1
|
Nascimento JDF, Damasceno FS, Marsiccobetre S, Vitorino FNDL, Achjian RW, da Cunha JPC, Silber AM. Branched-chain amino acids modulate the proteomic profile of Trypanosoma cruzi metacyclogenesis induced by proline. PLoS Negl Trop Dis 2024; 18:e0012588. [PMID: 39383181 PMCID: PMC11493278 DOI: 10.1371/journal.pntd.0012588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 10/21/2024] [Accepted: 09/30/2024] [Indexed: 10/11/2024] Open
Abstract
Trypanosoma cruzi, the causative agent of Chagas disease, has a complex life cycle that involves triatomine insects as vectors and mammals as hosts. The differentiation of epimastigote forms into metacyclic trypomastigotes within the insect vector is crucial for the parasite's life cycle progression. Factors influencing this process, including temperature, pH, and nutritional stress, along with specific metabolite availability, play a pivotal role. Amino acids like proline, histidine, and glutamine support cell differentiation, while branched-chain amino acids (BCAAs) inhibit it. Interestingly, combining the pro-metacyclogenic amino acid proline with one of the anti-metacyclogenic BCAAs results in viable metacyclics with significantly reduced infectivity. To explore the characteristics of metacyclic parasites differentiated in the presence of BCAAs, proteomics analyses were conducted. Metacyclics obtained in triatomine artificial urine (TAU) supplemented with proline alone and in combination with leucine, isoleucine, or valine were compared. The analyses revealed differential regulation of 40 proteins in TAU-Pro-Leu, 131 in TAU-Pro-Ile, and 179 in TAU-Pro-Val, as compared to metacyclics from TAU-Pro. Among these, 22%, 11%, and 13% of the proteins were associated with metabolic processes, respectively. Notably, enzymes related to glycolysis and the tricarboxylic acid (TCA) cycle were reduced in metacyclics with Pro-BCAAs, while enzymes involved in amino acid and purine metabolic pathways were increased. Furthermore, metacyclics with Pro-Ile and Pro-Val exhibited elevated enzymes linked to lipid and redox metabolism. The results revealed five proteins that were increased and four that were decreased in common in the presence of Pro+BCAAs, indicating their possible participation in key processes related to metacyclogenesis. These findings suggest that the presence of BCAAs can reshape the metabolism of metacyclics, contributing to the observed reduction in infectivity in these parasites.
Collapse
Affiliation(s)
- Janaina de Freitas Nascimento
- Laboratory of Biochemistry of Tryps - LaBTryps - Department of Parasitology, Instituto de Ciências Biomédicas II, Universidade de São Paulo, São Paulo, Brazil
| | - Flávia Silva Damasceno
- Laboratory of Biochemistry of Tryps - LaBTryps - Department of Parasitology, Instituto de Ciências Biomédicas II, Universidade de São Paulo, São Paulo, Brazil
| | - Sabrina Marsiccobetre
- Laboratory of Biochemistry of Tryps - LaBTryps - Department of Parasitology, Instituto de Ciências Biomédicas II, Universidade de São Paulo, São Paulo, Brazil
| | - Francisca Natália de Luna Vitorino
- Laboratório de Ciclo Celular - Instituto Butantan, São Paulo-SP, Brazil; Centro de Toxinas, Resposta Imune e Sinalização Celular (CeTICS), Instituto Butantan, São Paulo, Brazil
| | - Renan Weege Achjian
- Laboratory of Biochemistry of Tryps - LaBTryps - Department of Parasitology, Instituto de Ciências Biomédicas II, Universidade de São Paulo, São Paulo, Brazil
| | - Julia Pinheiro Chagas da Cunha
- Laboratório de Ciclo Celular - Instituto Butantan, São Paulo-SP, Brazil; Centro de Toxinas, Resposta Imune e Sinalização Celular (CeTICS), Instituto Butantan, São Paulo, Brazil
| | - Ariel Mariano Silber
- Laboratory of Biochemistry of Tryps - LaBTryps - Department of Parasitology, Instituto de Ciências Biomédicas II, Universidade de São Paulo, São Paulo, Brazil
| |
Collapse
|
2
|
Tullume-Vergara PO, Caicedo KYO, Tantalean JFC, Serrano MG, Buck GA, Teixeira MMG, Shaw JJ, Alves JMP. Genomes of Endotrypanum monterogeii from Panama and Zelonia costaricensis from Brazil: Expansion of Multigene Families in Leishmaniinae Parasites That Are Close Relatives of Leishmania spp. Pathogens 2023; 12:1409. [PMID: 38133293 PMCID: PMC10747355 DOI: 10.3390/pathogens12121409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 11/10/2023] [Accepted: 11/24/2023] [Indexed: 12/23/2023] Open
Abstract
The Leishmaniinae subfamily of the Trypanosomatidae contains both genus Zelonia (monoxenous) and Endotrypanum (dixenous). They are amongst the nearest known relatives of Leishmania, which comprises many human pathogens widespread in the developing world. These closely related lineages are models for the genomic biology of monoxenous and dixenous parasites. Herein, we used comparative genomics to identify the orthologous groups (OGs) shared among 26 Leishmaniinae species to investigate gene family expansion/contraction and applied two phylogenomic approaches to confirm relationships within the subfamily. The Endotrypanum monterogeii and Zelonia costaricensis genomes were assembled, with sizes of 29.9 Mb and 38.0 Mb and 9.711 and 12.201 predicted protein-coding genes, respectively. The genome of E. monterogeii displayed a higher number of multicopy cell surface protein families, including glycoprotein 63 and glycoprotein 46, compared to Leishmania spp. The genome of Z. costaricensis presents expansions of BT1 and amino acid transporters and proteins containing leucine-rich repeat domains, as well as a loss of ABC-type transporters. In total, 415 and 85 lineage-specific OGs were identified in Z. costaricensis and E. monterogeii. The evolutionary relationships within the subfamily were confirmed using the supermatrix (3384 protein-coding genes) and supertree methods. Overall, this study showed new expansions of multigene families in monoxenous and dixenous parasites of the subfamily Leishmaniinae.
Collapse
Affiliation(s)
- Percy O. Tullume-Vergara
- Department of Parasitology, Institute for Biomedical Sciences, University of Sao Paulo, Av. Prof. Lineu Prestes, 1374, Sao Paulo 05508-000, SP, Brazil; (P.O.T.-V.); (K.Y.O.C.); (J.F.C.T.); (M.M.G.T.); (J.J.S.)
| | - Kelly Y. O. Caicedo
- Department of Parasitology, Institute for Biomedical Sciences, University of Sao Paulo, Av. Prof. Lineu Prestes, 1374, Sao Paulo 05508-000, SP, Brazil; (P.O.T.-V.); (K.Y.O.C.); (J.F.C.T.); (M.M.G.T.); (J.J.S.)
| | - Jose F. C. Tantalean
- Department of Parasitology, Institute for Biomedical Sciences, University of Sao Paulo, Av. Prof. Lineu Prestes, 1374, Sao Paulo 05508-000, SP, Brazil; (P.O.T.-V.); (K.Y.O.C.); (J.F.C.T.); (M.M.G.T.); (J.J.S.)
| | - Myrna G. Serrano
- Department of Microbiology and Immunology, Virginia Commonwealth University School of Medicine, 1101 E Marshall St., Richmond, VA 23298, USA; (M.G.S.); (G.A.B.)
| | - Gregory A. Buck
- Department of Microbiology and Immunology, Virginia Commonwealth University School of Medicine, 1101 E Marshall St., Richmond, VA 23298, USA; (M.G.S.); (G.A.B.)
| | - Marta M. G. Teixeira
- Department of Parasitology, Institute for Biomedical Sciences, University of Sao Paulo, Av. Prof. Lineu Prestes, 1374, Sao Paulo 05508-000, SP, Brazil; (P.O.T.-V.); (K.Y.O.C.); (J.F.C.T.); (M.M.G.T.); (J.J.S.)
| | - Jeffrey J. Shaw
- Department of Parasitology, Institute for Biomedical Sciences, University of Sao Paulo, Av. Prof. Lineu Prestes, 1374, Sao Paulo 05508-000, SP, Brazil; (P.O.T.-V.); (K.Y.O.C.); (J.F.C.T.); (M.M.G.T.); (J.J.S.)
| | - Joao M. P. Alves
- Department of Parasitology, Institute for Biomedical Sciences, University of Sao Paulo, Av. Prof. Lineu Prestes, 1374, Sao Paulo 05508-000, SP, Brazil; (P.O.T.-V.); (K.Y.O.C.); (J.F.C.T.); (M.M.G.T.); (J.J.S.)
| |
Collapse
|
3
|
Pacini MF, Perdomini A, Bulfoni Balbi C, Dinatale B, Herrera FE, Perez AR, Marcipar I. The high identity of the Trypanosoma cruzi Group-I of trans-sialidases points them as promising vaccine immunogens. Proteins 2023; 91:1444-1460. [PMID: 37323089 DOI: 10.1002/prot.26537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 05/24/2023] [Accepted: 05/30/2023] [Indexed: 06/17/2023]
Abstract
Trans-sialidase (TS) superfamily of proteins comprises eight subgroups, being the proteins of Group-I (TS-GI) promising immunogens in vaccine approaches against Trypanosoma cruzi. Strikingly, TS-GI antigenic variability among parasite lineages and their influence on vaccine development has not been previously analyzed. Here, a search in GenBank detects 49 TS-GI indexed sequences, whereas the main infecting human different parasite discrete typing units (DTU) are represented. In silico comparison among these sequences indicate that they share an identity above 92%. Moreover, the antigenic regions (T-cell and B-cell epitopes) are conserved in most sequences or present amino acid substitutions that scarcely may alter the antigenicity. Additionally, since the generic term TS is usually used to refer to different immunogens of this broad family, a further in silico analysis of the TS-GI-derived fragments tested in preclinical vaccines was done to determine the coverage and identity among them, showing that overall amino acid identity of vaccine immunogens is high, but the segment coverage varies widely. Accordingly, strong H-2K, H-2I, and B-cell epitopes are dissimilarly represented among vaccine TS-derived fragments depending on the extension of the TG-GI sequence used. Moreover, bioinformatic analysis detected a set of 150 T-cell strong epitopes among the DTU-indexed sequences that strongly bind human HLA-I supertypes. In all currently reported experimental vaccines based on TS-GI fragments, mapping these 150 epitopes showed that they are moderately represented. However, despite vaccine epitopes do not present all the substitutions observed in the DTUs, these regions of the proteins are equally recognized by the same HLAs. Interestingly, the predictions regarding global and South American population coverage estimated in these 150 epitopes are similar to the estimations in experimental vaccines when the complete sequence of TS-GI is used as an antigen. In silico prediction also shows that a number of these MHC-I restricted T-cell strong epitopes could be also cross-recognized by HLA-I supertypes and H-2Kb or H-2Kd backgrounds, indicating that these mice may be used to improve and facilitate the development of new TS-based vaccines and suggesting an immunogenic and protective potential in humans. Further molecular docking analyses were performed to strengthen these results. Taken together, different strategies that would cover more or eventually fully of these T-cell and also B-cell epitopes to reach a high level of coverage are considered.
Collapse
Affiliation(s)
- Maria Florencia Pacini
- Laboratorio de Estudios en Enfermedad de Chagas, Instituto de Inmunología Clínica y Experimental de Rosario (IDICER-CONICET), Rosario, Argentina
| | - Adrián Perdomini
- Laboratorio de Tecnología Inmunológica, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, Argentina
| | - Camila Bulfoni Balbi
- Laboratorio de Estudios en Enfermedad de Chagas, Instituto de Inmunología Clínica y Experimental de Rosario (IDICER-CONICET), Rosario, Argentina
| | - Brenda Dinatale
- Laboratorio de Estudios en Enfermedad de Chagas, Instituto de Inmunología Clínica y Experimental de Rosario (IDICER-CONICET), Rosario, Argentina
| | - Fernando E Herrera
- Área de Modelado Molecular, Departamento de Física, Facultad de Bioquímica y Ciencias, Universidad Nacional del Litoral, (CONICET), Santa Fe, Argentina
| | - Ana Rosa Perez
- Laboratorio de Estudios en Enfermedad de Chagas, Instituto de Inmunología Clínica y Experimental de Rosario (IDICER-CONICET), Rosario, Argentina
- Centro de Investigación y Producción de Reactivos Biológicos (CIPReB), Facultad de Ciencias Médicas, Universidad Nacional de Rosario, Rosario, Argentina
| | - Iván Marcipar
- Laboratorio de Tecnología Inmunológica, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, Argentina
| |
Collapse
|
4
|
Pacini MF, Balbi CB, Dinatale B, González FB, Prochetto E, De Hernández MA, Cribb P, Farré C, Espariz M, Blancato VS, Magni C, Marcipar I, Pérez AR. Intranasal trans-sialidase-based vaccine against Trypanosoma cruzi triggers a mixed cytokine profile in the nasopharynx-associated lymphoid tissue and confers local and systemic immunogenicity. Acta Trop 2023; 241:106889. [PMID: 36893830 DOI: 10.1016/j.actatropica.2023.106889] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 02/27/2023] [Accepted: 03/05/2023] [Indexed: 03/09/2023]
Abstract
Trypanosoma cruzi, the agent of Chagas disease, can infect through conjunctive or oral mucosas. Therefore, the induction of mucosal immunity by vaccination is relevant not only to trigger local protection but also to stimulate both humoral and cell-mediated responses in systemic sites to control parasite dissemination. In a previous study, we demonstrated that a nasal vaccine based on a Trans-sialidase (TS) fragment plus the mucosal STING agonist c-di-AMP, was highly immunogenic and elicited prophylactic capacity. However, the immune profile induced by TS-based nasal vaccines at the nasopharyngeal-associated lymphoid tissue (NALT), the target site of nasal immunization, remains unknown. Hence, we analyzed the NALT cytokine expression generated by a TS-based vaccine plus c-di-AMP (TSdA+c-di-AMP) and their association with mucosal and systemic immunogenicity. The vaccine was administered intranasally, in 3 doses separated by 15 days each other. Control groups received TSdA, c-di-AMP, or the vehicle in a similar schedule. We demonstrated that female BALB/c mice immunized intranasally with TSdA+c-di-AMP boosted NALT expression of IFN-γ and IL-6, as well as IFN-β and TGF-β. TSdA+c-di-AMP increased TSdA-specific IgA secretion in the nasal passages and also in the distal intestinal mucosa. Moreover, T and B-lymphocytes from NALT-draining cervical lymph nodes and spleen showed an intense proliferation after ex-vivo stimulation with TSdA. Intranasal administration of TSdA+c-di-AMP provokes an enhancement of TSdA-specific IgG2a and IgG1 plasma antibodies, accompanied by an increase IgG2a/IgG1 ratio, indicative of a Th1-biased profile. In addition, immune plasma derived from TSdA+c-di-AMP vaccinated mice exhibit in-vivo and ex-vivo protective capacity. Lastly, TSdA+c-di-AMP nasal vaccine also promotes intense footpad swelling after local TSdA challenge. Our data support that TSdA+c-di-AMP nasal vaccine triggers a NALT mixed pattern of cytokines that were clearly associated with an evident mucosal and systemic immunogenicity. These data are useful for further understanding the immune responses elicited by the NALT following intranasal immunization and the rational design of TS-based vaccination strategies for prophylaxis against T. cruzi.
Collapse
Affiliation(s)
- María F Pacini
- Instituto de Inmunología Clínica y Experimental de Rosario (IDICER-CONICET-UNR), Argentina
| | - Camila Bulfoni Balbi
- Instituto de Inmunología Clínica y Experimental de Rosario (IDICER-CONICET-UNR), Argentina
| | - Brenda Dinatale
- Instituto de Inmunología Clínica y Experimental de Rosario (IDICER-CONICET-UNR), Argentina
| | - Florencia B González
- Instituto de Inmunología Clínica y Experimental de Rosario (IDICER-CONICET-UNR), Argentina
| | - Estefania Prochetto
- Laboratorio de Tecnología Inmunológica, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Argentina
| | - María A De Hernández
- Área Parasitología, Facultad de Ciencias Bioquímicas y Farmacéuticas, UNR. Laboratorio de Biología y Bioquímica de T. cruzi. Instituto de Biología Molecular y Celular de Rosario (IBR-CONICET-UNR), Argentina
| | - Pamela Cribb
- Área Parasitología, Facultad de Ciencias Bioquímicas y Farmacéuticas, UNR. Laboratorio de Biología y Bioquímica de T. cruzi. Instituto de Biología Molecular y Celular de Rosario (IBR-CONICET-UNR), Argentina
| | - Cecilia Farré
- Instituto de Inmunología Clínica y Experimental de Rosario (IDICER-CONICET-UNR), Argentina; Centro de Investigación y Producción de Reactivos Biológicos (CIPReB), Facultad de Ciencias Médicas, Universidad Nacional de Rosario, Argentina
| | - Martín Espariz
- Laboratorio de Fisiología y Genética de Bacterias Lácticas. Instituto de Biología Molecular y Celular de Rosario (IBR-CONICET-UNR), Argentina
| | - Víctor S Blancato
- Laboratorio de Fisiología y Genética de Bacterias Lácticas. Instituto de Biología Molecular y Celular de Rosario (IBR-CONICET-UNR), Argentina
| | - Christian Magni
- Laboratorio de Fisiología y Genética de Bacterias Lácticas. Instituto de Biología Molecular y Celular de Rosario (IBR-CONICET-UNR), Argentina
| | - Iván Marcipar
- Laboratorio de Tecnología Inmunológica, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Argentina
| | - Ana R Pérez
- Instituto de Inmunología Clínica y Experimental de Rosario (IDICER-CONICET-UNR), Argentina; Centro de Investigación y Producción de Reactivos Biológicos (CIPReB), Facultad de Ciencias Médicas, Universidad Nacional de Rosario, Argentina.
| |
Collapse
|
5
|
Cai CW, O’Shea A, Eickhoff CS, Guo H, Lewis WG, Beverley SM, Hoft DF. Use of Leishmania major parasites expressing a recombinant Trypanosoma cruzi antigen as live vaccines against Chagas disease. Front Microbiol 2022; 13:1059115. [PMID: 36523834 PMCID: PMC9745109 DOI: 10.3389/fmicb.2022.1059115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 11/07/2022] [Indexed: 12/03/2022] Open
Abstract
Introduction Trypanosoma cruzi is the protozoan parasite causing Chagas disease, a Neglected Tropical Disease that affects 8 million people and causes 12,000 deaths per year, primarily because of cardiac pathology. Effective vaccination for T. cruzi remains an elusive goal. The use of a live vaccine vector, especially one that mimics the pathogen target, may be superior to the use of recombinant protein or DNA vaccine formulations. Methods We generated recombinant Leishmania major, a related trypanosomatid parasite, as a vaccine vehicle to express the immunogenic T. cruzi trans-sialidase (TS) antigen. The induction of T cell and antibody responses, as well as T. cruzi protective immunity generated by these vaccines were assessed in vivo. Results We demonstrate that mice inoculated with these recombinant TS-expressing L. major parasites mount T cell and antibody responses directed against TS and are protected against future T. cruzi infection. We also show that the partially attenuated dhfr-ts- CC1 L. major strain, previously found to induce protective immunity to virulent L. major infection without causing pathology, can also be engineered to express the TS antigen. This latter recombinant may represent a safe and effective option to explore for ultimate use in humans. Discussion Altogether, these data indicate that L. major can stably express a T. cruzi antigen and induce T. cruzi-specific protective immunity, warranting further investigation of attenuated Leishmania parasites as vaccine.
Collapse
Affiliation(s)
- Catherine W. Cai
- Department of Molecular Microbiology & Immunology, Saint Louis University School of Medicine, Saint Louis, MO, United States,Division of Infectious Diseases, Allergy and Immunology, Department of Internal Medicine, Saint Louis University School of Medicine, Saint Louis, MO, United States
| | - Anne O’Shea
- Division of Infectious Diseases, Allergy and Immunology, Department of Internal Medicine, Saint Louis University School of Medicine, Saint Louis, MO, United States
| | - Christopher S. Eickhoff
- Division of Infectious Diseases, Allergy and Immunology, Department of Internal Medicine, Saint Louis University School of Medicine, Saint Louis, MO, United States
| | - Hongjie Guo
- Department of Molecular Microbiology, Washington University School of Medicine in St. Louis, Saint Louis, MO, United States
| | - Warren G. Lewis
- Department of Molecular Microbiology, Washington University School of Medicine in St. Louis, Saint Louis, MO, United States
| | - Stephen M. Beverley
- Department of Molecular Microbiology, Washington University School of Medicine in St. Louis, Saint Louis, MO, United States
| | - Daniel F. Hoft
- Department of Molecular Microbiology & Immunology, Saint Louis University School of Medicine, Saint Louis, MO, United States,Division of Infectious Diseases, Allergy and Immunology, Department of Internal Medicine, Saint Louis University School of Medicine, Saint Louis, MO, United States,*Correspondence: Daniel F. Hoft,
| |
Collapse
|
6
|
Choudhuri S, Garg NJ. Platelets, Macrophages, and Thromboinflammation in Chagas Disease. J Inflamm Res 2022; 15:5689-5706. [PMID: 36217453 PMCID: PMC9547606 DOI: 10.2147/jir.s380896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Accepted: 08/24/2022] [Indexed: 11/23/2022] Open
Abstract
Chagas disease (CD) is a major health problem in the Americas and an emerging health problem in Europe and other nonendemic countries. Several studies have documented persistence of the protozoan parasite Trypanosoma cruzi, and oxidative and inflammatory stress are major pathogenic factor. Mural and cardiac thrombi, cardiac arrhythmias, and cardiomyopathy are major clinical features of CD. During T. cruzi infection, parasite-released factors induce endothelial dysfunction along with platelet (PLT) and immune-cell activation. PLTs have a fundamental role in maintaining hemostasis and preventing bleeding after vascular injury. Excessive activation of PLTs and coagulation cascade can result in thrombosis and thromboembolic events, which are recognized to occur in seropositive individuals in early stages of CD when clinically symptomatic heart disease is not apparent. Several host and parasite factors have been identified to signal hypercoagulability and increase the risk of ischemic stroke in early phases of CD. Further, PLT interaction with immune cells and their role in host defense against pathogens and inflammatory processes have only recently been recognized and evolving. In the context of parasitic diseases, PLTs function in directly responding to T. cruzi infection, and PLT interactions with immune cells in shaping the proinflammatory or immunoregulatory function of monocytes, macrophages, and neutrophils remains elusive. How T. cruzi infection alters systemic microenvironment conditions to influence PLT and immune-cell interactions is not understood. In this review, we discuss the current literature, and extrapolate the mechanistic situations to explain how PLT and innate immune cell (especially monocytes and macrophages) interactions might be sustaining hypercoagulability and thromboinflammation in chronic CD.
Collapse
Affiliation(s)
- Subhadip Choudhuri
- Department of Microbiology and Immunology, Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, TX, USA
| | - Nisha J Garg
- Department of Microbiology and Immunology, Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, TX, USA
| |
Collapse
|
7
|
Montoya AL, Carvajal EG, Ortega-Rodriguez U, Estevao IL, Ashmus RA, Jankuru SR, Portillo S, Ellis CC, Knight CD, Alonso-Padilla J, Izquierdo L, Pinazo MJ, Gascon J, Suarez V, Watts DM, Malo IR, Ramsey JM, Alarcón De Noya B, Noya O, Almeida IC, Michael K. A Branched and Double Alpha-Gal-Bearing Synthetic Neoglycoprotein as a Biomarker for Chagas Disease. Molecules 2022; 27:5714. [PMID: 36080480 PMCID: PMC9457857 DOI: 10.3390/molecules27175714] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 08/26/2022] [Accepted: 08/29/2022] [Indexed: 11/16/2022] Open
Abstract
Chagas disease (CD) is caused by the parasite Trypanosoma cruzi and affects 6-7 million people worldwide. The diagnosis is still challenging, due to extensive parasite diversity encompassing seven genotypes (TcI-VI and Tcbat) with diverse ecoepidemiological, biological, and pathological traits. Chemotherapeutic intervention is usually effective but associated with severe adverse events. The development of safer, more effective therapies is hampered by the lack of biomarker(s) (BMKs) for the early assessment of therapeutic outcomes. The mammal-dwelling trypomastigote parasite stage expresses glycosylphosphatidylinositol-anchored mucins (tGPI-MUC), whose O-glycans are mostly branched with terminal, nonreducing α-galactopyranosyl (α-Gal) glycotopes. These are absent in humans, and thus highly immunogenic and inducers of specific CD anti-α-Gal antibodies. In search for α-Gal-based BMKs, here we describe the synthesis of neoglycoprotein NGP11b, comprised of a carrier protein decorated with the branched trisaccharide Galα(1,2)[Galα(1,6)]Galβ. By chemiluminescent immunoassay using sera/plasma from chronic CD (CCD) patients from Venezuela and Mexico and healthy controls, NGP11b exhibited sensitivity and specificity similar to that of tGPI-MUC from genotype TcI, predominant in those countries. Preliminary evaluation of CCD patients subjected to chemotherapy showed a significant reduction in anti-α-Gal antibody reactivity to NGP11b. Our data indicated that NGP11b is a potential BMK for diagnosis and treatment assessment in CCD patients.
Collapse
Affiliation(s)
- Alba L. Montoya
- Department of Chemistry and Biochemistry, Border Biochemical Research Center, The University of Texas at El Paso, El Paso, TX 79968, USA
| | - Elisa G. Carvajal
- Department of Chemistry and Biochemistry, Border Biochemical Research Center, The University of Texas at El Paso, El Paso, TX 79968, USA
| | - Uriel Ortega-Rodriguez
- Department of Biological Sciences, Border Biochemical Research Center, The University of Texas at El Paso, El Paso, TX 79968, USA
| | - Igor L. Estevao
- Department of Biological Sciences, Border Biochemical Research Center, The University of Texas at El Paso, El Paso, TX 79968, USA
| | - Roger A. Ashmus
- Department of Chemistry and Biochemistry, Border Biochemical Research Center, The University of Texas at El Paso, El Paso, TX 79968, USA
| | - Sohan R. Jankuru
- Department of Chemistry and Biochemistry, Border Biochemical Research Center, The University of Texas at El Paso, El Paso, TX 79968, USA
| | - Susana Portillo
- Department of Biological Sciences, Border Biochemical Research Center, The University of Texas at El Paso, El Paso, TX 79968, USA
| | - Cameron C. Ellis
- Department of Biological Sciences, Border Biochemical Research Center, The University of Texas at El Paso, El Paso, TX 79968, USA
| | - Colin D. Knight
- Department of Biological Sciences, Border Biochemical Research Center, The University of Texas at El Paso, El Paso, TX 79968, USA
| | - Julio Alonso-Padilla
- Barcelona Institute for Global Health (ISGlobal), 08003 Barcelona, Spain
- Consorcio Centro de Investigación Biomédica en Red (CIBER) de Enfermedades Infecciosas, Instituto de Salud Carlos III (CIBERINFEC, ISCIII), 28029 Madrid, Spain
| | - Luis Izquierdo
- Barcelona Institute for Global Health (ISGlobal), 08003 Barcelona, Spain
- Consorcio Centro de Investigación Biomédica en Red (CIBER) de Enfermedades Infecciosas, Instituto de Salud Carlos III (CIBERINFEC, ISCIII), 28029 Madrid, Spain
| | - Maria-Jesus Pinazo
- Barcelona Institute for Global Health (ISGlobal), 08003 Barcelona, Spain
- Consorcio Centro de Investigación Biomédica en Red (CIBER) de Enfermedades Infecciosas, Instituto de Salud Carlos III (CIBERINFEC, ISCIII), 28029 Madrid, Spain
- Hospital Clínic de Barcelona, 08036 Barcelona, Spain
| | - Joaquim Gascon
- Barcelona Institute for Global Health (ISGlobal), 08003 Barcelona, Spain
- Consorcio Centro de Investigación Biomédica en Red (CIBER) de Enfermedades Infecciosas, Instituto de Salud Carlos III (CIBERINFEC, ISCIII), 28029 Madrid, Spain
- Hospital Clínic de Barcelona, 08036 Barcelona, Spain
| | - Veronica Suarez
- Department of Biological Sciences, Border Biochemical Research Center, The University of Texas at El Paso, El Paso, TX 79968, USA
| | - Douglas M. Watts
- Department of Biological Sciences, Border Biochemical Research Center, The University of Texas at El Paso, El Paso, TX 79968, USA
| | - Iliana R. Malo
- Centro Regional de Investigación en Salud Pública, Instituto Nacional de Salud Pública, Tapachula 30700, Chiapas, Mexico
| | - Janine M. Ramsey
- Centro Regional de Investigación en Salud Pública, Instituto Nacional de Salud Pública, Tapachula 30700, Chiapas, Mexico
| | - Belkisyolé Alarcón De Noya
- Sección de Inmunología, Instituto de Medicina Tropical, Universidad Central de Venezuela, Caracas 1041, Venezuela
| | - Oscar Noya
- Seccion de Biohelmintiasis, Instituto de Medicina Tropical, Universidad Central de Venezuela, Caracas 1041, Venezuela
| | - Igor C. Almeida
- Department of Biological Sciences, Border Biochemical Research Center, The University of Texas at El Paso, El Paso, TX 79968, USA
| | - Katja Michael
- Department of Chemistry and Biochemistry, Border Biochemical Research Center, The University of Texas at El Paso, El Paso, TX 79968, USA
| |
Collapse
|
8
|
Vaccine Design against Chagas Disease Focused on the Use of Nucleic Acids. Vaccines (Basel) 2022; 10:vaccines10040587. [PMID: 35455336 PMCID: PMC9028413 DOI: 10.3390/vaccines10040587] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 04/02/2022] [Accepted: 04/04/2022] [Indexed: 02/04/2023] Open
Abstract
Chagas disease is caused by the protozoan Trypanosoma cruzi and is endemic to Central and South America. However, it has spread around the world and affects several million people. Treatment with currently available drugs cause several side effects and require long treatment times to eliminate the parasite, however, this does not improve the chronic effects of the disease such as cardiomyopathy. A therapeutic vaccine for Chagas disease may be able to prevent the disease and improve the chronic effects such as cardiomyopathy. This vaccine would be beneficial for both infected people and those which are at risk in endemic and non-endemic areas. In this article, we will review the surface antigens of T. cruzi, in order to choose those that are most antigenic and least variable, to design effective vaccines against the etiological agent of Chagas disease. Also, we discuss aspects of the design of nucleic acid-based vaccines, which have been developed and proven to be effective against the SARS-CoV-2 virus. The role of co-adjuvants and delivery carriers is also discussed. We present an example of a chimeric trivalent vaccine, based on experimental work, which can be used to design a vaccine against Chagas disease.
Collapse
|
9
|
Pacini MF, González FB, Dinatale B, Bulfoni Balbi C, Villar SR, Farré C, Lupi G, Espariz M, Blancato VS, Magni C, Marcipar I, Pérez AR. Nasal immunization with a L. lactis-derived trans-sialidase antigen plus c-di-AMP protects against acute oral T. cruzi infection. Vaccine 2022; 40:2311-2323. [PMID: 35279330 DOI: 10.1016/j.vaccine.2022.02.071] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 12/22/2021] [Accepted: 02/20/2022] [Indexed: 01/15/2023]
Abstract
The new generation of vaccines for Chagas disease, are focused to induce both humoral and cellular response to effectively control Trypanosoma cruzi parasites. The administration of vaccine formulations intranasally has the advantage over parenteral routes that can induce a specific response at mucosal and systemic levels. This study aimed to evaluate and compare the immunogenicity and prophylactic effectiveness of two Trans-sialidase (TS)-based mucosal vaccines against T. cruzi administered intranasally. Vaccines consisted of a recombinant fragment of TS expressed in Lactococcus lactis formulated in two different adjuvants. The first, was an immunostimulant particle (ISPA, an ISCOMATRIX-like adjuvant), while the second was the dinucleotide c-di-AMP, which have shown immunostimulant properties at the mucosal level. BALB/c mice were immunized intranasally (3 doses, one every two weeks) with each formulation (TS + ISPA or TS + c-di-AMP) and with TS alone or vehicle (saline solution) as controls. Fifteen days after the last immunization, both TS + ISPA or TS + c-di-AMP induced an evident systemic humoral and cellular response, as judged by the increased plasma anti-TS IgG2a titers and IgG2a/IgG1 ratio and enhanced cellular response against TS. Plasma derived antibodies from TS + c-di-AMP also inhibit in vitro the invasion capacity of T. cruzi. Furthermore, specific secretory IgA was more enhanced in TS + c-di-AMP group. Protective efficacy was proved in vaccinated animals by an oral T. cruzi-challenge. Parasitemia control was only achieved by animals vaccinated with TS + c-di-AMP, despite all vaccinates groups showed enhanced CD8+IFN-γ+ T cell numbers. In addition, it was reflected during the acute phase in a significant reduction of tissue parasite load, clinical manifestations and diminished tissue damage. The better prophylactic capacity elicited by TS + c-di-AMP was related to the induction of neutralizing plasma antibodies and augmented levels of mucosal IgA since TS + ISPA and TS + c-di-AMP groups displayed similar immunogenicity and CD8+IFN-γ+ T-cell response. Therefore, TS + c-di-AMP formulation appears as a promising strategy for prophylaxis against T. cruzi.
Collapse
Affiliation(s)
| | | | - Brenda Dinatale
- Instituto de Inmunología Clínica y Experimental de Rosario (IDICER-CONICET), Argentina
| | - Camila Bulfoni Balbi
- Instituto de Inmunología Clínica y Experimental de Rosario (IDICER-CONICET), Argentina
| | - Silvina Raquel Villar
- Instituto de Inmunología Clínica y Experimental de Rosario (IDICER-CONICET), Argentina; Centro de Investigación y Producción de Reactivos Biológicos (CIPReB), Facultad de Ciencias Médicas, Universidad Nacional de Rosario, Argentina
| | - Cecilia Farré
- Instituto de Inmunología Clínica y Experimental de Rosario (IDICER-CONICET), Argentina; Centro de Investigación y Producción de Reactivos Biológicos (CIPReB), Facultad de Ciencias Médicas, Universidad Nacional de Rosario, Argentina
| | - Giuliana Lupi
- Laboratorio de Tecnología Inmunológica, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Argentina
| | - Martín Espariz
- Instituto de Biología Celular y Molecular de Rosario, Laboratorio de Fisiología y Genética de Bacterias Lácticas, Instituto de Biología Molecular y Celular de Rosario (IBR-CONICET), Argentina
| | - Víctor Sebastián Blancato
- Instituto de Biología Celular y Molecular de Rosario, Laboratorio de Fisiología y Genética de Bacterias Lácticas, Instituto de Biología Molecular y Celular de Rosario (IBR-CONICET), Argentina
| | - Christian Magni
- Instituto de Biología Celular y Molecular de Rosario, Laboratorio de Fisiología y Genética de Bacterias Lácticas, Instituto de Biología Molecular y Celular de Rosario (IBR-CONICET), Argentina
| | - Iván Marcipar
- Laboratorio de Tecnología Inmunológica, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Argentina
| | - Ana Rosa Pérez
- Instituto de Inmunología Clínica y Experimental de Rosario (IDICER-CONICET), Argentina; Centro de Investigación y Producción de Reactivos Biológicos (CIPReB), Facultad de Ciencias Médicas, Universidad Nacional de Rosario, Argentina.
| |
Collapse
|
10
|
de Lederkremer RM, Giorgi ME, Agusti R. trans-Sialylation: a strategy used to incorporate sialic acid into oligosaccharides. RSC Chem Biol 2022; 3:121-139. [PMID: 35360885 PMCID: PMC8827155 DOI: 10.1039/d1cb00176k] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 11/20/2021] [Indexed: 01/02/2023] Open
Abstract
Sialic acid, as a component of cell surface glycoconjugates, plays a crucial role in recognition events. Efficient synthetic methods are necessary for the supply of sialosides in enough quantities for biochemical and immunological studies. Enzymatic glycosylations obviate the steps of protection and deprotection of the constituent monosaccharides required in a chemical synthesis. Sialyl transferases with CMP-Neu5Ac as an activated donor were used for the construction of α2-3 or α2-6 linkages to terminal galactose or N-acetylgalactosamine units. trans-Sialidases may transfer sialic acid from a sialyl glycoside to a suitable acceptor and specifically construct a Siaα2-3Galp linkage. The trans-sialidase of Trypanosoma cruzi (TcTS), which fulfills an important role in the pathogenicity of the parasite, is the most studied one. The recombinant enzyme was used for the sialylation of β-galactosyl oligosaccharides. One of the main advantages of trans-sialylation is that it circumvents the use of the high energy nucleotide. Easily available glycoproteins with a high content of sialic acid such as fetuin and bovine κ-casein-derived glycomacropeptide (GMP) have been used as donor substrates. Here we review the trans-sialidase from various microorganisms and describe their application for the synthesis of sialooligosaccharides.
Collapse
Affiliation(s)
- Rosa M de Lederkremer
- Facultad de Ciencias Exactas y Naturales, Departamento de Química Orgánica, Universidad de Buenos Aires Buenos Aires Argentina
- CONICET - Universidad de Buenos Aires, Centro de Investigaciones en Hidratos de Carbono (CIHIDECAR) Buenos Aires Argentina
| | - María Eugenia Giorgi
- Facultad de Ciencias Exactas y Naturales, Departamento de Química Orgánica, Universidad de Buenos Aires Buenos Aires Argentina
- CONICET - Universidad de Buenos Aires, Centro de Investigaciones en Hidratos de Carbono (CIHIDECAR) Buenos Aires Argentina
| | - Rosalía Agusti
- Facultad de Ciencias Exactas y Naturales, Departamento de Química Orgánica, Universidad de Buenos Aires Buenos Aires Argentina
- CONICET - Universidad de Buenos Aires, Centro de Investigaciones en Hidratos de Carbono (CIHIDECAR) Buenos Aires Argentina
| |
Collapse
|
11
|
Borges AR, Link F, Engstler M, Jones NG. The Glycosylphosphatidylinositol Anchor: A Linchpin for Cell Surface Versatility of Trypanosomatids. Front Cell Dev Biol 2021; 9:720536. [PMID: 34790656 PMCID: PMC8591177 DOI: 10.3389/fcell.2021.720536] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Accepted: 09/06/2021] [Indexed: 11/20/2022] Open
Abstract
The use of glycosylphosphatidylinositol (GPI) to anchor proteins to the cell surface is widespread among eukaryotes. The GPI-anchor is covalently attached to the C-terminus of a protein and mediates the protein’s attachment to the outer leaflet of the lipid bilayer. GPI-anchored proteins have a wide range of functions, including acting as receptors, transporters, and adhesion molecules. In unicellular eukaryotic parasites, abundantly expressed GPI-anchored proteins are major virulence factors, which support infection and survival within distinct host environments. While, for example, the variant surface glycoprotein (VSG) is the major component of the cell surface of the bloodstream form of African trypanosomes, procyclin is the most abundant protein of the procyclic form which is found in the invertebrate host, the tsetse fly vector. Trypanosoma cruzi, on the other hand, expresses a variety of GPI-anchored molecules on their cell surface, such as mucins, that interact with their hosts. The latter is also true for Leishmania, which use GPI anchors to display, amongst others, lipophosphoglycans on their surface. Clearly, GPI-anchoring is a common feature in trypanosomatids and the fact that it has been maintained throughout eukaryote evolution indicates its adaptive value. Here, we explore and discuss GPI anchors as universal evolutionary building blocks that support the great variety of surface molecules of trypanosomatids.
Collapse
Affiliation(s)
- Alyssa R Borges
- Department of Cell and Developmental Biology, Biocenter, University of Würzburg, Würzburg, Germany
| | - Fabian Link
- Department of Cell and Developmental Biology, Biocenter, University of Würzburg, Würzburg, Germany
| | - Markus Engstler
- Department of Cell and Developmental Biology, Biocenter, University of Würzburg, Würzburg, Germany
| | - Nicola G Jones
- Department of Cell and Developmental Biology, Biocenter, University of Würzburg, Würzburg, Germany
| |
Collapse
|
12
|
Gómez I, López MC, Rastrojo A, Lorenzo-Díaz F, Requena JM, Aguado B, Valladares B, Thomas MC. Variability of the Pr77 sequence of L1Tc retrotransposon among six T. cruzi strains belonging to different discrete typing units (DTUs). Acta Trop 2021; 222:106053. [PMID: 34273311 DOI: 10.1016/j.actatropica.2021.106053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2020] [Revised: 06/15/2021] [Accepted: 07/11/2021] [Indexed: 11/30/2022]
Abstract
All trypanosomatid genomes are colonized by non-LTR retrotransposons which exhibit a highly conserved 77-nt sequence at their 5' ends, known as the Pr77-hallmark (Pr77). The wide distribution of Pr77 is expected to be related to the gene regulation processes in these organisms as it has promoter and HDV-like ribozyme activities at the DNA and RNA levels, respectively. The identification of Pr77 hallmark-bearing retrotransposons and the study of the associations of mobile elements with relevant genes have been analyzed in the genomes of six strains of Trypanosoma cruzi belonging to different discrete typing units (DTUs) and with different geographical origins and host/vectors. The genomes have been sequenced, assembled and annotated. BUSCO analyses indicated a good quality for the assemblies that were used in comparative analyses. The results show differences among the six genomes in the copy number of genes related to virulence processes, the abundance of retrotransposons bearing the Pr77 sequence and the presence of the Pr77 hallmarks not associated with retroelements. The analyses also show frequent associations of Pr77-bearing retrotransposons and single Pr77 hallmarks with genes coding for trans-sialidases, RHS, MASP or hypothetical proteins, showing variable proportion depending on the type of retroelement, gene class and parasite strain. These differences in the genomic distribution of active retroelements and other Pr77-containing elements have shaped the genome architecture of these six strains and might be contributing to the phenotypic variability existing among them.
Collapse
Affiliation(s)
- Inmaculada Gómez
- Instituto de Parasitología y Biomedicina López-Neyra, Consejo Superior de Investigaciones Científicas; PTS-Granada, Spain
| | - Manuel Carlos López
- Instituto de Parasitología y Biomedicina López-Neyra, Consejo Superior de Investigaciones Científicas; PTS-Granada, Spain
| | - Alberto Rastrojo
- Centro de Biología Molecular Severo-Ochoa (CBMSO) (CSIC-UAM), Consejo Superior de Investigaciones Científicas, Universidad Autónoma de Madrid, Madrid, Spain
| | - Fabián Lorenzo-Díaz
- Instituto Universitario de Enfermedades Tropicales y Salud Pública de Canarias. Universidad de La Laguna. La Laguna, Spain
| | - José María Requena
- Centro de Biología Molecular Severo-Ochoa (CBMSO) (CSIC-UAM), Consejo Superior de Investigaciones Científicas, Universidad Autónoma de Madrid, Madrid, Spain
| | - Begoña Aguado
- Centro de Biología Molecular Severo-Ochoa (CBMSO) (CSIC-UAM), Consejo Superior de Investigaciones Científicas, Universidad Autónoma de Madrid, Madrid, Spain
| | - Basilio Valladares
- Instituto Universitario de Enfermedades Tropicales y Salud Pública de Canarias. Universidad de La Laguna. La Laguna, Spain
| | - M Carmen Thomas
- Instituto de Parasitología y Biomedicina López-Neyra, Consejo Superior de Investigaciones Científicas; PTS-Granada, Spain.
| |
Collapse
|
13
|
García-Huertas P, Cardona-Castro N. Advances in the treatment of Chagas disease: Promising new drugs, plants and targets. Biomed Pharmacother 2021; 142:112020. [PMID: 34392087 DOI: 10.1016/j.biopha.2021.112020] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 07/22/2021] [Accepted: 08/07/2021] [Indexed: 10/20/2022] Open
Abstract
Chagas disease, caused by Trypanosoma cruzi, is treated with only two drugs; benznidazole and nifurtimox. These drugs have some disadvantages, including their efficacy only in the acute or early infection phases, adverse effects during their use, and the resistance that the parasite has developed to their activity. Therefore, it is necessary to identify new, safe and effective therapeutic alternatives to treat Chagas disease, though governments and the pharmaceutical industry have shown a lack of interest in contributing to this solution. Institutions and research groups on the other hand have worked on some strategies that can help to address the problem. Some of these include the modification of conventional drug dosages, drug repurposing, and combined therapy. Plants and derived compounds with antiparasitic effects have also been studied, taking advantage of traditional medicinal knowledge. Others have studied the parasite to identify essential genes that can be used as therapeutic targets to design new, targeted drugs. Some of these studies have generated promising results, but few reach clinical phase studies. Institutions and research groups should be encouraged to unify efforts and cover all aspects of drug development according to resources and knowledge availability. In the end, this exchange of knowledge would lead to the development of new therapeutic alternatives to treat Chagas disease and benefit the populations it affects.
Collapse
Affiliation(s)
| | - Nora Cardona-Castro
- Instituto Colombiano de Medicina Tropical, Universidad CES, Sabaneta, Colombia.
| |
Collapse
|
14
|
Coutinho JVP, Rosa-Fernandes L, Mule SN, de Oliveira GS, Manchola NC, Santiago VF, Colli W, Wrenger C, Alves MJM, Palmisano G. The thermal proteome stability profile of Trypanosoma cruzi in epimastigote and trypomastigote life stages. J Proteomics 2021; 248:104339. [PMID: 34352427 DOI: 10.1016/j.jprot.2021.104339] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 06/24/2021] [Accepted: 07/28/2021] [Indexed: 12/18/2022]
Abstract
Trypanosoma cruzi is a flagellate protozoa being the etiological agent of Chagas disease, a neglected tropical disease, which still poses a public health problem worldwide. The intricate molecular changes during T. cruzi-host interaction have been explored using different largescale omics techniques. However, protein stability is largely unknown. Thermal proteome profiling (TPP) methodology has the potential to characterize proteome-wide stability highlighting key proteins during T. cruzi infection and life stage transition from the invertebrate to the mammalian host. In the present work, T. cruzi epimastigotes and trypomastigotes cell lysates were subjected to TPP workflow and analyzed by quantitative large-scale mass spectrometry-based proteomics to fit a melting profile for each protein. A total of 2884 proteins were identified and associated to 1741 melting curves being 1370 in trypomastigotes (TmAVG 53.53 °C) and 1279 in epimastigotes (TmAVG 50.89 °C). A total of 453 proteins were identified with statistically different melting profiles between the two life stages. Proteins associated to pathogenesis and intracellular transport had regulated melting temperatures. Membrane and glycosylated proteins had a higher average Tm in trypomastigotes compared to epimastigotes. This study represents the first large-scale comparison of parasite protein stability between life stages. SIGNIFICANCE: Trypanosoma cruzi, a unicellular flagellate parasite, is the etiological agent of Chagas disease, endemic in South America and affecting more that 7 million people worldwide. There is an intense research to identify novel chemotherapeutic and diagnostic targets of Chagas disease. Proteomic approaches have helped in elucidating the quantitative proteome and PTMs changes of T. cruzi during life cycle transition and upon different biotic and abiotic stimuli. However, a comprehensive knowledge of the protein-protein interaction and protein conformation is still missing. In order to fill this gap, this manuscript elucidates the T. cruzi Y strain proteome-wide thermal stability map in the epimastigote and trypomastigote life stages. Comparison between life stages showed a higher average melting temperature stability for trypomastigotes than epimastigotes indicating a host temperature adaptation. Both presented a selective thermal stability shift for cellular compartments, molecular functions and biological processes based on the T. cruzi life stage. Membrane and glycosylated proteins presented a higher thermal stability in trypomastigotes when compared to the epimastigotes.
Collapse
Affiliation(s)
- Joao V P Coutinho
- GlycoProteomics Laboratory, Department of Parasitology, Institute of Biomedical Sciences, University of Sao Paulo, Brazil
| | - Livia Rosa-Fernandes
- GlycoProteomics Laboratory, Department of Parasitology, Institute of Biomedical Sciences, University of Sao Paulo, Brazil
| | - Simon Ngao Mule
- GlycoProteomics Laboratory, Department of Parasitology, Institute of Biomedical Sciences, University of Sao Paulo, Brazil
| | - Gilberto Santos de Oliveira
- GlycoProteomics Laboratory, Department of Parasitology, Institute of Biomedical Sciences, University of Sao Paulo, Brazil
| | | | - Veronica Feijoli Santiago
- GlycoProteomics Laboratory, Department of Parasitology, Institute of Biomedical Sciences, University of Sao Paulo, Brazil
| | - Walter Colli
- Department of Biochemistry, Institute of Chemistry, University of Sao Paulo, Brazil
| | - Carsten Wrenger
- Unit for Drug Discovery, Department of Parasitology, Institute of Biomedical Sciences, University of Sao Paulo, Brazil
| | | | - Giuseppe Palmisano
- GlycoProteomics Laboratory, Department of Parasitology, Institute of Biomedical Sciences, University of Sao Paulo, Brazil.
| |
Collapse
|
15
|
Council CE, Kilpin KJ, Gusthart JS, Allman SA, Linclau B, Lee SS. Enzymatic glycosylation involving fluorinated carbohydrates. Org Biomol Chem 2021; 18:3423-3451. [PMID: 32319497 DOI: 10.1039/d0ob00436g] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Fluorinated carbohydrates, where one (or more) fluorine atom(s) have been introduced into a carbohydrate structure, typically through deoxyfluorination chemistry, have a wide range of applications in the glycosciences. Fluorinated derivatives of galactose, glucose, N-acetylgalactosamine, N-acetylglucosamine, talose, fucose and sialic acid have been employed as either donor or acceptor substrates in glycosylation reactions. Fluorinated donors can be synthesised by synthetic methods or produced enzymatically from chemically fluorinated sugars. The latter process is mediated by enzymes such as kinases, phosphorylases and nucleotidyltransferases. Fluorinated donors produced by either method can subsequently be used in glycosylation reactions mediated by glycosyltransferases, or phosphorylases yielding fluorinated oligosaccharide or glycoconjugate products. Fluorinated acceptor substrates are typically synthesised chemically. Glycosyltransferases are most commonly used in conjunction with natural donors to further elaborate fluorinated acceptor substrates. Glycoside hydrolases are used with either fluorinated donors or acceptors. The activity of enzymes towards fluorinated sugars is often lower than towards the natural sugar substrates irrespective of donor or acceptor. This may be in part attributed to elimination of the contribution of the hydroxyl group to the binding of the substrate to enzymes. However, in many cases, enzymes still maintain a significant activity, and reactions may be optimised where necessary, enabling enzymes to be used more successfully in the production of fluorinated carbohydrates. This review describes the current state of the art regarding chemoenzymatic production of fluorinated carbohydrates, focusing specifically on examples of the enzymatic production of activated fluorinated donors and enzymatic glycosylation involving fluorinated sugars as either glycosyl donors or acceptors.
Collapse
Affiliation(s)
- Claire E Council
- School of Chemistry, University of Southampton, Highfield, Southampton SO17 1BJ, UK.
| | | | | | | | | | | |
Collapse
|
16
|
Trypanosoma cruzi Exploits E- and P-Selectins to Migrate Across Endothelial Cells and Extracellular Matrix Proteins. Infect Immun 2021; 89:e0017821. [PMID: 34228487 DOI: 10.1128/iai.00178-21] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The Chagas disease parasite Trypanosoma cruzi must extravasate to home in on susceptible cells residing in most tissues. It remains unknown how T. cruzi undertakes this crucial step of its life cycle. We hypothesized that the pathogen exploits the endothelial cell programming leukocytes use to extravasate to sites of inflammation. Transendothelial migration (TEM) starts after inflammatory cytokines induce E-selectin expression and P-selectin translocation on endothelial cells (ECs), enabling recognition by leukocyte ligands that engender rolling cell adhesion. Here we show that T. cruzi upregulates E- and P-selectins in cardiac ECs to which it binds in a ligand-receptor fashion, whether under static or shear flow conditions. Glycoproteins isolated from T. cruzi (TcEx) specifically recognize P-selectin in a ligand-receptor interaction. As with leukocytes, binding of P-selectin to T. cruzi or TcEx requires sialic acid and tyrosine sulfate, which are pivotal for downstream migration across ECs and extracellular matrix proteins. Additionally, soluble selectins, which bind T. cruzi, block transendothelial migration dose-dependently, implying that the pathogen bears selectin-binding ligand(s) that start transmigration. Furthermore, function-blocking antibodies against E- and P-selectins, which act on endothelial cells and not T. cruzi, are exquisite in preventing TEM. Thus, our results show that selectins can function as mediators of T. cruzi transendothelial transmigration, suggesting a pathogenic mechanism that allows homing in of the parasite on targeted tissues. As selectin inhibitors are sought-after therapeutic targets for autoimmune diseases and cancer metastasis, they may similarly represent a novel strategy for Chagas disease therapy.
Collapse
|
17
|
Rodríguez-Bejarano OH, Avendaño C, Patarroyo MA. Mechanisms Associated with Trypanosoma cruzi Host Target Cell Adhesion, Recognition and Internalization. Life (Basel) 2021; 11:534. [PMID: 34207491 PMCID: PMC8227291 DOI: 10.3390/life11060534] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 06/02/2021] [Accepted: 06/04/2021] [Indexed: 12/11/2022] Open
Abstract
Chagas disease is caused by the kinetoplastid parasite Trypanosoma cruzi, which is mainly transmitted by hematophagous insect bites. The parasite's lifecycle has an obligate intracellular phase (amastigotes), while metacyclic and bloodstream-trypomastigotes are its infective forms. Mammalian host cell recognition of the parasite involves the interaction of numerous parasite and host cell plasma membrane molecules and domains (known as lipid rafts), thereby ensuring internalization by activating endocytosis mechanisms triggered by various signaling cascades in both host cells and the parasite. This increases cytoplasmatic Ca2+ and cAMP levels; cytoskeleton remodeling and endosome and lysosome intracellular system association are triggered, leading to parasitophorous vacuole formation. Its membrane becomes modified by containing the parasite's infectious form within it. Once it has become internalized, the parasite seeks parasitophorous vacuole lysis for continuing its intracellular lifecycle, fragmenting such a vacuole's membrane. This review covers the cellular and molecular mechanisms involved in T. cruzi adhesion to, recognition of and internalization in host target cells.
Collapse
Affiliation(s)
- Oscar Hernán Rodríguez-Bejarano
- Health Sciences Faculty, Universidad de Ciencias Aplicadas y Ambientales (U.D.C.A), Calle 222#55-37, Bogotá 111166, Colombia;
| | - Catalina Avendaño
- Animal Science Faculty, Universidad de Ciencias Aplicadas y Ambientales (U.D.C.A), Calle 222#55-37, Bogotá 111166, Colombia;
| | - Manuel Alfonso Patarroyo
- Molecular Biology and Immunology Department, Fundación Instituto de Inmunología de Colombia (FIDIC), Carrera 50#26-20, Bogotá 111321, Colombia
- Health Sciences Division, Main Campus, Universidad Santo Tomás, Carrera 9#51-11, Bogotá 110231, Colombia
- Microbiology Department, Faculty of Medicine, Universidad Nacional de Colombia, Carrera 45#26-85, Bogotá 111321, Colombia
| |
Collapse
|
18
|
Talavera-López C, Messenger LA, Lewis MD, Yeo M, Reis-Cunha JL, Matos GM, Bartholomeu DC, Calzada JE, Saldaña A, Ramírez JD, Guhl F, Ocaña-Mayorga S, Costales JA, Gorchakov R, Jones K, Nolan MS, Teixeira SMR, Carrasco HJ, Bottazzi ME, Hotez PJ, Murray KO, Grijalva MJ, Burleigh B, Grisard EC, Miles MA, Andersson B. Repeat-Driven Generation of Antigenic Diversity in a Major Human Pathogen, Trypanosoma cruzi. Front Cell Infect Microbiol 2021; 11:614665. [PMID: 33747978 PMCID: PMC7966520 DOI: 10.3389/fcimb.2021.614665] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Accepted: 01/22/2021] [Indexed: 12/18/2022] Open
Abstract
Trypanosoma cruzi, a zoonotic kinetoplastid protozoan parasite, is the causative agent of American trypanosomiasis (Chagas disease). Having a very plastic, repetitive and complex genome, the parasite displays a highly diverse repertoire of surface molecules, with pivotal roles in cell invasion, immune evasion and pathogenesis. Before 2016, the complexity of the genomic regions containing these genes impaired the assembly of a genome at chromosomal level, making it impossible to study the structure and function of the several thousand repetitive genes encoding the surface molecules of the parasite. We here describe the genome assembly of the Sylvio X10/1 genome sequence, which since 2016 has been used as a reference genome sequence for T. cruzi clade I (TcI), produced using high coverage PacBio single-molecule sequencing. It was used to analyze deep Illumina sequence data from 34 T. cruzi TcI isolates and clones from different geographic locations, sample sources and clinical outcomes. Resolution of the surface molecule gene distribution showed the unusual duality in the organization of the parasite genome, a synteny of the core genomic region with related protozoa flanked by unique and highly plastic multigene family clusters encoding surface antigens. The presence of abundant interspersed retrotransposons in these multigene family clusters suggests that these elements are involved in a recombination mechanism for the generation of antigenic variation and evasion of the host immune response on these TcI strains. The comparative genomic analysis of the cohort of TcI strains revealed multiple cases of such recombination events involving surface molecule genes and has provided new insights into T. cruzi population structure.
Collapse
Affiliation(s)
- Carlos Talavera-López
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden
- European Bioinformatics Institute, Wellcome Sanger Institute, Hinxton, United Kingdom
| | - Louisa A. Messenger
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Michael D. Lewis
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Matthew Yeo
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - João Luís Reis-Cunha
- Departamento de Parasitologia, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Gabriel Machado Matos
- Departamento de Biologia Celular, Embriologia e Genética, Universidade Federal Santa Catarina, Florianópolis, Brazil
| | | | - José E. Calzada
- Departamento de Parasitología, Instituto Conmemorativo Gorgas de Estudios de la Salud, Ciudad de Panamá, Panama
| | - Azael Saldaña
- Departamento de Parasitología, Instituto Conmemorativo Gorgas de Estudios de la Salud, Ciudad de Panamá, Panama
| | - Juan David Ramírez
- Grupo de Investigaciones Microbiológicas-UR (GIMUR), Departamento de Biología, Facultad de Ciencias Naturales, Universidad del Rosario, Bogotá, Colombia
| | - Felipe Guhl
- Grupo de Investigaciones en Microbiología y Parasitología Tropical (CIMPAT), Tropical Parasitology Research Center, Universidad de Los Andes, Bogotá, Colombia
| | - Sofía Ocaña-Mayorga
- Centro de Investigación para la Salud en América Latina (CISeAL), Escuela de Ciencias Biológicas, Pontificia Universidad Católica del Ecuador, Quito, Ecuador
| | - Jaime A. Costales
- Centro de Investigación para la Salud en América Latina (CISeAL), Escuela de Ciencias Biológicas, Pontificia Universidad Católica del Ecuador, Quito, Ecuador
| | - Rodion Gorchakov
- Sabin Vaccine Institute and Texas Children’s Hospital Center for Vaccine Development, National School of Tropical Medicine, Department of Pediatrics - Tropical Medicine, Baylor College of Medicine, Houston, TX, United States
| | - Kathryn Jones
- Sabin Vaccine Institute and Texas Children’s Hospital Center for Vaccine Development, National School of Tropical Medicine, Department of Pediatrics - Tropical Medicine, Baylor College of Medicine, Houston, TX, United States
| | - Melissa S. Nolan
- Sabin Vaccine Institute and Texas Children’s Hospital Center for Vaccine Development, National School of Tropical Medicine, Department of Pediatrics - Tropical Medicine, Baylor College of Medicine, Houston, TX, United States
| | - Santuza M. R. Teixeira
- Departamento de Bioquímica e Imunologia, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Hernán José Carrasco
- Laboratorio de Biología Molecular de Protozoarios, Instituto de Medicina Tropical, Facultad de Medicina, Universidad Central de Venezuela, Caracas, Venezuela
| | - Maria Elena Bottazzi
- Sabin Vaccine Institute and Texas Children’s Hospital Center for Vaccine Development, National School of Tropical Medicine, Department of Pediatrics - Tropical Medicine, Baylor College of Medicine, Houston, TX, United States
| | - Peter J. Hotez
- Sabin Vaccine Institute and Texas Children’s Hospital Center for Vaccine Development, National School of Tropical Medicine, Department of Pediatrics - Tropical Medicine, Baylor College of Medicine, Houston, TX, United States
| | - Kristy O. Murray
- Sabin Vaccine Institute and Texas Children’s Hospital Center for Vaccine Development, National School of Tropical Medicine, Department of Pediatrics - Tropical Medicine, Baylor College of Medicine, Houston, TX, United States
| | - Mario J. Grijalva
- Centro de Investigación para la Salud en América Latina (CISeAL), Escuela de Ciencias Biológicas, Pontificia Universidad Católica del Ecuador, Quito, Ecuador
- Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Infectious and Tropical Disease Institute, Ohio University, Athens, OH, United States
| | - Barbara Burleigh
- Department of Immunology and Infectious Diseases, T.H. Chan School of Public Health, Harvard University, Boston, MA, United States
| | - Edmundo C. Grisard
- Departamento de Microbiologia, Imunologia e Parasitologia, Universidade Federal Santa Catarina, Florianópolis, Brazil
| | - Michael A. Miles
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Björn Andersson
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
19
|
Santos Júnior ADCMD, Melo RM, Ferreira BVG, Pontes AH, Lima CMRD, Fontes W, Sousa MVD, Lima BDD, Ricart CAO. Quantitative proteomics and phosphoproteomics of Trypanosoma cruzi epimastigote cell cycle. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2021; 1869:140619. [PMID: 33561577 DOI: 10.1016/j.bbapap.2021.140619] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 01/19/2021] [Accepted: 02/01/2021] [Indexed: 11/30/2022]
Abstract
The protozoan Trypanosoma cruzi is the causative agent of the neglected infectious illness Chagas disease. During its life cycle it differentiates into replicative and non-replicative life stages. So far, T. cruzi cell division has been investigated by transcriptomics but not by proteomics approaches. Here we show the first quantitative proteome analysis of T. cruzi cell division. T. cruzi epimastigote cultures were subject to synchronization with hydroxyurea and harvested at different time points. Analysis by flow cytometry, bright field and fluorescence microscopy indicated that samples collected at 0 h, 2 h, 6 h and 14 h overrepresented G1, G1-S, S and M cell cycle phases, respectively. After trypsin digestion of these samples, the resulting peptides were labelled with iTRAQ and subjected to LC-MS/MS. Also, iTRAQ-labelled phosphopeptides were enriched with TiO2 to access the phosphoproteome. Overall, 597 protein groups and 94 phosphopeptides presented regulation with the most remarkable variation in abundance at 6 h (S-phase). Comparison of our proteomic data to previous transcriptome-wise analysis of epimastigote cell cycle showed 16 sequence entries in common, with the highest mRNA/protein correlation observed in transcripts with peak abundance in G1-phase. Our data revealed regulated proteins and phosphopeptides which play important roles in the control of cell division in other organisms and some of them were previously detected in the nucleus or associated with T. cruzi chromatin.
Collapse
Affiliation(s)
- Agenor de Castro Moreira Dos Santos Júnior
- Laboratory Protein Chemistry and Biochemistry, Department of Cell Biology, University of Brasília, Brasília, DF, Brazil; Laboratory of Gene Biology, Department of Cell Biology, University of Brasília, Brasília, DF, Brazil
| | - Reynaldo Magalhães Melo
- Laboratory Protein Chemistry and Biochemistry, Department of Cell Biology, University of Brasília, Brasília, DF, Brazil
| | | | - Arthur Henriques Pontes
- Laboratory Protein Chemistry and Biochemistry, Department of Cell Biology, University of Brasília, Brasília, DF, Brazil
| | | | - Wagner Fontes
- Laboratory Protein Chemistry and Biochemistry, Department of Cell Biology, University of Brasília, Brasília, DF, Brazil
| | - Marcelo Valle de Sousa
- Laboratory Protein Chemistry and Biochemistry, Department of Cell Biology, University of Brasília, Brasília, DF, Brazil
| | - Beatriz Dolabela de Lima
- Laboratory of Gene Biology, Department of Cell Biology, University of Brasília, Brasília, DF, Brazil
| | - Carlos André Ornelas Ricart
- Laboratory Protein Chemistry and Biochemistry, Department of Cell Biology, University of Brasília, Brasília, DF, Brazil.
| |
Collapse
|
20
|
Wang W, Peng D, Baptista RP, Li Y, Kissinger JC, Tarleton RL. Strain-specific genome evolution in Trypanosoma cruzi, the agent of Chagas disease. PLoS Pathog 2021; 17:e1009254. [PMID: 33508020 PMCID: PMC7872254 DOI: 10.1371/journal.ppat.1009254] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 02/09/2021] [Accepted: 12/22/2020] [Indexed: 12/16/2022] Open
Abstract
The protozoan Trypanosoma cruzi almost invariably establishes life-long infections in humans and other mammals, despite the development of potent host immune responses that constrain parasite numbers. The consistent, decades-long persistence of T. cruzi in human hosts arises at least in part from the remarkable level of genetic diversity in multiple families of genes encoding the primary target antigens of anti-parasite immune responses. However, the highly repetitive nature of the genome-largely a result of these same extensive families of genes-have prevented a full understanding of the extent of gene diversity and its maintenance in T. cruzi. In this study, we have combined long-read sequencing and proximity ligation mapping to generate very high-quality assemblies of two T. cruzi strains representing the apparent ancestral lineages of the species. These assemblies reveal not only the full repertoire of the members of large gene families in the two strains, demonstrating extreme diversity within and between isolates, but also provide evidence of the processes that generate and maintain that diversity, including extensive gene amplification, dispersion of copies throughout the genome and diversification via recombination and in situ mutations. Gene amplification events also yield significant copy number variations in a substantial number of genes presumably not required for or involved in immune evasion, thus forming a second level of strain-dependent variation in this species. The extreme genome flexibility evident in T. cruzi also appears to create unique challenges with respect to preserving core genome functions and gene expression that sets this species apart from related kinetoplastids.
Collapse
Affiliation(s)
- Wei Wang
- Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, Georgia, United States of America
| | - Duo Peng
- Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, Georgia, United States of America
- Department of Cellular Biology, University of Georgia, Athens, Georgia, United States of America
| | - Rodrigo P. Baptista
- Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, Georgia, United States of America
- Institute of Bioinformatics, University of Georgia, Athens, Georgia, United States of America
| | - Yiran Li
- Institute of Bioinformatics, University of Georgia, Athens, Georgia, United States of America
| | - Jessica C. Kissinger
- Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, Georgia, United States of America
- Institute of Bioinformatics, University of Georgia, Athens, Georgia, United States of America
- Department of Genetics, University of Georgia, Athens, Georgia, United States of America
| | - Rick L. Tarleton
- Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, Georgia, United States of America
- Department of Cellular Biology, University of Georgia, Athens, Georgia, United States of America
| |
Collapse
|
21
|
Herreros-Cabello A, Callejas-Hernández F, Gironès N, Fresno M. Trypanosoma Cruzi Genome: Organization, Multi-Gene Families, Transcription, and Biological Implications. Genes (Basel) 2020; 11:E1196. [PMID: 33066599 PMCID: PMC7602482 DOI: 10.3390/genes11101196] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 10/08/2020] [Accepted: 10/12/2020] [Indexed: 01/20/2023] Open
Abstract
Chagas disease caused by the parasite Trypanosoma cruzi affects millions of people. Although its first genome dates from 2005, its complexity hindered a complete assembly and annotation. However, the new sequencing methods have improved genome annotation of some strains elucidating the broad genetic diversity and complexity of this parasite. Here, we reviewed the genomic structure and regulation, the genetic diversity, and the analysis of the principal multi-gene families of the recent genomes for several strains. The telomeric and sub-telomeric regions are sites with high recombination events, the genome displays two different compartments, the core and the disruptive, and the genome plasticity seems to play a key role in the survival and the infection process. Trypanosoma cruzi (T. cruzi) genome is composed mainly of multi-gene families as the trans-sialidases, mucins, and mucin-associated surface proteins. Trans-sialidases are the most abundant genes in the genome and show an important role in the effectiveness of the infection and the parasite survival. Mucins and MASPs are also important glycosylated proteins of the surface of the parasite that play a major biological role in both insect and mammal-dwelling stages. Altogether, these studies confirm the complexity of T. cruzi genome revealing relevant concepts to better understand Chagas disease.
Collapse
Affiliation(s)
- Alfonso Herreros-Cabello
- Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas, Universidad Autónoma de Madrid, Cantoblanco, 28049 Madrid, Spain; (A.H.-C.); (F.C.-H.)
| | - Francisco Callejas-Hernández
- Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas, Universidad Autónoma de Madrid, Cantoblanco, 28049 Madrid, Spain; (A.H.-C.); (F.C.-H.)
| | - Núria Gironès
- Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas, Universidad Autónoma de Madrid, Cantoblanco, 28049 Madrid, Spain; (A.H.-C.); (F.C.-H.)
- Instituto Sanitario de Investigación Princesa, 28006 Madrid, Spain
| | - Manuel Fresno
- Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas, Universidad Autónoma de Madrid, Cantoblanco, 28049 Madrid, Spain; (A.H.-C.); (F.C.-H.)
- Instituto Sanitario de Investigación Princesa, 28006 Madrid, Spain
| |
Collapse
|
22
|
The Glycan Structure of T. cruzi mucins Depends on the Host. Insights on the Chameleonic Galactose. Molecules 2020; 25:molecules25173913. [PMID: 32867240 PMCID: PMC7504415 DOI: 10.3390/molecules25173913] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 08/24/2020] [Accepted: 08/25/2020] [Indexed: 12/23/2022] Open
Abstract
Trypanosoma cruzi, the protozoa that causes Chagas disease in humans, is transmitted by insects from the Reduviidae family. The parasite has developed the ability to change the structure of the surface molecules, depending on the host. Among them, the mucins are the most abundant glycoproteins. Structural studies have focused on the epimastigotes and metacyclic trypomastigotes that colonize the insect, and on the mammal trypomastigotes. The carbohydrate in the mucins fulfills crucial functions, the most important of which being the accepting of sialic acid from the host, a process catalyzed by the unique parasite trans-sialidase. The sialylation of the parasite influences the immune response on infection. The O-linked sugars have characteristics that differentiate them from human mucins. One of them is the linkage to the polypeptide chain by the hexosamine, GlcNAc, instead of GalNAc. The main monosaccharide in the mucins oligosaccharides is galactose, and this may be present in three configurations. Whereas β-d-galactopyranose (β-Galp) was found in the insect and the human stages of Trypanosoma cruzi, β-d-galactofuranose (β-Galf) is present only in the mucins of some strains of epimastigotes and α-d-galactopyranose (α-Galp) characterizes the mucins of the bloodstream trypomastigotes. The two last configurations confer high antigenic properties. In this review we discuss the different structures found and we pose the questions that still need investigation on the exchange of the configurations of galactose.
Collapse
|
23
|
Ramirez JL. Trypanosoma cruzi Genome 15 Years Later: What Has Been Accomplished? Trop Med Infect Dis 2020; 5:E129. [PMID: 32781761 PMCID: PMC7559697 DOI: 10.3390/tropicalmed5030129] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Revised: 08/03/2020] [Accepted: 08/04/2020] [Indexed: 11/16/2022] Open
Abstract
On 15 July 2020 was the 15th anniversary of the Science Magazine issue that reported three trypanosomatid genomes, namely Leishmania major, Trypanosoma brucei, and Trypanosoma cruzi. That publication was a milestone for the research community working with trypanosomatids, even more so, when considering that the first draft of the human genome was published only four years earlier after 15 years of research. Although nowadays, genome sequencing has become commonplace, the work done by researchers before that publication represented a huge challenge and a good example of international cooperation. Research in neglected diseases often faces obstacles, not only because of the unique characteristics of each biological model but also due to the lower funds the research projects receive. In the case of Trypanosoma cruzi the etiologic agent of Chagas disease, the first genome draft published in 2005 was not complete, and even after the implementation of more advanced sequencing strategies, to this date no final chromosomal map is available. However, the first genome draft enabled researchers to pick genes a la carte, produce proteins in vitro for immunological studies, and predict drug targets for the treatment of the disease or to be used in PCR diagnostic protocols. Besides, the analysis of the T. cruzi genome is revealing unique features about its organization and dynamics. In this work, I briefly summarize the actions of Latin American researchers that contributed to the first publication of the T. cruzi genome and discuss some features of the genome that may help to understand the parasite's robustness and adaptive capabilities.
Collapse
Affiliation(s)
- Jose Luis Ramirez
- Instituto de Estudios Avanzados, Caracas, Venezuela and Universidad Central de Venezuela, Caracas 1080, Venezuela
| |
Collapse
|
24
|
Avelar GST, Gonçalves LO, Guimarães FG, Guimarães PAS, do Nascimento Rocha LG, Carvalho MGR, de Melo Resende D, Ruiz JC. Diversity and genome mapping assessment of disordered and functional domains in trypanosomatids. J Proteomics 2020; 227:103919. [PMID: 32721629 DOI: 10.1016/j.jprot.2020.103919] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 06/27/2020] [Accepted: 07/20/2020] [Indexed: 12/20/2022]
Abstract
The proteins that have structural disorder exemplify a class of proteins which is part of a new frontier in structural biology that demands a new understanding of the paradigm of structure/function correlations. In order to address the location, relative distances and the functional/structural correlation between disordered and conserved domains, consensus disordered predictions were mapped together with CDD domains in Leishmania braziliensis M2904, Leishmania infantum JPCM5, Trypanosoma cruzi CL-Brener Esmeraldo-like, Trypanosoma cruzi Dm28c, Trypanosoma cruzi Sylvio X10, Blechomonas ayalai B08-376 and Paratrypanosoma confusum CUL13 predicted proteomes. Our results depicts the role of protein disorder in key aspects of parasites biology highlighting: a) statistical significant association between genome structural location of protein disordered consensus stretches and functional domains; b) that disordered protein stretches appear in greater percentage at upstream or downstream position of the predicted domain; c) a possible role of structural disorder in several gene expression, control points that includes but are not limited to: i) protein folding; ii) protein transport and degradation; and iii) protein modification. In addition, for values of protein with disorder content greater than 40%, a small percentage of protein binding sites in IDPs/IDRs, a higher hypothetical protein annotation frequency was observed than expected by chance and trypanosomatid multigene families linked with virulence are rich in protein with disorder content. SIGNIFICANCE: T. cruzi and Leishmania spp are the etiological agents of Chagas disease and leishmaniasis, respectively. Currently, no vaccine or effective drug treatment is available against these neglected diseases and the knowledge about the post-transcriptional and post-translational mechanisms of these organisms, which are key for this scenario, remain scarce. This study depicts the potential impact of the proximity between protein structural disorder and functional domains in the post-transcriptional regulation of pathogenic versus human non-pathogenic trypanosomatids. Our results revealed a significant statistical relationship between the genome structural locations of these two variables and disordered regions appearing more frequently at upstream or downstream positions of the CDD locus domain. This flexibility feature would maintain structural accessibility of functional sites for post-translational modifications, shedding light into this important aspect of parasite biology. This hypothesis is corroborated by the functional enrichment analysis of disordered proteins subset that highlight the involvement of this class of proteins in protein folding, protein transport and degradation and protein modification. Furthermore, our results pointed out: a) the impact of protein disorder in the process of genome annotation (proteins tend to be annotated as hypothetical when the disorder content reaches ~40%); b) that trypanosomatid multigenic families linked with virulence have a key protein disorder content.
Collapse
Affiliation(s)
- Grace Santos Tavares Avelar
- Programa de Pós-graduação em Biologia Computacional e Sistemas, Instituto Oswaldo Cruz, Fiocruz, Rio de Janeiro, RJ, Brazil; Grupo Informática de Biossistemas, Instituto René Rachou, Fiocruz Minas, Belo Horizonte, MG, Brazil
| | - Leilane Oliveira Gonçalves
- Programa de Pós-graduação em Biologia Computacional e Sistemas, Instituto Oswaldo Cruz, Fiocruz, Rio de Janeiro, RJ, Brazil; Grupo Informática de Biossistemas, Instituto René Rachou, Fiocruz Minas, Belo Horizonte, MG, Brazil
| | - Frederico Gonçalves Guimarães
- Programa de Pós-graduação em Ciências da Saúde, Instituto René Rachou, Fiocruz Minas, Belo Horizonte, MG, Brazil; Grupo Informática de Biossistemas, Instituto René Rachou, Fiocruz Minas, Belo Horizonte, MG, Brazil
| | - Paul Anderson Souza Guimarães
- Programa de Pós-graduação em Biologia Computacional e Sistemas, Instituto Oswaldo Cruz, Fiocruz, Rio de Janeiro, RJ, Brazil; Grupo Informática de Biossistemas, Instituto René Rachou, Fiocruz Minas, Belo Horizonte, MG, Brazil
| | - Luiz Gustavo do Nascimento Rocha
- Programa de Pós-graduação em Ciências da Saúde, Instituto René Rachou, Fiocruz Minas, Belo Horizonte, MG, Brazil; Grupo Informática de Biossistemas, Instituto René Rachou, Fiocruz Minas, Belo Horizonte, MG, Brazil
| | | | - Daniela de Melo Resende
- Programa de Pós-graduação em Biologia Computacional e Sistemas, Instituto Oswaldo Cruz, Fiocruz, Rio de Janeiro, RJ, Brazil; Programa de Pós-graduação em Ciências da Saúde, Instituto René Rachou, Fiocruz Minas, Belo Horizonte, MG, Brazil; Grupo Informática de Biossistemas, Instituto René Rachou, Fiocruz Minas, Belo Horizonte, MG, Brazil
| | - Jeronimo Conceição Ruiz
- Programa de Pós-graduação em Biologia Computacional e Sistemas, Instituto Oswaldo Cruz, Fiocruz, Rio de Janeiro, RJ, Brazil; Programa de Pós-graduação em Ciências da Saúde, Instituto René Rachou, Fiocruz Minas, Belo Horizonte, MG, Brazil; Grupo Informática de Biossistemas, Instituto René Rachou, Fiocruz Minas, Belo Horizonte, MG, Brazil.
| |
Collapse
|
25
|
Calarco L, Barratt J, Ellis J. Detecting sequence variants in clinically important protozoan parasites. Int J Parasitol 2019; 50:1-18. [PMID: 31857072 DOI: 10.1016/j.ijpara.2019.10.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Revised: 09/29/2019] [Accepted: 10/01/2019] [Indexed: 02/06/2023]
Abstract
Second and third generation sequencing methods are crucial for population genetic studies, and variant detection is a popular approach for exploiting this sequence data. While mini- and microsatellites are historically useful markers for studying important Protozoa such as Toxoplasma and Plasmodium spp., detecting non-repetitive variants such as those found in genes can be fundamental to investigating a pathogen's biology. These variants, namely single nucleotide polymorphisms and insertions and deletions, can help elucidate the genetic basis of an organism's pathogenicity, identify selective pressures, and resolve phylogenetic relationships. They also have the added benefit of possessing a comparatively low mutation rate, which contributes to their stability. However, there is a plethora of variant analysis tools with nuanced pipelines and conflicting recommendations for best practise, which can be confounding. This lack of standardisation means that variant analysis requires careful parameter optimisation, an understanding of its limitations, and the availability of high quality data. This review explores the value of variant detection when applied to non-model organisms such as clinically important protozoan pathogens. The limitations of current methods are discussed, including special considerations that require the end-users' attention to ensure that the results generated are reproducible, and the biological conclusions drawn are valid.
Collapse
Affiliation(s)
- Larissa Calarco
- School of Life Sciences, University of Technology Sydney, PO Box 123, Broadway, NSW 2007, Australia.
| | - Joel Barratt
- School of Life Sciences, University of Technology Sydney, PO Box 123, Broadway, NSW 2007, Australia
| | - John Ellis
- School of Life Sciences, University of Technology Sydney, PO Box 123, Broadway, NSW 2007, Australia
| |
Collapse
|
26
|
Synthesis of the hexasaccharide from Trypanosoma cruzi mucins with the Galp(1 → 2)Galf unit constructed with a superarmed thiogalactopyranosyl donor. Carbohydr Res 2019; 482:107734. [PMID: 31271957 DOI: 10.1016/j.carres.2019.06.013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Revised: 06/19/2019] [Accepted: 06/21/2019] [Indexed: 12/28/2022]
Abstract
Hexasaccharide β-D-Galp-(1→ 2)-[β-D-Galp-(1 → 3)]-β-D-Galp-(1 → 6)-[β-D-Galp-(1 → 2)-β-D-Galf-(1 → 4)]-D-GlcNAc (1) was found O-linked in mucins of Trypanosoma cruzi epimastigotes and metacyclic trypomatigotes. Studies on the biological pathways and functionalities of the mucin oligosaccharides are prompted in order to understand the interactions of these molecules with the insect host. Trisaccharide constituent β-D-Galp-(1 → 2)-β-D-Galf-(1 → 4)-D-GlcNAc was constructed from the reducing to the non-reducing end. We discuss the difficulties to introduce a Galp unit at the O-2 position of a partially protected galactofuranosyl unit which were overcome using an anchimerically superarmed donor. By this route and employing a [3 + 3] nitrilium convergent approach hexasaccharide 1 was synthesized in moderate yield.
Collapse
|
27
|
Leguizamón MS. Diagnostic Applicability of Neutralizing Antibodies to Trypanosoma cruzi Trans-sialidase. METHODS IN MOLECULAR BIOLOGY (CLIFTON, N.J.) 2019; 1955:239-246. [PMID: 30868532 DOI: 10.1007/978-1-4939-9148-8_18] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The trans-sialidase (TS), a virulence factor expressed on the surface of Trypanosoma cruzi, the agent of Chagas disease, is an enzyme that transfers sialic acids between glycoconjugates. In humans and most tested mammals, the onset of the chronic phase of T. cruzi infection correlates with the elicitation of antibodies directed to the TS catalytic domain, which inhibit the sialyl residues transfer reaction in vitro and in vivo. The method described here, termed trans-sialidase inhibition assay (TIA), enables the detection of TS-neutralizing antibodies in serum samples of different mammalian species, without the use of conjugated secondary reagents. The high specificity and exquisite sensitivity displayed by the TIA allow to overcome the limitations of routinely used Chagas disease serodiagnostic assays.
Collapse
Affiliation(s)
- María Susana Leguizamón
- Instituto de Investigaciones Biotecnológicas, Universidad Nacional de San Martín, Buenos Aires, Argentina. .,Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina.
| |
Collapse
|
28
|
Agusti R, Gallo-Rodriguez C, de Lederkremer RM. Trypanosoma cruzi trans-sialidase. A tool for the synthesis of sialylated oligosaccharides. Carbohydr Res 2019; 479:48-58. [PMID: 31132642 DOI: 10.1016/j.carres.2019.05.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Revised: 05/07/2019] [Accepted: 05/15/2019] [Indexed: 12/14/2022]
Abstract
Cells are covered by a complex array of carbohydrates. Among them, sialosides are of key importance in intracellular adhesion, recognition and signaling. The need for structurally diverse sialosides impelled the search for efficient synthetic methods since their isolation from natural sources is a difficult task. The enzymatic approach obviates the need of a chemical synthesis for protecting or participating groups in the substrates. The trans-sialidase of Trypanosoma cruzi (TcTS) is highly stereospecific for the transfer of sialic acid from an α-sialylglycoside donor to a terminal β-galactopyranosyl unit in the acceptor substrate to form the α-Neu5Ac-(2 → 3)-β-D-Galp motif. The enzyme was cloned and easily available glycoproteins, e.g. fetuin, may be used as donors of sialic acid, constituting strong points for the scalability of TcTS-catalyzed reactions. This review outlines the preparative use of TcTS for the sialylation of oligosaccharides. A detailed description of the substrates used as sialic acid donors, the acceptor substrates and the methods employed to monitor the reaction is included.
Collapse
Affiliation(s)
- Rosalía Agusti
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Química Orgánica, Buenos Aires, Argentina; CONICET- Universidad de Buenos Aires, Centro de Investigaciones en Hidratos de Carbono (CIHIDECAR), Buenos Aires, Argentina
| | - Carola Gallo-Rodriguez
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Química Orgánica, Buenos Aires, Argentina; CONICET- Universidad de Buenos Aires, Centro de Investigaciones en Hidratos de Carbono (CIHIDECAR), Buenos Aires, Argentina
| | - Rosa M de Lederkremer
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Química Orgánica, Buenos Aires, Argentina; CONICET- Universidad de Buenos Aires, Centro de Investigaciones en Hidratos de Carbono (CIHIDECAR), Buenos Aires, Argentina.
| |
Collapse
|
29
|
Trypanosoma cruzi immunoproteome: Calpain-like CAP5.5 differentially detected throughout distinct stages of human Chagas disease cardiomyopathy. J Proteomics 2019; 194:179-190. [DOI: 10.1016/j.jprot.2018.11.019] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Revised: 10/22/2018] [Accepted: 11/28/2018] [Indexed: 12/26/2022]
|
30
|
Retana Moreira L, Rodríguez Serrano F, Osuna A. Extracellular vesicles of Trypanosoma cruzi tissue-culture cell-derived trypomastigotes: Induction of physiological changes in non-parasitized culture cells. PLoS Negl Trop Dis 2019; 13:e0007163. [PMID: 30789912 PMCID: PMC6383987 DOI: 10.1371/journal.pntd.0007163] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Accepted: 01/16/2019] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Trypanosoma cruzi is the obligate intracellular parasite that causes Chagas disease. The pathogenesis of this disease is a multifactorial complex process that involves a large number of molecules and particles, including the extracellular vesicles. The presence of EVs of T. cruzi was first described in 1979 and, since then, research regarding these particles has been increasing. Some of the functions described for these EVs include the increase in heart parasitism and the immunomodulation and evasion of the host immune response. Also, EVs may be involved in parasite adhesion to host cells and host cell invasion. METHODOLOGY/PRINCIPAL FINDINGS EVs (exosomes) of the Pan4 strain of T. cruzi were isolated by differential centrifugation, and measured and quantified by TEM, NTA and DLS. The effect of EVs in increasing the parasitization of Vero cells was evaluated and the ED50 was calculated. Changes in cell permeability induced by EVs were evaluated in Vero and HL-1 cardiomyocyte cells using cell viability techniques such as trypan blue and MTT assays, and by confocal microscopy. The intracellular mobilization of Ca2+ and the disruption of the actin cytoskeleton induced by EVs over Vero cells were followed-up in time using confocal microscopy. To evaluate the effect of EVs over the cell cycle, cell cycle analyses using flow cytometry and Western blotting of the phosphorylated and non-phosphorylated protein of Retinoblastoma were performed. CONCLUSION/SIGNIFICANCE The incubation of cells with EVs of trypomastigotes of the Pan4 strain of T. cruzi induce a number of changes in the host cells that include a change in cell permeability and higher intracellular levels of Ca2+ that can alter the dynamics of the actin cytoskeleton and arrest the cell cycle at G0/G1 prior to the DNA synthesis necessary to complete mitosis. These changes aid the invasion of host cells and augment the percentage of cell parasitization.
Collapse
Affiliation(s)
- Lissette Retana Moreira
- Instituto de Biotecnología, Grupo de Bioquímica y Parasitología Molecular, Departamento de Parasitología, Universidad de Granada, Granada, Spain
| | | | - Antonio Osuna
- Instituto de Biotecnología, Grupo de Bioquímica y Parasitología Molecular, Departamento de Parasitología, Universidad de Granada, Granada, Spain
- * E-mail:
| |
Collapse
|
31
|
da Fonseca LM, da Costa KM, Chaves VDS, Freire-de-Lima CG, Morrot A, Mendonça-Previato L, Previato JO, Freire-de-Lima L. Theft and Reception of Host Cell's Sialic Acid: Dynamics of Trypanosoma Cruzi Trans-sialidases and Mucin-Like Molecules on Chagas' Disease Immunomodulation. Front Immunol 2019; 10:164. [PMID: 30787935 PMCID: PMC6372544 DOI: 10.3389/fimmu.2019.00164] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Accepted: 01/18/2019] [Indexed: 12/27/2022] Open
Abstract
The last decades have produced a plethora of evidence on the role of glycans, from cell adhesion to signaling pathways. Much of that information pertains to their role on the immune system and their importance on the surface of many human pathogens. A clear example of this is the flagellated protozoan Trypanosoma cruzi, which displays on its surface a great variety of glycoconjugates, including O-glycosylated mucin-like glycoproteins, as well as multiple glycan-binding proteins belonging to the trans-sialidase (TS) family. Among the latter, different and concurrently expressed molecules may present or not TS activity, and are accordingly known as active (aTS) and inactive (iTS) members. Over the last thirty years, it has been well described that T. cruzi is unable to synthesize sialic acid (SIA) on its own, making use of aTS to steal the host's SIA. Although iTS did not show enzymatic activity, it retains a substrate specificity similar to aTS (α-2,3 SIA-containing glycotopes), displaying lectinic properties. It is accepted that aTS members act as virulence factors in mammals coursing the acute phase of the T. cruzi infection. However, recent findings have demonstrated that iTS may also play a pathogenic role during T. cruzi infection, since it modulates events related to adhesion and invasion of the parasite into the host cells. Since both aTS and iTS proteins share structural substrate specificity, it might be plausible to speculate that iTS proteins are able to assuage and/or attenuate biological phenomena depending on the catalytic activity displayed by aTS members. Since SIA-containing glycotopes modulate the host immune system, it should not come as any surprise that changes in the sialylation of parasite's mucin-like molecules, as well as host cell glycoconjugates might disrupt critical physiological events, such as the building of effective immune responses. This review aims to discuss the importance of mucin-like glycoproteins and both aTS and iTS for T. cruzi biology, as well as to present a snapshot of how disturbances in both parasite and host cell sialoglycophenotypes may facilitate the persistence of T. cruzi in the infected mammalian host.
Collapse
Affiliation(s)
- Leonardo Marques da Fonseca
- Laboratório de Glicobiologia, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Kelli Monteiro da Costa
- Laboratório de Glicobiologia, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Victoria de Sousa Chaves
- Laboratório de Glicobiologia, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Célio Geraldo Freire-de-Lima
- Laboratório de Imunomodulação, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Alexandre Morrot
- Laboratório de Pesquisa em Tuberculose, Faculdade de Medicina, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil.,Laboratório de Imunoparasitologia, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| | - Lucia Mendonça-Previato
- Laboratório de Glicobiologia, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Jose Osvaldo Previato
- Laboratório de Glicobiologia, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Leonardo Freire-de-Lima
- Laboratório de Glicobiologia, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
32
|
Ortega-Rodriguez U, Portillo S, Ashmus RA, Duran JA, Schocker NS, Iniguez E, Montoya AL, Zepeda BG, Olivas JJ, Karimi NH, Alonso-Padilla J, Izquierdo L, Pinazo MJ, de Noya BA, Noya O, Maldonado RA, Torrico F, Gascon J, Michael K, Almeida IC. Purification of Glycosylphosphatidylinositol-Anchored Mucins from Trypanosoma cruzi Trypomastigotes and Synthesis of α-Gal-Containing Neoglycoproteins: Application as Biomarkers for Reliable Diagnosis and Early Assessment of Chemotherapeutic Outcomes of Chagas Disease. Methods Mol Biol 2019; 1955:287-308. [PMID: 30868536 PMCID: PMC6589430 DOI: 10.1007/978-1-4939-9148-8_22] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Chagas disease (ChD), caused by the protozoan parasite Trypanosoma cruzi, affects millions of people worldwide. Chemotherapy is restricted to two drugs, which are partially effective and may cause severe side effects, leading to cessation of treatment in a significant number of patients. Currently, there are no biomarkers to assess therapeutic efficacy of these drugs in the chronic stage. Moreover, no preventive or therapeutic vaccines are available. In this chapter, we describe the purification of Trypanosoma cruzi trypomastigote-derived glycosylphosphatidylinositol (GPI)-anchored mucins (tGPI-mucins) for their use as antigens for the reliable primary or confirmatory diagnosis and as prognostic biomarkers for early assessment of cure following ChD chemotherapy. We also describe, as an example, the synthesis of a potential tGPI-mucin-derived α-Gal-terminating glycan and its coupling to a carrier protein for use as diagnostic and prognostic biomarker in ChD.
Collapse
Affiliation(s)
| | - Susana Portillo
- Department of Biological Sciences, University of Texas at El Paso, El Paso, TX, USA
| | - Roger A Ashmus
- Department of Chemistry and Biochemistry, University of Texas at El Paso, El Paso, TX, USA
| | - Jerry A Duran
- Department of Biological Sciences, University of Texas at El Paso, El Paso, TX, USA
| | - Nathaniel S Schocker
- Department of Chemistry and Biochemistry, University of Texas at El Paso, El Paso, TX, USA
| | - Eva Iniguez
- Department of Biological Sciences, University of Texas at El Paso, El Paso, TX, USA
| | - Alba L Montoya
- Department of Chemistry and Biochemistry, University of Texas at El Paso, El Paso, TX, USA
| | - Brenda G Zepeda
- Department of Biological Sciences, University of Texas at El Paso, El Paso, TX, USA
| | - Janet J Olivas
- Department of Biological Sciences, University of Texas at El Paso, El Paso, TX, USA
| | - Nasim H Karimi
- Department of Biological Sciences, University of Texas at El Paso, El Paso, TX, USA
| | - Julio Alonso-Padilla
- Barcelona Institute for Global Health (ISGlobal), Hospital Clínic - Universitat de Barcelona, Barcelona, Spain
| | - Luis Izquierdo
- Barcelona Centre for International Health Research (ISGlobal), Barcelona, Spain
| | - Maria-Jesús Pinazo
- Barcelona Centre for International Health Research (ISGlobal), Barcelona, Spain
| | - Belkisyolé Alarcón de Noya
- Facultad de Medicina, Instituto de Medicina Tropical, Universidad Central de Venezuela, Caracas, Venezuela
| | - Oscar Noya
- Facultad de Medicina, Instituto de Medicina Tropical, Universidad Central de Venezuela, Caracas, Venezuela
| | - Rosa A Maldonado
- Department of Biological Sciences, University of Texas at El Paso, El Paso, TX, USA
| | - Faustino Torrico
- Faculty of Medicine, Universidad Mayor de San Simón, Cochabamba, Bolivia
- Fundación CEADES, Cochabamba, Bolivia
| | - Joaquim Gascon
- Facultad de Medicina, Instituto de Medicina Tropical, Universidad Central de Venezuela, Caracas, Venezuela
| | - Katja Michael
- Department of Chemistry and Biochemistry, University of Texas at El Paso, El Paso, TX, USA
| | - Igor C Almeida
- Department of Biological Sciences, University of Texas at El Paso, El Paso, TX, USA.
| |
Collapse
|
33
|
Callejas-Hernández F, Rastrojo A, Poveda C, Gironès N, Fresno M. Genomic assemblies of newly sequenced Trypanosoma cruzi strains reveal new genomic expansion and greater complexity. Sci Rep 2018; 8:14631. [PMID: 30279473 PMCID: PMC6168536 DOI: 10.1038/s41598-018-32877-2] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Accepted: 09/13/2018] [Indexed: 12/19/2022] Open
Abstract
Chagas disease is a complex illness caused by the protozoan Trypanosoma cruzi displaying highly diverse clinical outcomes. In this sense, the genome sequence elucidation and comparison between strains may lead to disease understanding. Here, two new T. cruzi strains, have been sequenced, Y using Illumina and Bug2148 using PacBio, assembled, analyzed and compared with the T. cruzi annotated genomes available to date. The assembly stats from the new sequences show effective improvement of T. cruzi genome over the actual ones. Such as, the largest contig assembled (1.3 Mb in Bug2148) in de novo attempts and the highest mean assembly coverage (71X for Y). Our analysis reveals a new genomic expansion and greater complexity for those multi-copy gene families related to infection process and disease development, such as Trans-sialidases, Mucins and Mucin Associated Surface Proteins, among others. On one side, we demonstrate that multi-copy gene families are located near telomeric regions of the "chromosome-like" 1.3 Mb contig assembled of Bug2148, where they likely suffer high evolutive pressure. On the other hand, we identified several strain-specific single copy genes that might help to understand the differences in infectivity and physiology among strains. In summary, our results indicate that T. cruzi has a complex genomic architecture that may have promoted its evolution.
Collapse
Affiliation(s)
- Francisco Callejas-Hernández
- Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas, Universidad Autónoma de Madrid, Cantoblanco, Madrid, Spain
| | - Alberto Rastrojo
- Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas, Universidad Autónoma de Madrid, Cantoblanco, Madrid, Spain
| | - Cristina Poveda
- Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas, Universidad Autónoma de Madrid, Cantoblanco, Madrid, Spain
| | - Núria Gironès
- Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas, Universidad Autónoma de Madrid, Cantoblanco, Madrid, Spain.
- Instituto Sanitario de Investigación Princesa, Madrid, Spain.
| | - Manuel Fresno
- Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas, Universidad Autónoma de Madrid, Cantoblanco, Madrid, Spain.
- Instituto Sanitario de Investigación Princesa, Madrid, Spain.
| |
Collapse
|
34
|
Xiong J, Zhang C, Xu D. Catalytic mechanism of type C sialidase from Streptococcus pneumoniae: from covalent intermediate to final product. J Mol Model 2018; 24:297. [PMID: 30259133 DOI: 10.1007/s00894-018-3822-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Accepted: 09/04/2018] [Indexed: 12/24/2022]
Abstract
Streptococcus pneumoniae is a Gram-positive human pathogenic bacterium, which is the main cause of pneumonia and meningitis in children and the elderly. Three sialidases (or neuraminidases) encoded from Streptococcus pneumoniae could catalyze the cleavage of sialic acid linkages. This mechanism is directly connected with infection, apoptosis, and signaling, and usually considered to be one of the critical virulence factors. Type C neuraminidase (NanC) is unique because its primary product of Neu5Ac2en is considered to be an inhibitor to the other two sialidases. Experimentally, there are two different pathways for the formation mechanism of Neu5Ac2en catalyzed by NanC. In this work, a combined quantum mechanical and molecular mechanical approach was employed in all calculations. Starting from the covalent sialylated intermediate, we first examined the reaction to Neu5Ac2en and found the reaction prefers a direct proton abstraction mechanism rather than the water mediated proton abstraction mechanism. Free energy profiles can confirm that Neu5Ac2en is the major product of NanC. Functional roles of some important residues were also investigated, e.g., D315 acts as the proton acceptor during the formation of Neu5Ac2en, while the general base for the hydrolytic reaction to Neu5Ac. This study can facilitate the understanding of the catalytic mechanism of NanC and has the potential to aid in future inhibitor design studies.
Collapse
Affiliation(s)
- Jing Xiong
- MOE Key Laboratory of Green Chemistry & Technology, College of Chemistry, Sichuan University, Chengdu, Sichuan, 610064, People's Republic of China
- School of Pharmacy, Chengdu Medical College, Chengdu, Sichuan, 610500, People's Republic of China
| | - Chunchun Zhang
- Analytical&Testing Center, Sichuan University, Chengdu, Sichuan, 610064, People's Republic of China.
| | - Dingguo Xu
- MOE Key Laboratory of Green Chemistry & Technology, College of Chemistry, Sichuan University, Chengdu, Sichuan, 610064, People's Republic of China.
| |
Collapse
|
35
|
Torres-Silva CF, Repolês BM, Ornelas HO, Macedo AM, Franco GR, Junho Pena SD, Tahara EB, Machado CR. Assessment of genetic mutation frequency induced by oxidative stress in Trypanosoma cruzi. Genet Mol Biol 2018; 41:466-474. [PMID: 30088612 PMCID: PMC6082238 DOI: 10.1590/1678-4685-gmb-2017-0281] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Accepted: 11/29/2017] [Indexed: 12/16/2022] Open
Abstract
Trypanosoma cruzi is the etiological agent of Chagas disease, a public health challenge due to its morbidity and mortality rates, which affects around 6-7 million people worldwide. Symptoms, response to chemotherapy, and the course of Chagas disease are greatly influenced by T. cruzi's intra-specific variability. Thus, DNA mutations in this parasite possibly play a key role in the wide range of clinical manifestations and in drug sensitivity. Indeed, the environmental conditions of oxidative stress faced by T. cruzi during its life cycle can generate genetic mutations. However, the lack of an established experimental design to assess mutation rates in T. cruzi precludes the study of conditions and mechanisms that potentially produce genomic variability in this parasite. We developed an assay that employs a reporter gene that, once mutated in specific positions, convert G418-sensitive into G418-insenstitive T. cruzi. We were able to determine the frequency of DNA mutations in T. cruzi exposed and non-exposed to oxidative insults assessing the number of colony-forming units in solid selective media after plating a defined number of cells. We verified that T. cruzi's spontaneous mutation frequency was comparable to those found in other eukaryotes, and that exposure to hydrogen peroxide promoted a two-fold increase in T. cruzi's mutation frequency. We hypothesize that genetic mutations in T. cruzi can arise from oxidative insults faced by this parasite during its life cycle.
Collapse
Affiliation(s)
| | - Bruno Marçal Repolês
- Departamento de Bioquímica e Imunologia, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Hugo Oliveira Ornelas
- Departamento de Bioquímica e Imunologia, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Andréa Mara Macedo
- Departamento de Bioquímica e Imunologia, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Glória Regina Franco
- Departamento de Bioquímica e Imunologia, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Sérgio Danilo Junho Pena
- Departamento de Bioquímica e Imunologia, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Erich Birelli Tahara
- Departamento de Bioquímica e Imunologia, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Carlos Renato Machado
- Departamento de Bioquímica e Imunologia, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| |
Collapse
|
36
|
Berná L, Rodriguez M, Chiribao ML, Parodi-Talice A, Pita S, Rijo G, Alvarez-Valin F, Robello C. Expanding an expanded genome: long-read sequencing of Trypanosoma cruzi. Microb Genom 2018; 4. [PMID: 29708484 PMCID: PMC5994713 DOI: 10.1099/mgen.0.000177] [Citation(s) in RCA: 73] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Although the genome of Trypanosoma cruzi, the causative agent of Chagas disease, was first made available in 2005, with additional strains reported later, the intrinsic genome complexity of this parasite (the abundance of repetitive sequences and genes organized in tandem) has traditionally hindered high-quality genome assembly and annotation. This also limits diverse types of analyses that require high degrees of precision. Long reads generated by third-generation sequencing technologies are particularly suitable to address the challenges associated with T. cruzi’s genome since they permit direct determination of the full sequence of large clusters of repetitive sequences without collapsing them. This, in turn, not only allows accurate estimation of gene copy numbers but also circumvents assembly fragmentation. Here, we present the analysis of the genome sequences of two T. cruzi clones: the hybrid TCC (TcVI) and the non-hybrid Dm28c (TcI), determined by PacBio Single Molecular Real-Time (SMRT) technology. The improved assemblies herein obtained permitted us to accurately estimate gene copy numbers, abundance and distribution of repetitive sequences (including satellites and retroelements). We found that the genome of T. cruzi is composed of a ‘core compartment’ and a ‘disruptive compartment’ which exhibit opposite GC content and gene composition. Novel tandem and dispersed repetitive sequences were identified, including some located inside coding sequences. Additionally, homologous chromosomes were separately assembled, allowing us to retrieve haplotypes as separate contigs instead of a unique mosaic sequence. Finally, manual annotation of surface multigene families, mucins and trans-sialidases allows now a better overview of these complex groups of genes.
Collapse
Affiliation(s)
- Luisa Berná
- 1Laboratory of Host Pathogen Interactions-UBM, Institut Pasteur de Montevideo, Montevideo, Uruguay
| | - Matias Rodriguez
- 2Sección Biomatemática - Unidad de Genómica Evolutiva, Facultad de Ciencias-UDELAR, Montevideo, Uruguay
| | - María Laura Chiribao
- 1Laboratory of Host Pathogen Interactions-UBM, Institut Pasteur de Montevideo, Montevideo, Uruguay.,3Departamento de Bioquímica, Facultad de Medicina-UDELAR, Montevideo, Uruguay
| | - Adriana Parodi-Talice
- 1Laboratory of Host Pathogen Interactions-UBM, Institut Pasteur de Montevideo, Montevideo, Uruguay.,4Sección Genética, Facultad de Ciencias-UDELAR, Montevideo, Uruguay
| | - Sebastián Pita
- 1Laboratory of Host Pathogen Interactions-UBM, Institut Pasteur de Montevideo, Montevideo, Uruguay.,4Sección Genética, Facultad de Ciencias-UDELAR, Montevideo, Uruguay
| | - Gastón Rijo
- 1Laboratory of Host Pathogen Interactions-UBM, Institut Pasteur de Montevideo, Montevideo, Uruguay
| | - Fernando Alvarez-Valin
- 2Sección Biomatemática - Unidad de Genómica Evolutiva, Facultad de Ciencias-UDELAR, Montevideo, Uruguay
| | - Carlos Robello
- 1Laboratory of Host Pathogen Interactions-UBM, Institut Pasteur de Montevideo, Montevideo, Uruguay.,3Departamento de Bioquímica, Facultad de Medicina-UDELAR, Montevideo, Uruguay
| |
Collapse
|
37
|
Ribeiro KS, Vasconcellos CI, Soares RP, Mendes MT, Ellis CC, Aguilera-Flores M, de Almeida IC, Schenkman S, Iwai LK, Torrecilhas AC. Proteomic analysis reveals different composition of extracellular vesicles released by two Trypanosoma cruzi strains associated with their distinct interaction with host cells. J Extracell Vesicles 2018; 7:1463779. [PMID: 29696081 PMCID: PMC5912195 DOI: 10.1080/20013078.2018.1463779] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Accepted: 04/07/2018] [Indexed: 12/12/2022] Open
Abstract
Trypanosoma cruzi, the aetiologic agent of Chagas disease, releases vesicles containing a wide range of surface molecules known to affect the host immunological responses and the cellular infectivity. Here, we compared the secretome of two distinct strains (Y and YuYu) of T. cruzi, which were previously shown to differentially modulate host innate and acquired immune responses. Tissue culture-derived trypomastigotes of both strains secreted extracellular vesicles (EVs), as demonstrated by electron scanning microscopy. EVs were purified by exclusion chromatography or ultracentrifugation and quantitated using nanoparticle tracking analysis. Trypomastigotes from YuYu strain released higher number of EVs than those from Y strain, enriched with virulence factors trans-sialidase (TS) and cruzipain. Proteomic analysis confirmed the increased abundance of proteins coded by the TS gene family, mucin-like glycoproteins, and some typical exosomal proteins in the YuYu strain, which also showed considerable differences between purified EVs and vesicle-free fraction as compared to the Y strain. To evaluate whether such differences were related to parasite infectivity, J774 macrophages and LLC-MK2 kidney cells were preincubated with purified EVs from both strains and then infected with Y strain trypomastigotes. EVs released by YuYu strain caused a lower infection but higher intracellular proliferation in J774 macrophages than EVs from Y strain. In contrast, YuYu strain-derived EVs caused higher infection of LLC-MK2 cells than Y strain-derived EVs. In conclusion, quantitative and qualitative differences in EVs and secreted proteins from different T. cruzi strains may correlate with infectivity/virulence during the host-parasite interaction.
Collapse
Affiliation(s)
| | | | | | - Maria Tays Mendes
- Border Biomedical Research Center, Department of Biological Sciences, University of Texas at El Paso (UTEP), El Paso, TX, USA
| | - Cameron C Ellis
- Border Biomedical Research Center, Department of Biological Sciences, University of Texas at El Paso (UTEP), El Paso, TX, USA
| | - Marcela Aguilera-Flores
- Border Biomedical Research Center, Department of Biological Sciences, University of Texas at El Paso (UTEP), El Paso, TX, USA
| | - Igor Correia de Almeida
- Border Biomedical Research Center, Department of Biological Sciences, University of Texas at El Paso (UTEP), El Paso, TX, USA
| | - Sergio Schenkman
- Departamento de Microbiologia, Imunologia e Parasitologia, UNIFESP, São Paulo, Brazil
| | - Leo Kei Iwai
- Laboratório Especial de Toxicologia Aplicada (LETA), Center of Toxins, Immune-Response and Cell Signaling (CeTICS), Instituto Butantan, São Paulo, Brazil
| | | |
Collapse
|
38
|
Ramírez-Toloza G, Ferreira A. Trypanosoma cruzi Evades the Complement System as an Efficient Strategy to Survive in the Mammalian Host: The Specific Roles of Host/Parasite Molecules and Trypanosoma cruzi Calreticulin. Front Microbiol 2017; 8:1667. [PMID: 28919885 PMCID: PMC5585158 DOI: 10.3389/fmicb.2017.01667] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Accepted: 08/17/2017] [Indexed: 12/20/2022] Open
Abstract
American Trypanosomiasis is an important neglected reemerging tropical parasitism, infecting about 8 million people worldwide. Its agent, Trypanosoma cruzi, exhibits multiple mechanisms to evade the host immune response and infect host cells. An important immune evasion strategy of T. cruzi infective stages is its capacity to inhibit the complement system activation on the parasite surface, avoiding opsonizing, immune stimulating and lytic effects. Epimastigotes, the non-infective form of the parasite, present in triatomine arthropod vectors, are highly susceptible to complement-mediated lysis while trypomastigotes, the infective form, present in host bloodstream, are resistant. Thus T. cruzi susceptibility to complement varies depending on the parasite stage (amastigote, trypomastigotes or epimastigote) and on the T. cruzi strain. To avoid complement-mediated lysis, T. cruzi trypomastigotes express on the parasite surface a variety of complement regulatory proteins, such as glycoprotein 58/68 (gp58/68), T. cruzi complement regulatory protein (TcCRP), trypomastigote decay-accelerating factor (T-DAF), C2 receptor inhibitor trispanning (CRIT) and T. cruzi calreticulin (TcCRT). Alternatively, or concomitantly, the parasite captures components with complement regulatory activity from the host bloodstream, such as factor H (FH) and plasma membrane-derived vesicles (PMVs). All these proteins inhibit different steps of the classical (CP), alternative (AP) or lectin pathways (LP). Thus, TcCRP inhibits the CP C3 convertase assembling, gp58/68 inhibits the AP C3 convertase, T-DAF interferes with the CP and AP convertases assembling, TcCRT inhibits the CP and LP, CRIT confers ability to resist the CP and LP, FH is used by trypomastigotes to inhibit the AP convertases and PMVs inhibit the CP and LP C3 convertases. Many of these proteins have similar molecular inhibitory mechanisms. Our laboratory has contributed to elucidate the role of TcCRT in the host-parasite interplay. Thus, we have proposed that TcCRT is a pleiotropic molecule, present not only in the parasite endoplasmic reticulum, but also on the trypomastigote surface, participating in key processes to establish T. cruzi infection, such as inhibition of the complement system and serving as an important virulence factor. Additionally, TcCRT interaction with key complement components, participates as an anti-angiogenic and anti-tumor molecule, inhibiting at least in important part, tumor growth in infected animals.
Collapse
Affiliation(s)
- Galia Ramírez-Toloza
- Laboratory of Parasitology, Department of Animal Preventive Medicine, Faculty of Veterinary Medicine and Livestock Sciences, University of ChileSantiago, Chile
| | - Arturo Ferreira
- Program of Immunology, Institute of Biomedical Sciences, Faculty of Medicine, University of ChileSantiago, Chile
| |
Collapse
|
39
|
Giorgi ME, Lopez R, Agusti R, Marino C, de Lederkremer RM. Synthesis of a model trisaccharide for studying the interplay between the anti α-Gal antibody and the trans-sialidase reactions in Trypanosoma cruzi. Carbohydr Res 2017; 450:30-37. [PMID: 28858610 DOI: 10.1016/j.carres.2017.08.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Revised: 08/15/2017] [Accepted: 08/15/2017] [Indexed: 12/16/2022]
Abstract
Trypanosoma cruzi, the etiologic agent of Chagas disease, is covered by a dense glycocalix mainly composed by glycoproteins called mucins which are also the acceptors of sialic acid in a reaction catalyzed by a trans-sialidase (TcTS). Sialylation of trypomastigote mucins protects the parasite from lysis by the anti α-Galp antibodies from serum. The TcTS is essential for the infection process since T. cruzi is unable to biosynthesize sialic acid. The enzyme specifically transfers it from a terminal β-d-Galp unit in the host glycoconjugate to terminal β-d-Galp units in the parasite mucins to construct the d-NeuNAc(α2→3)β-d-Galp motif. On the other hand, although galactose is the most abundant sugar in mucins of both, the infective trypomastigotes and the insect stage epimastigotes, α-d-Galp is only present in the infective stage whereas β-d-Galf is characteristic of the epimastigote stage of the less virulent strains. Neither α-d-Galp nor d-Galf is acceptor of sialic acid. In the mucins, some of the oligosaccharides are branched with terminal β-d-Galp units to be able to accept sialic acid in the TcTS reaction. Based on previous reports showing that anti α-Galp antibodies only partially colocalize with sialic acid, we have undertaken the synthesis of the trisaccharide α-d-Galp(1→3)-[β-d-Galp(1→6)]-d-Galp, the smallest structure containing both, the antigenic d-Galp(α1→3)-d-Galp unit and the sialic acid-acceptor β-d-Galp unit. The trisaccharide was obtained as the 6-aminohexyl glycoside to facilitate further conjugation for biochemical studies. The synthetic approach involved the α-galactosylation at O-4 of a suitable precursor of the reducing end, followed by β-galactosylation at O-6 of the same precursor and introduction of the 6-aminohexyl aglycone. The fully deprotected trisaccharide was successfully sialylated by TcTS using either 3'-sialyllactose or fetuin as donors. The product, 6-aminohexyl α-d-NeuNAc(2→3)-β-d-Galp(1→6)-[α-d-Galp(1→3)]-β-d-Galp, was purified and characterized.
Collapse
Affiliation(s)
- M Eugenia Giorgi
- Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas, Centro de Investigaciones en Hidratos de Carbono (CIHIDECAR), Facultad de Ciencias Exactas y Naturales, Departamento de Química Orgánica, Buenos Aires, Argentina
| | - Rosana Lopez
- Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas, Centro de Investigaciones en Hidratos de Carbono (CIHIDECAR), Facultad de Ciencias Exactas y Naturales, Departamento de Química Orgánica, Buenos Aires, Argentina
| | - Rosalia Agusti
- Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas, Centro de Investigaciones en Hidratos de Carbono (CIHIDECAR), Facultad de Ciencias Exactas y Naturales, Departamento de Química Orgánica, Buenos Aires, Argentina
| | - Carla Marino
- Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas, Centro de Investigaciones en Hidratos de Carbono (CIHIDECAR), Facultad de Ciencias Exactas y Naturales, Departamento de Química Orgánica, Buenos Aires, Argentina.
| | - Rosa M de Lederkremer
- Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas, Centro de Investigaciones en Hidratos de Carbono (CIHIDECAR), Facultad de Ciencias Exactas y Naturales, Departamento de Química Orgánica, Buenos Aires, Argentina.
| |
Collapse
|
40
|
Cámara MDLM, Cánepa GE, Lantos AB, Balouz V, Yu H, Chen X, Campetella O, Mucci J, Buscaglia CA. The Trypomastigote Small Surface Antigen (TSSA) regulates Trypanosoma cruzi infectivity and differentiation. PLoS Negl Trop Dis 2017; 11:e0005856. [PMID: 28800609 PMCID: PMC5568413 DOI: 10.1371/journal.pntd.0005856] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Revised: 08/23/2017] [Accepted: 08/05/2017] [Indexed: 02/06/2023] Open
Abstract
Background TSSA (Trypomastigote Small Surface Antigen) is an antigenic, adhesion molecule displayed on the surface of Trypanosoma cruzi trypomastigotes. TSSA displays substantial sequence identity to members of the TcMUC gene family, which code for the trypomastigote mucins (tGPI-mucins). In addition, TSSA bears sequence polymorphisms among parasite strains; and two TSSA variants expressed as recombinant molecules (termed TSSA-CL and TSSA-Sy) were shown to exhibit contrasting features in their host cell binding and signaling properties. Methods/Principle findings Here we used a variety of approaches to get insights into TSSA structure/function. We show that at variance with tGPI-mucins, which rely on their extensive O-glycoslylation to achieve their protective function, TSSA seems to be displayed on the trypomastigote coat as a hypo-glycosylated molecule. This has a functional correlate, as further deletion mapping experiments and cell binding assays indicated that exposition of at least two peptidic motifs is critical for the engagement of the ‘adhesive’ TSSA variant (TSSA-CL) with host cell surface receptor(s) prior to trypomastigote internalization. These motifs are not conserved in the ‘non-adhesive’ TSSA-Sy variant. We next developed transgenic lines over-expressing either TSSA variant in different parasite backgrounds. In strict accordance to recombinant protein binding data, trypomastigotes over-expressing TSSA-CL displayed improved adhesion and infectivity towards non-macrophagic cell lines as compared to those over-expressing TSSA-Sy or parental lines. These phenotypes could be specifically counteracted by exogenous addition of peptides spanning the TSSA-CL adhesion motifs. In addition, and irrespective of the TSSA variant, over-expression of this molecule leads to an enhanced trypomastigote-to-amastigote conversion, indicating a possible role of TSSA also in parasite differentiation. Conclusion/Significance In this study we provided novel evidence indicating that TSSA plays an important role not only on the infectivity and differentiation of T. cruzi trypomastigotes but also on the phenotypic variability displayed by parasite strains. Infection with Trypanosoma cruzi produces a chronic and debilitating infectious disease known as Chagas disease, of major significance in Latin America and an emergent threat to global public health. In the absence of vaccines and/or appropriate chemotherapies, the search for parasite effectors that support infection of mammalian cells is a focus of significant interest. One such candidate is the Trypomastigote Small Surface Antigen (TSSA), a polymorphic molecule expressed on the surface coat of infective trypomastigote forms. Previous data indicated that recombinant versions of two different TSSA variants (termed TSSA-CL and TSSA-Sy) encoded by parasite strains belonging to extant phylogenetic groups exhibited contrasting host cell binding and signaling abilities. Here, we generated genetically modified strains of T. cruzi over-expressing different TSSAs to address this issue. Trypomastigotes over-expressing TSSA-CL, the ‘adhesive variant’, displayed improved adhesion and infectivity towards non-macrophagic cell lines as compared to those over-expressing TSSA-Sy or parental lines. In addition, and irrespective of the protein variant, TSSA over-expression enhanced trypomastigote-to-amastigote conversion. Overall, our data strongly suggest that TSSA plays an important role not only on the infectivity and differentiation of T. cruzi trypomastigotes but also on the phenotypic variability displayed by different strains of this parasite. These data, together with the fact that TSSA recalls a strong and likely protective humoral response during human infections, support this molecule as an excellent candidate for molecular intervention and/or vaccine development in Chagas disease.
Collapse
Affiliation(s)
- María de los Milagros Cámara
- Instituto de Investigaciones Biotecnológicas-Instituto Tecnológico de Chascomús (IIB-INTECh), Universidad Nacional de San Martín (UNSAM) and Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
- Instituto de Tecnología, Universidad Argentina de la Empresa (UADE), Buenos Aires, Argentina
| | - Gaspar E. Cánepa
- Instituto de Investigaciones Biotecnológicas-Instituto Tecnológico de Chascomús (IIB-INTECh), Universidad Nacional de San Martín (UNSAM) and Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Andrés B. Lantos
- Instituto de Investigaciones Biotecnológicas-Instituto Tecnológico de Chascomús (IIB-INTECh), Universidad Nacional de San Martín (UNSAM) and Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Virginia Balouz
- Instituto de Investigaciones Biotecnológicas-Instituto Tecnológico de Chascomús (IIB-INTECh), Universidad Nacional de San Martín (UNSAM) and Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Hai Yu
- Department of Chemistry, University of California, Davis, Davis, California, United States of America
| | - Xi Chen
- Department of Chemistry, University of California, Davis, Davis, California, United States of America
| | - Oscar Campetella
- Instituto de Investigaciones Biotecnológicas-Instituto Tecnológico de Chascomús (IIB-INTECh), Universidad Nacional de San Martín (UNSAM) and Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Juan Mucci
- Instituto de Investigaciones Biotecnológicas-Instituto Tecnológico de Chascomús (IIB-INTECh), Universidad Nacional de San Martín (UNSAM) and Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Carlos A. Buscaglia
- Instituto de Investigaciones Biotecnológicas-Instituto Tecnológico de Chascomús (IIB-INTECh), Universidad Nacional de San Martín (UNSAM) and Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
- * E-mail:
| |
Collapse
|
41
|
Peptides Selected Using Phage Library Variants, Effectively Inhibit Trypanosoma cruzi Infection. Bull Exp Biol Med 2017; 163:361-364. [DOI: 10.1007/s10517-017-3804-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2016] [Indexed: 10/19/2022]
|
42
|
Fernandes CFC, Pereira SDS, Luiz MB, Zuliani JP, Furtado GP, Stabeli RG. Camelid Single-Domain Antibodies As an Alternative to Overcome Challenges Related to the Prevention, Detection, and Control of Neglected Tropical Diseases. Front Immunol 2017. [PMID: 28649245 PMCID: PMC5465246 DOI: 10.3389/fimmu.2017.00653] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Due mainly to properties such as high affinity and antigen specificity, antibodies have become important tools for biomedical research, diagnosis, and treatment of several human diseases. When the objective is to administer them for therapy, strategies are used to reduce the heterologous protein immunogenicity and to improve pharmacokinetic and pharmacodynamic characteristics. Size minimization contributes to ameliorate these characteristics, while preserving the antigen-antibody interaction site. Since the discovery that camelids produce functional antibodies devoid of light chains, studies have proposed the use of single domains for biosensors, monitoring and treatment of tumors, therapies for inflammatory and neurodegenerative diseases, drug delivery, or passive immunotherapy. Despite an expected increase in antibody and related products in the pharmaceutical market over the next years, few research initiatives are related to the development of alternatives for helping to manage neglected tropical diseases (NTDs). In this review, we summarize developments of camelid single-domain antibodies (VHH) in the field of NTDs. Particular attention is given to VHH-derived products, i.e., VHHs fused to nanoparticles, constructed for the development of rapid diagnostic kits; fused to oligomeric matrix proteins for viral neutralization; and conjugated with proteins for the treatment of human parasites. Moreover, paratransgenesis technology using VHHs is an interesting approach to control parasite development in vectors. With enormous biotechnological versatility, facility and low cost for heterologous production, and greater ability to recognize different epitopes, VHHs have appeared as an opportunity to overcome challenges related to the prevention, detection, and control of human diseases, especially NTDs.
Collapse
Affiliation(s)
| | | | - Marcos B Luiz
- Fundação Oswaldo Cruz, Fiocruz Rondônia, Porto Velho, Rondônia, Brazil
| | - Juliana P Zuliani
- Fundação Oswaldo Cruz, Fiocruz Rondônia, Porto Velho, Rondônia, Brazil.,Departamento de Medicina da Universidade Federal de Rondônia, UNIR, Porto Velho, Rondônia, Brazil
| | | | - Rodrigo G Stabeli
- Departamento de Medicina da Universidade Federal de Rondônia, UNIR, Porto Velho, Rondônia, Brazil.,Plataforma Bi-Institucional de Medicina Translacional (Fiocruz-USP), Ribeirão Preto, São Paulo, Brazil
| |
Collapse
|
43
|
Pech-Canul ÁDLC, Monteón V, Solís-Oviedo RL. A Brief View of the Surface Membrane Proteins from Trypanosoma cruzi. J Parasitol Res 2017; 2017:3751403. [PMID: 28656101 PMCID: PMC5474541 DOI: 10.1155/2017/3751403] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2017] [Revised: 03/31/2017] [Accepted: 04/27/2017] [Indexed: 12/22/2022] Open
Abstract
Trypanosoma cruzi is the causal agent of Chagas' disease which affects millions of people around the world mostly in Central and South America. T. cruzi expresses a wide variety of proteins on its surface membrane which has an important role in the biology of these parasites. Surface molecules of the parasites are the result of the environment to which the parasites are exposed during their life cycle. Hence, T. cruzi displays several modifications when they move from one host to another. Due to the complexity of this parasite's cell surface, this review presents some membrane proteins organized as large families, as they are the most abundant and/or relevant throughout the T. cruzi membrane.
Collapse
Affiliation(s)
- Ángel de la Cruz Pech-Canul
- Centre for Biomolecular Sciences, The University of Nottingham, University Park, University Blvd, Nottingham NG7 2RD, UK
| | - Victor Monteón
- Investigaciones Biomédicas, Universidad Autónoma de Campeche, Av. Patricio Trueba s/n, Col. Lindavista, 24039 Campeche, CAM, Mexico
| | - Rosa-Lidia Solís-Oviedo
- Centre for Biomolecular Sciences, The University of Nottingham, University Park, University Blvd, Nottingham NG7 2RD, UK
- Investigaciones Biomédicas, Universidad Autónoma de Campeche, Av. Patricio Trueba s/n, Col. Lindavista, 24039 Campeche, CAM, Mexico
| |
Collapse
|
44
|
Berná L, Chiribao ML, Greif G, Rodriguez M, Alvarez-Valin F, Robello C. Transcriptomic analysis reveals metabolic switches and surface remodeling as key processes for stage transition in Trypanosoma cruzi. PeerJ 2017; 5:e3017. [PMID: 28286708 PMCID: PMC5345387 DOI: 10.7717/peerj.3017] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Accepted: 01/23/2017] [Indexed: 01/12/2023] Open
Abstract
American trypanosomiasis is a chronic and endemic disease which affects millions of people. Trypanosoma cruzi, its causative agent, has a life cycle that involves complex morphological and functional transitions, as well as a variety of environmental conditions. This requires a tight regulation of gene expression, which is achieved mainly by post-transcriptional regulation. In this work we conducted an RNAseq analysis of the three major life cycle stages of T. cruzi: amastigotes, epimastigotes and trypomastigotes. This analysis allowed us to delineate specific transcriptomic profiling for each stage, and also to identify those biological processes of major relevance in each state. Stage specific expression profiling evidenced the plasticity of T. cruzi to adapt quickly to different conditions, with particular focus on membrane remodeling and metabolic shifts along the life cycle. Epimastigotes, which replicate in the gut of insect vectors, showed higher expression of genes related to energy metabolism, mainly Krebs cycle, respiratory chain and oxidative phosphorylation related genes, and anabolism related genes associated to nucleotide and steroid biosynthesis; also, a general down-regulation of surface glycoprotein coding genes was seen at this stage. Trypomastigotes, living extracellularly in the bloodstream of mammals, express a plethora of surface proteins and signaling genes involved in invasion and evasion of immune response. Amastigotes mostly express membrane transporters and genes involved in regulation of cell cycle, and also express a specific subset of surface glycoprotein coding genes. In addition, these results allowed us to improve the annotation of the Dm28c genome, identifying new ORFs and set the stage for construction of networks of co-expression, which can give clues about coded proteins of unknown functions.
Collapse
Affiliation(s)
- Luisa Berná
- Unidad de Biología Molecular, Institut Pasteur de Montevideo, Montevideo, Uruguay
| | - Maria Laura Chiribao
- Unidad de Biología Molecular, Institut Pasteur de Montevideo, Montevideo, Uruguay.,Departamento de Bioquímica, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
| | - Gonzalo Greif
- Unidad de Biología Molecular, Institut Pasteur de Montevideo, Montevideo, Uruguay
| | - Matias Rodriguez
- Sección Biomatemática, Unidad de Genómica Evolutiva, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay
| | - Fernando Alvarez-Valin
- Sección Biomatemática, Unidad de Genómica Evolutiva, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay
| | - Carlos Robello
- Unidad de Biología Molecular, Institut Pasteur de Montevideo, Montevideo, Uruguay.,Departamento de Bioquímica, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
| |
Collapse
|
45
|
Balouz V, Agüero F, Buscaglia CA. Chagas Disease Diagnostic Applications: Present Knowledge and Future Steps. ADVANCES IN PARASITOLOGY 2016; 97:1-45. [PMID: 28325368 PMCID: PMC5363286 DOI: 10.1016/bs.apar.2016.10.001] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Chagas disease, caused by the protozoan Trypanosoma cruzi, is a lifelong and debilitating illness of major significance throughout Latin America and an emergent threat to global public health. Being a neglected disease, the vast majority of Chagasic patients have limited access to proper diagnosis and treatment, and there is only a marginal investment into R&D for drug and vaccine development. In this context, identification of novel biomarkers able to transcend the current limits of diagnostic methods surfaces as a main priority in Chagas disease applied research. The expectation is that these novel biomarkers will provide reliable, reproducible and accurate results irrespective of the genetic background, infecting parasite strain, stage of disease, and clinical-associated features of Chagasic populations. In addition, they should be able to address other still unmet diagnostic needs, including early detection of congenital T. cruzi transmission, rapid assessment of treatment efficiency or failure, indication/prediction of disease progression and direct parasite typification in clinical samples. The lack of access of poor and neglected populations to essential diagnostics also stresses the necessity of developing new methods operational in point-of-care settings. In summary, emergent diagnostic tests integrating these novel and tailored tools should provide a significant impact on the effectiveness of current intervention schemes and on the clinical management of Chagasic patients. In this chapter, we discuss the present knowledge and possible future steps in Chagas disease diagnostic applications, as well as the opportunity provided by recent advances in high-throughput methods for biomarker discovery.
Collapse
Affiliation(s)
- Virginia Balouz
- Instituto de Investigaciones Biotecnológicas - Instituto Tecnológico de Chascomús (IIB-INTECH), Universidad Nacional de San Martín (UNSAM) - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), San Martín, B 1650 HMP, Buenos Aires, Argentina
| | - Fernán Agüero
- Instituto de Investigaciones Biotecnológicas - Instituto Tecnológico de Chascomús (IIB-INTECH), Universidad Nacional de San Martín (UNSAM) - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), San Martín, B 1650 HMP, Buenos Aires, Argentina
| | - Carlos A. Buscaglia
- Instituto de Investigaciones Biotecnológicas - Instituto Tecnológico de Chascomús (IIB-INTECH), Universidad Nacional de San Martín (UNSAM) - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), San Martín, B 1650 HMP, Buenos Aires, Argentina
| |
Collapse
|
46
|
Weatherly DB, Peng D, Tarleton RL. Recombination-driven generation of the largest pathogen repository of antigen variants in the protozoan Trypanosoma cruzi. BMC Genomics 2016; 17:729. [PMID: 27619017 PMCID: PMC5020489 DOI: 10.1186/s12864-016-3037-z] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2016] [Accepted: 08/24/2016] [Indexed: 12/15/2022] Open
Abstract
Background The protozoan parasite Trypanosoma cruzi, causative agent of Chagas disease, depends upon a cell surface-expressed trans-sialidase (ts) to avoid activation of complement-mediated lysis and to enhance intracellular invasion. However these functions alone fail to account for the size of this gene family in T. cruzi, especially considering that most of these genes encode proteins lacking ts enzyme activity. Previous whole genome sequencing of the CL Brener clone of T. cruzi identified ~1400 ts variants, but left many partially assembled sequences unannotated. Results In the current study we reevaluated the trans-sialidase-like sequences in this reference strain, identifying an additional 1779 full-length and partial ts genes with their important features annotated, and confirming the expression of previously annotated “pseudogenes” and newly annotated ts family members. Multiple EM for Motif Elicitation (MEME) analysis allowed us to generate a model T. cruzi ts (TcTS) based upon the most conserved motif patterns and demonstrated that a common motif order is highly conserved among ts family members. Using a newly developed pipeline for the analysis of recombination within large gene families, we further demonstrate that TcTS family members are undergoing frequent recombination, generating new variants from the thousands of functional and non-functional ts gene segments but retaining the overall structure of the core TcTS family members. Conclusions The number and variety as well as high recombination frequency of TcTS family members supports strong evolutionary pressure, probably exerted by immune selection, for continued variation in ts sequences in T. cruzi, and thus for a unique immune evasion mechanism for the large ts gene family. Electronic supplementary material The online version of this article (doi:10.1186/s12864-016-3037-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- D Brent Weatherly
- Center for Tropical and Emerging Global Diseases, Institute of Bioinformatics and Department of Cellular Biology, University of Georgia, Athens, GA, 30602, USA.,Center for Complex Carbohydrate Research, University of Georgia, Athens, GA, 30602, USA
| | - Duo Peng
- Center for Tropical and Emerging Global Diseases, Institute of Bioinformatics and Department of Cellular Biology, University of Georgia, Athens, GA, 30602, USA
| | - Rick L Tarleton
- Center for Tropical and Emerging Global Diseases, Institute of Bioinformatics and Department of Cellular Biology, University of Georgia, Athens, GA, 30602, USA.
| |
Collapse
|
47
|
Long-Term Immunity to Trypanosoma cruzi in the Absence of Immunodominant trans-Sialidase-Specific CD8+ T Cells. Infect Immun 2016; 84:2627-38. [PMID: 27354447 DOI: 10.1128/iai.00241-16] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2016] [Accepted: 06/24/2016] [Indexed: 11/20/2022] Open
Abstract
Trypanosoma cruzi infection drives the expansion of remarkably focused CD8(+) T cell responses targeting epitopes encoded by variant trans-sialidase (TS) genes. Infection of C57BL/6 mice with T. cruzi results in up to 40% of all CD8(+) T cells committed to recognition of the dominant TSKB20 and subdominant TSKB18 TS epitopes. However, despite this enormous response, these mice fail to clear T. cruzi infection and subsequently develop chronic disease. One possible reason for the failure to cure T. cruzi infection is that immunodomination by these TS-specific T cells may interfere with alternative CD8(+) T cell responses more capable of complete parasite elimination. To address this possibility, we created transgenic mice that are centrally tolerant to these immunodominant epitopes. Mice expressing TSKB20, TSKB18, or both epitopes controlled T. cruzi infection and developed effector CD8(+) T cells that maintained an activated phenotype. Memory CD8(+) T cells from drug-cured TSKB-transgenic mice rapidly responded to secondary T. cruzi infection. In the absence of the response to TSKB20 and TSKB18, immunodominance did not shift to other known subdominant epitopes despite the capacity of these mice to expand epitope-specific T cells specific for the model antigen ovalbumin expressed by engineered parasites. Thus, CD8(+) T cell responses tightly and robustly focused on a few epitopes within variant TS antigens appear to neither contribute to, nor detract from, the ability to control T. cruzi infection. These data also indicate that the relative position of an epitope within a CD8(+) immunodominance hierarchy does not predict its importance in pathogen control.
Collapse
|
48
|
FONSECA LEONARDOM, GARCEZ TATIANAC, PENHA LUCIANA, FREIRE-DE-LIMA LEONARDO, MAES EMMANUEL, COSTA KELLIM, MENDONÇA-PREVIATO LUCIA, PREVIATO JOSEO. Expanding the knowledge of the chemical structure of glycoconjugates from Trypanosoma cruzi TcI genotype. Contribution to taxonomic studies. ACTA ACUST UNITED AC 2016; 88:1519-29. [DOI: 10.1590/0001-3765201620160386] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Accepted: 06/29/2016] [Indexed: 02/06/2023]
Affiliation(s)
| | | | | | | | - EMMANUEL MAES
- Université des Sciences et Technologies de Lille, France
| | | | | | | |
Collapse
|
49
|
Rodriguez JB, Falcone BN, Szajnman SH. Detection and treatment ofTrypanosoma cruzi: a patent review (2011-2015). Expert Opin Ther Pat 2016; 26:993-1015. [DOI: 10.1080/13543776.2016.1209487] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
50
|
Alves MJM, Kawahara R, Viner R, Colli W, Mattos EC, Thaysen-Andersen M, Larsen MR, Palmisano G. Comprehensive glycoprofiling of the epimastigote and trypomastigote stages of Trypanosoma cruzi. J Proteomics 2016; 151:182-192. [PMID: 27318177 DOI: 10.1016/j.jprot.2016.05.034] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2016] [Revised: 05/23/2016] [Accepted: 05/30/2016] [Indexed: 12/17/2022]
Abstract
Trypanosoma cruzi, the protozoan that causes Chagas disease, has a complex life cycle involving insect and mammalian hosts and distinct developmental stages. During T. cruzi developmental stages, glycoproteins play important role in the host-parasite interaction, such as cellular recognition, host cell invasion and adhesion, and immune evasion. In this study, comprehensive glycoprofiling analysis was performed in the epimastigote and trypomastigote stages of T. cruzi using two glycopeptide enrichment strategies, lectin-based and hydrophilic interaction liquid chromatography, followed by high resolution LC-MS/MS. Following deglycosylation, a total of 1306 N-glycosylation sites in NxS/T/C motifs were identified from 690 T. cruzi glycoproteins. Among them, 170 and 334 glycoproteins were exclusively identified in epimastigotes and trypomastigotes, respectively. Besides, global site-specific characterization of the N- and O-linked glycan heterogeneity in the two life stages of T. cruzi was achieved by intact glycopeptide analysis, revealing 144/466 unique N-linked and 10/97 unique O-linked intact glycopeptides in epimastigotes/trypomastigotes, respectively. Conclusively, this study documents the significant T. cruzi stage-specific expression of glycoproteins that can help to better understand the T. cruzi phenotype and response caused by the interaction with different hosts during its complex life cycle. BIOLOGICAL SIGNIFICANCE Chagas disease caused by the protozoan Trypanosoma cruzi is a neglected disease which affects millions of people especially in Latin America. The absence of efficient drugs and vaccines against Chagas disease stimulates the search for novel targets. Glycoproteins are very attractive therapeutic candidate targets since they mediate key processes in the host-parasite interaction, such as cellular recognition, host cell invasion and adhesion, and immune evasion. This study aimed to provide an in depth characterization of the N-linked and O-linked glycoproteome of two T. cruzi life stages: epimastigotes and trypomastigotes. Mass spectrometry-based proteomics showed interesting stage-specific glycoproteome signatures that are valuable to better understand the importance of protein glycosylation in epimastigotes and trypomastigotes and to expand the repertoire of potential therapeutic targets against Chagas disease.
Collapse
Affiliation(s)
- Maria Julia Manso Alves
- Instituto de Química, Departamento de Bioquímica, Universidade de São Paulo, USP, São Paulo, Brazil
| | - Rebeca Kawahara
- Instituto de Ciências Biomédicas, Departamento de Parasitologia, Universidade de São Paulo, USP, São Paulo, Brazil
| | - Rosa Viner
- Thermo Fisher Scientific, San Jose, CA, USA
| | - Walter Colli
- Instituto de Química, Departamento de Bioquímica, Universidade de São Paulo, USP, São Paulo, Brazil
| | - Eliciane Cevolani Mattos
- Instituto de Química, Departamento de Bioquímica, Universidade de São Paulo, USP, São Paulo, Brazil
| | | | - Martin Røssel Larsen
- Department of Biochemistry and Molecular Biology, University of Southern, Odense, DK, Denmark
| | - Giuseppe Palmisano
- Instituto de Ciências Biomédicas, Departamento de Parasitologia, Universidade de São Paulo, USP, São Paulo, Brazil.
| |
Collapse
|