins are approximately six orders of magnitude more abundant in the blood circulation and overlap in size, shape, and density with EVs. This study represents the first example of an EV purification method based on the chemically-induced breakdown of lipoproteins. Specifically, a styrene-maleic acid (SMA) copolymer is used to selectively breakdown lipoproteins, enabling subsequent size-based separation of the breakdown products from plasma EVs. The use of the polymer followed by tangential flow filtration or size-exclusion chromatography results in improved EV yield, preservation of EV morphology, increased EV markers, and reduced contaminant markers. SMA-based EV purification enables improved fluorescent labeling, reduces interactions with macrophages, and enhances accuracy, sensitivity, and specificity to detect EV biomarkers, indicating benefits for various downstream applications. In conclusion, SMA is a simple and effective method to improve the purity and yield of plasma-derived EVs, which favorably impacts downstream applications.
Collapse
Affiliation(s)
- Dalila Iannotta
- School of Chemical Engineering, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Amruta A
- School of Chemical Engineering, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Andrew Lai
- Translational Extracellular Vesicles in Obstetrics and Gynae-Oncology Group, Faculty of Medicine, University of Queensland Centre for Clinical Research, Royal Brisbane and Women's Hospital, The University of Queensland, Brisbane, QLD, 4029, Australia
| | - Soumyalekshmi Nair
- Translational Extracellular Vesicles in Obstetrics and Gynae-Oncology Group, Faculty of Medicine, University of Queensland Centre for Clinical Research, Royal Brisbane and Women's Hospital, The University of Queensland, Brisbane, QLD, 4029, Australia
| | - Na'ama Koifman
- Centre for Microscopy and Microanalysis, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Martha Lappas
- University of Melbourne, Department of Obstetrics and Gynaecology, Australia, and Mercy Hospital for Women, 163 Studley Road, Heidelberg, Victoria, 3084, Australia
| | - Carlos Salomon
- Translational Extracellular Vesicles in Obstetrics and Gynae-Oncology Group, Faculty of Medicine, University of Queensland Centre for Clinical Research, Royal Brisbane and Women's Hospital, The University of Queensland, Brisbane, QLD, 4029, Australia
| | - Joy Wolfram
- School of Chemical Engineering, The University of Queensland, Brisbane, QLD, 4072, Australia
- Australian Institute of Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD, 4072, Australia
- Department of Nanomedicine, Houston Methodist Research Institute, Houston, TX, 77030, USA
| |
Collapse
|
5
|
Gui C, Kalkreuter E, Liu YC, Li G, Steele AD, Yang D, Chang C, Shen B. Cofactorless oxygenases guide anthraquinone-fused enediyne biosynthesis. Nat Chem Biol 2024; 20:243-250. [PMID: 37945897 DOI: 10.1038/s41589-023-01476-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 10/10/2023] [Indexed: 11/12/2023]
Abstract
The anthraquinone-fused enediynes (AFEs) combine an anthraquinone moiety and a ten-membered enediyne core capable of generating a cytotoxic diradical species. AFE cyclization is triggered by opening the F-ring epoxide, which is also the site of the most structural diversity. Previous studies of tiancimycin A, a heavily modified AFE, have revealed a cryptic aldehyde blocking installation of the epoxide, and no unassigned oxidases could be predicted within the tnm biosynthetic gene cluster. Here we identify two consecutively acting cofactorless oxygenases derived from methyltransferase and α/β-hydrolase protein folds, TnmJ and TnmK2, respectively, that are responsible for F-ring tailoring in tiancimycin biosynthesis by comparative genomics. Further biochemical and structural characterizations reveal that the electron-rich AFE anthraquinone moiety assists in catalyzing deformylation, epoxidation and oxidative ring cleavage without exogenous cofactors. These enzymes therefore fill important knowledge gaps for the biosynthesis of this class of molecules and the underappreciated family of cofactorless oxygenases.
Collapse
Affiliation(s)
- Chun Gui
- Department of Chemistry, The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, University of Florida, Jupiter, FL, USA
| | - Edward Kalkreuter
- Department of Chemistry, The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, University of Florida, Jupiter, FL, USA
| | - Yu-Chen Liu
- Department of Chemistry, The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, University of Florida, Jupiter, FL, USA
| | - Gengnan Li
- Department of Chemistry, The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, University of Florida, Jupiter, FL, USA
| | - Andrew D Steele
- Department of Chemistry, The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, University of Florida, Jupiter, FL, USA
| | - Dong Yang
- Department of Chemistry, The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, University of Florida, Jupiter, FL, USA
- Natural Products Discovery Center, The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, University of Florida, Jupiter, FL, USA
| | - Changsoo Chang
- Structural Biology Center, X-ray Science Division, Argonne National Laboratory, Lemont, IL, USA
| | - Ben Shen
- Department of Chemistry, The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, University of Florida, Jupiter, FL, USA.
- Natural Products Discovery Center, The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, University of Florida, Jupiter, FL, USA.
- Department of Molecular Medicine, The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, University of Florida, Jupiter, FL, USA.
| |
Collapse
|
6
|
Gupta B, Sharma PK, Malviya R. Carbon Nanotubes for Targeted Therapy: Safety, Efficacy, Feasibility and Regulatory Aspects. Curr Pharm Des 2024; 30:81-99. [PMID: 38185892 DOI: 10.2174/0113816128282085231226065407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 11/28/2023] [Indexed: 01/09/2024]
Abstract
It is crucial that novel and efficient drug delivery techniques be created in order to improve the pharmacological profiles of a wide variety of classes of medicinal compounds. Carbon nanotubes (CNTs) have recently come to the forefront as an innovative and very effective technique for transporting and translocating medicinal compounds. CNTs were suggested and aggressively researched as multifunctional novel transporters designed for targeted pharmaceutical distribution and used in diagnosis. CNTs can act as vectors for direct administration of pharmaceuticals, particularly chemotherapeutic medications. Multi-walled CNTs make up the great majority of CNT transporters, and these CNTs were used in techniques to target cancerous cells. It is possible to employ Carbon nanotubes (CNTs) to transport bioactive peptides, proteins, nucleic acids, and medicines by functionalizing them with these substances. Due to their low toxicity and absence of immunogenicity, carbon nanotubes are not immunogenic. Ammonium-functionalized carbon nanotubes are also attractive vectors for gene-encoding nucleic acids. CNTs that have been coupled with antigenic peptides have the potential to be developed into a novel and efficient approach for the use of synthetic vaccines. CNTs bring up an enormous number of new avenues for future medicine development depending on targets within cells, which have until now been difficult to access. This review focuses on the numerous applications of various CNT types used as medicine transport systems and on the utilization of CNTs for therapeutical purposes.
Collapse
Affiliation(s)
- Babita Gupta
- Department of Pharmacy, School of Medical and Allied Sciences, Galgotias University, Greater Noida, Uttar Pradesh, India
| | - Pramod Kumar Sharma
- Department of Pharmacy, School of Medical and Allied Sciences, Galgotias University, Greater Noida, Uttar Pradesh, India
| | - Rishabha Malviya
- Department of Pharmacy, School of Medical and Allied Sciences, Galgotias University, Greater Noida, Uttar Pradesh, India
| |
Collapse
|
7
|
Pal P, Alley JR, Cohen DR, Townsend CA. Dynemicin A Derivatives as Potential Cancer Chemotherapeutics by Mutasynthesis. Helv Chim Acta 2023; 106:e202300123. [PMID: 39308597 PMCID: PMC11415272 DOI: 10.1002/hlca.202300123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 10/19/2023] [Indexed: 09/25/2024]
Abstract
The enediyne antitumor antibiotics have remarkable structures and exhibit potent DNA cleavage properties that have inspired continued interest as cancer therapeutics. Their complex structures and high reactivity, however, pose formidable challenges to their production and development in the clinic. We report here proof-of-concept studies using a mutasynthesis strategy to combine chemical synthesis of select modifications to a key iodoanthracene-γ-thiolactone intermediate in the biosynthesis of dynemicin A and all other known anthraquinone-fused enediynes (AFEs). By chemical complementation of a mutant bacterial producer that is incapable of synthesizing this essential building block, we show that derivatives of dynemicin can be prepared substituted in the A-ring of the anthraquinone motif. In the absence of competition from native production of this intermediate, the most efficient utilization of these externally-supplied structural analogues for precursor-directed biosynthesis becomes possible. To achieve this goal, we describe the required Δorf15 blocked mutant and a general synthetic route to a library of iodoanthracene structural variants. Their successful incorporation opens the door to enhancing DNA binding and tuning the bioreductive activation of the modified enediynes for DNA cleavage.
Collapse
Affiliation(s)
- Paramita Pal
- Department of Chemistry, Remsen Hall, The Johns Hopkins University, 3400 North Charles St., Baltimore, MD 21218, USA
| | - Jamie R Alley
- Department of Chemistry, Remsen Hall, The Johns Hopkins University, 3400 North Charles St., Baltimore, MD 21218, USA
| | - Douglas R Cohen
- Department of Chemistry, Remsen Hall, The Johns Hopkins University, 3400 North Charles St., Baltimore, MD 21218, USA
| | - Craig A Townsend
- Department of Chemistry, Remsen Hall, The Johns Hopkins University, 3400 North Charles St., Baltimore, MD 21218, USA
| |
Collapse
|
8
|
Junyaprasert VB, Thummarati P. Innovative Design of Targeted Nanoparticles: Polymer-Drug Conjugates for Enhanced Cancer Therapy. Pharmaceutics 2023; 15:2216. [PMID: 37765185 PMCID: PMC10537251 DOI: 10.3390/pharmaceutics15092216] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Revised: 08/10/2023] [Accepted: 08/18/2023] [Indexed: 09/29/2023] Open
Abstract
Polymer-drug conjugates (PDCs) have shown great promise in enhancing the efficacy and safety of cancer therapy. These conjugates combine the advantageous properties of both polymers and drugs, leading to improved pharmacokinetics, controlled drug release, and targeted delivery to tumor tissues. This review provides a comprehensive overview of recent developments in PDCs for cancer therapy. First, various types of polymers used in these conjugates are discussed, including synthetic polymers, such as poly(↋-caprolactone) (PCL), D-α-tocopheryl polyethylene glycol (TPGS), and polyethylene glycol (PEG), as well as natural polymers such as hyaluronic acid (HA). The choice of polymer is crucial to achieving desired properties, such as stability, biocompatibility, and controlled drug release. Subsequently, the strategies for conjugating drugs to polymers are explored, including covalent bonding, which enables a stable linkage between the polymer and the drug, ensuring controlled release and minimizing premature drug release. The use of polymers can extend the circulation time of the drug, facilitating enhanced accumulation within tumor tissues through the enhanced permeability and retention (EPR) effect. This, in turn, results in improved drug efficacy and reduced systemic toxicity. Moreover, the importance of tumor-targeting ligands in PDCs is highlighted. Various ligands, such as antibodies, peptides, aptamers, folic acid, herceptin, and HA, can be incorporated into conjugates to selectively deliver the drug to tumor cells, reducing off-target effects and improving therapeutic outcomes. In conclusion, PDCs have emerged as a versatile and effective approach to cancer therapy. Their ability to combine the advantages of polymers and drugs offers enhanced drug delivery, controlled release, and targeted treatment, thereby improving the overall efficacy and safety of cancer therapies. Further research and development in this field has great potential to advance personalized cancer treatment options.
Collapse
|
9
|
Yang Y, Cheng N, Luo Q, Shao N, Ma X, Chen J, Luo L, Xiao Z. How Nanotherapeutic Platforms Play a Key Role in Glioma? A Comprehensive Review of Literature. Int J Nanomedicine 2023; 18:3663-3694. [PMID: 37427368 PMCID: PMC10327925 DOI: 10.2147/ijn.s414736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 06/15/2023] [Indexed: 07/11/2023] Open
Abstract
Glioblastoma (GBM), a highly aggressive form of brain cancer, is considered one of the deadliest cancers, and even with the most advanced medical treatments, most affected patients have a poor prognosis. However, recent advances in nanotechnology offer promising avenues for the development of versatile therapeutic and diagnostic nanoplatforms that can deliver drugs to brain tumor sites through the blood-brain barrier (BBB). Despite these breakthroughs, the use of nanoplatforms in GBM therapy has been a subject of great controversy due to concerns over the biosafety of these nanoplatforms. In recent years, biomimetic nanoplatforms have gained unprecedented attention in the biomedical field. With advantages such as extended circulation times, and improved immune evasion and active targeting compared to conventional nanosystems, bionanoparticles have shown great potential for use in biomedical applications. In this prospective article, we endeavor to comprehensively review the application of bionanomaterials in the treatment of glioma, focusing on the rational design of multifunctional nanoplatforms to facilitate BBB infiltration, promote efficient accumulation in the tumor, enable precise tumor imaging, and achieve remarkable tumor suppression. Furthermore, we discuss the challenges and future trends in this field. Through careful design and optimization of nanoplatforms, researchers are paving the way toward safer and more effective therapies for GBM patients. The development of biomimetic nanoplatform applications for glioma therapy is a promising avenue for precision medicine, which could ultimately improve patient outcomes and quality of life.
Collapse
Affiliation(s)
- Yongqing Yang
- The Guangzhou Key Laboratory of Molecular and Functional Imaging for Clinical Translation, The First Affiliated Hospital of Jinan University, Guangzhou, 510632, People’s Republic of China
| | - Nianlan Cheng
- The Guangzhou Key Laboratory of Molecular and Functional Imaging for Clinical Translation, The First Affiliated Hospital of Jinan University, Guangzhou, 510632, People’s Republic of China
| | - Qiao Luo
- The Guangzhou Key Laboratory of Molecular and Functional Imaging for Clinical Translation, The First Affiliated Hospital of Jinan University, Guangzhou, 510632, People’s Republic of China
| | - Ni Shao
- The Guangzhou Key Laboratory of Molecular and Functional Imaging for Clinical Translation, The First Affiliated Hospital of Jinan University, Guangzhou, 510632, People’s Republic of China
| | - Xiaocong Ma
- The Guangzhou Key Laboratory of Molecular and Functional Imaging for Clinical Translation, The First Affiliated Hospital of Jinan University, Guangzhou, 510632, People’s Republic of China
| | - Jifeng Chen
- The Guangzhou Key Laboratory of Molecular and Functional Imaging for Clinical Translation, The First Affiliated Hospital of Jinan University, Guangzhou, 510632, People’s Republic of China
| | - Liangping Luo
- The Guangzhou Key Laboratory of Molecular and Functional Imaging for Clinical Translation, The First Affiliated Hospital of Jinan University, Guangzhou, 510632, People’s Republic of China
| | - Zeyu Xiao
- The Guangzhou Key Laboratory of Molecular and Functional Imaging for Clinical Translation, The First Affiliated Hospital of Jinan University, Guangzhou, 510632, People’s Republic of China
| |
Collapse
|
10
|
Shakiba D, Genin GM, Zustiak SP. Mechanobiology of cancer cell responsiveness to chemotherapy and immunotherapy: Mechanistic insights and biomaterial platforms. Adv Drug Deliv Rev 2023; 196:114771. [PMID: 36889646 PMCID: PMC10133187 DOI: 10.1016/j.addr.2023.114771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 12/17/2022] [Accepted: 03/03/2023] [Indexed: 03/08/2023]
Abstract
Mechanical forces are central to how cancer treatments such as chemotherapeutics and immunotherapies interact with cells and tissues. At the simplest level, electrostatic forces underlie the binding events that are critical to therapeutic function. However, a growing body of literature points to mechanical factors that also affect whether a drug or an immune cell can reach a target, and to interactions between a cell and its environment affecting therapeutic efficacy. These factors affect cell processes ranging from cytoskeletal and extracellular matrix remodeling to transduction of signals by the nucleus to metastasis of cells. This review presents and critiques the state of the art of our understanding of how mechanobiology impacts drug and immunotherapy resistance and responsiveness, and of the in vitro systems that have been of value in the discovery of these effects.
Collapse
Affiliation(s)
- Delaram Shakiba
- NSF Science and Technology Center for Engineering Mechanobiology, Washington University, St. Louis, MO, USA; Department of Mechanical Engineering and Materials Science, Washington University, St. Louis, MO, USA
| | - Guy M Genin
- NSF Science and Technology Center for Engineering Mechanobiology, Washington University, St. Louis, MO, USA; Department of Mechanical Engineering and Materials Science, Washington University, St. Louis, MO, USA.
| | - Silviya P Zustiak
- NSF Science and Technology Center for Engineering Mechanobiology, Washington University, St. Louis, MO, USA; Department of Biomedical Engineering, School of Science and Engineering, Saint Louis University, St. Louis, MO, USA.
| |
Collapse
|
11
|
Shashni B, Tamaoki J, Kobayashi M, Nagasaki Y. Design of a new self-assembling antioxidant nanomedicine to ameliorate oxidative stress in zebrafish embryos. Acta Biomater 2023; 159:367-381. [PMID: 36640953 DOI: 10.1016/j.actbio.2023.01.012] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Revised: 12/21/2022] [Accepted: 01/05/2023] [Indexed: 01/13/2023]
Abstract
Oxidative stress, which is a persistent state of elevated reactive oxygen species (ROS), is implicated in the pathogeneses of several diseases, making antioxidant-based therapeutics the aptest intervention. Nevertheless, the clinical failure of conventional low-molecular-weight (LMW) antioxidants in oxidative stress-related diseases to yield favorable therapeutic outcomes and an increased mortality rate attributable to their poor pharmacokinetic characteristics, necessitates the development of alternative therapeutics. In light of this, we designed and synthesized a new amphiphilic polymer functionalized with a clinically safe base polymer of poly(styrene-co-maleic anhydride) copolymer conjugated with the LMW pleiotropic antioxidant TEMPO (a potent antioxidant) and biocompatible poly(ethylene glycol) (TEMPO-installed PSMA-g-PEG), which self-assembles into nano-sized micelles (SMAPoTN) under physiological conditions. We investigated its safety and antioxidant ability using zebrafish models. Common LMW antioxidants, such as 4-hydroxy-TEMPO (TEMPOL), vitamin C, N-acetyl-L-cysteine, and edaravone exposure induced phenotypic distortions, a manifestation of developmental toxicity, and resulted in high lethality in zebrafish larvae. LMW TEMPOL also adversely affected embryo hatchability, induced arrhythmia and cardiac edema, and failed to protect against oxidative stress. In contrast, exposure of zebrafish embryos to SMAPoTN increased the hatchability, protected embryos against various inducers of oxidative stress, and did not induce any phenotypic alterations or discernible toxicity. Taken together, we conclude that SMAPoTN surpasses LMW TEMPOL in terms of the ability to protect zebrafish, attributable to efficient ROS scavenging without perturbing normal redox homeostasis. These results imply that SMAPoTN can be used as a therapeutic intervention against various oxidative stress-induced diseases. STATEMENT OF SIGNIFICANCE: Failure of low molecular weight (LMW) antioxidants to improve therapeutic index in various oxidative stress-related pathogenesis, attributable to their poor pharmacokinetic characteristics, greatly limits their clinical translation. To overcome this limitation, we developed a self-assembling antioxidant nanoparticle (SMAPoTN) comprised of amphiphilic polymer; poly(styrene-co-maleic anhydride) conjugated with TEMPO as an antioxidant and biocompatible poly(ethylene glycol). Preliminary studies carried out in the in vivo models of zebrafish embryos confirmed that exposure of LMW antioxidant resulted in acute developmental toxicity, high lethality, and failure to rescue embryos against oxidative stress inducers. In contrast, SMAPoTN did not exert discernible toxicity and significantly improved their survival under oxidative stress. Our finding establishes antioxidant nanoparticles as more suitable therapeutic intervention for oxidative stress-induced diseases than LMW antioxidants.
Collapse
Affiliation(s)
- Babita Shashni
- Faculty of Pure and Applied Sciences, University of Tsukuba, Tennoudai 1-1-1, Tsukuba, Ibaraki 305-8573, Japan
| | - Junya Tamaoki
- Faculty of Medicine, University of Tsukuba, Tennoudai 1-1-1, Tsukuba, Ibaraki 305-8575, Japan
| | - Makoto Kobayashi
- Faculty of Medicine, University of Tsukuba, Tennoudai 1-1-1, Tsukuba, Ibaraki 305-8575, Japan
| | - Yukio Nagasaki
- Faculty of Pure and Applied Sciences, University of Tsukuba, Tennoudai 1-1-1, Tsukuba, Ibaraki 305-8573, Japan; Master's Program in Medical Sciences, University of Tsukuba, Tennoudai 1-1-1, Tsukuba, Ibaraki 305-8573, Japan; Center for Research in Isotopes and Environmental Dynamics, University of Tsukuba, Tennoudai 1-1-1, Tsukuba, Ibaraki 305-8573, Japan.
| |
Collapse
|
12
|
Firoozbahr M, Kingshott P, Palombo EA, Zaferanloo B. Recent Advances in Using Natural Antibacterial Additives in Bioactive Wound Dressings. Pharmaceutics 2023; 15:644. [PMID: 36839966 PMCID: PMC10004169 DOI: 10.3390/pharmaceutics15020644] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 02/07/2023] [Accepted: 02/09/2023] [Indexed: 02/17/2023] Open
Abstract
Wound care is a global health issue with a financial burden of up to US $96.8 billion annually in the USA alone. Chronic non-healing wounds which show delayed and incomplete healing are especially problematic. Although there are more than 3000 dressing types in the wound management market, new developments in more efficient wound dressings will require innovative approaches such as embedding antibacterial additives into wound-dressing materials. The lack of novel antibacterial agents and the misuse of current antibiotics have caused an increase in antimicrobial resistance (AMR) which is estimated to cause 10 million deaths by 2050 worldwide. These ongoing challenges clearly indicate an urgent need for developing new antibacterial additives in wound dressings targeting microbial pathogens. Natural products and their derivatives have long been a significant source of pharmaceuticals against AMR. Scrutinising the data of newly approved drugs has identified plants as one of the biggest and most important sources in the development of novel antibacterial drugs. Some of the plant-based antibacterial additives, such as essential oils and plant extracts, have been previously used in wound dressings; however, there is another source of plant-derived antibacterial additives, i.e., those produced by symbiotic endophytic fungi, that show great potential in wound dressing applications. Endophytes represent a novel, natural, and sustainable source of bioactive compounds for therapeutic applications, including as efficient antibacterial additives for chronic wound dressings. This review examines and appraises recent developments in bioactive wound dressings that incorporate natural products as antibacterial agents as well as advances in endophyte research that show great potential in treating chronic wounds.
Collapse
Affiliation(s)
- Meysam Firoozbahr
- Department of Chemistry and Biotechnology, School of Science, Computing and Engineering Technologies, Swinburne University of Technology, Hawthorn, VIC 3122, Australia
| | - Peter Kingshott
- Department of Chemistry and Biotechnology, School of Science, Computing and Engineering Technologies, Swinburne University of Technology, Hawthorn, VIC 3122, Australia
- ARC Training Centre Training Centre in Surface Engineering for Advanced Materials (SEAM), School of Engineering, Swinburne University of Technology, Hawthorn, VIC 3122, Australia
| | - Enzo A. Palombo
- Department of Chemistry and Biotechnology, School of Science, Computing and Engineering Technologies, Swinburne University of Technology, Hawthorn, VIC 3122, Australia
| | - Bita Zaferanloo
- Department of Chemistry and Biotechnology, School of Science, Computing and Engineering Technologies, Swinburne University of Technology, Hawthorn, VIC 3122, Australia
| |
Collapse
|
13
|
Selective COX-2 Inhibitor Etoricoxib's Liposomal Formulation Attenuates M2 Polarization of TAMs and Enhances its Anti-metastatic Potential. Pharm Res 2023; 40:551-566. [PMID: 36670330 DOI: 10.1007/s11095-022-03444-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Accepted: 11/20/2022] [Indexed: 01/21/2023]
Abstract
INTRODUCTION COX-2 inhibition in pro-tumoral M2 polarization of Tumor-Associated Macrophages (TAMs) underscore the improved prognosis and response to cancer therapy. Thus, etoricoxib, a COX-2 inhibiting NSAID drug is highly effective against tumorigenesis, but its compromised solubility and associated hepatotoxicity, and cardiotoxicity limit its clinical translation. OBJECTIVE In view of the consequences, the proposed study entails the development of a liposomal formulation for etoricoxib and evaluates its anticancer potential. METHODS AND RESULT Etoricoxib loaded liposome was prepared by thin layer hydration method and characterized as a nearly monodisperse system with particle size (91.64 nm), zeta potential (-44.5 mV), drug loading (17.22%), and entrapment efficiency (94.76%). The developed formulation was administered subcutaneously into the orthotopic 4T1/Balb/c mice model. Its treatment significantly reduced tumor size and skewed M2 polarization of TAMs to a greater extent against free etoricoxib. Furthermore, Tumor tissues analyzed through immunoblotting study confirmed the reduction in Akt phosphorylation at Thr308 residue and pro-tumoral VEGF, MMP-9, and MMP-2 proteins; Moreover, histology studies and microCT analysis of bones revealed the enhanced anti-metastatic potential of etoricoxib delivered through developed formulation against free etoricoxib. CONCLUSION As an epilogue, the developed formulation efficiently delivers poorly soluble etoricoxib, enhances its therapeutic potential as an anti-tumor and anti-metastatic agent, and directs explorative research for clinical translation.
Collapse
|
14
|
Xu J, Song M, Fang Z, Zheng L, Huang X, Liu K. Applications and challenges of ultra-small particle size nanoparticles in tumor therapy. J Control Release 2023; 353:699-712. [PMID: 36521689 DOI: 10.1016/j.jconrel.2022.12.028] [Citation(s) in RCA: 32] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 12/08/2022] [Accepted: 12/10/2022] [Indexed: 12/23/2022]
Abstract
With the development of nanotechnology, nanomedicines are widely used in tumor therapy. However, biological barriers in the delivery of nanoparticles still limit their application in tumor therapy. As one of the most fundamental properties of nanoparticles, particle size plays a crucial role in the process of the nanoparticles delivery process. It is difficult for large size nanoparticles with fixed size to achieve satisfactory outcomes in every process. In order to overcome the poor penetration of larger size, nanoparticles with ultra-small particle size are proposed, which are more conducive to deep tumor penetration and uniform drug distribution. In this review, the latest progresses and advantages of ultra-small nanoparticles are systematically summarized, the perspectives and challenges of ultra-small nanoparticles strategy for cancer treatment are also discussed.
Collapse
Affiliation(s)
- Jiaqi Xu
- Department of Biopharmaceutical Science, Shanghai Ocean University, Hucheng Ring Road, Shanghai 201306, China
| | - Mengdi Song
- Department of Biopharmaceutical Science, Shanghai Ocean University, Hucheng Ring Road, Shanghai 201306, China
| | - Zhou Fang
- Department of Biopharmaceutical Science, Shanghai Ocean University, Hucheng Ring Road, Shanghai 201306, China
| | - Lanxi Zheng
- Department of Biopharmaceutical Science, Shanghai Ocean University, Hucheng Ring Road, Shanghai 201306, China
| | - Xiaoya Huang
- Department of Biopharmaceutical Science, Shanghai Ocean University, Hucheng Ring Road, Shanghai 201306, China
| | - Kehai Liu
- Department of Biopharmaceutical Science, Shanghai Ocean University, Hucheng Ring Road, Shanghai 201306, China.
| |
Collapse
|
15
|
Islam W, Tsutsuki H, Ono K, Harada A, Shinozaki K, Niidome T, Fang J, Sawa T. Structural Determination of the Nanocomplex of Borate with Styrene-Maleic Acid Copolymer-Conjugated Glucosamine Used as a Multifunctional Anticancer Drug. ACS APPLIED BIO MATERIALS 2022; 5:5953-5964. [PMID: 36480740 DOI: 10.1021/acsabm.2c00883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The development of effective anticancer drugs is essential for chemotherapy that specifically targets cancer tissues. We recently synthesized a multifunctional water-soluble anticancer polymer drug consisting of styrene-maleic acid copolymer (SMA) conjugated with glucosamine and boric acid (BA) (SGB complex). It demonstrated about 10 times higher tumor-selective accumulation compared with accumulation in normal tissues because of the enhanced permeability and retention effect, and it inhibited tumor growth via glycolysis inhibition, mitochondrial damage, and thermal neutron irradiation. Gaining insight into the anticancer effects of this SGB complex requires a determination of its structure. We therefore investigated the chemical structure of the SGB complex by means of nuclear magnetic resonance, infrared (IR) spectroscopy, and liquid chromatography-mass spectrometry. To establish the chemical structure of the SGB complex, we synthesized a simple model compound─maleic acid-glucosamine (MAG) conjugate─by using a maleic anhydride (MA) monomer unit instead of the SMA polymer. We obtained two MAG-BA complexes (MAGB) with molecular weights of 325 and 343 after the MAG reaction with BA. We confirmed, by using IR spectroscopy, that MAGB formed a stable complex via an amide bond between MA and glucosamine and that BA bound to glucosamine via a diol bond. As a result of this chemical design, identified via analysis of MAGB, the SGB complex can release BA and demonstrate toxicity to cancer cells through inhibition of lactate secretion in mild hypoxia that mimics the tumor microenvironment. For clinical application of the SGB complex, we confirmed that this complex is stable in the presence of serum. These findings confirm that our design of the SGB complex has various advantages in targeting solid cancers and exerting therapeutic effects when combined with neutron irradiation.
Collapse
Affiliation(s)
- Waliul Islam
- Faculty of Advanced Science and Technology, Kumamoto University, Kumamoto 860-8555, Japan.,Department of Microbiology, Graduate School of Medical Sciences, Kumamoto University, Kumamoto 860-8556, Japan.,BioDynamics Research Foundation, Kumamoto 862-0954, Japan
| | - Hiroyasu Tsutsuki
- Department of Microbiology, Graduate School of Medical Sciences, Kumamoto University, Kumamoto 860-8556, Japan
| | - Katsuhiko Ono
- Department of Microbiology, Graduate School of Medical Sciences, Kumamoto University, Kumamoto 860-8556, Japan
| | - Ayaka Harada
- Faculty of Advanced Science and Technology, Kumamoto University, Kumamoto 860-8555, Japan
| | - Kozo Shinozaki
- BioDynamics Research Foundation, Kumamoto 862-0954, Japan
| | - Takuro Niidome
- Faculty of Advanced Science and Technology, Kumamoto University, Kumamoto 860-8555, Japan
| | - Jun Fang
- Faculty of Pharmaceutical Sciences, Sojo University, Kumamoto 860-0082, Japan
| | - Tomohiro Sawa
- Department of Microbiology, Graduate School of Medical Sciences, Kumamoto University, Kumamoto 860-8556, Japan
| |
Collapse
|
16
|
Narayanan KB, Bhaskar R, Han SS. Recent Advances in the Biomedical Applications of Functionalized Nanogels. Pharmaceutics 2022; 14:2832. [PMID: 36559325 PMCID: PMC9782855 DOI: 10.3390/pharmaceutics14122832] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 12/14/2022] [Accepted: 12/15/2022] [Indexed: 12/23/2022] Open
Abstract
Nanomaterials have been extensively used in several applications in the past few decades related to biomedicine and healthcare. Among them, nanogels (NGs) have emerged as an important nanoplatform with the properties of both hydrogels and nanoparticles for the controlled/sustained delivery of chemo drugs, nucleic acids, or other bioactive molecules for therapeutic or diagnostic purposes. In the recent past, significant research efforts have been invested in synthesizing NGs through various synthetic methodologies such as free radical polymerization, reversible addition-fragmentation chain-transfer method (RAFT) and atom transfer radical polymerization (ATRP), as well as emulsion techniques. With further polymeric functionalizations using activated esters, thiol-ene/yne processes, imines/oximes formation, cycloadditions, nucleophilic addition reactions of isocyanates, ring-opening, and multicomponent reactions were used to obtain functionalized NGs for targeted delivery of drug and other compounds. NGs are particularly intriguing for use in the areas of diagnosis, analytics, and biomedicine due to their nanodimensionality, material characteristics, physiological stability, tunable multi-functionality, and biocompatibility. Numerous NGs with a wide range of functionalities and various external/internal stimuli-responsive modalities have been possible with novel synthetic reliable methodologies. Such continuous development of innovative, intelligent materials with novel characteristics is crucial for nanomedicine for next-generation biomedical applications. This paper reviews the synthesis and various functionalization strategies of NGs with a focus on the recent advances in different biomedical applications of these surface modified/functionalized single-/dual-/multi-responsive NGs, with various active targeting moieties, in the fields of cancer theranostics, immunotherapy, antimicrobial/antiviral, antigen presentation for the vaccine, sensing, wound healing, thrombolysis, tissue engineering, and regenerative medicine.
Collapse
Affiliation(s)
- Kannan Badri Narayanan
- School of Chemical Engineering, Yeungnam University, 280 Daehak-Ro, Gyeongsan 38541, Republic of Korea
- Research Institute of Cell Culture, Yeungnam University, 280 Daehak-Ro, Gyeongsan 38541, Republic of Korea
| | - Rakesh Bhaskar
- School of Chemical Engineering, Yeungnam University, 280 Daehak-Ro, Gyeongsan 38541, Republic of Korea
| | - Sung Soo Han
- School of Chemical Engineering, Yeungnam University, 280 Daehak-Ro, Gyeongsan 38541, Republic of Korea
- Research Institute of Cell Culture, Yeungnam University, 280 Daehak-Ro, Gyeongsan 38541, Republic of Korea
| |
Collapse
|
17
|
Enhanced Permeability and Retention Effect as a Ubiquitous and Epoch-Making Phenomenon for the Selective Drug Targeting of Solid Tumors. J Pers Med 2022; 12:jpm12121964. [PMID: 36556185 PMCID: PMC9784116 DOI: 10.3390/jpm12121964] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Revised: 11/22/2022] [Accepted: 11/24/2022] [Indexed: 11/29/2022] Open
Abstract
In 1979, development of the first polymer drug SMANCS [styrene-co-maleic acid (SMA) copolymer conjugated to neocarzinostatin (NCS)] by Maeda and colleagues was a breakthrough in the cancer field. When SMANCS was administered to mice, drug accumulation in tumors was markedly increased compared with accumulation of the parental drug NCS. This momentous result led to discovery of the enhanced permeability and retention effect (EPR effect) in 1986. Later, the EPR effect became known worldwide, especially in nanomedicine, and is still believed to be a universal mechanism for tumor-selective accumulation of nanomedicines. Some research groups recently characterized the EPR effect as a controversial concept and stated that it has not been fully demonstrated in clinical settings, but this erroneous belief is due to non-standard drug design and use of inappropriate tumor models in investigations. Many research groups recently provided solid evidence of the EPR effect in human cancers (e.g., renal and breast), with significant diversity and heterogeneity in various patients. In this review, we focus on the dynamics of the EPR effect and restoring tumor blood flow by using EPR effect enhancers. We also discuss new applications of EPR-based nanomedicine in boron neutron capture therapy and photodynamic therapy for solid tumors.
Collapse
|
18
|
Gui C, Kalkreuter E, Liu YC, Adhikari A, Teijaro CN, Yang D, Chang C, Shen B. Intramolecular C–C Bond Formation Links Anthraquinone and Enediyne Scaffolds in Tiancimycin Biosynthesis. J Am Chem Soc 2022; 144:20452-20462. [DOI: 10.1021/jacs.2c08957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
| | | | | | - Ajeeth Adhikari
- Skaggs Graduate School of Chemical and Biological Sciences, Scripps Research, Jupiter, Florida 33458, United States
| | | | | | - Changsoo Chang
- Structural Biology Center, X-ray Science Division, Argonne National Laboratory, Lemont, Illinois 60439, United States
| | - Ben Shen
- Skaggs Graduate School of Chemical and Biological Sciences, Scripps Research, Jupiter, Florida 33458, United States
| |
Collapse
|
19
|
Lopes C, Cristóvão J, Silvério V, Lino PR, Fonte P. Microfluidic production of mRNA-loaded lipid nanoparticles for vaccine applications. Expert Opin Drug Deliv 2022; 19:1381-1395. [PMID: 36223174 DOI: 10.1080/17425247.2022.2135502] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
INTRODUCTION During past years, lipid nanoparticles (LNPs) have emerged as promising carriers for RNA delivery, with several clinical trials focusing on both infectious diseases and cancer. More recently, the success of messenger RNA (mRNA) vaccines for the treatment of severe diseases such as acute respiratory syndrome coronavirus 2 (SARS-CoV-2), is partially justified by the development of LNPs encapsulating mRNA for efficient cytosolic delivery. AREAS COVERED This review examines the production and formulation of LNPs by using microfluidic devices, the status of mRNA-loaded LNPs therapeutics and explores spray drying process, as a promising dehydration process to enhance LNP stability and provide alternative administration routes. EXPERT OPINION Microfluidic techniques for preparation of LNPs based on organic solvent injection method promotes the generation of stable, uniform, and monodispersed nanoparticles enabling higher encapsulation efficiency. In particular, the application of microfluidics for the fabrication of mRNA-loaded LNPs is based on rapid mixing of small volumes of ethanol solution containing lipids and aqueous solution containing mRNA. Control of operating parameters and formulation has enabled the optimization of nanoparticle physicochemical characteristics and encapsulation efficiency.
Collapse
Affiliation(s)
- Carolina Lopes
- iBB - Institute for Bioengineering and Biosciences, Department of Bioengineering, Instituto Superior Técnico, University of Lisbon, Av. Rovisco Pais, 1049-001 Lisbon, Portugal.,Associate Laboratory i4HB-Institute for Health and Bioeconomy at Instituto Superior Técnico, University of Lisbon, Av. Rovisco Pais, 1049-001 Lisbon, Portugal.,Hovione Farmaciência S.A., R&D Analytical Development, Lumiar Campus, Building R,1649-038 Lisbon, Portugal.,Hovione Farmaciência S.A., R&D Inhalation and Advance Drug Delivery, Lumiar Campus, Building R, 1649-038 Lisbon, Portugal
| | - Joana Cristóvão
- Hovione Farmaciência S.A., R&D Inhalation and Advance Drug Delivery, Lumiar Campus, Building R, 1649-038 Lisbon, Portugal
| | - Vânia Silvério
- Institute of Systems and Computer Engineering for Microsystems and Nanotechnologies, INESC MN, 1000-029 Lisbon, Portugal.,Department of Physics, Instituto Superior Técnico, University of Lisbon, 1049-001 Lisbon, Portugal
| | - Paulo Roque Lino
- Hovione Farmaciência S.A., R&D Inhalation and Advance Drug Delivery, Lumiar Campus, Building R, 1649-038 Lisbon, Portugal
| | - Pedro Fonte
- iBB - Institute for Bioengineering and Biosciences, Department of Bioengineering, Instituto Superior Técnico, University of Lisbon, Av. Rovisco Pais, 1049-001 Lisbon, Portugal.,Associate Laboratory i4HB-Institute for Health and Bioeconomy at Instituto Superior Técnico, University of Lisbon, Av. Rovisco Pais, 1049-001 Lisbon, Portugal.,Center of Marine Sciences (CCMAR), University of Algarve, Gambelas Campus, 8005-139 Faro, Portugal.,Department of Chemistry and Pharmacy, Faculty of Sciences and Technology, University of Algarve, Gambelas Campus, 8005-139 Faro, Portugal
| |
Collapse
|
20
|
Som A, Rosenboom JG, Chandler A, Sheth RA, Wehrenberg-Klee E. Image-guided intratumoral immunotherapy: Developing a clinically practical technology. Adv Drug Deliv Rev 2022; 189:114505. [PMID: 36007674 PMCID: PMC10456124 DOI: 10.1016/j.addr.2022.114505] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Revised: 07/14/2022] [Accepted: 08/17/2022] [Indexed: 02/07/2023]
Abstract
Immunotherapy has revolutionized the contemporary oncology landscape, with durable responses possible across a range of cancer types. However, the majority of cancer patients do not respond to immunotherapy due to numerous immunosuppressive barriers. Efforts to overcome these barriers and increase systemic immunotherapy efficacy have sparked interest in the local intratumoral delivery of immune stimulants to activate the local immune response and subsequently drive systemic tumor immunity. While clinical evaluation of many therapeutic candidates is ongoing, development is hindered by a lack of imaging confirmation of local delivery, insufficient intratumoral drug distribution, and a need for repeated injections. The use of polymeric drug delivery systems, which have been widely used as platforms for both image guidance and controlled drug release, holds promise for delivery of intratumoral immunoadjuvants and the development of an in situ cancer vaccine for patients with metastatic cancer. In this review, we explore the current state of the field for intratumoral delivery and methods for optimizing controlled drug release, as well as practical considerations for drug delivery design to be optimized for clinical image guided delivery particularly by CT and ultrasound.
Collapse
Affiliation(s)
- Avik Som
- Division of Interventional Radiology, Department of Radiology, Massachusetts General Hospital, United States; Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, United States
| | - Jan-Georg Rosenboom
- Division of Interventional Radiology, Department of Radiology, Massachusetts General Hospital, United States; Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, United States; Department of Gastroenterology, Brigham and Women's Hospital, United States
| | - Alana Chandler
- Division of Interventional Radiology, Department of Radiology, Massachusetts General Hospital, United States; Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, United States; Department of Gastroenterology, Brigham and Women's Hospital, United States
| | - Rahul A Sheth
- Department of Interventional Radiology, M.D. Anderson Cancer Center, United States
| | - Eric Wehrenberg-Klee
- Division of Interventional Radiology, Department of Radiology, Massachusetts General Hospital, United States.
| |
Collapse
|
21
|
Bai X, Smith ZL, Wang Y, Butterworth S, Tirella A. Sustained Drug Release from Smart Nanoparticles in Cancer Therapy: A Comprehensive Review. MICROMACHINES 2022; 13:mi13101623. [PMID: 36295976 PMCID: PMC9611581 DOI: 10.3390/mi13101623] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 09/22/2022] [Accepted: 09/22/2022] [Indexed: 05/14/2023]
Abstract
Although nanomedicine has been highly investigated for cancer treatment over the past decades, only a few nanomedicines are currently approved and in the market; making this field poorly represented in clinical applications. Key research gaps that require optimization to successfully translate the use of nanomedicines have been identified, but not addressed; among these, the lack of control of the release pattern of therapeutics is the most important. To solve these issues with currently used nanomedicines (e.g., burst release, systemic release), different strategies for the design and manufacturing of nanomedicines allowing for better control over the therapeutic release, are currently being investigated. The inclusion of stimuli-responsive properties and prolonged drug release have been identified as effective approaches to include in nanomedicine, and are discussed in this paper. Recently, smart sustained release nanoparticles have been successfully designed to safely and efficiently deliver therapeutics with different kinetic profiles, making them promising for many drug delivery applications and in specific for cancer treatment. In this review, the state-of-the-art of smart sustained release nanoparticles is discussed, focusing on the design strategies and performances of polymeric nanotechnologies. A complete list of nanomedicines currently tested in clinical trials and approved nanomedicines for cancer treatment is presented, critically discussing advantages and limitations with respect to the newly developed nanotechnologies and manufacturing methods. By the presented discussion and the highlight of nanomedicine design criteria and current limitations, this review paper could be of high interest to identify key features for the design of release-controlled nanomedicine for cancer treatment.
Collapse
Affiliation(s)
- Xue Bai
- Division of Pharmacy and Optometry, School of Health Science, Faculty of Biology, Medicine and Health, University of Manchester, Oxford Road, Manchester M13 9PT, UK
| | - Zara L. Smith
- Division of Pharmacy and Optometry, School of Health Science, Faculty of Biology, Medicine and Health, University of Manchester, Oxford Road, Manchester M13 9PT, UK
| | - Yuheng Wang
- Division of Pharmacy and Optometry, School of Health Science, Faculty of Biology, Medicine and Health, University of Manchester, Oxford Road, Manchester M13 9PT, UK
| | - Sam Butterworth
- Division of Pharmacy and Optometry, School of Health Science, Faculty of Biology, Medicine and Health, University of Manchester, Oxford Road, Manchester M13 9PT, UK
| | - Annalisa Tirella
- Division of Pharmacy and Optometry, School of Health Science, Faculty of Biology, Medicine and Health, University of Manchester, Oxford Road, Manchester M13 9PT, UK
- BIOtech-Center for Biomedical Technologies, Department of Industrial Engineering, University of Trento, Via delle Regole 101, 38123 Trento, Italy
- Correspondence:
| |
Collapse
|
22
|
Takakura Y, Takahashi Y. Strategies for persistent retention of macromolecules and nanoparticles in the blood circulation. J Control Release 2022; 350:486-493. [PMID: 36029894 DOI: 10.1016/j.jconrel.2022.05.063] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Accepted: 05/23/2022] [Indexed: 12/22/2022]
Abstract
The enhanced permeability and retention (EPR) effect has been the gold standard in developing drug delivery systems for passive tumor targeting. Although the importance of this concept remains unchanged, some controversies have arisen. In this review, various strategies for tumor targeting using macromolecules and nanoparticles based on the EPR effect are discussed from the viewpoint of pharmacokinetics. Overall, such strategies seek to retain therapeutic material in the blood circulation, which is a key factor for successful targeting. Strategies using macromolecules, including antibody-drug conjugates, serum albumin-based delivery systems, PEGylated recombinant proteins, and stealth liposomes as well as nanoparticle-based strategies such as those based on lipid nanoparticles, and polymeric micelles, have been discussed. The feasibility of small extracellular vesicles, a new class of nanosized delivery carriers, is also discussed.
Collapse
Affiliation(s)
- Yoshinobu Takakura
- Department of Biopharmaceutics and Drug Metabolism, Graduate School of Pharmaceutical Sciences, Kyoto University, 46-29 Yoshidashimoadachi-cho, Sakyo-ku, Kyoto 606-8501, Japan.
| | - Yuki Takahashi
- Department of Biopharmaceutics and Drug Metabolism, Graduate School of Pharmaceutical Sciences, Kyoto University, 46-29 Yoshidashimoadachi-cho, Sakyo-ku, Kyoto 606-8501, Japan
| |
Collapse
|
23
|
Nanocomposites by in situ polymerization based on styrene-maleic anhydride copolymer and clay. Polym Bull (Berl) 2022. [DOI: 10.1007/s00289-022-04392-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
24
|
Tu Y, Yao Z, Yang W, Tao S, Li B, Wang Y, Su Z, Li S. Application of Nanoparticles in Tumour Targeted Drug Delivery and Vaccine. FRONTIERS IN NANOTECHNOLOGY 2022. [DOI: 10.3389/fnano.2022.948705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Cancer is a major cause of death worldwide, and nearly 1 in 6 deaths each year is caused by cancer. Traditional cancer treatment strategies cannot completely solve cancer recurrence and metastasis. With the development of nanotechnology, the study of nanoparticles (NPs) has gradually become a hotspot of medical research. NPs have various advantages. NPs exploit the enhanced permeability and retention (EPR) of tumour cells to achieve targeted drug delivery and can be retained in tumours long-term. NPs can be used as a powerful design platform for vaccines as well as immunization enhancers. Liposomes, as organic nanomaterials, are widely used in the preparation of nanodrugs and vaccines. Currently, most of the anticancer drugs that have been approved and entered clinical practice are prepared from lipid materials. However, the current clinical conversion rate of NPs is still extremely low, and the transition of NPs from the laboratory to clinical practice is still a substantial challenge. In this paper, we review the in vivo targeted delivery methods, material characteristics of NPs and the application of NPs in vaccine preparation. The application of nanoliposomes is also emphasized. Furthermore, the challenges and limitations of NPs are briefly discussed.
Collapse
|
25
|
Chaudhry M, Lyon P, Coussios C, Carlisle R. Thermosensitive liposomes: A promising step towards locsalised chemotherapy. Expert Opin Drug Deliv 2022; 19:899-912. [PMID: 35830722 DOI: 10.1080/17425247.2022.2099834] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
INTRODUCTION Many small molecules and biologic therapeutics have been developed for solid tumor therapy. However, the unique physiology of tumors makes the actual delivery of these drugs into the tumor mass inefficient. Such delivery requires transport from blood vessels, across the vasculature and into and through interstitial space within a tumor. This transportation is dependent on the physiochemical properties of the therapeutic agent and the biological properties of the tumour. It was hoped the application of nanoscale drug carrier systems would solve this problem. However, issues with poor tumor accumulation and limited drug release have impeded clinical impact. In response, these carrier systems have been redesigned to be paired with targetable external mechanical stimuli which can trigger much enhanced drug release and deposition. AREAS COVERED The pre-clinical and clinical progress of thermolabile drug carrier systems and the modalities used to trigger the release of their cargo, is assessed. EXPERT OPINION Combined application of mild hyperthermia and heat-responsive liposomal drug carriers has great potential utility. Clinical trials continue to progress this approach and serve to refine the technologies, dosing regimens and exposure parameters that will provide optimal patient benefit.
Collapse
Affiliation(s)
| | - Paul Lyon
- Nuffield Dept of Surgical Sciences, University of Oxford, Oxford, UK.,Department of Radiology, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - Constantin Coussios
- Institute of Biomedical Engineering, Engineering Science, University of Oxford, Oxford, UK
| | - Robert Carlisle
- Institute of Biomedical Engineering, Engineering Science, University of Oxford, Oxford, UK
| |
Collapse
|
26
|
Zi Y, Yang K, He J, Wu Z, Liu J, Zhang W. Strategies to enhance drug delivery to solid tumors by harnessing the EPR effects and alternative targeting mechanisms. Adv Drug Deliv Rev 2022; 188:114449. [PMID: 35835353 DOI: 10.1016/j.addr.2022.114449] [Citation(s) in RCA: 45] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 05/03/2022] [Accepted: 07/06/2022] [Indexed: 12/20/2022]
Abstract
The Enhanced Permeability and Retention (EPR) effect has been recognized as the central paradigm in tumor-targeted delivery in the last decades. In the wake of this concept, nanotechnologies have reached phenomenal levels in research. However, clinical tumors display a poor manifestation of EPR effect. Factors including tumor heterogeneity, complicating tumor microenvironment, and discrepancies between laboratory models and human tumors largely contribute to poor efficiency in tumor-targeted delivery and therapeutic failure in clinical translation. In this article, approaches for evaluation of EPR effect in human tumor were overviewed as guidance to employ EPR effect for cancer treatment. Strategies to augment EPR-mediated tumoral delivery are discussed in different dimensions including enhancement of vascular permeability, depletion of tumor extracellular matrix and optimization of nanoparticle design. Besides, the recent development in alternative tumor-targeted delivery mechanisms are highlighted including transendothelial pathway, endogenous cell carriers and non-immunogenic bacteria-mediated delivery. In addition, the emerging preclinical models better reflect human tumors are introduced. Finally, more rational applications of EPR effect in other disease and field are proposed. This article elaborates on fundamental reasons for the gaps between theoretical expectation and clinical outcomes, attempting to provide some perspective directions for future development of cancer nanomedicines in this still evolving landscape.
Collapse
Affiliation(s)
- Yixuan Zi
- Department of Pharmaceutics, China Pharmaceutical University, Nanjing 210009, PR China
| | - Kaiyun Yang
- School of Pharmacy, University of Auckland, Private Bag 92019, Auckland, New Zealand
| | - Jianhua He
- Department of Pharmaceutics, China Pharmaceutical University, Nanjing 210009, PR China
| | - Zimei Wu
- School of Pharmacy, University of Auckland, Private Bag 92019, Auckland, New Zealand.
| | - Jianping Liu
- Department of Pharmaceutics, China Pharmaceutical University, Nanjing 210009, PR China.
| | - Wenli Zhang
- Department of Pharmaceutics, China Pharmaceutical University, Nanjing 210009, PR China.
| |
Collapse
|
27
|
Cancer nanomedicine: A step towards improving the drug delivery and enhanced efficacy of chemotherapeutic drugs. OPENNANO 2022. [DOI: 10.1016/j.onano.2022.100051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
28
|
Javia A, Vanza J, Bardoliwala D, Ghosh S, Misra A, Patel M, Thakkar H. Polymer-drug conjugates: Design principles, emerging synthetic strategies and clinical overview. Int J Pharm 2022; 623:121863. [PMID: 35643347 DOI: 10.1016/j.ijpharm.2022.121863] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Revised: 05/06/2022] [Accepted: 05/23/2022] [Indexed: 10/18/2022]
Abstract
Adagen, an enzyme replacement treatment for adenosine deaminase deficiency, was the first protein-polymer conjugate to be approved in early 1990s. Post this regulatory approval, numerous polymeric drugs and polymeric nanoparticles have entered the market as advanced or next-generation polymer-based therapeutics, while many others have currently been tested clinically. The polymer conjugation to therapeutic moiety offers several advantages, like enhanced solubilization of drug, controlled release, reduced immunogenicity, and prolonged circulation. The present review intends to highlight considerations in the design of therapeutically effective polymer-drug conjugates (PDCs), including the choice of linker chemistry. The potential synthetic strategies to formulate PDCs have been discussed along with recent advancements in the different types of PDCs, i.e., polymer-small molecular weight drug conjugates, polymer-protein conjugates, and stimuli-responsive PDCs, which are under clinical/preclinical investigation. Current impediments and regulatory hurdles hindering the clinical translation of PDC into effective therapeutic regimens for the amelioration of disease conditions have been addressed.
Collapse
Affiliation(s)
- Ankit Javia
- Department of Pharmaceutics, Faculty of Pharmacy, Kalabhavan Campus, The Maharaja Sayajirao University of Baroda, Vadodara, Gujarat-390001, India
| | - Jigar Vanza
- Department of Pharmaceutics, Ramanbhai Patel College of Pharmacy, Charotar University of Science and Technology, Changa, Gujarat-388421, India
| | - Denish Bardoliwala
- Department of Pharmaceutics, Faculty of Pharmacy, Kalabhavan Campus, The Maharaja Sayajirao University of Baroda, Vadodara, Gujarat-390001, India
| | - Saikat Ghosh
- Department of Pharmaceutics, Faculty of Pharmacy, Kalabhavan Campus, The Maharaja Sayajirao University of Baroda, Vadodara, Gujarat-390001, India
| | - Ambikanandan Misra
- Department of Pharmaceutics, Faculty of Pharmacy, Kalabhavan Campus, The Maharaja Sayajirao University of Baroda, Vadodara, Gujarat-390001, India; Department of Pharmaceutics, School of Pharmacy and Technology Management, SVKM's NMIMS, Shirpur, Maharashtra-425405, Indi
| | - Mrunali Patel
- Department of Pharmaceutics, Ramanbhai Patel College of Pharmacy, Charotar University of Science and Technology, Changa, Gujarat-388421, India
| | - Hetal Thakkar
- Department of Pharmaceutics, Faculty of Pharmacy, Kalabhavan Campus, The Maharaja Sayajirao University of Baroda, Vadodara, Gujarat-390001, India.
| |
Collapse
|
29
|
Asture A, Rawat V, Srivastava C, Vaya D. Investigation of properties and applications of ZnO polymer nanocomposites. Polym Bull (Berl) 2022. [DOI: 10.1007/s00289-022-04243-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
30
|
Hashida M. Advocation and advancements of EPR effect theory in drug delivery science: A commentary. J Control Release 2022; 346:355-357. [PMID: 35483640 DOI: 10.1016/j.jconrel.2022.04.031] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 04/18/2022] [Accepted: 04/19/2022] [Indexed: 10/18/2022]
Abstract
To honor the contributions of Professor Hiroshi Maeda to the progress of targeted drug delivery research, a brief review of enhanced permeability and retention (EPR) effect theory proposed by him as the physiology-based principal mechanism of intra-tumoral accumulation of large molecules and small particles is presented. Under historical and practical backgrounds in developments of various drug delivery systems including macromolecular conjugates, the concept of EPR effect was advocated in mid1980s and has cultivated new cancer chemotherapeutic modalities until recently. Namely, nanoplatforms such as polymer conjugates, liposomes, polymeric micelles, and nanoparticles have been studied as a promising fusion area for nanotechnology and medicine. Modulation of EPR effect by chemical and/or mechanical approaches to achieve tumor vascular and tissue modification would further lead to sophistication of cancer chemotherapy employing nanomedicines.
Collapse
Affiliation(s)
- Mitsuru Hashida
- Institute for Integrated Cell-Materia Sciences and Graduate School of Pharmaceutical Sciences, Kyoto University, Yoshidaushinomiya-cho, Sakyo-ku, Kyoto 606-8501, Japan.
| |
Collapse
|
31
|
The Promise of Nanotechnology in Personalized Medicine. J Pers Med 2022; 12:jpm12050673. [PMID: 35629095 PMCID: PMC9142986 DOI: 10.3390/jpm12050673] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 04/14/2022] [Accepted: 04/19/2022] [Indexed: 02/04/2023] Open
Abstract
Both personalized medicine and nanomedicine are new to medical practice. Nanomedicine is an application of the advances of nanotechnology in medicine and is being integrated into diagnostic and therapeutic tools to manage an array of medical conditions. On the other hand, personalized medicine, which is also referred to as precision medicine, is a novel concept that aims to individualize/customize therapeutic management based on the personal attributes of the patient to overcome blanket treatment that is only efficient in a subset of patients, leaving others with either ineffective treatment or treatment that results in significant toxicity. Novel nanomedicines have been employed in the treatment of several diseases, which can be adapted to each patient-specific case according to their genetic profiles. In this review, we discuss both areas and the intersection between the two emerging scientific domains. The review focuses on the current situation in personalized medicine, the advantages that can be offered by nanomedicine to personalized medicine, and the application of nanoconstructs in the diagnosis of genetic variability that can identify the right drug for the right patient. Finally, we touch upon the challenges in both fields towards the translation of nano-personalized medicine.
Collapse
|
32
|
Carbohydrate anchored lipid nanoparticles. Int J Pharm 2022; 618:121681. [PMID: 35307469 DOI: 10.1016/j.ijpharm.2022.121681] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2021] [Revised: 03/08/2022] [Accepted: 03/15/2022] [Indexed: 12/18/2022]
Abstract
Nanotechnology has been a dynamic field for formulation scientists with multidisciplinary research being conducted worldwide. Advancements in development of functional nanosystems have led to evolution of breakthrough technologies. Lipidic nanosystems, in particular, are highly preferred owing to their non-immunogenic safety profiles along with a range of versatile intrinsic properties. Surface modification of lipid nanoparticles by anchoring carbohydrates to these systems is one such attractive drug delivery technology. Carbohydrates confer interesting properties to the nanosystems such as stealth, biostability, bioavailability, reduced toxicity due to decreased immunogenic response, targeting potential as well as ease of commercial availability. The carbohydrate anchored systems can be developed using methods such as adsorption, incorporation (nanoprecipitation or solvent displacement method), crosslinking and grafting. Current review provides a detailed overview of potential lipid based nanoparticulate systems with an emphasis on liposomes, solid lipid nanoparticles, nanostructures lipid carriers and micelles. Review further explores basics of surface modification, methods applied therein, advantages of carbohydrates as surface modifiers, their versatile applications, techniques for characterization of carbohydrate anchored systems and vital regulatory aspects concerned with these specialized systems.
Collapse
|
33
|
Feng X, Liu H, Pan J, Xiong Y, Zhu X, Yan X, Duan Y, Huang Y. Liposome-Encapsulated Tiancimycin A Is Active against Melanoma and Metastatic Breast Tumors: The Effect of cRGD Modification of the Liposomal Carrier and Tiancimycin A Dose on Drug Activity and Toxicity. Mol Pharm 2022; 19:1078-1090. [PMID: 35290067 DOI: 10.1021/acs.molpharmaceut.1c00753] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Enediyne natural products, including neocarzinostatin and calicheamicin γ1, are used in the form of a copolymer or antibody-drug conjugate to treat hepatomas and leukemia. Tiancimycin (TNM) A is a novel anthraquinone-fused enediyne that can rapidly and completely kill tumor cells. Herein, we encapsulated TNM A in liposomes (Lip-TNM A) and cyclic arginine-glycine-aspartate (cRGD)-functionalized liposomes (cRGD-Lip-TNM A) and demonstrated its antitumor activity using mouse xenografts. Because TNM A causes rapid DNA damage, cell cycle arrest, and apoptosis, these nanoparticles exhibited potent cytotoxicity against multiple tumor cells for 8 h. In B16-F10 and KPL-4 xenografts, both nanoparticles showed superior potency over doxorubicin and trastuzumab. However, cRGD-Lip-TNM A reduced the tumor weight more significantly than Lip-TNM A in B16-F10 xenografts, in which the αvβ3-integrin receptors are significantly overexpressed in this melanoma. Lip-TNM A was slightly more active than cRGD-Lip-TNM A against KPL-4 xenografts, which probably reflected the difference of their in vivo fate in this mouse model. In a highly metastatic 4T1 tumor model, cRGD-Lip-TNM A reduced tumor metastasis induced by losartan, a tumor microenvironment-remodeling agent. These findings suggest that targeted delivery of enediynes with unique modes of action may enable more effective translation of anticancer nanomedicines.
Collapse
Affiliation(s)
- Xueqiong Feng
- Xiangya International Academy of Translational Medicine, Central South University, Changsha, Hunan 410013, China
| | - Huiming Liu
- Xiangya International Academy of Translational Medicine, Central South University, Changsha, Hunan 410013, China
| | - Jian Pan
- Xiangya International Academy of Translational Medicine, Central South University, Changsha, Hunan 410013, China
| | - Yi Xiong
- Xiangya International Academy of Translational Medicine, Central South University, Changsha, Hunan 410013, China
| | - Xiangcheng Zhu
- Xiangya International Academy of Translational Medicine, Central South University, Changsha, Hunan 410013, China.,Hunan Engineering Research Center of Combinatorial Biosynthesis and Natural Product Drug Discover, Changsha, Hunan 410011, China
| | - Xiaohui Yan
- Xiangya International Academy of Translational Medicine, Central South University, Changsha, Hunan 410013, China.,State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Yanwen Duan
- Xiangya International Academy of Translational Medicine, Central South University, Changsha, Hunan 410013, China.,Hunan Engineering Research Center of Combinatorial Biosynthesis and Natural Product Drug Discover, Changsha, Hunan 410011, China.,National Engineering Research Center of Combinatorial Biosynthesis for Drug Discovery, Changsha, Hunan 410011, China
| | - Yong Huang
- Xiangya International Academy of Translational Medicine, Central South University, Changsha, Hunan 410013, China.,National Engineering Research Center of Combinatorial Biosynthesis for Drug Discovery, Changsha, Hunan 410011, China
| |
Collapse
|
34
|
Jiang Y, Jiang Z, Wang M, Ma L. Current understandings and clinical translation of nanomedicines for breast cancer therapy. Adv Drug Deliv Rev 2022; 180:114034. [PMID: 34736986 DOI: 10.1016/j.addr.2021.114034] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 10/20/2021] [Accepted: 10/28/2021] [Indexed: 02/08/2023]
Abstract
Breast cancer is one of the most frequently diagnosed cancers that is threatening women's life. Current clinical treatment regimens for breast cancer often involve neoadjuvant and adjuvant systemic therapies, which somewhat are associated with unfavorable features. Also, the heterogeneous nature of breast cancers requires precision medicine that cannot be fulfilled by a single type of systemically administered drug. Taking advantage of the nanocarriers, nanomedicines emerge as promising therapeutic agents for breast cancer that could resolve the defects of drugs and achieve precise drug delivery to almost all sites of primary and metastatic breast tumors (e.g. tumor vasculature, tumor stroma components, breast cancer cells, and some immune cells). Seven nanomedicines as represented by Doxil® have been approved for breast cancer clinical treatment so far. More nanomedicines including both non-targeting and active targeting nanomedicines are being evaluated in the clinical trials. However, we have to realize that the translation of nanomedicines, particularly the active targeting nanomedicines is not as successful as people have expected. This review provides a comprehensive landscape of the nanomedicines for breast cancer treatment, from laboratory investigations to clinical applications. We also highlight the key advances in the understanding of the biological fate and the targeting strategies of breast cancer nanomedicine and the implications to clinical translation.
Collapse
|
35
|
Nishimura SN, Nishida K, Tanaka M. A β-hairpin peptide with pH-controlled affinity for tumor cells. Chem Commun (Camb) 2021; 58:505-508. [PMID: 34874387 DOI: 10.1039/d1cc06218b] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Considering that the pH in the tumor microenvironment is dysregulated, we designed a β-hairpin peptide (SSRFEWEFESSDPRGDPSSRFEWEFESS). The configuration of the peptide switched from a flexible linear to a rigid loop structure under weakly acidic conditions. The peptide internalized by tumor cells increased significantly under weakly acidic conditions.
Collapse
Affiliation(s)
- Shin-Nosuke Nishimura
- Institute for Materials Chemistry and Engineering, Kyushu University, 744, Moto-oka, Nishi-ku, Fukuoka, 819-0395, Japan.
| | - Kei Nishida
- Institute for Materials Chemistry and Engineering, Kyushu University, 744, Moto-oka, Nishi-ku, Fukuoka, 819-0395, Japan.
| | - Masaru Tanaka
- Institute for Materials Chemistry and Engineering, Kyushu University, 744, Moto-oka, Nishi-ku, Fukuoka, 819-0395, Japan.
| |
Collapse
|
36
|
Gupta P, Neupane YR, Parvez S, Kohli K. Recent advances in targeted nanotherapeutic approaches for breast cancer management. Nanomedicine (Lond) 2021; 16:2605-2631. [PMID: 34854336 DOI: 10.2217/nnm-2021-0281] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Breast cancer is the most commonly occurring tumor disease worldwide. Breast cancer is currently managed by conventional chemotherapy, which is inadequate in curbing this heterogeneous disease and results in off-site toxic effects, suggesting effective treatment approaches with better therapeutic profiles are needed. This review, therefore, focuses on the recent advancements in delivering therapeutics to the target site using passive and/or active targeted nanodrug-delivery systems to ameliorate endolysosomal escape. In addition, recent strategies in targeting breast cancer stem cells are discussed. The role of naturally cell-secreted nanovesicles (exosomes) in the management of triple-negative breast cancer is also discussed.
Collapse
Affiliation(s)
- Priya Gupta
- Department of Pharmaceutics, School of Pharmaceutical Education & Research, Jamia Hamdard, New Delhi, 110062, India
| | - Yub Raj Neupane
- Department of Pharmacy, National University of Singapore, Singapore, 117559
| | - Suhel Parvez
- Department of Toxicology, School of Chemical & Life Sciences, Jamia Hamdard, New Delhi, 110062, India
| | - Kanchan Kohli
- Department of Pharmaceutics, School of Pharmaceutical Education & Research, Jamia Hamdard, New Delhi, 110062, India.,Lloyd Institute of Management & Technology (Pharm.), Plot No. 11, Knowledge Park-II, Greater Noida, 201308, Uttar Pradesh, India
| |
Collapse
|
37
|
Rahamathulla M, Bhosale RR, Osmani RAM, Mahima KC, Johnson AP, Hani U, Ghazwani M, Begum MY, Alshehri S, Ghoneim MM, Shakeel F, Gangadharappa HV. Carbon Nanotubes: Current Perspectives on Diverse Applications in Targeted Drug Delivery and Therapies. MATERIALS (BASEL, SWITZERLAND) 2021; 14:6707. [PMID: 34772234 PMCID: PMC8588285 DOI: 10.3390/ma14216707] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 11/01/2021] [Accepted: 11/04/2021] [Indexed: 12/27/2022]
Abstract
Current discoveries as well as research findings on various types of carbon nanostructures have inspired research into their utilization in a number of fields. These carbon nanostructures offer uses in pharmacy, medicine and different therapies. One such unique carbon nanostructure includes carbon nanotubes (CNTs), which are one-dimensional allotropes of carbon nanostructure that can have a length-to-diameter ratio greater than 1,000,000. After their discovery, CNTs have drawn extensive research attention due to their excellent material properties. Their physical, chemical and electronic properties are excellent and their composites provide great possibilities for enormous nanometer applications. The current study provides a systematic review based on prior literature review and data gathered from various sources. The various research studies from many research labs and organizations were systematically retrieved, collected, compiled and written. The entire collection and compilation of this review concluded the use of CNT approaches and their efficacy and safety for the treatment of various diseases such as brain tumors or cancer via nanotechnology-based drug delivery, phototherapy, gene therapy, antiviral therapy, antifungal therapy, antibacterial therapy and other biomedical applications. The current review covers diverse applications of CNTs in designing a range of targeted drug delivery systems and application for various therapies. It concludes with a discussion on how CNTs based medicines can expand in the future.
Collapse
Affiliation(s)
- Mohamed Rahamathulla
- Department of Pharmaceutics, College of Pharmacy, King Khalid University, Abha 61421, Saudi Arabia; (M.R.); (U.H.); (M.G.); (M.Y.B.)
| | - Rohit R. Bhosale
- Department of Pharmaceutics, Krishna Institute of Pharmacy, Krishna Institute of Medical Sciences “Deemed To Be University”, Karad 415539, Maharashtra, India;
| | - Riyaz A. M. Osmani
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education and Research, Mysuru 570015, Karnataka, India; (R.A.M.O.); (K.C.M.); (A.P.J.)
| | - Kasturi C. Mahima
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education and Research, Mysuru 570015, Karnataka, India; (R.A.M.O.); (K.C.M.); (A.P.J.)
| | - Asha P. Johnson
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education and Research, Mysuru 570015, Karnataka, India; (R.A.M.O.); (K.C.M.); (A.P.J.)
| | - Umme Hani
- Department of Pharmaceutics, College of Pharmacy, King Khalid University, Abha 61421, Saudi Arabia; (M.R.); (U.H.); (M.G.); (M.Y.B.)
| | - Mohammed Ghazwani
- Department of Pharmaceutics, College of Pharmacy, King Khalid University, Abha 61421, Saudi Arabia; (M.R.); (U.H.); (M.G.); (M.Y.B.)
| | - Mohammed Y. Begum
- Department of Pharmaceutics, College of Pharmacy, King Khalid University, Abha 61421, Saudi Arabia; (M.R.); (U.H.); (M.G.); (M.Y.B.)
| | - Sultan Alshehri
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia; (S.A.); (F.S.)
| | - Mohammed M. Ghoneim
- Department of Pharmacy Practice, College of Pharmacy, AlMaarefa University, Ad Diriyah 13713, Saudi Arabia;
| | - Faiyaz Shakeel
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia; (S.A.); (F.S.)
| | - Hosahalli V. Gangadharappa
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education and Research, Mysuru 570015, Karnataka, India; (R.A.M.O.); (K.C.M.); (A.P.J.)
| |
Collapse
|
38
|
Mignani S, Shi X, Guidolin K, Zheng G, Karpus A, Majoral JP. Clinical diagonal translation of nanoparticles: Case studies in dendrimer nanomedicine. J Control Release 2021; 337:356-370. [PMID: 34311026 DOI: 10.1016/j.jconrel.2021.07.036] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 07/19/2021] [Accepted: 07/21/2021] [Indexed: 12/12/2022]
Abstract
Among the numerous nanomedicine formulations, dendrimers have emerged as original, efficient, carefully assembled, hyperbranched, polymeric nanoparticles based on synthetic monomers. Dendrimers are used either as nanocarriers of drugs or as drugs themselves. When used as drug carriers, dendrimers are considered 'best-in-class agents', modifying and enhancing the pharmacokinetic and pharmacodynamic properties of the active entities encapsulated or conjugated with the dendrimers. When used as drugs themselves, dendrimers represent a novel category of "first-in-class" drugs. The purpose of this original review is to analyse the different strategies involved in the development, application, and impact of dendrimers as drugs. We examine a selection of nanoparticles that use multifunctional elements and demonstrate clinical multifunctionality, and we extend these principles to applications in dendrimer nanomedicine design. Finally, for practical consideration, the concepts of vertical and diagonal translation are introduced as potential strategies to facilitate dendrimer development.
Collapse
Affiliation(s)
- Serge Mignani
- Université Paris Descartes, PRES Sorbonne Paris Cité, CNRS UMR 860, Laboratoire de Chimie et de Biochimie Pharmacologiques et Toxicologique, 45, rue des Saints Peres, 75006 Paris, France; CQM - Centro de Química da Madeira, MMRG, Universidade da Madeira, Campus da Penteada, 9020-105 Funchal, Portugal
| | - Xiangyang Shi
- CQM - Centro de Química da Madeira, MMRG, Universidade da Madeira, Campus da Penteada, 9020-105 Funchal, Portugal; College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, PR China
| | - Keegan Guidolin
- Department of Surgery, University of Toronto, Toronto, Canada; Princess Margaret Cancer Centre, Toronto, Canada; Institute of Biomedical Engineering, University of Toronto, Toronto, Canada
| | - Gang Zheng
- Princess Margaret Cancer Centre, Toronto, Canada; Institute of Biomedical Engineering, University of Toronto, Toronto, Canada
| | - Andrii Karpus
- Laboratoire de Chimie de Coordination du CNRS, 205 route de Narbonne, 31077 Toulouse Cedex 4, France; Université Toulouse 118 route de Narbonne, 31077 Toulouse Cedex 4, France
| | - Jean-Pierre Majoral
- Laboratoire de Chimie de Coordination du CNRS, 205 route de Narbonne, 31077 Toulouse Cedex 4, France; Université Toulouse 118 route de Narbonne, 31077 Toulouse Cedex 4, France.
| |
Collapse
|
39
|
Ahmad S, Idris RAM, Wan Hanaffi WN, Perumal K, Boer JC, Plebanski M, Jaafar J, Lim JK, Mohamud R. Cancer Nanomedicine and Immune System—Interactions and Challenges. FRONTIERS IN NANOTECHNOLOGY 2021. [DOI: 10.3389/fnano.2021.681305] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Nanoparticles have tremendous therapeutic potential in the treatment of cancer as they increase drug delivery, attenuate drug toxicity, and protect drugs from rapid clearance. Since Doxil®, the first FDA-approved nanomedicine, several other cancer nanomedicines have been approved and have successfully increased the efficacy over their free drug counterparts. Although their mechanisms of action are well established, their effects towards our immune system, particularly in the tumor microenvironment (TME), still warrant further investigation. Herein, we review the interactions between an approved cancer nanomedicine with TME immunology. We also discuss the challenges that need to be addressed for the full clinical potential of ongoing cancer nanomedicines despite the encouraging preclinical data.
Collapse
|
40
|
Subhan MA, Yalamarty SSK, Filipczak N, Parveen F, Torchilin VP. Recent Advances in Tumor Targeting via EPR Effect for Cancer Treatment. J Pers Med 2021; 11:571. [PMID: 34207137 PMCID: PMC8234032 DOI: 10.3390/jpm11060571] [Citation(s) in RCA: 182] [Impact Index Per Article: 60.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 06/11/2021] [Accepted: 06/16/2021] [Indexed: 12/11/2022] Open
Abstract
Cancer causes the second-highest rate of death world-wide. A major shortcoming inherent in most of anticancer drugs is their lack of tumor selectivity. Nanodrugs for cancer therapy administered intravenously escape renal clearance, are unable to penetrate through tight endothelial junctions of normal blood vessels and remain at a high level in plasma. Over time, the concentration of nanodrugs builds up in tumors due to the EPR effect, reaching several times higher than that of plasma due to the lack of lymphatic drainage. This review will address in detail the progress and prospects of tumor-targeting via EPR effect for cancer therapy.
Collapse
Affiliation(s)
- Md Abdus Subhan
- Department of Chemistry, Shah Jalal University of Science and Technology, Sylhet 3114, Bangladesh
| | - Satya Siva Kishan Yalamarty
- CPBN, Department of Pharmaceutical Sciences, Northeastern University, Boston, MA 02115, USA; (S.S.K.Y.); (N.F.); (F.P.)
| | - Nina Filipczak
- CPBN, Department of Pharmaceutical Sciences, Northeastern University, Boston, MA 02115, USA; (S.S.K.Y.); (N.F.); (F.P.)
| | - Farzana Parveen
- CPBN, Department of Pharmaceutical Sciences, Northeastern University, Boston, MA 02115, USA; (S.S.K.Y.); (N.F.); (F.P.)
- Department of Pharmaceutics, Faculty of Pharmacy, The Islamia University of Bahawalpur, Punjab 63100, Pakistan
| | - Vladimir P. Torchilin
- CPBN, Department of Pharmaceutical Sciences, Northeastern University, Boston, MA 02115, USA; (S.S.K.Y.); (N.F.); (F.P.)
- Department of Oncology, Radiotherapy and Plastic Surgery, I.M. Sechenov First Moscow State Medical University (Sechenov University), 119991 Moscow, Russia
| |
Collapse
|
41
|
Bahman F, Pittalà V, Haider M, Greish K. Enhanced Anticancer Activity of Nanoformulation of Dasatinib against Triple-Negative Breast Cancer. J Pers Med 2021; 11:jpm11060559. [PMID: 34204015 PMCID: PMC8234460 DOI: 10.3390/jpm11060559] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 06/10/2021] [Accepted: 06/11/2021] [Indexed: 12/14/2022] Open
Abstract
Triple negative breast cancer (TNBC) is the most aggressive breast cancer accounting for around 15% of identified breast cancer cases. TNBC lacks human epidermal growth factor receptor 2 (HER2) amplification, is hormone independent estrogen (ER) and progesterone receptors (PR) negative, and is not reactive to current targeted therapies. Existing treatment relies on chemotherapeutic treatment, but in spite of an initial response to chemotherapy, the inception of resistance and relapse is unfortunately common. Dasatinib is an approved second-generation inhibitor of multiple tyrosine kinases, and literature data strongly support its use in the management of TNBC. However, dasatinib binds to plasma proteins and undergoes extensive metabolism through oxidation and conjugation. To protect dasatinib from fast pharmacokinetic degradation and to prolong its activity, it was encapsulated on poly(styrene-co-maleic acid) (SMA) micelles. The obtained SMA-dasatinib nanoparticles (NPs) were evaluated for their physicochemical properties, in vitro antiproliferative activity in different TNBC cell lines, and in vivo anticancer activity in a syngeneic model of breast cancer. Obtained results showed that SMA-dasatinib is more potent against 4T1 TNBC tumor growth in vivo compared to free drug. This enhanced effect was ascribed to the encapsulation of the drug protecting it from a rapid metabolism. Our finding highlights the often-overlooked value of nanoformulations in protecting its cargo from degradation. Overall, results may provide an alternative therapeutic strategy for TNBC management.
Collapse
Affiliation(s)
- Fatemah Bahman
- Department of Molecular Genetics, Kuwait Ministry of Health, Kuwait City 50000, Kuwait;
| | - Valeria Pittalà
- Department of Drug and Health Science, University of Catania, 95125 Catania, Italy
- Correspondence: (V.P.); (K.G.); Tel.: +39-0957-738-4269 (V.P.); +973-1723-7393 (K.G.); Fax: +973-1724-6022 (K.G.)
| | - Mohamed Haider
- Department of Pharmaceutics and Pharmaceutical Technology, College of Pharmacy, University of Sharjah, Sharjah 27272, United Arab Emirates;
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University, Cairo 71526, Egypt
| | - Khaled Greish
- Department of Molecular Medicine and Nanomedicine Unit, Princess Al-Jawhara Center for Molecular Medicine, College of Medicine and Medical Sciences, Arabian Gulf University, Manama 329, Bahrain
- Correspondence: (V.P.); (K.G.); Tel.: +39-0957-738-4269 (V.P.); +973-1723-7393 (K.G.); Fax: +973-1724-6022 (K.G.)
| |
Collapse
|
42
|
Hindra, Yang D, Luo J, Huang T, Yan X, Adhikari A, Teijaro CN, Ge H, Shen B. Submerged fermentation of Streptomyces uncialis providing a biotechnology platform for uncialamycin biosynthesis, engineering, and production. J Ind Microbiol Biotechnol 2021; 48:6178870. [PMID: 33739406 PMCID: PMC8210685 DOI: 10.1093/jimb/kuab025] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2020] [Accepted: 03/15/2021] [Indexed: 12/19/2022]
Abstract
Uncialamycin (UCM) belongs to the anthraquinone-fused subfamily of 10-membered enediyne natural products that exhibits an extraordinary cytotoxicity against a wide spectrum of human cancer cell lines. Antibody-drug conjugates, utilizing synthetic analogues of UCM as payloads, are in preclinical development. UCM is exclusively produced by Streptomyces uncialis DCA2648 on solid agar medium with low titers (∼0.019 mg/l), limiting its supply by microbial fermentation and hampering its biosynthetic and engineering studies by in vivo pathway manipulation. Here, we report cultivation conditions that enable genetic manipulation of UCM biosynthesis in vivo and allow UCM production, with improved titers, by submerged fermentation of the engineered S. uncialis strains. Specifically, the titer of UCM was improved nearly 58-fold to ∼1.1 mg/l through the combination of deletion of biosynthetic gene clusters encoding unrelated metabolites from the S. uncialis wild-type, chemical mutagenesis and manipulation of pathway-specific regulators to generate the engineered S. uncialis strains, and finally medium optimization of the latter for UCM production. Genetic manipulation of UCM biosynthesis was demonstrated by inactivating selected genes in the engineered S. uncialis strains, one of which afforded a mutant strain accumulating tiancimycin B, a common biosynthetic intermediate known for the anthraquinone-fused subfamily of enediyne natural products. These findings highlight a biotechnology platform for UCM biosynthesis, engineering, and production that should facilitate both its fundamental studies and translational applications.
Collapse
Affiliation(s)
| | | | - Jun Luo
- Department of Chemistry, The Scripps Research Institute, Jupiter, FL 33458, USA
| | - Tingting Huang
- Department of Chemistry, The Scripps Research Institute, Jupiter, FL 33458, USA
| | - Xiaohui Yan
- Department of Chemistry, The Scripps Research Institute, Jupiter, FL 33458, USA
| | - Ajeeth Adhikari
- Department of Chemistry, The Scripps Research Institute, Jupiter, FL 33458, USA
| | | | - Huiming Ge
- Department of Chemistry, The Scripps Research Institute, Jupiter, FL 33458, USA
| | - Ben Shen
- Correspondence to: Ben Shen. Phone: +1-561-228-2456. Fax: +1-561-228-2472. E-mail:
| |
Collapse
|
43
|
Islam W, Kimura S, Islam R, Harada A, Ono K, Fang J, Niidome T, Sawa T, Maeda H. EPR-Effect Enhancers Strongly Potentiate Tumor-Targeted Delivery of Nanomedicines to Advanced Cancers: Further Extension to Enhancement of the Therapeutic Effect. J Pers Med 2021; 11:jpm11060487. [PMID: 34071552 PMCID: PMC8229906 DOI: 10.3390/jpm11060487] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 05/25/2021] [Accepted: 05/26/2021] [Indexed: 12/11/2022] Open
Abstract
For more than three decades, enhanced permeability and retention (EPR)-effect-based nanomedicines have received considerable attention for tumor-selective treatment of solid tumors. However, treatment of advanced cancers remains a huge challenge in clinical situations because of occluded or embolized tumor blood vessels, which lead to so-called heterogeneity of the EPR effect. We previously developed a method to restore impaired blood flow in blood vessels by using nitric oxide donors and other agents called EPR-effect enhancers. Here, we show that two novel EPR-effect enhancers—isosorbide dinitrate (ISDN, Nitrol®) and sildenafil citrate—strongly potentiated delivery of three macromolecular drugs to tumors: a complex of poly(styrene-co-maleic acid) (SMA) and cisplatin, named Smaplatin® (chemotherapy); poly(N-(2-hydroxypropyl)methacrylamide) polymer-conjugated zinc protoporphyrin (photodynamic therapy and imaging); and SMA glucosamine-conjugated boric acid complex (boron neutron capture therapy). We tested these nanodrugs in mice with advanced C26 tumors. When these nanomedicines were administered together with ISDN or sildenafil, tumor delivery and thus positive therapeutic results increased two- to four-fold in tumors with diameters of 15 mm or more. These results confirmed the rationale for using EPR-effect enhancers to restore tumor blood flow. In conclusion, all EPR-effect enhancers tested showed great potential for application in cancer therapy.
Collapse
Affiliation(s)
- Waliul Islam
- Department of Microbiology, Graduate School of Medical Sciences, Kumamoto University, Kumamoto 860-8556, Japan; (W.I.); (S.K.); (K.O.); (T.S.); (H.M.)
- BioDynamics Research Foundation, Kumamoto 862-0954, Japan
| | - Shintaro Kimura
- Department of Microbiology, Graduate School of Medical Sciences, Kumamoto University, Kumamoto 860-8556, Japan; (W.I.); (S.K.); (K.O.); (T.S.); (H.M.)
- StateArt Inc., Tokyo 103-0012, Japan
| | - Rayhanul Islam
- Faculty of Pharmaceutical Sciences, Sojo University, Kumamoto 860-0082, Japan;
| | - Ayaka Harada
- Faculty of Advanced Science and Technology, Kumamoto University, Kumamoto 860-8555, Japan; (A.H.); (T.N.)
| | - Katsuhiko Ono
- Department of Microbiology, Graduate School of Medical Sciences, Kumamoto University, Kumamoto 860-8556, Japan; (W.I.); (S.K.); (K.O.); (T.S.); (H.M.)
| | - Jun Fang
- Faculty of Pharmaceutical Sciences, Sojo University, Kumamoto 860-0082, Japan;
- Correspondence:
| | - Takuro Niidome
- Faculty of Advanced Science and Technology, Kumamoto University, Kumamoto 860-8555, Japan; (A.H.); (T.N.)
| | - Tomohiro Sawa
- Department of Microbiology, Graduate School of Medical Sciences, Kumamoto University, Kumamoto 860-8556, Japan; (W.I.); (S.K.); (K.O.); (T.S.); (H.M.)
| | - Hiroshi Maeda
- Department of Microbiology, Graduate School of Medical Sciences, Kumamoto University, Kumamoto 860-8556, Japan; (W.I.); (S.K.); (K.O.); (T.S.); (H.M.)
- BioDynamics Research Foundation, Kumamoto 862-0954, Japan
- Tohoku University, Sendai 980-8572, Japan
| |
Collapse
|
44
|
Rommasi F, Esfandiari N. Liposomal Nanomedicine: Applications for Drug Delivery in Cancer Therapy. NANOSCALE RESEARCH LETTERS 2021; 16:95. [PMID: 34032937 PMCID: PMC8149564 DOI: 10.1186/s11671-021-03553-8] [Citation(s) in RCA: 88] [Impact Index Per Article: 29.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Accepted: 05/17/2021] [Indexed: 05/23/2023]
Abstract
The increasing prevalence of cancer, a disease in which rapid and uncontrollable cell growth causes complication and tissue dysfunction, is one of the serious and tense concerns of scientists and physicians. Nowadays, cancer diagnosis and especially its effective treatment have been considered as one of the biggest challenges in health and medicine in the last century. Despite significant advances in drug discovery and delivery, their many adverse effects and inadequate specificity and sensitivity, which usually cause damage to healthy tissues and organs, have been great barriers in using them. Limitation in the duration and amount of these therapeutic agents' administration is also challenging. On the other hand, the incidence of tumor cells that are resistant to typical methods of cancer treatment, such as chemotherapy and radiotherapy, highlights the intense need for innovation, improvement, and development in antitumor drug properties. Liposomes have been suggested as a suitable candidate for drug delivery and cancer treatment in nanomedicine due to their ability to store drugs with different physical and chemical characteristics. Moreover, the high flexibility and potential of liposome structure for chemical modification by conjugating various polymers, ligands, and molecules is a significant pro for liposomes not only to enhance their pharmacological merits but also to improve the effectiveness of anticancer drugs. Liposomes can increase the sensitivity, specificity, and durability of these anti-malignant cell agents in the body and provide remarkable benefits to be applied in nanomedicines. We reviewed the discovery and development of liposomes focusing on their clinical applications to treat diverse sorts of cancers and diseases. How the properties of liposomal drugs can be improved and their opportunity and challenges for cancer therapy were also considered and discussed.
Collapse
Affiliation(s)
- Foad Rommasi
- Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran, Iran
| | - Neda Esfandiari
- Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran, Iran.
| |
Collapse
|
45
|
Suzuki S, Lee S, Miyajima T, Kato K, Sugawara-Narutaki A, Sakurai M, Nagata F. Evaluation of Drug-Loading Ability of Poly(Lactic Acid)/Hydroxyapatite Core-Shell Particles. MATERIALS (BASEL, SWITZERLAND) 2021; 14:1959. [PMID: 33919727 PMCID: PMC8070725 DOI: 10.3390/ma14081959] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 04/01/2021] [Accepted: 04/12/2021] [Indexed: 12/12/2022]
Abstract
Poly(lactic acid)/hydroxyapatite (PLA/HAp) core-shell particles are prepared using the emulsification method. These particles are safe for living organisms because they are composed of biodegradable polymers and biocompatible ceramics. These particles are approximately 50-100 nm in size, and their hydrophobic substance loading can be controlled. Hence, PLA/HAp core-shell particles are expected to be used as drug delivery carriers for hydrophobic drugs. In this work, PLA/HAp core-shell particles with a loading of vitamin K1 were prepared, and their drug-loading ability was evaluated. The particles were 40-80 nm in diameter with a PLA core and a HAp shell. The particle size increased with an increase in the vitamin K1 loading. The drug-loading capacity (LC) value of the particles, an indicator of their drug-loading ability, was approximately 250%, which is higher than the previously reported values. The amount of vitamin K1 released from the particles increased as the pH of the soaking solution decreased because the HAp shell easily dissolved under the acidic conditions. The PLA/HAp particles prepared in this work were found to be promising candidates for drug delivery carriers because of their excellent drug-loading ability and pH sensitivity.
Collapse
Affiliation(s)
- Seiya Suzuki
- National Institute of Advanced Industrial Science and Technology (AIST), 2266-98 Anagahora, Shimoshidami, Moriyama-ku, Nagoya 463-8560, Japan; (S.S.); (T.M.); (K.K.)
- Department of Applied Chemistry, College of Engineering, Chubu University, Matsumoto-cho, Kasugai 487-8501, Japan;
| | - Sungho Lee
- National Institute of Advanced Industrial Science and Technology (AIST), 2266-98 Anagahora, Shimoshidami, Moriyama-ku, Nagoya 463-8560, Japan; (S.S.); (T.M.); (K.K.)
| | - Tatsuya Miyajima
- National Institute of Advanced Industrial Science and Technology (AIST), 2266-98 Anagahora, Shimoshidami, Moriyama-ku, Nagoya 463-8560, Japan; (S.S.); (T.M.); (K.K.)
| | - Katsuya Kato
- National Institute of Advanced Industrial Science and Technology (AIST), 2266-98 Anagahora, Shimoshidami, Moriyama-ku, Nagoya 463-8560, Japan; (S.S.); (T.M.); (K.K.)
| | - Ayae Sugawara-Narutaki
- Department of Energy Engineering, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan;
| | - Makoto Sakurai
- Department of Applied Chemistry, College of Engineering, Chubu University, Matsumoto-cho, Kasugai 487-8501, Japan;
| | - Fukue Nagata
- National Institute of Advanced Industrial Science and Technology (AIST), 2266-98 Anagahora, Shimoshidami, Moriyama-ku, Nagoya 463-8560, Japan; (S.S.); (T.M.); (K.K.)
| |
Collapse
|
46
|
Maeda H. The 35th Anniversary of the Discovery of EPR Effect: A New Wave of Nanomedicines for Tumor-Targeted Drug Delivery-Personal Remarks and Future Prospects. J Pers Med 2021; 11:jpm11030229. [PMID: 33810037 PMCID: PMC8004895 DOI: 10.3390/jpm11030229] [Citation(s) in RCA: 80] [Impact Index Per Article: 26.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 03/16/2021] [Accepted: 03/17/2021] [Indexed: 12/14/2022] Open
Abstract
This Special Issue on the enhanced permeability and retention (EPR) effect commemorates the 35th anniversary of its discovery, the original 1986 Matsumura and Maeda finding being published in Cancer Research as a new concept in cancer chemotherapy. My review here describes the history and heterogeneity of the EPR effect, which involves defective tumor blood vessels and blood flow. We reported that restoring obstructed tumor blood flow overcomes impaired drug delivery, leading to improved EPR effects. I also discuss gaps between small animal cancers used in experimental models and large clinical cancers in humans, which usually involve heterogeneous EPR effects, vascular abnormalities in multiple necrotic foci, and tumor emboli. Here, I emphasize arterial infusion of oily formulations of nanodrugs into tumor-feeding arteries, which is the most tumor-selective drug delivery method, with tumor/blood ratios of 100-fold. This method is literally the most personalized medicine because arterial infusions differ for each patient, and drug doses infused depend on tumor size and anatomy in each patient. Future developments in EPR effect-based treatment will range from chemotherapy to photodynamic therapy, boron neutron capture therapy, and therapies for free radical diseases. This review focuses on our own work, which stimulated numerous scientists to perform research in nanotechnology and drug delivery systems, thereby spawning a new cancer treatment era.
Collapse
Affiliation(s)
- Hiroshi Maeda
- BioDynamics Research Foundation, Kumamoto 862-0954, Japan;
- Department of Microbiology, Kumamoto University School of Medicine, Kumamoto 862-0954, Japan
- Tohoku University, Sendai 980-8572, Japan
- Osaka University Medical School, Osaka 565-0871, Japan
| |
Collapse
|
47
|
Guo D, Ji X, Luo J. Rational nanocarrier design towards clinical translation of cancer nanotherapy. Biomed Mater 2021; 16. [DOI: 10.1088/1748-605x/abe35a] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Accepted: 02/04/2021] [Indexed: 02/06/2023]
|
48
|
Driver CHS, Ebenhan T, Szucs Z, Parker MI, Zeevaart JR, Hunter R. Towards the development of a targeted albumin-binding radioligand: Synthesis, radiolabelling and preliminary in vivo studies. Nucl Med Biol 2021; 94-95:53-66. [PMID: 33550011 DOI: 10.1016/j.nucmedbio.2021.01.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 12/14/2020] [Accepted: 01/02/2021] [Indexed: 12/15/2022]
Abstract
INTRODUCTION The compound named 4-[10-(4-(2,5-dioxo-2,5-dihydro-1H-pyrrol-1-yl)butanamido)decyl]-11-[10-(β,d-glucopyranos-1-yl)-1-oxodecyl]-1,4,8,11-tetraazacyclotetradecane-1,8-diacetic acid is a newly synthesised molecule capable of binding in vivo to albumin to form a bioconjugate. This compound was given the name, GluCAB(glucose-chelator-albumin-binder)-maleimide-1. Radiolabelled GluCAB-maleimide-1 and subsequent bioconjugate is proposed for prospective oncological applications and works on the theoretical dual-targeting principle of tumour localization through the "enhanced permeability and retention (EPR) effect" and glucose metabolism. METHODS The precursor, GluCAB-amine-2, and subsequent GluCAB-maleimide-1 was synthesised via sequential regioselective, distal N-functionalisation of a cyclam template with a tether containing a synthetically-derived β-glucoside followed by a second linker to incorporate a maleimide moiety for albumin-binding. GluCAB-amine-2 was radiolabelled with [64Cu]CuCl2 in 0.1 M NH4OAc (pH 3.5, 90 °C, 30 min), purified and converted post-labeling in 0.01 M PBS to [64Cu]Cu-GluCAB-maleimide-1. Serum stability and protein binding studies were completed according to described methods. Healthy BALB/c ice (three groups of n = 5) were injected intravenously with [64Cu]Cu-TETA, [64Cu]Cu-GluCAB-amine-2 or [64Cu]Cu-GluCAB-maleimide-1 and imaged using microPET/CT at 1, 2, 4, 8 and 24 h post-injection. Biodistribution of the compounds were determined ex vivo after 24 h using gamma counting. RESULTS GluCAB-maleimide-1 was synthesised in five consecutive steps with an overall yield of 11%. [64Cu]Cu-GluCAB-amine-2 (97% labelling efficiency) was converted to [64Cu]Cu-GluCAB-maleimide-1 (93% conversion; 90% radiochemical purity). Biodistribution analysis indicated that the control compounds were rapidly and almost completely excreted as compared to [64Cu]Cu-GluCAB-maleimide-1 that exhibited a prolonged biological half-life (6-8 h). Both, [64Cu]Cu-GluCAB-maleimide-1 and -amine-2 were excreted through the hepatobiliary system but a higher hepatic presence of the albumin-bound compound was noted. CONCLUSIONS, ADVANCES IN KNOWLEDGE AND IMPLICATIONS FOR PATIENT CARE: This initial evaluation paves the way for further investigation into the tumour targeting potential of [64Cu]Cu-GluCAB-maleimide-1. An efficient targeted radioligand will allow for further development of a prospective theranostic agent for more personalized patient treatment which potentially improves overall patient prognosis, outcome and health care.
Collapse
Affiliation(s)
- Cathryn Helena Stanford Driver
- South African Nuclear Energy Corporation, Radiochemistry and NuMeRI PreClinical Imaging Facility, Elias Motsoaledi Street, R104 Pelindaba, North West 0240, South Africa
| | - Thomas Ebenhan
- South African Nuclear Energy Corporation, Radiochemistry and NuMeRI PreClinical Imaging Facility, Elias Motsoaledi Street, R104 Pelindaba, North West 0240, South Africa
| | | | - Mohammed Iqbal Parker
- Department of Medical Biochemistry and Institute for Infectious Disease and Molecular Medicine, University of Cape Town Medical School, University of Cape Town, Cape Town, South Africa
| | - Jan Rijn Zeevaart
- South African Nuclear Energy Corporation, Radiochemistry and NuMeRI PreClinical Imaging Facility, Elias Motsoaledi Street, R104 Pelindaba, North West 0240, South Africa; Preclinical Drug Development Platform, North West University, Potchefstroom, South Africa.
| | - Roger Hunter
- Department of Chemistry, University of Cape Town, Cape Town, South Africa
| |
Collapse
|
49
|
Adhikari A, Shen B, Rader C. Challenges and Opportunities to Develop Enediyne Natural Products as Payloads for Antibody-Drug Conjugates. Antib Ther 2021; 4:1-15. [PMID: 33554043 PMCID: PMC7850032 DOI: 10.1093/abt/tbab001] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Calicheamicin, the payload of the antibody-drug-conjugates (ADCs) gemtuzumab ozogamicin (Mylotarg®) and inotuzumab ozogamicin (Besponsa®), belongs to the class of enediyne natural products. Since the isolation and structural determination of the neocarzinostatin chromophore in 1985, the enediynes have attracted considerable attention for their value as DNA damaging agents in cancer chemotherapy. Due to their non-discriminatory cytotoxicity towards both cancer and healthy cells, the clinical utilization of enediyne natural products relies on conjugation to an appropriate delivery system, such as an antibody. Here we review the current landscape of enediynes as payloads of first-generation and next-generation ADCs.
Collapse
Affiliation(s)
- Ajeeth Adhikari
- Department of Chemistry, The Scripps Research Institute, Jupiter, FL, USA.,Department of Immunology and Microbiology, The Scripps Research Institute, Jupiter, FL, USA
| | - Ben Shen
- Department of Chemistry, The Scripps Research Institute, Jupiter, FL, USA.,Department of Molecular Medicine, The Scripps Research Institute, Jupiter, FL, USA.,Natural Products Discovery Center at Scripps Research, The Scripps Research Institute, Jupiter, FL, USA
| | - Christoph Rader
- Department of Immunology and Microbiology, The Scripps Research Institute, Jupiter, FL, USA
| |
Collapse
|
50
|
Kuan SL, Raabe M. Solid-Phase Protein Modifications: Towards Precision Protein Hybrids for Biological Applications. ChemMedChem 2021; 16:94-104. [PMID: 32667697 PMCID: PMC7818443 DOI: 10.1002/cmdc.202000412] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Indexed: 12/13/2022]
Abstract
Proteins have attracted increasing attention as biopharmaceutics and diagnostics due to their high specificity, biocompatibility, and biodegradability. The biopharmaceutical sector in particular is experiencing rapid growth, which has led to an increase in the production and sale of protein drugs and diagnostics over the last two decades. Since the first-generation biopharmaceutics dominated by native proteins, both recombinant and chemical technologies have evolved and transformed the outlook of this rapidly developing field. This review article presents updates on the fabrication of covalent and supramolecular fusion hybrids, as well as protein-polymer hybrids using solid-phase approaches that hold great promise for preparing protein hybrids with precise control at the macromolecular level to incorporate additional features. In addition, the applications of the resultant protein hybrids in medicine and diagnostics are highlighted where possible.
Collapse
Affiliation(s)
- Seah Ling Kuan
- Max Planck Institute for Polymer ResearchAckermannweg 1055128MainzGermany
- Institute of Inorganic Chemistry IUlm UniversityAlbert-Einstein-Allee 1189081UlmGermany
| | - Marco Raabe
- Max Planck Institute for Polymer ResearchAckermannweg 1055128MainzGermany
- Institute of Inorganic Chemistry IUlm UniversityAlbert-Einstein-Allee 1189081UlmGermany
| |
Collapse
|