1
|
Bharti K, Jha A, Kumar M, Manjit, Satpute AP, Akhilesh, Tiwari V, Mishra B. Correlation of surface properties with dissolution behavior of amorphous solid dispersion of Riluzole and its pharmacodynamic evaluation. J Pharm Sci 2024:S0022-3549(24)00441-6. [PMID: 39414079 DOI: 10.1016/j.xphs.2024.10.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 10/05/2024] [Accepted: 10/05/2024] [Indexed: 10/18/2024]
Abstract
Formulation of amorphous solid dispersion (ASD) of any poorly water-soluble drug is among the most promising techniques to increase the dissolution profile of drug and hence its bioavailability. Various literatures give evidences of the role of drug-polymer interactions in the ASD systems, very little information is available about the surface properties of the drug molecule and their ASDs which contributes to a higher dissolution profile. Current work focuses on exploring the surface behavior of a poorly water-soluble drug Riluzole (RLZ) and its ASDs prepared with two highly hydrophilic polymers, polyacrylic acid (PAA), and polyvinylpyrrolidone vinyl acetate (PVP VA). Initial characterization using X-ray diffraction (XRD) revealed about the weight fraction of drug required to prepare a single-phase homogenous system with both the polymers. The saturation solubility and the dissolution studies showed an increase in RLZ solubility as well as the dissolution profile due to the presence of polymers. The role of polymers in changing the surface properties in terms of wettability and polarity were explored using contact angle method and X-ray photon spectroscopy (XPS). Additionally, the neuroprotective efficacy and dose dependent hepatotoxicity were also evaluated in male wistar rats. These studies confirmed the increase in the surface polarity and hence the enhanced ability of ASD formulations to interact with water. The in vivo studies indicated that at the current recommended dose the efficacy as well as toxicity is increased for the ASD formulation. Hence, this formulation can be given at a lower dose to achieve same therapeutic effect with lower toxicity.
Collapse
Affiliation(s)
- Kanchan Bharti
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi, U.P. 221005, India.
| | - Abhishek Jha
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi, U.P. 221005, India.
| | - Manish Kumar
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi, U.P. 221005, India.
| | - Manjit
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi, U.P. 221005, India.
| | - Amol Parasram Satpute
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi, U.P. 221005, India.
| | - Akhilesh
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi, U.P. 221005, India.
| | - Vinod Tiwari
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi, U.P. 221005, India.
| | - Brahmeshwar Mishra
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi, U.P. 221005, India.
| |
Collapse
|
2
|
Kharwade R, Kazi M, Mahajan N, Badole P, More S, Kayali A, Noushad Javed M, Kaleem M. Mannosylated PAMAM G2 dendrimers mediated rate programmed delivery of efavirenz target HIV viral latency at reservoirs. Saudi Pharm J 2024; 32:102154. [PMID: 39282004 PMCID: PMC11399684 DOI: 10.1016/j.jsps.2024.102154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Accepted: 08/07/2024] [Indexed: 09/18/2024] Open
Abstract
In this current research, we conceptualized a novel nanotechnology-enabled synthesis approach of targeting HIV-harboring tissues via second-generation (G2) polyamidoamine (PAMAM) mannosylated (MPG2) dendrimers for programmed delivery of anti-HIV drugs efavirenz (EFV) and ritonavir (RTV). Briefly, here mannose served purpose of ligand in this EFV and RTV-loaded PAMAM G2 dendrimers, synthesized by divergent techniques, denoted as MPG2ER. The developed nanocarriers were characterized by different analytical tools FTIR, NMR, zeta potential, particle size, and surface morphology. The results of confocal microscopy showed substantial alterations in the morphology of H9 cells, favored by relatively higher drug uptake through the MPG2ER. Interestingly, the drug uptake study and cytotoxicity assay of MPG2ER demonstrated that it showed no significant toxicity up to 12.5 µM. A typical flow cytometry histogram also revealed that MPG2ER efficiently internalized both drugs, with an increase in drug uptake of up to 81.2 %. It also enhanced the plasma pharmacokinetics of EFV, with Cmax7.68 μg/ml, AUC of 149.19 (μg/ml) * hr, and MRT of 26.87 hrs. Subsequently, tissue pharmacokinetics further evidence that MPG2ER accumulated more in distant Human immunodeficiency virus (HIV) reservoir tissues, such as the lymph nodes and spleen, but without exhibiting significant toxicity. Abovementioned compelling evidences strongly favored translational roles of MPG2 as a potential therapeutic strategy in the clinical eradication of HIV from viral reservoir tissue.
Collapse
Affiliation(s)
- Rohini Kharwade
- Department of Pharmaceutics, Dadasaheb Balpande College of Pharmacy, Besa, Nagpur, Rashtrasant Tukadoji Maharaj Nagpur University, Nagpur, MS, India
| | - Mohsin Kazi
- Department of Pharmaceutics, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia
| | - Nilesh Mahajan
- Department of Pharmaceutics, Dadasaheb Balpande College of Pharmacy, Besa, Nagpur, Rashtrasant Tukadoji Maharaj Nagpur University, Nagpur, MS, India
| | - Payal Badole
- Department of Pharmaceutics, Dadasaheb Balpande College of Pharmacy, Besa, Nagpur, Rashtrasant Tukadoji Maharaj Nagpur University, Nagpur, MS, India
| | - Sachin More
- Department of Pharmacology, Dadasaheb Balpande College of Pharmacy, Rashtrasant Tukadoji Maharaj Nagpur University, Nagpur, Maharashtra 440037, India
| | - Asaad Kayali
- Department of Biomedical Sciences, College of Health Science, Abu Dhabi University, Abu Dhabi P.O. Box 59911, United Arab Emirates
| | - Md Noushad Javed
- NationNanotechnology Center of Excellence, College of Engineering and Computer Science, The University of Texas Rio Grande Valley, Edinburg, TX, USA
| | - Mohammed Kaleem
- Department of Pharmacology, Dadasaheb Balpande College of Pharmacy, Rashtrasant Tukadoji Maharaj Nagpur University, Nagpur, Maharashtra 440037, India
| |
Collapse
|
3
|
Pepin XJH, Suarez-Sharp S. Effect of Food Composition on the PK of Isoniazid Quantitatively Explained Using Physiologically Based Biopharmaceutics Modeling. AAPS J 2024; 26:54. [PMID: 38658473 DOI: 10.1208/s12248-024-00923-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 04/11/2024] [Indexed: 04/26/2024] Open
Abstract
This work shows the utilization of a physiologically based biopharmaceutics model (PBBM) to mechanistically explain the impact of diverse food types on the pharmacokinetics (PK) of isoniazid (INH) and acetyl-isoniazid (Ac-INH). The model was established and validated using published PK profiles for INH along with a combination of measured and predicted values for the physico-chemical and biopharmaceutical propertied of INH and Ac-INH. A dedicated ontogeny model was developed for N-acetyltransferase 2 (NAT2) in human integrating Michaelis Menten parameters for this enzyme in the physiologically based pharmacokinetic (PBPK) model tissues and in the gut, to explain the pre-systemic and systemic metabolism of INH across different acetylator types. Additionally, a novel equation was proposed to calculate the luminal drug degradation related to the presence of reducing sugars, using individual sugar molar concentrations in the meal. By incorporating luminal degradation into the model, adjusting bile salt concentrations and gastric emptying according to food type and quantity, the PBBM was able to accurately predict the negative effect of carbohydrate-rich diets on the PK of INH.
Collapse
Affiliation(s)
- Xavier J H Pepin
- Regulatory Affairs, Simulations Plus, Inc., Lancaster, California, USA.
| | | |
Collapse
|
4
|
Alotaibi BS, Khan MA, Ullah K, Yasin H, Mannan A, Khan SA, Murtaza G. Formulation and characterization of glipizide solid dosage form with enhanced solubility. PLoS One 2024; 19:e0297467. [PMID: 38394326 PMCID: PMC10890718 DOI: 10.1371/journal.pone.0297467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 01/05/2024] [Indexed: 02/25/2024] Open
Abstract
Glipizide, a poor water-soluble drug belongs to BCS class II. The proposed work aimed to enhance the solubility of glipizide by preparing solid dispersions, using polyvinyl pyrrolidone (PVP) and polyethylene glycol (PEG). Solvent evaporation method was used for the preparation of glipizide solid dispersions. Solid dispersions were prepared in four different drug-to-polymer ratios i.e. 1:1, 1:2, 1:3 and 1:4. Mainly effect of three polymers (PVP K30, PVP K90 and PEG 6000) was evaluated on the solubility and dissolution of glipizide. The in-vitro dissolution of all prepared formulations was performed under pH 6.8 at 37°C using USP type II apparatus. In-vitro dissolution results revealed that the formulations having high concentrations of the polymer showed enhanced solubility. Enhancements in the solubility and rate of dissolution of the drug were noted in solid dispersion formulations compared to the physical blends and pure drug. Solid dispersions containing polyvinyl pyrrolidone exhibited a more favorable pattern of drug release compared to the corresponding solid dispersions with PEG. An increase in the maximum solubility of the drug within the solid dispersion systems was observed in all instances. Two solid dispersion formulations were optimized and formulated into immediate-release tablets, which passed all the pharmacopoeial and non-pharmacopoeial tests. Fourier transformed Infrared (FTIR) spectroscopy X-ray diffraction (XRD) and Differential scanning calorimetry (DSC) were used to indicate drug: polymer interactions in solid state. Analysis of the solid dispersion samples through characterization tests indicated the compatibility between the drug and the polymer.
Collapse
Affiliation(s)
- Badriyah Shadid Alotaibi
- Department of Pharmaceutical Sciences, College of Pharmacy, Princess Nourah Bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Muhammad Ahsan Khan
- Department of Pharmacy, COMSATS University Islamabad, Abbottabad Campus, Abbottabad, Pakistan
| | - Kaleem Ullah
- Faculty of Pharmacy, Hamdard University, Islamabad Campus, Pakistan
| | - Haya Yasin
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, Ajman University, Ajman, United Arab Emirates
| | - Abdul Mannan
- Department of Pharmacy, COMSATS University Islamabad, Abbottabad Campus, Abbottabad, Pakistan
| | - Shujaat Ali Khan
- Department of Pharmacy, COMSATS University Islamabad, Abbottabad Campus, Abbottabad, Pakistan
| | - Ghulam Murtaza
- Department of Pharmacy, COMSATS University Islamabad, Lahore Campus, Lahore, Pakistan
| |
Collapse
|
5
|
Zöller L, Avdeef A, Karlsson E, Borde A, Carlert S, Saal C, Dressman J. A comparison of USP 2 and µDISS Profiler™ apparatus for studying dissolution phenomena of ibuprofen and its salts. Eur J Pharm Sci 2024; 193:106684. [PMID: 38154507 DOI: 10.1016/j.ejps.2023.106684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 12/05/2023] [Accepted: 12/25/2023] [Indexed: 12/30/2023]
Abstract
BACKGROUND Pharmaceutical salts of poorly soluble drugs typically dissolve faster than their corresponding free acid or base, resulting in supersaturation under some circumstances. The key questions relevant to drug bioavailability "does the salt invoke the supersaturated state?" and, if so, "does precipitation occur?" remain. To answer these questions, different types of dissolution equipment are often used at different stages of the development process. AIM To compare the dissolution behaviour of ibuprofen and its sodium and lysine salts in the USP 2 apparatus and the µDISS Profiler™ apparatus. The dissolution, supersaturation of the salt forms and precipitation to the free acid of ibuprofen were characterized along with the dissolution of the free acid form. METHODS Media containing different concentrations of the salt-forming counterions - sodium and lysine - were used to investigate the influence of the type of dissolution apparatus used for the study on dissolution, supersaturation and precipitation behaviour. KEY RESULTS Supersaturation was observed for both the sodium and lysinate salts of ibuprofen in all USP 2 apparatus and µDISS Profiler™ experiments. However, precipitation tended to be far greater in the µDISS Profiler™ than in the USP 2 apparatus. The difference was most pronounced in pH 4.5 acetate buffer, in which precipitation was observed exclusively in experiments with the µDISS Profiler™. CONCLUSION Choice of dissolution apparatus can affect the dissolution/supersaturation/precipitation characteristics of pharmaceutical salts. This has to be carefully taken into account when investigating salts over different stages of pharmaceutical research and development.
Collapse
Affiliation(s)
- Laurin Zöller
- Fraunhofer Institute of Translational Medicine and Pharmacology, Theodor-Stern-Kai 7, 60596 Frankfurt am Main, Germany
| | | | - Eva Karlsson
- Oral Product Development, Pharmaceutical Technology & Development, Operations, AstraZeneca Gothenburg, Pepparedsleden 1, 43150 Mölndal, Sweden
| | - Anders Borde
- Oral Product Development, Pharmaceutical Technology & Development, Operations, AstraZeneca Gothenburg, Pepparedsleden 1, 43150 Mölndal, Sweden
| | - Sara Carlert
- Advanced Drug Delivery, Pharmaceutical Sciences, Bio-Pharmaceuticals R&D, AstraZeneca Gothenburg, Pepparedsleden 1, 43150 Mölndal, Sweden
| | - Christoph Saal
- Boehringer Ingelheim Pharma GmbH & Co. KG, Birkendorfer Strasse 65, 88400 Biberach an der Riss, Germany
| | - Jennifer Dressman
- Fraunhofer Institute of Translational Medicine and Pharmacology, Theodor-Stern-Kai 7, 60596 Frankfurt am Main, Germany.
| |
Collapse
|
6
|
Behne S, Franke H, Schwarz S, Lachenmeier DW. Risk Assessment of Chlorogenic and Isochlorogenic Acids in Coffee By-Products. Molecules 2023; 28:5540. [PMID: 37513412 PMCID: PMC10385244 DOI: 10.3390/molecules28145540] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 07/03/2023] [Accepted: 07/11/2023] [Indexed: 07/30/2023] Open
Abstract
Chlorogenic and isochlorogenic acids are naturally occurring antioxidant dietary polyphenolic compounds found in high concentrations in plants, fruits, vegetables, coffee, and coffee by-products. The objective of this review was to assess the potential health risks associated with the oral consumption of coffee by-products containing chlorogenic and isochlorogenic acids, considering both acute and chronic exposure. An electronic literature search was conducted, revealing that 5-caffeoylquinic acid (5-CQA) and 3,5-dicaffeoylquinic acid (3,5-DCQA) are the major chlorogenic acids found in coffee by-products. Toxicological, pharmacokinetic, and clinical data from animal and human studies were available for the assessment, which indicated no significant evidence of toxic or adverse effects following acute oral exposure. The current state of knowledge suggests that long-term exposure to chlorogenic and isochlorogenic acids by daily consumption does not appear to pose a risk to human health when observed at doses within the normal range of dietary exposure. As a result, the intake of CQAs from coffee by-products can be considered reasonably safe.
Collapse
Affiliation(s)
- Sascha Behne
- Postgraduate Study of Toxicology and Environmental Protection, Rudolf-Boehm-Institut für Pharmakologie und Toxikologie, Universität Leipzig, Härtelstrasse 16-18, 04107 Leipzig, Germany; (S.B.); (H.F.)
- Fachbereich II (Fachgruppe Chemie), Berliner Hochschule für Technik (BHT), Luxemburger Strasse 10, 13353 Berlin, Germany
- Chemisches und Veterinäruntersuchungsamt (CVUA) Karlsruhe, Weissenburger Strasse 3, 76187 Karlsruhe, Germany
| | - Heike Franke
- Postgraduate Study of Toxicology and Environmental Protection, Rudolf-Boehm-Institut für Pharmakologie und Toxikologie, Universität Leipzig, Härtelstrasse 16-18, 04107 Leipzig, Germany; (S.B.); (H.F.)
| | - Steffen Schwarz
- Coffee Consulate, Hans-Thoma-Strasse 20, 68163 Mannheim, Germany;
| | - Dirk W. Lachenmeier
- Chemisches und Veterinäruntersuchungsamt (CVUA) Karlsruhe, Weissenburger Strasse 3, 76187 Karlsruhe, Germany
| |
Collapse
|
7
|
Pınar SG, Oktay AN, Karaküçük AE, Çelebi N. Formulation Strategies of Nanosuspensions for Various Administration Routes. Pharmaceutics 2023; 15:pharmaceutics15051520. [PMID: 37242763 DOI: 10.3390/pharmaceutics15051520] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 05/10/2023] [Accepted: 05/15/2023] [Indexed: 05/28/2023] Open
Abstract
Nanosuspensions (NSs), which are nanosized colloidal particle systems, have recently become one of the most interesting substances in nanopharmaceuticals. NSs have high commercial potential because they provide the enhanced solubility and dissolution of low-water-soluble drugs by means of their small particle sizes and large surface areas. In addition, they can alter the pharmacokinetics of the drug and, thus, improve its efficacy and safety. These advantages can be used to enhance the bioavailability of poorly soluble drugs in oral, dermal, parenteral, pulmonary, ocular, or nasal routes for systemic or local effects. Although NSs often consist mainly of pure drugs in aqueous media, they can also contain stabilizers, organic solvents, surfactants, co-surfactants, cryoprotectants, osmogents, and other components. The selection of stabilizer types, such as surfactants or/and polymers, and their ratio are the most critical factors in NS formulations. NSs can be prepared both with top-down methods (wet milling, dry milling, high-pressure homogenization, and co-grinding) and with bottom-up methods (anti-solvent precipitation, liquid emulsion, and sono-precipitation) by research laboratories and pharmaceutical professionals. Nowadays, techniques combining these two technologies are also frequently encountered. NSs can be presented to patients in liquid dosage forms, or post-production processes (freeze drying, spray drying, or spray freezing) can also be applied to transform the liquid state into the solid state for the preparation of different dosage forms such as powders, pellets, tablets, capsules, films, or gels. Thus, in the development of NS formulations, the components/amounts, preparation methods, process parameters/levels, administration routes, and dosage forms must be defined. Moreover, those factors that are the most effective for the intended use should be determined and optimized. This review discusses the effect of the formulation and process parameters on the properties of NSs and highlights the recent advances, novel strategies, and practical considerations relevant to the application of NSs to various administration routes.
Collapse
Affiliation(s)
- Sıla Gülbağ Pınar
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Süleyman Demirel University, Isparta 32260, Turkey
| | - Ayşe Nur Oktay
- Department of Pharmaceutical Technology, Gülhane Faculty of Pharmacy, University of Health Sciences, Ankara 06018, Turkey
| | - Alptuğ Eren Karaküçük
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Ankara Medipol University, Ankara 06050, Turkey
| | - Nevin Çelebi
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Başkent University, Ankara 06790, Turkey
| |
Collapse
|
8
|
Jin S, Haskins MM, Deng CH, Matos CRMO, Zaworotko MJ. Crystal engineering of ionic cocrystals comprising Na/K salts of hesperetin with hesperetin molecules and solubility modulation. IUCRJ 2023; 10:329-340. [PMID: 37079399 PMCID: PMC10161764 DOI: 10.1107/s205225252300266x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 03/20/2023] [Indexed: 05/03/2023]
Abstract
Hesperetin (HES) is a weakly acidic flavonoid of topical interest owing to its antiviral properties. Despite the presence of HES in many dietary supplements, its bioavailability is hindered by poor aqueous solubility (1.35 µg ml-1) and rapid first-pass metabolism. Cocrystallization has evolved as a promising approach to generate novel crystal forms of biologically active compounds and enhance the physicochemical properties without covalent modification. In this work, crystal engineering principles were employed to prepare and characterize various crystal forms of HES. Specifically, two salts and six new ionic cocrystals (ICCs) of HES involving sodium or potassium salts of HES were studied using single-crystal X-ray diffraction (SCXRD) or powder X-ray diffraction and thermal measurements. Structures of seven of the new crystalline forms were elucidated by SCXRD, which revealed two families of isostructural ICCs in terms of their crystal packing and confirmed the presence of phenol...phenolate (PhOH...PhO-) supramolecular heterosynthons. Diverse HES conformations were observed amongst these structures, including unfolded and folded (previously unreported) conformations. One ICC, HES with the sodium salt of HES (NESNAH), was scalable to the gram scale and found to be stable after accelerated stability testing (exposure to elevated heat and humidity). HESNAH reached Cmax after 10 min in PBS buffer 6.8 compared with 240 min in pure HES. In addition, relative solubility was observed to be 5.5 times greater, offering the possibility of improved HES bioavailability.
Collapse
Affiliation(s)
- Shasha Jin
- Department of Chemical Sciences and Bernal Institute, University of Limerick, Limerick V94 T9PX, Ireland
| | - Molly M. Haskins
- Department of Chemical Sciences and Bernal Institute, University of Limerick, Limerick V94 T9PX, Ireland
| | - Cheng-Hua Deng
- Department of Chemical Sciences and Bernal Institute, University of Limerick, Limerick V94 T9PX, Ireland
| | - Catiúcia R. M. O. Matos
- Department of Chemical Sciences and Bernal Institute, University of Limerick, Limerick V94 T9PX, Ireland
| | - Michael J. Zaworotko
- Department of Chemical Sciences and Bernal Institute, University of Limerick, Limerick V94 T9PX, Ireland
| |
Collapse
|
9
|
Cerofolini L, Parigi G, Ravera E, Fragai M, Luchinat C. Solid-state NMR methods for the characterization of bioconjugations and protein-material interactions. SOLID STATE NUCLEAR MAGNETIC RESONANCE 2022; 122:101828. [PMID: 36240720 DOI: 10.1016/j.ssnmr.2022.101828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 08/26/2022] [Accepted: 09/07/2022] [Indexed: 06/16/2023]
Abstract
Protein solid-state NMR has evolved dramatically over the last two decades, with the development of new hardware and sample preparation methodologies. This technique is now ripe for complex applications, among which one can count bioconjugation, protein chemistry and functional biomaterials. In this review, we provide our account on this aspect of protein solid-state NMR.
Collapse
Affiliation(s)
- Linda Cerofolini
- Consorzio Interuniversitario Risonanze Magnetiche di Metalloproteine, Via Luigi Sacconi 6, 50019, Sesto Fiorentino, Italy
| | - Giacomo Parigi
- Consorzio Interuniversitario Risonanze Magnetiche di Metalloproteine, Via Luigi Sacconi 6, 50019, Sesto Fiorentino, Italy; Magnetic Resonance Center (CERM), Università degli Studi di Firenze, Via Luigi Sacconi 6, 50019, Sesto Fiorentino, Italy; Department of Chemistry "Ugo Schiff", Università degli Studi di Firenze, Via della Lastruccia 3, 50019, Sesto Fiorentino, Italy
| | - Enrico Ravera
- Consorzio Interuniversitario Risonanze Magnetiche di Metalloproteine, Via Luigi Sacconi 6, 50019, Sesto Fiorentino, Italy; Magnetic Resonance Center (CERM), Università degli Studi di Firenze, Via Luigi Sacconi 6, 50019, Sesto Fiorentino, Italy; Department of Chemistry "Ugo Schiff", Università degli Studi di Firenze, Via della Lastruccia 3, 50019, Sesto Fiorentino, Italy; Florence Data Science, Università degli Studi di Firenze, Italy.
| | - Marco Fragai
- Consorzio Interuniversitario Risonanze Magnetiche di Metalloproteine, Via Luigi Sacconi 6, 50019, Sesto Fiorentino, Italy; Magnetic Resonance Center (CERM), Università degli Studi di Firenze, Via Luigi Sacconi 6, 50019, Sesto Fiorentino, Italy; Department of Chemistry "Ugo Schiff", Università degli Studi di Firenze, Via della Lastruccia 3, 50019, Sesto Fiorentino, Italy.
| | - Claudio Luchinat
- Consorzio Interuniversitario Risonanze Magnetiche di Metalloproteine, Via Luigi Sacconi 6, 50019, Sesto Fiorentino, Italy; Magnetic Resonance Center (CERM), Università degli Studi di Firenze, Via Luigi Sacconi 6, 50019, Sesto Fiorentino, Italy; Department of Chemistry "Ugo Schiff", Università degli Studi di Firenze, Via della Lastruccia 3, 50019, Sesto Fiorentino, Italy.
| |
Collapse
|
10
|
Oral Pharmacokinetics of Hydroxycinnamic Acids: An Updated Review. Pharmaceutics 2022; 14:pharmaceutics14122663. [PMID: 36559157 PMCID: PMC9784852 DOI: 10.3390/pharmaceutics14122663] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 11/22/2022] [Accepted: 11/25/2022] [Indexed: 12/02/2022] Open
Abstract
Hydroxycinnamic acids (HCAs) such as caffeic acid (CA), chlorogenic acid (CGA), coumaric acid (COA) isomers, ferulic acid (FA) and rosmarinic acid (RA) are natural phenolic acids with widespread distribution in vegetal foods and well-documented pharmacological activities. However, the low bioavailability of HCAs impairs their administration by the oral route. The present review addresses new findings and important factors/obstacles for their oral administration, which were unexplored in the reviews published a decade ago concerning the bioavailability of phenolic acids. Based on this, the article aims to perform an updated review of the water solubility and gastrointestinal stability of HCAs, as well as describe their oral absorption, distribution, metabolism and excretion (ADME) processes by in vitro, ex vivo, in situ and in vivo methods.
Collapse
|
11
|
Ikuse M, Tagami T, Ogawa K, Ozeki T. Contamination-Free Milling of Ketoprofen Nanoparticles Using Mannitol Medium and Hoover Automatic Muller: Optimization of Effective Design of Experiment. Biol Pharm Bull 2022; 45:1706-1715. [DOI: 10.1248/bpb.b22-00561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Marin Ikuse
- Drug Delivery and Nano Pharmaceutics, Graduate School of Pharmaceutical Sciences, Nagoya City University
| | - Tatsuaki Tagami
- Drug Delivery and Nano Pharmaceutics, Graduate School of Pharmaceutical Sciences, Nagoya City University
| | - Koki Ogawa
- Drug Delivery and Nano Pharmaceutics, Graduate School of Pharmaceutical Sciences, Nagoya City University
| | - Tetsuya Ozeki
- Drug Delivery and Nano Pharmaceutics, Graduate School of Pharmaceutical Sciences, Nagoya City University
| |
Collapse
|
12
|
Application of Nanomicelles in Enhancing Bioavailability and Biological Efficacy of Bioactive Nutrients. Polymers (Basel) 2022; 14:polym14163278. [PMID: 36015535 PMCID: PMC9415603 DOI: 10.3390/polym14163278] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 08/04/2022] [Accepted: 08/08/2022] [Indexed: 11/24/2022] Open
Abstract
Nutraceuticals provide many biological benefits besides their basic nutritional value. However, their biological efficacies are often limited by poor absorption and low bioavailability. Nanomaterials have received much attention as potential delivery systems of nutrients and phytonutrients for multiple applications. Nanomicelles are nanosized colloidal structures with a hydrophobic core and hydrophilic shell. Due to their unique characteristics, they have shown great perspectives in food and nutraceutical science. In this review, we discussed the unique properties of nanomicelles. We also emphasized the latest advances on the design of different nanomicelles for efficient delivery and improved bioavailability of various nutrients. The role of nanomicelles in the efficacy improvement of bioactive components from nutraceutical and health foods has been included. Importantly, the safety concerns on nano-processed food products were highlighted.
Collapse
|
13
|
Anand O, Pepin XJH, Kolhatkar V, Seo P. The Use of Physiologically Based Pharmacokinetic Analyses-in Biopharmaceutics Applications -Regulatory and Industry Perspectives. Pharm Res 2022; 39:1681-1700. [PMID: 35585448 DOI: 10.1007/s11095-022-03280-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Accepted: 04/27/2022] [Indexed: 12/18/2022]
Abstract
The use of physiologically based pharmacokinetic (PBPK) modeling to support the drug product quality attributes, also known as physiologically based biopharmaceutics modeling (PBBM) is an evolving field and the interest in using PBBM is increasing. The US-FDA has emphasized on the use of patient centric quality standards and clinically relevant drug product specifications over the years. Establishing an in vitro in vivo link is an important step towards achieving the goal of patient centric quality standard. Such a link can aid in constructing a bioequivalence safe space and establishing clinically relevant drug product specifications. PBBM is an important tool to construct a safe space which can be used during the drug product development and lifecycle management. There are several advantages of using the PBBM approach, though there are also a few challenges, both with in vitro methods and in vivo understanding of drug absorption and disposition, that preclude using this approach and therefore further improvements are needed. In this review we have provided an overview of experience gained so far and the current perspective from regulatory and industry point of view. Collaboration between scientists from regulatory, industry and academic fields can further help to advance this field and deliver on promises that PBBM can offer towards establishing patient centric quality standards.
Collapse
Affiliation(s)
- Om Anand
- Division of Biopharmaceutics, Office of New Drug Products, Office of Pharmaceutical Quality (OPQ), Center for Drug Evaluation and Research, Food and Drug Administration (FDA), Silver Spring, Maryland, USA.
| | - Xavier J H Pepin
- New Modalities and Parenteral Development, Pharmaceutical Technology & Development, Operations, AstraZeneca, Macclesfield, UK
| | - Vidula Kolhatkar
- Division of Biopharmaceutics, Office of New Drug Products, Office of Pharmaceutical Quality (OPQ), Center for Drug Evaluation and Research, Food and Drug Administration (FDA), Silver Spring, Maryland, USA
| | - Paul Seo
- Office of Pharmaceutical Quality (OPQ), Center for Drug Evaluation and Research, Food and Drug Administration (FDA), Silver Spring, Maryland, USA
| |
Collapse
|
14
|
Guimarães M, Maharaj A, Edginton A, Vertzoni M, Fotaki N. Understanding the Impact of Age-Related Changes in Pediatric GI Solubility by Multivariate Data Analysis. Pharmaceutics 2022; 14:pharmaceutics14020356. [PMID: 35214088 PMCID: PMC8880315 DOI: 10.3390/pharmaceutics14020356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 01/14/2022] [Accepted: 01/25/2022] [Indexed: 11/16/2022] Open
Abstract
The aim of this study was to understand drug solubilization as a function of age and identify drugs at risk of altered drug solubility in newborns and young infants in comparison to adults. Multivariate statistical analysis was used to understand drug solubilization as a function of drug’s physicochemical properties and the composition of gastrointestinal fluids. The solubility of seven poorly soluble compounds was assessed in adult and age-specific fasted and fed state biorelevant media. Partial least squares regression (PLS-R) was used to assess the influence of (i) drug physicochemical properties and (ii) age-related changes in simulated GI fluids, as well as (iii) their interactions, on the pediatrics-to-adult solubility ratio (Sp/Sa (%)). For five out of seven of the compounds investigated, Sp/Sa (%) values fell outside of the 80–125% limits in at least one of the pediatric media. Lipophilicity was responsible for driving drug solubility differences between adults and children in all the biorelevant media investigated, while drug ionization was most relevant in the fed gastric media, and the fasted/fed intestinal media. The concentration of bile salts and lecithin in the fasted and fed intestinal media was critical in influencing drug solubility, while food composition (i.e., cow’s milk formula vs. soy formula) was a critical parameter in the fed gastric state. Changes in GI fluid composition between younger pediatric patients and adults can significantly alter drug luminal solubility. The use of pediatric biorelevant media can be helpful to identify the risk of altered drug solubilization in younger patients during drug development.
Collapse
Affiliation(s)
- Mariana Guimarães
- Department of Pharmacy and Pharmacology, University of Bath, Bath BA2 7AY, UK;
| | - Anil Maharaj
- Faculty of Pharmaceutical Sciences, The University of British Columbia, Vancouver, BC V6T 1Z3, Canada;
| | - Andrea Edginton
- School of Pharmacy, University of Waterloo, Waterloo, ON N2G 1C5, Canada;
| | - Maria Vertzoni
- Department of Pharmacy, National and Kapodistrian University of Athens, 157 72 Athens, Greece;
| | - Nikoletta Fotaki
- Department of Pharmacy and Pharmacology, University of Bath, Bath BA2 7AY, UK;
- Centre for Therapeutic Innovation, University of Bath, Bath BA2 7AY, UK
- Correspondence: ; Tel.: +44-1225-386728; Fax: +44-1225-386114
| |
Collapse
|
15
|
Pepin X, Goetschy M, Abrahmsén-Alami S. Mechanistic Models for USP2 Dissolution Apparatus, Including Fluid Hydrodynamics and Sedimentation. J Pharm Sci 2021; 111:185-196. [PMID: 34666045 DOI: 10.1016/j.xphs.2021.10.006] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 10/11/2021] [Accepted: 10/11/2021] [Indexed: 12/30/2022]
Abstract
Drug product dissolution is a key input to Physiologically Based Biopharmaceutics Models (PBBM) to be able to predict in vivo dissolution. The integration of product dissolution in PBBMs for immediate release drug products should be mechanistic, i.e. allow to capture the main determinants of the in vitro dissolution experiment, and extract product batch specific parameter(s). This work focussed on the Product Particle Size Distribution (P-PSD), which was previously shown to integrate the effect of dose, volume, solubility (pH), size and concentration of micelles in the calculation of a batch specific input to PBBMs, and proposed new hydrodynamic (HD) models, which integrate the effect of USP2 apparatus paddle rotation speed and medium viscosity on dissolution. In addition, new models are also proposed to estimate the quantitative impact of formulation and drug sedimentation or "coning" on dissolution. Model "HDC-1" predicts coning in the presence of formulation insoluble excipients and "HDC-2" predicts the sedimentation of the drug substance only. These models were parameterized and validated on 166 dissolution experiments and 18 different drugs. The validation showed that the HD model average fold errors (AFE) for dissolution rate prediction of immediate release formulations, is comprised between 0.85 and 1.15, and the absolute average fold errors (AAFE) are comprised between 1.08 and 1.28, which shows satisfactory predictive power. For experiments where coning was suspected, the HDC-1 model improved the precision of the prediction (defined as ratio of "AAFE-1"values) by 2.46 fold compared to HD model. The calculation of a P-PSD integrating the impact of USP2 paddle rotation, medium viscosity and coning, will improve the PBBM predictions, since these parameters could have an influence on in vitro dissolution, and could open the way to better prediction of the effect of prandial state on human exposure, by developing new in silico tools which could integrate variation of velocity profiles due to the chyme viscosity.
Collapse
Affiliation(s)
- Xavier Pepin
- New Modalities and Parenteral Development, Pharmaceutical Technology & Development, Operations, AstraZeneca, Macclesfield, UK.
| | - Matéo Goetschy
- During manuscript preparation: European School of Chemistry, Polymers and Materials. University of Strasbourg (ECPM-Strasbourg), Strasbourg, France
| | - Susanna Abrahmsén-Alami
- Innovation Sciences & External Liaisons, Pharmaceutical Technology & Development, Operations, AstraZeneca, Gothenburg, Sweden
| |
Collapse
|
16
|
Wagner C, Kesisoglou F, Pepin XJH, Parrott N, Emami Riedmaier A. Use of Physiologically Based Pharmacokinetic Modeling for Predicting Drug-Food Interactions: Recommendations for Improving Predictive Performance of Low Confidence Food Effect Models. AAPS JOURNAL 2021; 23:85. [PMID: 34142242 DOI: 10.1208/s12248-021-00601-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Accepted: 04/20/2021] [Indexed: 11/30/2022]
Abstract
Food can alter drug absorption and impact safety and efficacy. Besides conducting clinical studies, in vitro approaches such as biorelevant solubility and dissolution testing and in vivo dog studies are typical approaches to estimate a drug's food effect. The use of physiologically based pharmacokinetic models has gained importance and is nowadays a standard tool for food effect predictions at preclinical and clinical stages in the pharmaceutical industry. This manuscript is part of a broader publication from the IQ Consortium's food effect physiologically based pharmacokinetic model (PBPK) modeling working group and complements previous publications by focusing on cases where the food effect was predicted with low confidence. Pazopanib-HCl, trospium-Cl, and ziprasidone-HCl served as model compounds to provide insights into why several food effect predictions failed in the first instance. Furthermore, the manuscript depicts approaches whereby PBPK-based food effect predictions may be improved. These improvements should focus on the PBPK model functionality, especially better reflecting fasted- and fed-state gastric solubility, gastric re-acidification, and complex mechanisms related to gastric emptying of drugs. For improvement of in vitro methodologies, the focus should be on the development of more predictive solubility, supersaturation, and precipitation assays. With regards to the general PBPK modeling methodology, modelers should account for the full solubility profile when modeling ionizable compounds, including common ion effects, and apply a straightforward strategy to account for drug precipitation.
Collapse
Affiliation(s)
- Christian Wagner
- Pharmaceutical Technologies, Chemical and Pharmaceutical Development, Merck KGaA, Frankfurter Str. 250, 64293, Darmstadt, Germany.
| | | | - Xavier J H Pepin
- New Modalities and Parenteral Development, Pharmaceutical Technology & Development, Operations, AstraZeneca, Macclesfield, UK
| | - Neil Parrott
- Pharmaceutical Sciences, Roche Pharmaceutical Research and Early Development, Roche Innovation Center, Basel, Switzerland
| | | |
Collapse
|
17
|
Hamed R, Kamal A. Strength-Dependent and Strength-Independent Dissolution Patterns of Poorly-Soluble Drugs. Case Example: Valsartan. Pharm Chem J 2021. [DOI: 10.1007/s11094-021-02347-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
18
|
Suys EJA, Brundel DHS, Chalmers DK, Pouton CW, Porter CJH. Interaction with biliary and pancreatic fluids drives supersaturation and drug absorption from lipid-based formulations of low (saquinavir) and high (fenofibrate) permeability poorly soluble drugs. J Control Release 2021; 331:45-61. [PMID: 33450318 DOI: 10.1016/j.jconrel.2021.01.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Accepted: 01/03/2021] [Indexed: 12/12/2022]
Abstract
Drug absorption from lipid-based formulations (LBFs) in the gastrointestinal (GI) tract is the result of a series of processes, including formulation dispersion, interaction with biliary and pancreatic secretions, drug solubilisation and supersaturation, and finally intestinal permeability. Optimal formulation design is dependent on a good understanding of the limitations to, and drivers of, absorption, but for LBFs the complexity of these processes makes data interpretation complex. The current study has re-examined a previous in vitro digestion-in situ perfusion model to increase physiological relevance and has used this model to examine drug absorption from LBFs. The composition of rat bile and jejunal fluid was also characterised to identify in vivo-relevant conditions. Digestion was initiated using rat bile/pancreatic fluid and the formulation and digestive enzymes mixed immediately prior to entry into the jejunum (allowing dilution/digestion to occur at the absorptive site). These conditions were employed to study drug absorption from LBFs of high (fenofibrate, FFB) and low (saquinavir, SQV) permeability compounds. The impact of polymeric precipitation inhibitors (PPIs) was also evaluated. For FFB, supersaturation, initiated by formulation interaction with biliary/pancreatic fluids, appeared to drive absorption and the addition of the PPIs poly(glycidyl methacrylate) (PPGAE) and hydroxypropylmethyl cellulose (HPMC), reduced drug precipitation, increased FFB supersaturation and increased absorption from a Type IV LBF of FFB. For a Type IIIB LBF however, PPIs were ineffective at increasing absorption. The impact of PPIs on the absorption of a less permeable drug, SQV, was similarly evaluated and again drug absorption appeared to be related to the extent of supersaturation, although in this case PPI were unable to promote absorption. For both FFB and SQV, drug absorption patterns obtained with the in vitro digestion-in situ perfusion mode, correlated well with in vitro supersaturation data and in vivo drug exposure data from oral bioavailability studies. The data are consistent with a mode of drug absorption where rapid dilution of LBFs with biliary and pancreatic secretions at the absorptive site in the upper small intestine drives transient supersaturation, that supersaturation is a significant driver of drug absorption for both low and high permeability drugs, and that PPIs delay drug precipitation, enhance supersaturation and promote drug absorption in a drug and formulation specific manner.
Collapse
Affiliation(s)
- Estelle J A Suys
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Pde Parkville, Victoria 3052, Australia; ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Pde Parkville, Victoria 3052, Australia
| | - Daniel H S Brundel
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Pde Parkville, Victoria 3052, Australia; ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Pde Parkville, Victoria 3052, Australia
| | - David K Chalmers
- Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Pde Parkville, Victoria 3052, Australia
| | - Colin W Pouton
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Pde Parkville, Victoria 3052, Australia
| | - Christopher J H Porter
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Pde Parkville, Victoria 3052, Australia; ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Pde Parkville, Victoria 3052, Australia.
| |
Collapse
|
19
|
An innovative wax-based enteric coating for pharmaceutical and nutraceutical oral products. Int J Pharm 2020; 591:119935. [DOI: 10.1016/j.ijpharm.2020.119935] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 09/05/2020] [Accepted: 09/27/2020] [Indexed: 01/01/2023]
|
20
|
Zhang Y, Gao Y, Du X, Guan R, He Z, Liu H. Combining Co-Amorphous-Based Spray Drying with Inert Carriers to Achieve Improved Bioavailability and Excellent Downstream Manufacturability. Pharmaceutics 2020; 12:pharmaceutics12111063. [PMID: 33171591 PMCID: PMC7695141 DOI: 10.3390/pharmaceutics12111063] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Revised: 10/31/2020] [Accepted: 11/02/2020] [Indexed: 01/03/2023] Open
Abstract
It is crucial to improve poorly water-soluble orally administered drugs through both preclinical and therapeutic drug discovery. A co-amorphous formulation consisting of two low molecular weight (MW) molecules offers a solubility/dissolubility advantage over its crystalline form by maintaining their amorphous status. Here, we report on a co-amorphous solid dispersion (SD) system that includes inert carriers (lactose monohydrate or microcrystalline cellulose) and co-amorphous sacubitril (SAC)-valsartan (VAL) using the spray drying process. The strong molecular interactions between drugs were the driving force for forming robust co-amorphous SDs. Our system provided the highest solubility with more than ~11.5- and 3.12-times solubility increases when compared with the physical mixtures. Co-amorphous lactose monohydrate (LM) SDs showed better bioavailability of APIs (~356.27.8% and 154.01% for the relative bioavailability of LBQ 657 and valsartan, respectively). Co-amorphous inert carrier SDs possessed an excellent compressibility for the production of a direct compression pharmaceutical product. In conclusion, these brand-new co-amorphous SDs could reduce the number of unit processes to produce a final pharmaceutical product for downstream manufacturability.
Collapse
|
21
|
|
22
|
Etherson K, Dunn C, Matthews W, Pamelund H, Barragat C, Sanderson N, Izumi T, Mathews CDC, Halbert G, Wilson C, McAllister M, Mann J, Østergaard J, Butler J, Khadra I. An interlaboratory investigation of intrinsic dissolution rate determination using surface dissolution. Eur J Pharm Biopharm 2020; 150:24-32. [PMID: 32061919 DOI: 10.1016/j.ejpb.2020.02.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Revised: 01/20/2020] [Accepted: 02/11/2020] [Indexed: 12/17/2022]
Abstract
The purpose of this study was to conduct an interlaboratory ring-study, with six partners (academic and industrial), investigating the measurement of intrinsic dissolution rate (IDR) using surface dissolution imaging (SDI) equipment. Measurement of IDR is important in pharmaceutical research as it provides characterising information on drugs and their formulations. This work allowed us to assess the SDI's interlaboratory performance for measuring IDR using a defined standard operating procedure (see supporting information) and six drugs assigned as low (tadalafil, bromocriptine mesylate), medium (carvedilol, indomethacin) and high (ibuprofen, valsartan) solubility compounds. Fasted State Simulated Intestinal Fluid (FaSSIF) and blank FaSSIF (without sodium taurocholate and lecithin) (pH 6.5) were used as media. Using the standardised protocol an IDR value was obtained for all compounds and the results show that the overall IDR rank order matched the solubility rank order. Interlaboratory variability was also examined and it was observed that the variability for lower solubility compounds was higher, coefficient of variation >50%, than for intermediate and high solubility compounds, with the exception of indomethacin in FaSSIF medium. Inter laboratory variability is a useful descriptor for understanding the robustness of the protocol and the system variability. On comparison to another published small-scale IDR study the rank ordering with respect to dissolution rate is identical except for the high solubility compounds. This results indicates that the SDI robustly measures IDR however, no recommendation on the use of one small scale method over the other is made.
Collapse
Affiliation(s)
- Kelly Etherson
- Product Development & Supply, GlaxoSmithKline R&D, Ware, UK
| | - Claire Dunn
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, UK
| | - Wayne Matthews
- Product Development & Supply, GlaxoSmithKline R&D, Stevenage, UK
| | - Henrik Pamelund
- Product Development & Supply, GlaxoSmithKline R&D, Stevenage, UK; Department of Pharmacy, University of Copenhagen, Copenhagen, Denmark
| | - Camille Barragat
- Department of Pharmacy, University of Copenhagen, Copenhagen, Denmark
| | - Natalie Sanderson
- Pharmaceutical Technology & Development, AstraZeneca, Macclesfield, UK
| | - Toshiko Izumi
- Drug Product Design, Pharmaceutical Sciences, Pfizer Ltd., Sandwich, UK
| | | | - Gavin Halbert
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, UK
| | - Clive Wilson
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, UK
| | - Mark McAllister
- Drug Product Design, Pharmaceutical Sciences, Pfizer Ltd., Sandwich, UK
| | - James Mann
- Pharmaceutical Technology & Development, AstraZeneca, Macclesfield, UK
| | - Jesper Østergaard
- Department of Pharmacy, University of Copenhagen, Copenhagen, Denmark
| | - James Butler
- Product Development & Supply, GlaxoSmithKline R&D, Ware, UK
| | - Ibrahim Khadra
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, UK.
| |
Collapse
|
23
|
McClements DJ. Development of Next-Generation Nutritionally Fortified Plant-Based Milk Substitutes: Structural Design Principles. Foods 2020; 9:E421. [PMID: 32260061 PMCID: PMC7231295 DOI: 10.3390/foods9040421] [Citation(s) in RCA: 72] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 03/23/2020] [Accepted: 03/23/2020] [Indexed: 12/11/2022] Open
Abstract
Consumers are increasingly interested in decreasing their dietary intake of animal-based food products, due to health, sustainability, and ethical concerns. For this reason, the food industry is creating new products from plant-based ingredients that simulate many of the physicochemical and sensory attributes associated with animal-derived foods, including milk, eggs, and meat. An understanding of how the ingredient type, amount, and organization influence the desirable physicochemical, sensory, and nutritional attributes of these plant-based foods is required to achieve this goal. A potential problem with plant-based diets is that they lack key micronutrients, such as vitamin B12, vitamin D, calcium, and ω-3 fatty acids. The aim of this review is to present the science behind the creation of next-generation nutritionally fortified plant-based milk substitutes. These milk-like products may be formed by mechanically breaking down certain plant materials (including nuts, seeds, and legumes) to produce a dispersion of oil bodies and other colloidal matter in water, or by forming oil-in-water emulsions by homogenizing plant-based oils and emulsifiers with water. A brief overview of the formulation and fabrication of plant-based milks is given. The relationship between the optical properties, rheology, and stability of plant-based milks and their composition and structure is then covered. Approaches to fortify these products with micronutrients that may be missing from a plant-based diet are also highlighted. In conclusion, this article highlights how the knowledge of structural design principles can be used to facilitate the creation of higher quality and more sustainable plant-based food products.
Collapse
Affiliation(s)
- David Julian McClements
- Department of Food Science, University of Massachusetts Amherst, Amherst, MA 01003, USA;
- Department of Food Science & Bioengineering, Zhejiang Gongshang University, 18 Xuezheng Street, Hangzhou 310018, China
| |
Collapse
|
24
|
Dou L, Gavins FKH, Mai Y, Madla CM, Taherali F, Orlu M, Murdan S, Basit AW. Effect of Food and an Animal's Sex on P-Glycoprotein Expression and Luminal Fluids in the Gastrointestinal Tract of Wistar Rats. Pharmaceutics 2020; 12:pharmaceutics12040296. [PMID: 32218182 PMCID: PMC7238204 DOI: 10.3390/pharmaceutics12040296] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 03/20/2020] [Accepted: 03/24/2020] [Indexed: 12/12/2022] Open
Abstract
The rat is one of the most commonly used animal models in pre-clinical studies. Limited information between the sexes and the effect of food consumption on the gastrointestinal (GI) physiology, however, is acknowledged or understood. This study aimed to investigate the potential sex differences and effect of food intake on the intestinal luminal fluid and the efflux membrane transporter P-glycoprotein (P-gp) along the intestinal tract of male and female Wistar rats. To characterise the intestinal luminal fluids, pH, surface tension, buffer capacity and osmolality were measured. Absolute P-gp expression along the intestinal tract was quantified via liquid chromatography-tandem mass spectrometry (LC-MS/MS). In general, the characteristics of the luminal fluids were similar in male and female rats along the GI tract. In fasted male rats, the absolute P-gp expression gradually increased from the duodenum to ileum but decreased in the colon. A significant sex difference (p < 0.05) was identified in the jejunum where P-gp expression in males was 83% higher than in females. Similarly, ileal P-gp expression in male rats was approximately 58% higher than that of their female counterparts. Conversely, following food intake, a significant sex difference (p < 0.05) in P-gp expression was found but in a contrasting trend. Fed female rats expressed much higher P-gp levels than male rats with an increase of 77% and 34% in the jejunum and ileum, respectively. A deeper understanding of the effects of sex and food intake on the absorption of P-gp substrates can lead to an improved translation from pre-clinical animal studies into human pharmacokinetic studies.
Collapse
Affiliation(s)
- Liu Dou
- UCL School of Pharmacy, University College London, 29–39 Brunswick Square, London WC1N 1AX, UK; (L.D.); (F.K.H.G.); (C.M.M.); (F.T.); (M.O.); (S.M.)
| | - Francesca K. H. Gavins
- UCL School of Pharmacy, University College London, 29–39 Brunswick Square, London WC1N 1AX, UK; (L.D.); (F.K.H.G.); (C.M.M.); (F.T.); (M.O.); (S.M.)
| | - Yang Mai
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Guangzhou 510275, China;
| | - Christine M. Madla
- UCL School of Pharmacy, University College London, 29–39 Brunswick Square, London WC1N 1AX, UK; (L.D.); (F.K.H.G.); (C.M.M.); (F.T.); (M.O.); (S.M.)
| | - Farhan Taherali
- UCL School of Pharmacy, University College London, 29–39 Brunswick Square, London WC1N 1AX, UK; (L.D.); (F.K.H.G.); (C.M.M.); (F.T.); (M.O.); (S.M.)
| | - Mine Orlu
- UCL School of Pharmacy, University College London, 29–39 Brunswick Square, London WC1N 1AX, UK; (L.D.); (F.K.H.G.); (C.M.M.); (F.T.); (M.O.); (S.M.)
| | - Sudaxshina Murdan
- UCL School of Pharmacy, University College London, 29–39 Brunswick Square, London WC1N 1AX, UK; (L.D.); (F.K.H.G.); (C.M.M.); (F.T.); (M.O.); (S.M.)
| | - Abdul W. Basit
- UCL School of Pharmacy, University College London, 29–39 Brunswick Square, London WC1N 1AX, UK; (L.D.); (F.K.H.G.); (C.M.M.); (F.T.); (M.O.); (S.M.)
- Correspondence: ; Tel.: +44-20-7753-5865
| |
Collapse
|
25
|
D S, Muthudoss P, Khullar P, A RV. Micronization and Agglomeration: Understanding the Impact of API Particle Properties on Dissolution and Permeability Using Solid State and Biopharmaceutical “Toolbox”. J Pharm Innov 2020. [DOI: 10.1007/s12247-019-09424-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
26
|
Edueng K, Mahlin D, Gråsjö J, Nylander O, Thakrani M, Bergström CAS. Supersaturation Potential of Amorphous Active Pharmaceutical Ingredients after Long-Term Storage. Molecules 2019; 24:E2731. [PMID: 31357587 PMCID: PMC6696415 DOI: 10.3390/molecules24152731] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Revised: 07/22/2019] [Accepted: 07/24/2019] [Indexed: 11/16/2022] Open
Abstract
This study explores the effect of physical aging and/or crystallization on the supersaturation potential and crystallization kinetics of amorphous active pharmaceutical ingredients (APIs). Spray-dried, fully amorphous indapamide, metolazone, glibenclamide, hydrocortisone, hydrochlorothiazide, ketoconazole, and sulfathiazole were used as model APIs. The parameters used to assess the supersaturation potential and crystallization kinetics were the maximum supersaturation concentration (Cmax,app), the area under the curve (AUC), and the crystallization rate constant (k). These were compared for freshly spray-dried and aged/crystallized samples. Aged samples were stored at 75% relative humidity for 168 days (6 months) or until they were completely crystallized, whichever came first. The solid-state changes were monitored with differential scanning calorimetry, Raman spectroscopy, and powder X-ray diffraction. Supersaturation potential and crystallization kinetics were investigated using a tenfold supersaturation ratio compared to the thermodynamic solubility using the µDISS Profiler. The physically aged indapamide and metolazone and the minimally crystallized glibenclamide and hydrocortisone did not show significant differences in their Cmax,app and AUC when compared to the freshly spray-dried samples. Ketoconazole, with a crystalline content of 23%, reduced its Cmax,app and AUC by 50%, with Cmax,app being the same as the crystalline solubility. The AUC of aged metolazone, one of the two compounds that remained completely amorphous after storage, significantly improved as the crystallization kinetics significantly decreased. Glibenclamide improved the most in its supersaturation potential from amorphization. The study also revealed that, besides solid-state crystallization during storage, crystallization during dissolution and its corresponding pathway may significantly compromise the supersaturation potential of fully amorphous APIs.
Collapse
Affiliation(s)
- Khadijah Edueng
- Department of Pharmacy, Uppsala University, BMC P.O. Box 580, Husargatan 3, 75123 Uppsala, Sweden
- Kulliyyah of Pharmacy, International Islamic University Malaysia, Jalan Istana, Bandar Indera Mahkota, 25200 Kuantan Pahang, Malaysia
| | - Denny Mahlin
- Department of Pharmacy, Uppsala University, BMC P.O. Box 580, Husargatan 3, 75123 Uppsala, Sweden
- AstraZeneca Operations, Forskargatan 18, 15185 Södertälje, Sweden
| | - Johan Gråsjö
- Department of Pharmacy, Uppsala University, BMC P.O. Box 580, Husargatan 3, 75123 Uppsala, Sweden
| | - Olivia Nylander
- Department of Pharmacy, Uppsala University, BMC P.O. Box 580, Husargatan 3, 75123 Uppsala, Sweden
| | - Manish Thakrani
- Department of Pharmacy, University College London (UCL), Brunswick Square, WC1N 1AX London, UK
| | - Christel A S Bergström
- Department of Pharmacy, Uppsala University, BMC P.O. Box 580, Husargatan 3, 75123 Uppsala, Sweden.
- The Swedish Drug Delivery Forum, Department of Pharmacy, Uppsala University, BMC P.O. Box 580, Husargatan 3, 75123 Uppsala, Sweden.
| |
Collapse
|
27
|
Rashid M, Malik MY, Singh SK, Chaturvedi S, Gayen JR, Wahajuddin M. Bioavailability Enhancement of Poorly Soluble Drugs: The Holy Grail in Pharma Industry. Curr Pharm Des 2019; 25:987-1020. [DOI: 10.2174/1381612825666190130110653] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2018] [Accepted: 01/24/2019] [Indexed: 02/07/2023]
Abstract
Background:
Bioavailability, one of the prime pharmacokinetic properties of a drug, is defined as the
fraction of an administered dose of unchanged drug that reaches the systemic circulation and is used to describe
the systemic availability of a drug. Bioavailability assessment is imperative in order to demonstrate whether the
drug attains the desirable systemic exposure for effective therapy. In recent years, bioavailability has become
the subject of importance in drug discovery and development studies.
Methods:
A systematic literature review in the field of bioavailability and the approaches towards its enhancement
have been comprehensively done, purely focusing upon recent papers. The data mining was performed
using databases like PubMed, Science Direct and general Google searches and the collected data was exhaustively
studied and summarized in a generalized manner.
Results:
The main prospect of this review was to generate a comprehensive one-stop summary of the numerous
available approaches and their pharmaceutical applications in improving the stability concerns, physicochemical
and mechanical properties of the poorly water-soluble drugs which directly or indirectly augment their bioavailability.
Conclusion:
The use of novel methods, including but not limited to, nano-based formulations, bio-enhancers,
solid dispersions, lipid-and polymer-based formulations which provide a wide range of applications not only
increases the solubility and permeability of the poorly bioavailable drugs but also improves their stability, and
targeting efficacy. Although, these methods have drastically changed the pharmaceutical industry demand for the
newer potential methods with better outcomes in the field of pharmaceutical science to formulate various dosage
forms with adequate systemic availability and improved patient compliance, further research is required.
Collapse
Affiliation(s)
- Mamunur Rashid
- Pharmaceutics and Pharmacokinetics Division, CSIR-CDRI, Lucknow, India
| | - Mohd Yaseen Malik
- Pharmaceutics and Pharmacokinetics Division, CSIR-CDRI, Lucknow, India
| | - Sandeep K. Singh
- Pharmaceutics and Pharmacokinetics Division, CSIR-CDRI, Lucknow, India
| | - Swati Chaturvedi
- Pharmaceutics and Pharmacokinetics Division, CSIR-CDRI, Lucknow, India
| | - Jiaur R Gayen
- Pharmaceutics and Pharmacokinetics Division, CSIR-CDRI, Lucknow, India
| | | |
Collapse
|
28
|
Santos Silva B, Colbert MJ, Santangelo M, Bartlett JA, Lapointe-Garant PP, Simard JS, Gosselin R. Monitoring microsphere coating processes using PAT tools in a bench scale fluid bed. Eur J Pharm Sci 2019; 135:12-21. [PMID: 31067496 DOI: 10.1016/j.ejps.2019.05.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Revised: 04/24/2019] [Accepted: 05/04/2019] [Indexed: 11/18/2022]
Abstract
Among the factors that influence adherence to medication within the pediatric population, taste/irritation has been identified as a critical barrier to patient compliance. With the goal of improving compliance, microspheres (matrix systems within which the drug is dispersed) can be coated with a reverse enteric polymer that will prevent the release of the drug in the oral cavity while maintaining an immediate release once the drug product reaches the stomach, thereby achieving a taste neutral profile. In this work, the in-line performance of three process analytical technology (PAT) tools is evaluated in order to monitor the microsphere coating process. These tools are Raman spectroscopy, near-infrared spectroscopy and focused beam reflectance measurements, together with process data and raw material attributes. The ability of these different sources of information to predict the coating's barrier performance is evaluated by using a combined-data-approach: multiblock partial least squares (MBPLS). Results show that Raman spectroscopy has a superior predictive performance and that it has the potential to monitor the coating process of the microspheres as well as to detect process discrepancies (such as spray rate changes), demonstrating its usefulness for the monitoring of fluid bed coating processes. It was also demonstrated that Raman can be used to clearly differentiate batches with significantly difference in-vitro dissolution performance. This monitoring is considered critical to ensure consistent coating performance for this thin film barrier membrane that is essential to patient compliance.
Collapse
Affiliation(s)
- Barbara Santos Silva
- Department of Chemical and Biotechnological Engineering, Université de Sherbrooke, Pfizer Industrial Research Chair, Sherbrooke, Canada.
| | - Marie-Josée Colbert
- Department of Chemical and Biotechnological Engineering, Université de Sherbrooke, Pfizer Industrial Research Chair, Sherbrooke, Canada.
| | - Matthew Santangelo
- Pharmaceutical Sciences, Drug Product Development, Pfizer Global Research and Development, Groton, USA.
| | - Jeremy A Bartlett
- Pharmaceutical Sciences, Drug Product Development, Pfizer Global Research and Development, Groton, USA.
| | | | | | - Ryan Gosselin
- Department of Chemical and Biotechnological Engineering, Université de Sherbrooke, Pfizer Industrial Research Chair, Sherbrooke, Canada.
| |
Collapse
|
29
|
Kanoje B, Patel D, Kumar V, Sahoo SK, Parikh J, Kuperkar K. Unraveling the solubilization and cytotoxicity study of poorly water-soluble anti-inflammatory drug in aqueous Gemini surfactants solution with physicochemical characterization and simulation study. Colloids Surf B Biointerfaces 2019; 179:437-444. [DOI: 10.1016/j.colsurfb.2019.03.059] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Revised: 03/18/2019] [Accepted: 03/27/2019] [Indexed: 10/27/2022]
|
30
|
Pezzoli R, Hopkins Jnr M, Direur G, Gately N, Lyons JG, Higginbotham CL. Micro-Injection Moulding of Poly(vinylpyrrolidone-vinyl acetate) Binary and Ternary Amorphous Solid Dispersions. Pharmaceutics 2019; 11:pharmaceutics11050240. [PMID: 31109108 PMCID: PMC6571625 DOI: 10.3390/pharmaceutics11050240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Revised: 05/14/2019] [Accepted: 05/15/2019] [Indexed: 11/16/2022] Open
Abstract
Micro-injection moulding (µIM) was used for the production of enteric tablets of plasticised and unplasticised solid dispersions of poly(vinylpyrrolidone-vinyl acetate) (PVPVA), and the effect of the mechanical and thermal treatment on the properties of the dispersions was investigated. The physical state of the systems showed to be unaltered by the µIM step, maintaining the drug in the amorphous state. The dissolution profile of the tablets showed a slower dissolution rate due to the lower surface to volume ratio compared to the extruded strands. The lack of solubility of the doses in the acidic medium as a consequence of the acidity of indomethacin (IND) was observed. However, in neutral pH the drug dissolution showed slower rates without affecting the dissolution extent, showing a potential application for the development of controlled release doses. Overall, the production of tablets of amorphous solid dispersions (ASD), coupling hot-melt extrusion (HME) and µIM, proved to be a successful approach towards a continuous automated manufacturing process to improve the aqueous solubility of poorly water-soluble drugs.
Collapse
Affiliation(s)
- Romina Pezzoli
- Applied Polymer Technologies, Athlone Institute of Technology, Dublin Road, Athlone, N37 HD68 Co. Westmeath, Ireland.
- Synthesis and Solid State Pharmaceutical Centre (SSPC), Dublin Road, Athlone, N37 HD68 Co. Westmeath, Ireland.
| | - Michael Hopkins Jnr
- Applied Polymer Technologies, Athlone Institute of Technology, Dublin Road, Athlone, N37 HD68 Co. Westmeath, Ireland.
| | - Guillaume Direur
- Materials Research Institute, Athlone Institute of Technology, Dublin Road, Athlone, N37 HD68 Co. Westmeath, Ireland.
| | - Noel Gately
- Applied Polymer Technologies, Athlone Institute of Technology, Dublin Road, Athlone, N37 HD68 Co. Westmeath, Ireland.
| | - John G Lyons
- Faculty of Engineering and Informatics, Athlone Institute of Technology, Dublin Road, Athlone, N37 HD68 Co. Westmeath, Ireland.
| | - Clement L Higginbotham
- Synthesis and Solid State Pharmaceutical Centre (SSPC), Dublin Road, Athlone, N37 HD68 Co. Westmeath, Ireland.
- Materials Research Institute, Athlone Institute of Technology, Dublin Road, Athlone, N37 HD68 Co. Westmeath, Ireland.
| |
Collapse
|
31
|
Hirsh DA, Wijesekara AV, Carnahan SL, Hung I, Lubach JW, Nagapudi K, Rossini AJ. Rapid Characterization of Formulated Pharmaceuticals Using Fast MAS 1H Solid-State NMR Spectroscopy. Mol Pharm 2019; 16:3121-3132. [DOI: 10.1021/acs.molpharmaceut.9b00343] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- David A. Hirsh
- Department of Chemistry, Iowa State University, Ames, Iowa 50011, United States
| | | | - Scott L. Carnahan
- Department of Chemistry, Iowa State University, Ames, Iowa 50011, United States
| | - Ivan Hung
- Center of Interdisciplinary Magnetic Resonance, National High Magnetic Field Laboratory, 1800 East Paul Dirac Drive, Tallahassee, Florida 32310, United States
| | - Joseph W. Lubach
- Genentech Inc., South San Francisco, California 94080, United States
| | - Karthik Nagapudi
- Genentech Inc., South San Francisco, California 94080, United States
| | - Aaron J. Rossini
- Department of Chemistry, Iowa State University, Ames, Iowa 50011, United States
| |
Collapse
|
32
|
Akram M, Anwar S. Biophysical investigation of promethazine hydrochloride binding with micelles of biocompatible gemini surfactants: Combination of spectroscopic and electrochemical analysis. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2019; 215:249-259. [PMID: 30831395 DOI: 10.1016/j.saa.2019.02.082] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Revised: 11/24/2018] [Accepted: 02/17/2019] [Indexed: 06/09/2023]
Abstract
Knowledge of binding parameters for drug and surfactant complexations is crucially vital in order to design effective drug carrier systems with requisite features. To this end, this work was designed to demonstrate the biophysical characterization of the interaction of a phenothiazine drug promethazine hydrochloride (PMT) with relatively lower cytotoxic and easily degradable biomimetic micellar self-assemblies of oxy-diester functionalized gemini surfactants (Cm-E2O-Cm, m = 12, 14 and 16), possessing different hydrophobic character. The binding propensity of Cm-E2O-Cm increases upon increasing the hydrophobic tail length as manifested through both intrinsic fluorescence and absorption spectral profiles of PMT ̶ Cm-E2O-Cm, showing 1:1 stoichiometry. Ksv values also follow the trend of increasing hydrophobic character (i.e., C12-E2O-C12 < C14-E2O-C14 < C16-E2O-C16). Moreover, the determined thermodynamic parameters, particularly the positive values of ΔHbo and ΔSbo, reveal that the involved complexations are dominated by the hydrophobic interactions. In addition, micropolarity assay was done to deduce the microenvironmental changes upon PMT ̶ Cm-E2O-Cm complexations. Beside this, comparative appraisal of all the three systems helps to underpin a reasonable knowledge of the effect of structural variation of surfactants on their binding ability with drug which, in turn, may also open new avenues for the designing of potential tunable drug carrier systems.
Collapse
Affiliation(s)
- Mohd Akram
- Department of Chemistry, Aligarh Muslim University, Aligarh 202002, India.
| | - Sana Anwar
- Department of Chemistry, Aligarh Muslim University, Aligarh 202002, India
| |
Collapse
|
33
|
Silva BS, Santangelo M, Colbert MJ, Fauteux-Lefebvre C, Bartlett JA, Lapointe-Garant PP, Gosselin R. Building Process Understanding of Fluid Bed Taste Mask Coating of Microspheres. AAPS PharmSciTech 2019; 20:173. [PMID: 31020426 DOI: 10.1208/s12249-019-1384-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Accepted: 04/03/2019] [Indexed: 11/30/2022] Open
Abstract
Taste is routinely cited as one of the major contributing factors that negatively influence pediatric patient compliance. A promising solution is coated microsphere systems, which provide doses of active pharmaceutical ingredients (API) subdivided into a plurality of small dosage units. In this work, the microspheres were coated with Kollicoat® Smartseal, a reverse enteric polymer, which acts to minimize or prevent the release of API in the neutral pH of the oral cavity, which results in a masking effect of the unpleasant taste of the API. A screening of seven key variables in a Wurster coating process was evaluated by D-optimal design and by analysis of variance. The percentage of API released at pH 6.2 was used as a surrogate method for the taste-masking performance evaluation of Kollicoat® Smartseal. The seven studied variables were: product bed temperature, inlet airflow, atomizing air pressure, spray rate (process parameters), coating level, plasticizer level, solids in coating suspension (material attributes), and curing. Results show that coating level, plasticizer level, product bed temperature, and spray rate are the critical process parameters and reinforce the importance of curing to reduce the overall variability within the batch by promoting complete film formation. The link between material attributes, process parameters, and quality attributes were demonstrated to allow a better understanding of the parameters that affect the API release profile at neutral pH (in vitro) while not injuring release at acidic pH (in vitro). It was demonstrated that not only thickness but also coating morphology have an impact on the dissolution in 50 mM potassium phosphate buffer, pH 6.2.
Collapse
|
34
|
Sumaila M, Ramburrun P, Kumar P, Choonara YE, Pillay V. Lipopolysaccharide Polyelectrolyte Complex for Oral Delivery of an Anti-tubercular Drug. AAPS PharmSciTech 2019; 20:107. [PMID: 30746572 DOI: 10.1208/s12249-019-1310-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Accepted: 01/10/2019] [Indexed: 12/28/2022] Open
Abstract
Anti-tuberculosis drug delivery has remained a challenge due to inconsistent bioavailability and inadequate sustained-release properties leading to treatment failure. To resolve these drawbacks, a lipopolysaccharide polyelectrolyte complex (PEC) encapsulated with rifampicin (RIF) (as the model drug) was fabricated, using the solvent injection technique (SIT), with soy lecithin (SLCT), and low-molecular-weight chitosan (LWCT). The average particle size and surface charge of RIF-loaded PEC particulates was 151.6 nm and + 33.0 nm, respectively, with noted decreased particle size and surface charge following increase in SLCT-LWCT mass ratio. Encapsulation efficiency (%EE) and drug-loading capacity (%LC) was 64.25% and 5.84%, respectively. Increase in SLCT-LWCT mass ratio significantly increased %EE with a marginal reduction in %LC. In vitro release studies showed a sustained-release profile for the PEC particulate tablet over 24 h (11.4% cumulative release) where the dominant release mechanism involved non-Fickian anomalous transport shifting towards super case II release as SLCT ratios increased (6.4% cumulative release). PEC-tablets prepared without SIT presented with rapid Fickian-diffusion-based drug release with up to 90% RIF release within 4 h. Ex vivo permeability studies revealed that lipopolysaccharide PEComplexation significantly increased the permeability of RIF by ~ 2-fold within the 8-h study period. These results suggest successful encapsulation of RIF within a PEC structure while imparting increased amorphic regions, as indicated by x-ray diffraction, for potential benefits in improved drug dissolution, bioavailability, and dosing.
Collapse
|
35
|
Applying Supercritical Fluid Technology to Prepare Ibuprofen Solid Dispersions with Improved Oral Bioavailability. Pharmaceutics 2019; 11:pharmaceutics11020067. [PMID: 30717471 PMCID: PMC6409573 DOI: 10.3390/pharmaceutics11020067] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Revised: 01/24/2019] [Accepted: 01/31/2019] [Indexed: 12/31/2022] Open
Abstract
In this study, supercritical fluid (SCF) technology was applied to prepare reliable solid dispersions of pharmaceutical compounds with limited bioavailability using ibuprofen (IBU) as a model compound. Solid-state characterization of the dispersions was conducted by differential scanning calorimetry (DSC), powder X-ray diffraction (PXRD), and scanning electron microscopy (SEM). The PXRD and DSC results suggested that the amorphous form of IBU was maintained in the solid dispersions. Furthermore, in vitro dissolution and in vivo pharmacokinetic (PK) studies in rats were also performed. The dissolution performance of the SCF-prepared IBU dispersions was significantly improved compared to that of the physical mixtures of crystalline IBU and a polymer. In addition, the PK results revealed that the SCF-prepared IBU dispersions produced remarkably high blood drug concentrations (both the AUC and Cmax) and a rapid absorption rate (Tmax). Finally, molecular modeling was used to evaluate the binding energy of interactions between IBU and the polymers. The negative binding energy suggests a relatively stable system. Hence, SCF technology can be used as a very effective approach to prepare IBU solid dispersions with good physical stability and enhanced in vitro and in vivo performance.
Collapse
|
36
|
Abdoune Y, Benguerba Y, Benabid S, Khither H, Sobhi W, Benachour D. Numerical investigation of polyethylene glycol polymer (PEG) and dithymoquinone (DTQ) interaction using molecular modeling. J Mol Liq 2019. [DOI: 10.1016/j.molliq.2018.11.105] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
37
|
Okada K, Hirai D, Kumada S, Kosugi A, Hayashi Y, Onuki Y. 1H NMR Relaxation Study to Evaluate the Crystalline State of Active Pharmaceutical Ingredients Containing Solid Dosage Forms Using Time Domain NMR. J Pharm Sci 2019; 108:451-456. [DOI: 10.1016/j.xphs.2018.09.023] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Revised: 09/08/2018] [Accepted: 09/19/2018] [Indexed: 11/30/2022]
|
38
|
Garbacz P, Wesolowski M. DSC, FTIR and Raman Spectroscopy Coupled with Multivariate Analysis in a Study of Co-Crystals of Pharmaceutical Interest. Molecules 2018; 23:E2136. [PMID: 30149571 PMCID: PMC6225128 DOI: 10.3390/molecules23092136] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Revised: 08/19/2018] [Accepted: 08/22/2018] [Indexed: 11/16/2022] Open
Abstract
Co-crystals have garnered increasing interest in recent years as a beneficial approach to improving the solubility of poorly water soluble active pharmaceutical ingredients (APIs). However, their preparation is a challenge that requires a simple approach towards co-crystal detection. The objective of this work was, therefore, to verify to what extent a multivariate statistical approach such as principal component analysis (PCA) and cluster analysis (CA) can be used as a supporting tool for detecting co-crystal formation. As model samples, physical mixtures and co-crystals of indomethacin with saccharin and furosemide with p-aminobenzoic acid were prepared at API/co-former molar ratios 1:1, 2:1 and 1:2. Data acquired from DSC curves and FTIR and Raman spectroscopies were used for CA and PCA calculations. The results obtained revealed that the application of physical mixtures as reference samples allows a deeper insight into co-crystallization than is possible with the use of API and co-former or API and co-former with physical mixtures. Thus, multivariate matrix for PCA and CA calculations consisting of physical mixtures and potential co-crystals could be considered as the most profitable and reliable way to reflect changes in samples after co-crystallization. Moreover, complementary interpretation of results obtained using DSC, FTIR and Raman techniques is most beneficial.
Collapse
Affiliation(s)
- Patrycja Garbacz
- Department of Analytical Chemistry, Medical University of Gdansk, Gen. J. Hallera 107, 80416 Gdansk, Poland.
| | - Marek Wesolowski
- Department of Analytical Chemistry, Medical University of Gdansk, Gen. J. Hallera 107, 80416 Gdansk, Poland.
| |
Collapse
|
39
|
Zhao L, Pinon AC, Emsley L, Rossini AJ. DNP-enhanced solid-state NMR spectroscopy of active pharmaceutical ingredients. MAGNETIC RESONANCE IN CHEMISTRY : MRC 2018; 56:583-609. [PMID: 29193278 DOI: 10.1002/mrc.4688] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2017] [Revised: 11/15/2017] [Accepted: 11/19/2017] [Indexed: 06/07/2023]
Abstract
Solid-state NMR spectroscopy has become a valuable tool for the characterization of both pure and formulated active pharmaceutical ingredients (APIs). However, NMR generally suffers from poor sensitivity that often restricts NMR experiments to nuclei with favorable properties, concentrated samples, and acquisition of one-dimensional (1D) NMR spectra. Here, we review how dynamic nuclear polarization (DNP) can be applied to routinely enhance the sensitivity of solid-state NMR experiments by one to two orders of magnitude for both pure and formulated APIs. Sample preparation protocols for relayed DNP experiments and experiments on directly doped APIs are detailed. Numerical spin diffusion models illustrate the dependence of relayed DNP enhancements on the relaxation properties and particle size of the solids and can be used for particle size determination when the other factors are known. We then describe the advanced solid-state NMR experiments that have been enabled by DNP and how they provide unique insight into the molecular and macroscopic structure of APIs. For example, with large sensitivity gains provided by DNP, natural isotopic abundance, 13 C-13 C double-quantum single-quantum homonuclear correlation NMR spectra of pure APIs can be routinely acquired. DNP also enables solid-state NMR experiments with unreceptive quadrupolar nuclei such as 2 H, 14 N, and 35 Cl that are commonly found in APIs. Applications of DNP-enhanced solid-state NMR spectroscopy for the molecular level characterization of low API load formulations such as commercial tablets and amorphous solid dispersions are described. Future perspectives for DNP-enhanced solid-state NMR experiments on APIs are briefly discussed.
Collapse
Affiliation(s)
- Li Zhao
- Department of Chemistry, Iowa State University, Ames, IA, USA
- US DOE Ames Laboratory, Ames, IA, USA
| | - Arthur C Pinon
- Institut des Sciences et Ingénierie Chimiques, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015, Lausanne, Switzerland
| | - Lyndon Emsley
- Institut des Sciences et Ingénierie Chimiques, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015, Lausanne, Switzerland
| | - Aaron J Rossini
- Department of Chemistry, Iowa State University, Ames, IA, USA
- US DOE Ames Laboratory, Ames, IA, USA
| |
Collapse
|
40
|
Salim M, Khan J, Ramirez G, Clulow AJ, Hawley A, Ramachandruni H, Boyd BJ. Interactions of Artefenomel (OZ439) with Milk during Digestion: Insights into Digestion-Driven Solubilization and Polymorphic Transformations. Mol Pharm 2018; 15:3535-3544. [DOI: 10.1021/acs.molpharmaceut.8b00541] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Malinda Salim
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, Victoria 3052, Australia
| | - Jamal Khan
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, Victoria 3052, Australia
| | - Gisela Ramirez
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, Victoria 3052, Australia
| | - Andrew J. Clulow
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, Victoria 3052, Australia
| | - Adrian Hawley
- SAXS/WAXS beamline, Australian Synchrotron, ANSTO, 800 Blackburn Road, Clayton, Victoria 3169, Australia
| | - Hanu Ramachandruni
- Medicines for Malaria Venture, 20, Route de Pré-Bois, 1215 Geneva 15, Switzerland
| | - Ben J. Boyd
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, Victoria 3052, Australia
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, Victoria 3052, Australia
| |
Collapse
|
41
|
Rivelli GG, Ricoy LBM, César IC, Fernandes C, Pianetti GA. Level A in vitro-in vivo correlation: Application to establish a dissolution test for artemether and lumefantrine tablets. J Pharm Biomed Anal 2018; 155:262-269. [DOI: 10.1016/j.jpba.2018.03.063] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Revised: 03/08/2018] [Accepted: 03/30/2018] [Indexed: 10/17/2022]
|
42
|
Fael H, Ràfols C, Demirel AL. Poly(2-Ethyl-2-Oxazoline) as an Alternative to Poly(Vinylpyrrolidone) in Solid Dispersions for Solubility and Dissolution Rate Enhancement of Drugs. J Pharm Sci 2018; 107:2428-2438. [PMID: 29859957 DOI: 10.1016/j.xphs.2018.05.015] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Revised: 05/10/2018] [Accepted: 05/22/2018] [Indexed: 10/14/2022]
Abstract
Poly(2-ethyl-2-oxazoline) (PEOX), a biocompatible polymer considered as pseudopolypeptide, was introduced as a potential alternative to the commonly used polymer, poly(vinylpyrrolidone) (PVP) for the preparation of solid dispersion with a poorly soluble drug. Glipizide (GPZ), a Biopharmaceutical Classification System class II model drug, was selected for solubility and dissolution rate study. GPZ-polymer solid dispersions and physical mixtures were characterized and investigated by X-ray diffractometry, differential scanning calorimetry, scanning electron microscopy, and FTIR spectroscopy. The impact of polymers on crystal nucleation kinetics was studied, and PEOX exhibited strong inhibitory effect compared with PVP. Solubility and dissolution behavior of the prepared solid dispersions and their physical blends were in vitro examined and evaluated. A significant enhancement in GPZ solubility was obtained with PEOX compared with the pure drug and solid dispersion with PVP. A big improvement in the intrinsic dissolution rate (45 times) and dissolved amount of GPZ (58 times) was achieved with PEOX in fasted state simulated intestinal fluid, against comparable enhancement observed with PEOX and PVP in phosphate buffer at pH 6.8. Lower molecular weight of PEOX-5K (5000 g/mol) was found to be superior to higher molecular weight PEOX-50K (50,000 g/mol) in the improvement of dissolution behavior. The findings of this study with GPZ as a model drug introduce lower molecular weight PEOX as a promising polymeric carrier toward better oral bioavailability of poorly soluble drugs.
Collapse
Affiliation(s)
- Hanan Fael
- Department of Chemistry, Koç University, Istanbul, Turkey.
| | - Clara Ràfols
- Departament de Enginyeria Química i Química Analítica and Institut de Biomedicina (IBUB), Universitat de Barcelona, Martí i Franquès 1-11, E-08028 Barcelona, Spain
| | | |
Collapse
|
43
|
Jacob S, Nair AB. An updated overview with simple and practical approach for developing in vitro-in vivo correlation. Drug Dev Res 2018; 79:97-110. [PMID: 29697151 DOI: 10.1002/ddr.21427] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Revised: 04/08/2018] [Accepted: 04/09/2018] [Indexed: 12/12/2022]
Abstract
Preclinical Research & Development An in vitro-in vivo correlation (IVIVC) is as a predictive mathematical model that demonstrates a key role in the development, advancement, evaluation and optimization of extended release, modified release and immediate release pharmaceutical formulations. A validated IVIVC model can serve as a surrogate for bioequivalence studies and subsequently save time, effort and expenditure during pharmaceutical product development. This review discusses about different levels of correlations, general approaches to develop an IVIVC by mathematical modelling, validation, data analysis and various applications. In the current setting, the dearth of success associated with IVIVC is due to complexity of underlying scientific principles as well as the practice of fitting/matching in vivo plasma level-time data with in vitro dissolution profile. Hence, a simple, straightforward practical means to predict plasma drug levels by convolution technique and percentage drug absorbed computed from in vitro dissolution profile based on deconvolution method are illustrated. The bioavailability/bioequivalence assessment and evaluation are frequently validated by the pharmacokinetic parameters such as maximum concentration, time to reach maximum concentration, and area under the curve. The implementation of a quality by design manufacturing based on in vivo bioavailability and clinically relevant dissolution specification are recommended because corresponding design safe space will guarantee that all batches from relevant products are met with sufficient quality and bioperformance. Recently, United States Food and Drug Administration and European Medicines Agency have proposed that in silico/physiologically based pharmacokinetic modelling can be used in decision making during preclinical experiments as well as to recognize the dissolution profiles that can forecast and ensure the desired clinical performance.
Collapse
Affiliation(s)
- Shery Jacob
- Department of Pharmaceutical Sciences, College of Pharmacy, Gulf Medical University, Ajman, UAE
| | - Anroop B Nair
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa, Saudi Arabia
| |
Collapse
|
44
|
Wairkar S, Gaud R, Jadhav N. Enhanced dissolution and bioavailability of Nateglinide by microenvironmental pH-regulated ternary solid dispersion: in-vitro and in-vivo evaluation. J Pharm Pharmacol 2017; 69:1099-1109. [DOI: 10.1111/jphp.12756] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2016] [Accepted: 05/07/2017] [Indexed: 11/26/2022]
Abstract
Abstract
Objectives
Nateglinide, an Antidiabetic drug (BCS II), shows pH-dependent solubility and variable bioavailability. The purpose of study was to increase dissolution and bioavailability of Nateglinide by development of its microenvironmental pH-regulated ternary solid dispersion (MeSD).
Methods
MeSD formulation of Nateglinide, poloxamer-188 and Na2CO3 was prepared by melt dispersion in 1 : 2 : 0.2 w/w ratio and further characterised for solubility, In-vitro dissolution, microenvironmental pH, crystallinity/amorphism, physicochemical interactions, bioavailability in Wistar rats.
Key findings
Solubility of Nateglinide was increased notably in MeSD, and its in-vitro dissolution study showed fourfold increase in the dissolution, particularly in 1.2 pH buffer. Prominent reduction in the peak intensity of X-ray powder diffraction (XRPD) and absence of endotherm in DSC thermogram confirmed the amorphism of Nateglinide in MeSD. Attenuated total reflectance Fourier transform infrared spectra revealed the hydrogen bond interactions between Nateglinide and poloxamer-188. In-vivo study indicated that MeSD exhibited fourfold increase in area under curve over Nateglinide. Tmax of MeSD was observed at 0.25 h, which is beneficial for efficient management of postprandial sugar. Instead of mere transformation of the Nateglinide to its amorphous form as evidenced by DSC and XRPD, formation of a soluble carboxylate compound of Nateglinide in MeSD was predominantly responsible for dissolution and bioavailability enhancement.
Conclusions
The study demonstrates the utility of MeSD in achieving pH-independent dissolution, reduced Tmax and enhanced bioavailability of Nateglinide.
Collapse
Affiliation(s)
- Sarika Wairkar
- Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, SVKM's NMIMS, Mumbai, Maharashtra, India
| | - Ram Gaud
- Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, SVKM's NMIMS, Mumbai, Maharashtra, India
| | - Namdeo Jadhav
- Bharati Vidyapeeth College of Pharmacy, Kolhapur, Maharashtra, India
| |
Collapse
|
45
|
Feng T, Wang K, Liu F, Ye R, Zhu X, Zhuang H, Xu Z. Structural characterization and bioavailability of ternary nanoparticles consisting of amylose, α-linoleic acid and β-lactoglobulin complexed with naringin. Int J Biol Macromol 2017; 99:365-374. [DOI: 10.1016/j.ijbiomac.2017.03.005] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Revised: 02/15/2017] [Accepted: 03/01/2017] [Indexed: 01/07/2023]
|
46
|
B. Shekhawat P, B. Pokharkar V. Understanding peroral absorption: regulatory aspects and contemporary approaches to tackling solubility and permeability hurdles. Acta Pharm Sin B 2017; 7:260-280. [PMID: 28540164 PMCID: PMC5430883 DOI: 10.1016/j.apsb.2016.09.005] [Citation(s) in RCA: 93] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2016] [Revised: 09/06/2016] [Accepted: 09/21/2016] [Indexed: 11/10/2022] Open
Abstract
Oral drug absorption is a process influenced by the physicochemical and biopharmaceutical properties of the drug and its inter-relationship with the gastrointestinal tract. Drug solubility, dissolution and permeability across intestinal barrier are the key parameters controlling absorption. This review provides an overview of the factors that affect drug absorption and the classification of a drug on the basis of solubility and permeability. The biopharmaceutical classification system (BCS) was introduced in early 90׳s and is a regulatory tool used to predict bioavailability problems associated with a new entity, thereby helping in the development of a drug product. Strategies to combat solubility and permeability issues are also discussed.
Collapse
Key Words
- ABC, ATP-binding cassette
- AP, absorption potential
- API, active pharmaceutical ingredient
- ATP, adenosine triphosphate
- AZT, azidothymidine
- BA/BE, bioavailability/bioequivalence
- BCRP, breast cancer resistance protein
- BCS
- BCS, biopharmaceutical classification system
- BDDS, biopharmaceutical drug disposition system
- BSP, bromosulfophthalein
- CD, cyclodextrin
- CDER, Centre for Drug Evaluation and Research
- CNT, Na+-dependent concentrative transporter
- CNT, concentrative nucleoside transporter
- CYP, cytochrome P450
- D:S, dose:solubility
- E217G, estradiol 17β-glucuronide
- EMEA, European Medicines Agency
- ENT, equilibrative nucleoside transporter
- FATP, fatty acid transporter protein
- FDA, U.S. Food and Drug Administration
- FIP, International Pharmaceutical Federation
- FaSSIF, fasted state simulated intestinal fluid
- Factors affecting absorption
- FeSSIF, fed state simulated intestinal fluid
- Formulation strategies
- GIS, gastrointestinal simulator
- GIT, gastrointestinal tract
- GITA, gastrointestinal transit and absorption
- GLUT, sodium-independent facilitated diffusion transporter
- GRAS, generally recognized as safe
- HIV, human immunodeficiency disease
- HPC-SL, LBDDS, lipid based drug delivery system
- HUGO, Human Genome Organization
- ICH, International Council of Harmonization
- IDR, intrinsic dissolution rate
- IR, immediate release
- ISBT, sodium dependent bile salt transporter
- MCT, monocarboxylate transporter
- MPP, 1-methyl-4-phenylpyridinium
- MRP, multidrug resistance associated protein
- NLC, nanostructured lipid carrier
- NME, new molecular entity
- NTCP, sodium-dependent taurocholate co-transporting polypeptide
- OAT, organic anion transporter
- OATP, organic anion transporting polypeptide
- OCT, organic cationic transporter
- OCTN, organic cationic/carnitine transporter
- OMM, ordered mesoporous material
- P-gp, P-glycoprotein
- PAH, p-aminohippurate
- PAMPA, parallel artificial membrane permeability assay
- PEG, polyethylene glycol
- PEI, polyethyleneimine
- PEPT, peptide transporter
- PGA, polyglycolic acid
- PLA, poly(lactic acid)
- PLGA, poly-d,l-lactide-co-glycoside
- PMAT, plasma membrane monoamine transport
- PSA, polar surface area
- PVDF, polyvinylidene difluoride
- Papp, apparent permeability
- Peff, effective permeability
- Permeability
- Psi, porous silicon
- RFC, reduced folate transporter
- SDS, sodium dodecyl sulphate
- SGLT, sodium dependent secondary active transporter
- SIF, simulated intestinal fluid
- SLC, solute carrier
- SLCO, solute carrier organic anion
- SLN, solid lipid nanoparticles
- SMVT, sodium dependent multivitamin transporter
- SPIP, single pass intestinal perfusion
- SUPAC, scale-up and post approval changes
- SVCT, sodium-dependent vitamin C transporter
- Solubility
- TEOS, tetraethylortho silicate
- UWL, unstirred water layer
- VDAD, volume to dissolve applied dose
- WHO, World Health Organization
- pMMA, polymethyl methacrylate
- vit. E TPGS, vitamin E tocopherol polyethylene glycol succinate
Collapse
|
47
|
Avdeef A. Cocrystal solubility product analysis - Dual concentration-pH mass action model not dependent on explicit solubility equations. Eur J Pharm Sci 2017; 110:2-18. [PMID: 28392495 DOI: 10.1016/j.ejps.2017.03.049] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2016] [Revised: 03/18/2017] [Accepted: 03/20/2017] [Indexed: 10/19/2022]
Abstract
A novel general computational approach is described to address many aspects of cocrystal (CC) solubility product (Ksp) determination of drug substances. The CC analysis program, pDISOL-X, was developed and validated with published model systems of various acid-base combinations of active pharmaceutical ingredients (APIs) and coformers: (i) carbamazepine cocrystal systems with 4-aminobenzoic acid, cinnamic acid, saccharin, and salicylic acid, (ii) for indomethacin with saccharin, (iii) for nevirapine with maleic acid, saccharin, and salicylic acid, and (iv) for gabapentin with 3-hydroxybenzoic acid. In all systems but gabapentin, the coformer is much more soluble than the API. The model systems selected are those with available published dual concentration-pH data, one set for the API and one set for the coformer, generally measured at eutectic points (thermodynamically-stable three phases: solution, cocrystal, and crystalline API or coformer). The carbamazepine-cinnamic acid CC showed a substantial elevation in the API equilibrium concentration above pH5, consistent with the formation of a complex between carbamazepine and cinnamate anion. The analysis of the gabapentin:3-hydroxybenzoic acid 1:1 CC system indicated four zones of solid suspensions: coformer (pH<3.25), coformer and cocrystal eutectic (pH3.25-4.44), cocrystal (pH4.44-5.62), and API (pH>5.62). The general approach allows for testing of many possible equilibrium models, including those comprising drug-coformer complexation. The program calculates the ionic strength at each pH. From this, the equilibrium constants are adjusted for activity effects, based on the Stokes-Robinson hydration theory. The complete speciation analysis of the CC systems may provide useful insights into pH-sensitive dissolution effects that could potentially influence bioavailability.
Collapse
Affiliation(s)
- Alex Avdeef
- in-ADME Research, 1732 First Avenue #102, New York, NY 10128, USA.
| |
Collapse
|
48
|
Etherson K, Halbert G, Elliott M. The influence of non-ionisable excipients on precipitation parameters measured using the CheqSol method. J Pharm Pharmacol 2016; 68:1131-42. [PMID: 27367258 DOI: 10.1111/jphp.12602] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2016] [Accepted: 06/10/2016] [Indexed: 12/12/2022]
Abstract
OBJECTIVES The aim of this study was to determine the influence of non-ionisable excipients hydroxypropyl-β-cyclodextrin (HPβCD) and poloxamers 407 and 188 on the supersaturation and precipitation kinetics of ibuprofen, gliclazide, propranolol and atenolol induced through solution pH shifts using the CheqSol method. METHODS The drug's kinetic and intrinsic aqueous solubilities were measured in the presence of increasing excipient concentrations using the CheqSol method. Experimental data rate of change of pH with time was also examined to determine excipient-induced parachute effects and influence on precipitation rates. KEY FINDINGS The measured kinetic and intrinsic solubilities provide a determination of the influence of each excipient on supersaturation index, and the area under the CheqSol curve can measure the parachute capability of excipients. The excipients influence on precipitation kinetics can be measured with novel parameters; for example, the precipitation pH or percentage ionised drug at the precipitation point, which provide further information on the excipient-induced changes in precipitation performance. CONCLUSION This method can therefore be employed to measure the influence of non-ionisable excipients on the kinetic solubility behaviour of supersaturated solutions of ionisable drugs and to provide data, which discriminates between excipient systems during precipitation.
Collapse
Affiliation(s)
- Kelly Etherson
- Cancer Research UK Formulation Unit, Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, UK
| | - Gavin Halbert
- Cancer Research UK Formulation Unit, Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, UK
| | - Moira Elliott
- Cancer Research UK Formulation Unit, Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, UK
| |
Collapse
|
49
|
Thanos CG, Yip KP, Mathiowitz E. Intestinal Uptake of Polymer Microspheres in the Rabbit Studied with Confocal Microscopy. J BIOACT COMPAT POL 2016. [DOI: 10.1177/0883911504045275] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
This study characterizes the ability of several polymer formulations to penetrate the absorptive epithelium and lymphoid-associated tissue of the gastrointestinal tract. Using phase inversion nano encapsulation and solvent diffusion, formulations with variable size ranges consisting of either poly(fumaric-co-sebacic)anhydride, poly(lactide-co-glycolide), polystyrene, or polycaprolactone were fabricated and administered to an isolated loop in the small intestine of rabbits. Particles were loaded with a fluorescent dye for detection. Following a period of incubation, animals were sacrificed and the tissue was explanted and processed for histology. Confocal laser scanning microscopy (CLSM) was used to track the microspheres and two separate emission detectors were used to isolate the dye from background. Particles that possess bioadhesiveness in the micron size range could be localized to the absorptive epithelium while larger particles and formulations with low bioadhesiveness failed to penetrate enterocytes and were taken up preferentially in the Peyer’s patches. This work demonstrates that the surface chemistry of oral formulations can ultimately determine the fate and can aid in designing delivery vehicles for a variety of therapeutics currently plagued with poor oral bioavailability.
Collapse
|
50
|
Wairkar S, Gaud R. Co-Amorphous Combination of Nateglinide-Metformin Hydrochloride for Dissolution Enhancement. AAPS PharmSciTech 2016; 17:673-81. [PMID: 26314243 DOI: 10.1208/s12249-015-0371-4] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2015] [Accepted: 07/15/2015] [Indexed: 11/30/2022] Open
Abstract
The aim of the present work was to prepare a co-amorphous mixture (COAM) of Nateglinide and Metformin hydrochloride to enhance the dissolution rate of poorly soluble Nateglinide. Nateglinide (120 mg) and Metformin hydrochloride (500 mg) COAM, as a dose ratio, were prepared by ball-milling technique. COAMs were characterized for saturation solubility, amorphism and physicochemical interactions (X-ray powder diffraction (XRPD), differential scanning calorimetry (DSC), Fourier transform infrared spectroscopy (FTIR)), SEM, in vitro dissolution, and stability studies. Solubility studies revealed a sevenfold rise in solubility of Nateglinide from 0.061 to 0.423 mg/ml in dose ratio of COAM. Solid-state characterization of COAM suggested amorphization of Nateglinide after 6 h of ball milling. XRPD and DSC studies confirmed amorphism in Nateglinide, whereas FTIR elucidated hydrogen interactions (proton exchange between Nateglinide and Metformin hydrochloride). Interestingly, due to low energy of fusion, Nateglinide was completely amorphized and stabilized by Metformin hydrochloride. Consequently, in vitro drug release showed significant increase in dissolution of Nateglinide in COAM, irrespective of dissolution medium. However, little change was observed in the solubility and dissolution profile of Metformin hydrochloride, revealing small change in its crystallinity. Stability data indicated no traces of devitrification in XRPD of stability sample of COAM, and % drug release remained unaffected at accelerated storage conditions. Amorphism of Nateglinide, proton exchange with Metformin hydrochloride, and stabilization of its amorphous form have been noted in ball-milled COAM of Nateglinide-Metformin hydrochloride, revealing enhanced dissolution of Nateglinide. Thus, COAM of Nateglinide-Metformin hydrochloride system is a promising approach for combination therapy in diabetic patients.
Collapse
|