1
|
Natural Source Zone Depletion (NSZD) Quantification Techniques: Innovations and Future Directions. SUSTAINABILITY 2022. [DOI: 10.3390/su14127027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Natural source zone depletion (NSZD) is an emerging technique for sustainable and cost-effective bioremediation of light non-aqueous phase liquid (LNAPL) in oil spill sites. Depending on regulatory objectives, NSZD has the potential to be used as either the primary or sole LNAPL management technique. To achieve this goal, NSZD rate (i.e., rate of bulk LNAPL mass depletion) should be quantified accurately and precisely. NSZD has certain characteristic features that have been used as surrogates to quantify the NSZD rates. This review highlights the most recent trends in technology development for NSZD data collection and rate estimation, with a focus on the operational and technical advantages and limitations of the associated techniques. So far, four principal techniques are developed, including concentration gradient (CG), dynamic closed chamber (DCC), CO2 trap and thermal monitoring. Discussions revolving around two techniques, “CO2 trap” and “thermal monitoring”, are expanded due to the particular attention to them in the current industry. The gaps of knowledge relevant to the NSZD monitoring techniques are identified and the issues which merit further research are outlined. It is hoped that this review can provide researchers and practitioners with sufficient information to opt the best practice for the research and application of NSZD for the management of LNAPL impacted sites.
Collapse
|
2
|
Sookhak Lari K, Davis GB, Rayner JL. Towards a digital twin for characterising natural source zone depletion: A feasibility study based on the Bemidji site. WATER RESEARCH 2022; 208:117853. [PMID: 34800855 DOI: 10.1016/j.watres.2021.117853] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 11/05/2021] [Accepted: 11/06/2021] [Indexed: 06/13/2023]
Abstract
Natural source zone depletion (NSZD) of light non-aqueous phase liquids (LNAPLs) may be a valid long-term management option at petroleum impacted sites. However, its future long-term reliability needs to be established. NSZD includes partitioning, biotic and abiotic degradation of LNAPL components plus multiphase fluid dynamics in the subsurface. Over time, LNAPL components are depleted and those partitioning to various phases change, as do those available for biodegradation. To accommodate these processes and predict trends and NSZD over decades to centuries, for the first time, we incorporated a multi-phase multi-component multi-microbe non-isothermal approach to representatively simulate NSZD at field scale. To validate the approach we successfully mimic data from the LNAPL release at the Bemidji site. We simulate the entire depth of saturated and unsaturated zones over the 27 years of post-release measurements. The study progresses the idea of creating a generic digital twin of NSZD processes and future trends. Outcomes show the feasibility and affordability of such detailed computational approaches to improve decision-making for site management and restoration strategies. The study provided a basis to progress a computational digital twin for complex subsurface systems.
Collapse
Affiliation(s)
- Kaveh Sookhak Lari
- CSIRO Land and Water, Private Bag No. 5, Wembley, WA 6913, Australia; School of Engineering, Edith Cowan University, 270 Joondalup Drive, Joondalup, WA 6027, Australia.
| | - Greg B Davis
- CSIRO Land and Water, Private Bag No. 5, Wembley, WA 6913, Australia; School of Earth Sciences, The University of Western Australia, 35 Stirling Highway, Crawley,WA 6009, Australia
| | - John L Rayner
- CSIRO Land and Water, Private Bag No. 5, Wembley, WA 6913, Australia
| |
Collapse
|
3
|
Wozney A, Clark ID, Mayer KU. Quantifying natural source zone depletion at petroleum hydrocarbon contaminated sites: A comparison of 14C methods. JOURNAL OF CONTAMINANT HYDROLOGY 2021; 240:103795. [PMID: 33799019 DOI: 10.1016/j.jconhyd.2021.103795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2020] [Revised: 02/10/2021] [Accepted: 03/01/2021] [Indexed: 06/12/2023]
Abstract
Surficial CO2 efflux surveys have been used to delineate hydrocarbon source zones in contaminated aquifers and provide estimates of hydrocarbon biodegradation rates. This approach requires distinguishing between CO2 derived from petroleum degradation and CO2 produced from natural soil respiration. To this end, radiocarbon has been used to differentiate between 14C-depleted CO2 from hydrocarbon degradation and 14C-enriched CO2 from natural soil respiration to effectively quantify the contribution of each source to total CO2 efflux, and by deduction natural source zone depletion (NSZD) rates. In this study, a systematic method comparison has been conducted to evaluate available approaches for collecting CO2 gas samples for radiocarbon analysis used to correct total CO2 efflux measurements for quantifying natural source zone depletion rates. Gas samples for radiocarbon analysis were sampled from (i) dynamic closed chambers (located at ground surface), (ii) static chambers (also at ground surface), (iii) shallow soil gas probes (0.3 m bgs), and (iv) soil gas monitoring wells (~0.6 m below ground surface) during a CO2 efflux survey conducted at the site of a historical pipeline rupture near Bemidji, MN. The mean fraction of radiocarbon (F14C) obtained from samples overlying the source zone were (i) 0.93 ± 0.01, (ii) 0.73 ± 0.03, (iii) 0.71 ± 0.04, and (iv) 0.41 ± 0.06, for the four methods respectively. These F14C values were used to apportion total CO2 efflux measurements into contributions of contaminant-derived CO2 efflux and natural soil respiration to evaluate natural source zone depletion processes. Results suggest that the method of radiocarbon sampling has a significant effect on the calculated fraction of the CO2 efflux originating from contaminant-related soil respiration, with contributions ranging between 27% and 59% of total soil respiration. Results indicate that radiocarbon sampled from static chambers and shallow soil gas probes methods offer the best compromise between CO2 sample yield and sample representativeness, providing the most reliable estimates of CO2 effluxes originating from contaminant degradation. However, the results also show that for this study, all methods agree within a factor of <2.3 regarding the inferred NSZD rates.
Collapse
Affiliation(s)
- Anne Wozney
- Golder Associates Ltd., 200-2920 Virtual Way, Vancouver, BC V5M 0C4, Canada.
| | - Ian D Clark
- Dept. of Earth and Environmental Sciences, University of Ottawa, 25 Templeton Street, Ottawa, ON K1N 6N5, Canada.
| | - K Ulrich Mayer
- Dept. of Earth, Ocean and Atmospheric Sciences, University of British Columbia, 2020-2007 Main Mall, Vancouver, BC V6T 1Z4, Canada.
| |
Collapse
|
4
|
Arsenic in Petroleum-Contaminated Groundwater near Bemidji, Minnesota Is Predicted to Persist for Centuries. WATER 2021. [DOI: 10.3390/w13111485] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
We used a reactive transport model to investigate the cycling of geogenic arsenic (As) in a petroleum-contaminated aquifer. We simulated As mobilization and sequestration using surface complexation reactions with Fe(OH)3 during petroleum biodegradation coupled with Fe-reduction. Model results predict that dissolved As in the plume will exceed the U.S. and EU 10 µg/L drinking water standard for ~400 years. Non-volatile dissolved organic carbon (NVDOC) in the model promotes As mobilization by exerting oxygen demand, which maintains anoxic conditions in the aquifer. After NVDOC degrades, As re-associates with Fe(OH)3 as oxygenated conditions are re-established. Over the 400-year simulation, As transport resembles a “roll front” in which: (1) arsenic sorbed to Fe(OH)3 is released during Fe-reduction coupled to petroleum biodegradation; (2) dissolved As resorbs to Fe(OH)3 at the plume’s leading edge; and (3) over time, the plume expands, and resorbed As is re-released into groundwater. This “roll front” behavior underscores the transience of sorption as an As attenuation mechanism. Over the plume’s lifespan, simulations suggest that As will contaminate more groundwater than benzene from the oil spill. At its maximum, the model simulates that ~5.7× more groundwater will be contaminated by As than benzene, suggesting that As could pose a greater long-term water quality threat than benzene in this petroleum-contaminated aquifer.
Collapse
|
5
|
Steelman CM, Meyer JR, Wanner P, Swanson BJ, Conway-White O, Parker BL. The importance of transects for characterizing aged organic contaminant plumes in groundwater. JOURNAL OF CONTAMINANT HYDROLOGY 2020; 235:103728. [PMID: 33069942 DOI: 10.1016/j.jconhyd.2020.103728] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 09/23/2020] [Accepted: 10/01/2020] [Indexed: 06/11/2023]
Abstract
A complex mixture of dissolved organic contaminants, emanating from a many decades-old, residual, dense non-aqueous phase liquid (DNAPL) source, migrates through unconfined, moderately heterogeneous, glacial-derived sediments and sedimentary rock in a residential area of Dane County, Wisconsin, USA. A portion of this contaminant plume intersects a large man-made pond, roughly 400 m downgradient of the source zone. Depth-discrete, multilevel groundwater sampling, detailed sedimentological logs, and hydraulic head profiles were used to delineate the spatial distribution of hydraulic, geologic, organic contaminant, and redox hydrochemical conditions within the established plume along two transects immediately upgradient of the pond. Twenty-one contaminants were detected and classified into four major contaminant groups: chlorinated ethenes, chlorinated ethanes, aromatics (BTEX: benzene, toluene, ethylbenzene, xylene), and aliphatic ketones. Within the glacial sediments and shallow bedrock, zones of reductive dechlorination of chlorinated ethenes and ethanes were juxtaposed with zones of BTEX and ketone degradation. Spatial heterogeneity in the concentration and distribution of contaminant groups and redox conditions was observed over lateral distances of tens of meters and vertical distances of tens of centimeters along the two transects. Although the site was situated in a complex glacial depositional environment, lithologic and hydraulic heterogeneity surprisingly only had a modest influence on the spatial distribution of plume contaminants. Depth-discrete sampling along paired, closely spaced transects (~20 m apart) was essential to assess internal plume composition/concentration evolution along flow paths with strong attenuation over short migration distances. This study shows how paired, highly resolved transects can enhance understanding of transverse and longitudinal variability in areas where contaminant-induced redox conditions control reaction zones and strong plume attenuation.
Collapse
Affiliation(s)
- Colby M Steelman
- G360 Institute for Groundwater Research, University of Guelph, Guelph, ON, Canada
| | - Jessica R Meyer
- G360 Institute for Groundwater Research, University of Guelph, Guelph, ON, Canada
| | - Philipp Wanner
- G360 Institute for Groundwater Research, University of Guelph, Guelph, ON, Canada
| | - Benjamin J Swanson
- G360 Institute for Groundwater Research, University of Guelph, Guelph, ON, Canada
| | - Oliver Conway-White
- G360 Institute for Groundwater Research, University of Guelph, Guelph, ON, Canada
| | - Beth L Parker
- G360 Institute for Groundwater Research, University of Guelph, Guelph, ON, Canada; School of Engineering, University of Guelph, Guelph, ON, Canada.
| |
Collapse
|
6
|
Baedecker MJ, Eganhouse RP, Qi H, Cozzarelli IM, Trost JJ, Bekins BA. Weathering of Oil in a Surficial Aquifer. GROUND WATER 2018; 56:797-809. [PMID: 29193024 DOI: 10.1111/gwat.12619] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Revised: 10/17/2017] [Accepted: 10/23/2017] [Indexed: 06/07/2023]
Abstract
The composition of crude oil in a surficial aquifer was determined in two locations at the Bemidji, MN, spill site. The abundances of 71 individual hydrocarbons varied within 16 locations sampled. Little depletion of these hydrocarbons (relative to the pipeline oil) occurred in the first 10 years after the spill, whereas losses of 25% to 85% of the total measured hydrocarbons occurred after 30 years. The C6-30 n-alkanes, toluene, and o-xylene were the most depleted hydrocarbons. Some hydrocarbons, such as the n-C10-24 cyclohexanes, tri- and tetra- methylbenzenes, acyclic isoprenoids, and naphthalenes were the least depleted. Benzene was detected at every sampling location 30 years after the spill. Degradation of the oil led to increases in the percent organic carbon and in the δ 13 C of the oil. Another method of determining hydrocarbon loss was by normalizing the total measured hydrocarbon concentrations to that of the most conservative analytes. This method indicated that the total measured hydrocarbons were depleted by 47% to 77% and loss of the oil mass over 30 years was 18% to 31%. Differences in hydrocarbon depletion were related to the depth of the oil in the aquifer, local topography, amount of recharge reaching the oil, availability of electron acceptors, and the presence of less permeable soils above the oil. The results from this study indicate that once crude oil has been in the subsurface for a number of years there is no longer a "starting oil concentration" that can be used to understand processes that affect its fate and the transport of hydrocarbons in groundwater.
Collapse
Affiliation(s)
| | - Robert P Eganhouse
- U.S. Geological Survey, MS431, 12201 Sunrise Valley Drive, Reston, VA, 20192
| | - Haiping Qi
- U.S. Geological Survey, MS431, 12201 Sunrise Valley Drive, Reston, VA, 20192
| | | | - Jared J Trost
- U.S. Geological Survey, 2280 Woodale Drive, Mounds View, MN 55112
| | - Barbara A Bekins
- U.S. Geological Survey, MS496, McKelvey Building, 345 Middlefield Road, Menlo Park, CA 94025
| |
Collapse
|
7
|
Valsala R, Govindarajan SK. Mathematical Modeling on Mobility and Spreading of BTEX in a Discretely Fractured Aquifer System Under the Coupled Effect of Dissolution, Sorption, and Biodegradation. Transp Porous Media 2018. [DOI: 10.1007/s11242-018-1049-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
8
|
Ziegler BA, Schreiber ME, Cozzarelli IM, Crystal Ng GH. A mass balance approach to investigate arsenic cycling in a petroleum plume. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2017; 231:1351-1361. [PMID: 28943347 DOI: 10.1016/j.envpol.2017.08.110] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Revised: 07/31/2017] [Accepted: 08/30/2017] [Indexed: 05/12/2023]
Abstract
Natural attenuation of organic contaminants in groundwater can give rise to a series of complex biogeochemical reactions that release secondary contaminants to groundwater. In a crude oil contaminated aquifer, biodegradation of petroleum hydrocarbons is coupled with the reduction of ferric iron (Fe(III)) hydroxides in aquifer sediments. As a result, naturally occurring arsenic (As) adsorbed to Fe(III) hydroxides in the aquifer sediment is mobilized from sediment into groundwater. However, Fe(III) in sediment of other zones of the aquifer has the capacity to attenuate dissolved As via resorption. In order to better evaluate how long-term biodegradation coupled with Fe-reduction and As mobilization can redistribute As mass in contaminated aquifer, we quantified mass partitioning of Fe and As in the aquifer based on field observation data. Results show that Fe and As are spatially correlated in both groundwater and aquifer sediments. Mass partitioning calculations demonstrate that 99.9% of Fe and 99.5% of As are associated with aquifer sediment. The sediments act as both sources and sinks for As, depending on the redox conditions in the aquifer. Calculations reveal that at least 78% of the original As in sediment near the oil has been mobilized into groundwater over the 35-year lifespan of the plume. However, the calculations also show that only a small percentage of As (∼0.5%) remains in groundwater, due to resorption onto sediment. At the leading edge of the plume, where groundwater is suboxic, sediments sequester Fe and As, causing As to accumulate to concentrations 5.6 times greater than background concentrations. Current As sinks can serve as future sources of As as the plume evolves over time. The mass balance approach used in this study can be applied to As cycling in other aquifers where groundwater As results from biodegradation of an organic carbon point source coupled with Fe reduction.
Collapse
Affiliation(s)
- Brady A Ziegler
- Virginia Tech, Department of Geosciences, 926 W. Campus Dr., Blacksburg, VA 24061, USA.
| | - Madeline E Schreiber
- Virginia Tech, Department of Geosciences, 926 W. Campus Dr., Blacksburg, VA 24061, USA.
| | | | - G-H Crystal Ng
- University of Minnesota, Department of Earth Sciences, 310 Pillsbury Dr. SE, Minneapolis, MN 55455, USA.
| |
Collapse
|
9
|
Lund AL, Slater LD, Atekwana EA, Ntarlagiannis D, Cozzarelli I, Bekins BA. Evidence of Coupled Carbon and Iron Cycling at a Hydrocarbon-Contaminated Site from Time Lapse Magnetic Susceptibility. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2017; 51:11244-11249. [PMID: 28872856 DOI: 10.1021/acs.est.7b02155] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Conventional characterization and monitoring of hydrocarbon (HC) pollution is often expensive and time-consuming. Magnetic susceptibility (MS) has been proposed as an inexpensive, long-term monitoring proxy of the degradation of HC. We acquired repeated down hole MS logging data in boreholes at a HC-contaminated field research site in Bemidji, MN, USA. The MS data were analyzed in conjunction with redox conditions and iron availability within the source zone to better assess whether MS can serve as a proxy for monitoring HC contamination in unconsolidated sediments. The MS response at the site diminished during the sampling period, which was found to coincide with depletion of solid phase iron in the source zone. Previous geochemical observations and modeling at the site suggest that the most likely cause of the decrease in MS is the transformation of magnetite to siderite, coupled with the exhaustion of ferrihydrite. Although the temporal MS response at this site gives valuable field-scale evidence for changing conditions of iron cycling and stability of iron minerals it does not provide a simple proxy for long-term monitoring of biodegradation of hydrocarbons in the smear zone.
Collapse
Affiliation(s)
- Anders L Lund
- Rutgers University Newark , Newark, New Jersey 07102, United States
- University of Aarhus , 8000 Aarhus, Denmark
| | - Lee D Slater
- Rutgers University Newark , Newark, New Jersey 07102, United States
| | - Estella A Atekwana
- Oklahoma State University , Main Campus, Stillwater, Oklahoma 74074, United States
| | | | - Isabelle Cozzarelli
- National Research Program, U.S. Geological Survey , Reston, Virginia 20192, United States
| | - Barbara A Bekins
- National Research Program, U.S. Geological Survey , Menlo Park, California 94025, United States
| |
Collapse
|
10
|
Ziegler BA, Schreiber ME, Cozzarelli IM. The role of alluvial aquifer sediments in attenuating a dissolved arsenic plume. JOURNAL OF CONTAMINANT HYDROLOGY 2017; 204:90-101. [PMID: 28797670 DOI: 10.1016/j.jconhyd.2017.04.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2016] [Revised: 04/28/2017] [Accepted: 04/29/2017] [Indexed: 06/07/2023]
Abstract
In a crude-oil-contaminated sandy aquifer at the Bemidji site in northern Minnesota, biodegradation of petroleum hydrocarbons has resulted in release of naturally occurring As to groundwater under Fe-reducing conditions. This study used chemical extractions of aquifer sediments collected in 1993 and 2011-2014 to evaluate the relationship between Fe and As in different redox zones (oxic, methanogenic, Fe-reducing, anoxic-suboxic transition) of the contaminated aquifer over a twenty-year period. Results show that 1) the aquifer has the capacity to naturally attenuate the plume of dissolved As, primarily through sorption; 2) Fe and As are linearly correlated in sediment across all redox zones, and a regression analysis between Fe and As reasonably predicted As concentrations in sediment from 1993 using only Fe concentrations; 3) an As-rich "iron curtain," associated with the anoxic-suboxic transition zone, migrated 30m downgradient between 1993 and 2013 as a result of the hydrocarbon plume evolution; and 4) silt lenses in the aquifer preferentially sequester dissolved As, though As is remobilized into groundwater from sediment after reducing conditions are established. Using results of this study coupled with historical data, we develop a conceptual model which summarizes the natural attenuation of As and Fe over time and space that can be applied to other sites that experience As mobilization due to an influx of bioavailable organic matter.
Collapse
Affiliation(s)
- Brady A Ziegler
- Virginia Tech, Department of Geosciences, 4044 Derring Hall, Blacksburg, VA 24061, United States.
| | - Madeline E Schreiber
- Virginia Tech, Department of Geosciences, 4044 Derring Hall, Blacksburg, VA 24061, United States.
| | | |
Collapse
|
11
|
Delin GN, Herkelrath WN. Effects of crude oil on water and tracer movement in the unsaturated and saturated zones. JOURNAL OF CONTAMINANT HYDROLOGY 2017; 200:49-59. [PMID: 28390700 DOI: 10.1016/j.jconhyd.2017.03.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2016] [Revised: 03/16/2017] [Accepted: 03/21/2017] [Indexed: 06/07/2023]
Abstract
A tracer test was conducted to aid in the investigation of water movement and solute transport at a crude-oil spill site near Bemidji, Minnesota. Time of travel was measured using breakthrough curves for rhodamine WT and bromide tracers moving from the soil surface through oil-contaminated and oil-free unsaturated zones to the saturated zone. Results indicate that the rates of tracer movement were similar in the oil-free unsaturated and saturated zones compared to the oily zones. These results are somewhat surprising given the oil contamination in the unsaturated and saturated zones. Rhodamine tracer breakthrough in the unsaturated and saturated zones in general was delayed in comparison to bromide tracer breakthrough. Peak tracer concentrations for the lysimeters and wells in the oily zone were much greater than at the corresponding depths in the oil-free zone. Water and tracer movement in the oily zone was complicated by soil hydrophobicity and decreased oil saturations toward the periphery of the oil. Preferential flow resulted in reduced tracer interaction with the soil, adsorption, and dispersion and faster tracer movement in the oily zone than expected. Tracers were freely transported through the oily zone to the water table. Recharge calculations support the idea that the oil does not substantially affect recharge in the oily zone. This is an important result indicating that previous model-based assumptions of decreased recharge beneath the oil were incorrect. Results have important implications for modeling the fate and transport of dissolved contaminants at hydrocarbon spill sites.
Collapse
Affiliation(s)
- Geoffrey N Delin
- U.S. Geological Survey, Box 25046, MS 406, DFC, Denver, CO 80225, United States.
| | - William N Herkelrath
- U.S. Geological Survey, 345 Middlefield Rd, MS496, Menlo Park, CA 94025, United States.
| |
Collapse
|
12
|
Lueders T. The ecology of anaerobic degraders of BTEX hydrocarbons in aquifers. FEMS Microbiol Ecol 2016; 93:fiw220. [PMID: 27810873 PMCID: PMC5400083 DOI: 10.1093/femsec/fiw220] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Revised: 06/10/2016] [Indexed: 12/24/2022] Open
Abstract
The degradation of benzene, toluene, ethylbenzene and xylene (BTEX) contaminants in groundwater relies largely on anaerobic processes. While the physiology and biochemistry of selected relevant microbes have been intensively studied, research has now started to take the generated knowledge back to the field, in order to trace the populations truly responsible for the anaerobic degradation of BTEX hydrocarbons in situ and to unravel their ecology in contaminated aquifers. Here, recent advances in our knowledge of the identity, diversity and ecology of microbes involved in these important ecosystem services are discussed. At several sites, distinct lineages within the Desulfobulbaceae, the Rhodocyclaceae and the Gram-positive Peptococcaceae have been shown to dominate the degradation of different BTEX hydrocarbons. Especially for the functional guild of anaerobic toluene degraders, specific molecular detection systems have been developed, allowing researchers to trace their diversity and distribution in contaminated aquifers. Their populations appear enriched in hot spots of biodegradation in situ. 13C-labelling experiments have revealed unexpected pathways of carbon sharing and obligate syntrophic interactions to be relevant in degradation. Together with feedback mechanisms between abiotic and biotic habitat components, this promotes an enhanced ecological perspective of the anaerobic degradation of BTEX hydrocarbons, as well as its incorporation into updated concepts for site monitoring and bioremediation.
Collapse
Affiliation(s)
- Tillmann Lueders
- Institute of Groundwater Ecology, Helmholtz Zentrum München-German Research Center for Environmental Health, 85764 Neuherberg, Germany
| |
Collapse
|
13
|
Bekins BA, Cozzarelli IM, Erickson ML, Steenson RA, Thorn KA. Crude Oil Metabolites in Groundwater at Two Spill Sites. GROUND WATER 2016; 54:681-691. [PMID: 27010754 DOI: 10.1111/gwat.12419] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2015] [Accepted: 02/22/2016] [Indexed: 06/05/2023]
Abstract
Two groundwater plumes in north central Minnesota with residual crude oil sources have 20 to 50 mg/L of nonvolatile dissolved organic carbon (NVDOC). These values are over 10 times higher than benzene and two to three times higher than Diesel Range Organics in the same wells. On the basis of previous work, most of the NVDOC consists of partial transformation products from the crude oil. Monitoring data from 1988 to 2015 at one of the sites located near Bemidji, MN show that the plume of metabolites is expanding toward a lakeshore located 335 m from the source zone. Other mass balance studies of the site have demonstrated that the plume expansion is driven by the combined effect of continued presence of the residual crude oil source and depletion of the electron accepting capacity of solid phase iron oxide and hydroxides on the aquifer sediments. These plumes of metabolites are not covered by regulatory monitoring and reporting requirements in Minnesota and other states. Yet, a review of toxicology studies indicates that polar metabolites of crude oil may pose a risk to aquatic and mammalian species. Together the results suggest that at sites where residual sources are present, monitoring of NVDOC may be warranted to evaluate the fates of plumes of hydrocarbon transformation products.
Collapse
Affiliation(s)
| | | | | | - Ross A Steenson
- San Francisco Bay Regional Water Quality Control Board, 1515 Clay St., Oakland, CA, 94612
| | - Kevin A Thorn
- U.S. Geological Survey, Denver Federal Center, MS-408, Building 95, Lakewood, CO, 80225
| |
Collapse
|
14
|
Mao D, Lu L, Revil A, Zuo Y, Hinton J, Ren ZJ. Geophysical Monitoring of Hydrocarbon-Contaminated Soils Remediated with a Bioelectrochemical System. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2016; 50:8205-8213. [PMID: 27386889 DOI: 10.1021/acs.est.6b00535] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Efficient noninvasive techniques are desired for monitoring the remediation process of contaminated soils. We applied the direct current resistivity technique to image conductivity changes in sandbox experiments where two sandy and clayey soils were initially contaminated with diesel hydrocarbon. The experiments were conducted over a 230 day period. The removal of hydrocarbon was enhanced by a bioelectrochemical system (BES) and the electrical potentials of the BES reactors were also monitored during the course of the experiment. We found that the variation in electrical conductivity shown in the tomograms correlate well with diesel removal from the sandy soil, but this is not the case with the clayey soil. The clayey soil is characterized by a larger specific surface area and therefore a larger surface conductivity. In sandy soil, the removal of the diesel and products from degradation leads to an increase in electrical conductivity during the first 69 days. This is expected since diesel is electrically insulating. For both soils, the activity of BES reactors is moderately imaged by the inverted conductivity tomogram of the reactor. An increase in current production by electrochemically active bacteria activity corresponds to an increase in conductivity of the reactor.
Collapse
Affiliation(s)
- Deqiang Mao
- Colorado School of Mines, Department of Geophysics, Golden, 80401, Colorado United States
| | - Lu Lu
- Department of Civil, Environmental, and Architectural Engineering, University of Colorado Boulder , Boulder, Colorado 80309, United States
| | - André Revil
- ISTerre, CNRS, UMR CNRS 5275, Université de Savoie, 73376 cedex, Le Bourget du Lac, France
| | - Yi Zuo
- Chevron Energy Technology Company, San Ramon, California 94583, United States
| | - John Hinton
- Colorado School of Mines, Department of Geophysics, Golden, 80401, Colorado United States
| | - Zhiyong Jason Ren
- Department of Civil, Environmental, and Architectural Engineering, University of Colorado Boulder , Boulder, Colorado 80309, United States
| |
Collapse
|
15
|
Bioremediation of Hydrocarbons and Chlorinated Solvents in Groundwater: Characterisation, Design and Performance Assessment. SPRINGER PROTOCOLS HANDBOOKS 2016. [DOI: 10.1007/8623_2016_207] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
16
|
Cozzarelli IM, Schreiber ME, Erickson ML, Ziegler BA. Arsenic Cycling in Hydrocarbon Plumes: Secondary Effects of Natural Attenuation. GROUND WATER 2016; 54:35-45. [PMID: 25612004 DOI: 10.1111/gwat.12316] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2014] [Accepted: 11/26/2014] [Indexed: 05/27/2023]
Abstract
Monitored natural attenuation is widely applied as a remediation strategy at hydrocarbon spill sites. Natural attenuation relies on biodegradation of hydrocarbons coupled with reduction of electron acceptors, including solid phase ferric iron (Fe(III)). Because arsenic (As) adsorbs to Fe-hydroxides, a potential secondary effect of natural attenuation of hydrocarbons coupled with Fe(III) reduction is a release of naturally occurring As to groundwater. At a crude-oil-contaminated aquifer near Bemidji, Minnesota, anaerobic biodegradation of hydrocarbons coupled to Fe(III) reduction has been well documented. We collected groundwater samples at the site annually from 2009 to 2013 to examine if As is released to groundwater and, if so, to document relationships between As and Fe inside and outside of the dissolved hydrocarbon plume. Arsenic concentrations in groundwater in the plume reached 230 µg/L, whereas groundwater outside the plume contained less than 5 µg/L As. Combined with previous data from the Bemidji site, our results suggest that (1) naturally occurring As is associated with Fe-hydroxides present in the glacially derived aquifer sediments; (2) introduction of hydrocarbons results in reduction of Fe-hydroxides, releasing As and Fe to groundwater; (3) at the leading edge of the plume, As and Fe are removed from groundwater and retained on sediments; and (4) downgradient from the plume, patterns of As and Fe in groundwater are similar to background. We develop a conceptual model of secondary As release due to natural attenuation of hydrocarbons that can be applied to other sites where an influx of biodegradable organic carbon promotes Fe(III) reduction.
Collapse
|
17
|
Meckenstock RU, Elsner M, Griebler C, Lueders T, Stumpp C, Aamand J, Agathos SN, Albrechtsen HJ, Bastiaens L, Bjerg PL, Boon N, Dejonghe W, Huang WE, Schmidt SI, Smolders E, Sørensen SR, Springael D, van Breukelen BM. Biodegradation: Updating the concepts of control for microbial cleanup in contaminated aquifers. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2015; 49:7073-81. [PMID: 26000605 DOI: 10.1021/acs.est.5b00715] [Citation(s) in RCA: 146] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Biodegradation is one of the most favored and sustainable means of removing organic pollutants from contaminated aquifers but the major steering factors are still surprisingly poorly understood. Growing evidence questions some of the established concepts for control of biodegradation. Here, we critically discuss classical concepts such as the thermodynamic redox zonation, or the use of steady state transport scenarios for assessing biodegradation rates. Furthermore, we discuss if the absence of specific degrader populations can explain poor biodegradation. We propose updated perspectives on the controls of biodegradation in contaminant plumes. These include the plume fringe concept, transport limitations, and transient conditions as currently underestimated processes affecting biodegradation.
Collapse
Affiliation(s)
- Rainer U Meckenstock
- †University of Duisburg-Essen, Biofilm Centre, Universitätsstrasse 5, 45141 Essen, Germany
| | - Martin Elsner
- ○Helmholtz Zentrum München, Institute of Groundwater Ecology, Ingolstädter Landstrasse 1, 85764 Neuherberg, Germany
| | - Christian Griebler
- ○Helmholtz Zentrum München, Institute of Groundwater Ecology, Ingolstädter Landstrasse 1, 85764 Neuherberg, Germany
| | - Tillmann Lueders
- ○Helmholtz Zentrum München, Institute of Groundwater Ecology, Ingolstädter Landstrasse 1, 85764 Neuherberg, Germany
| | - Christine Stumpp
- ○Helmholtz Zentrum München, Institute of Groundwater Ecology, Ingolstädter Landstrasse 1, 85764 Neuherberg, Germany
| | - Jens Aamand
- ‡Department of Geochemistry, Geological Survey of Denmark and Greenland (GEUS), Øster Voldgade 10, 1350 Copenhagen K, Denmark
| | - Spiros N Agathos
- §Laboratory of Bioengineering; Earth and Life Institute (ELI); Université Catholique de Louvain; Place Croix du Sud 2, L7.05.19, B-1348 Louvain-la-Neuve, Belgium
| | - Hans-Jørgen Albrechtsen
- ∥Department of Environmental Engineering, Miljoevej, building 113, Technical University of Denmark, DK-2800 Kongens Lyngby, Denmark
| | - Leen Bastiaens
- ⊥Flemish Institute for Technological Research (VITO), Boeretang 200, 2400 Mol, Belgium
| | - Poul L Bjerg
- ∥Department of Environmental Engineering, Miljoevej, building 113, Technical University of Denmark, DK-2800 Kongens Lyngby, Denmark
| | - Nico Boon
- ∇University of Gent, LabMET, Coupure Links 653, 9000 Ghent, Belgium
| | - Winnie Dejonghe
- ⊥Flemish Institute for Technological Research (VITO), Boeretang 200, 2400 Mol, Belgium
| | - Wei E Huang
- ◆Department of Engineering Science, University of Oxford, Parks Road, Oxford, OX1 3PJ, United Kingdom
| | - Susanne I Schmidt
- ¶CSB Centre for Systems Biology, School of Biosciences, College of Life and Environmental Sciences, University of Birmingham, Edgbaston B15 2TT, United Kingdom
| | - Erik Smolders
- ∞Division Soil and Water Management, KU Leuven, Kasteelpark Arenberg 20, 3001 Leuven, Belgium
| | - Sebastian R Sørensen
- ‡Department of Geochemistry, Geological Survey of Denmark and Greenland (GEUS), Øster Voldgade 10, 1350 Copenhagen K, Denmark
| | - Dirk Springael
- ∞Division Soil and Water Management, KU Leuven, Kasteelpark Arenberg 20, 3001 Leuven, Belgium
| | - Boris M van Breukelen
- #Department of Earth Sciences, VU University Amsterdam, De Boelelaan 1085, NL-1081 HV Amsterdam, The Netherlands
| |
Collapse
|
18
|
Fahrenfeld N, Cozzarelli IM, Bailey Z, Pruden A. Insights into biodegradation through depth-resolved microbial community functional and structural profiling of a crude-oil contaminant plume. MICROBIAL ECOLOGY 2014; 68:453-462. [PMID: 24760171 DOI: 10.1007/s00248-014-0421-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2013] [Accepted: 04/07/2014] [Indexed: 06/03/2023]
Abstract
Small-scale geochemical gradients are a key feature of aquifer contaminant plumes, highlighting the need for functional and structural profiling of corresponding microbial communities on a similar scale. The purpose of this study was to characterize the microbial functional and structural diversity with depth across representative redox zones of a hydrocarbon plume and an adjacent wetland, at the Bemidji Oil Spill site. A combination of quantitative PCR, denaturing gradient gel electrophoresis, and pyrosequencing were applied to vertically sampled sediment cores. Levels of the methanogenic marker gene, methyl coenzyme-M reductase A (mcrA), increased with depth near the oil body center, but were variable with depth further downgradient. Benzoate degradation N (bzdN) hydrocarbon-degradation gene, common to facultatively anaerobic Azoarcus spp., was found at all locations, but was highest near the oil body center. Microbial community structural differences were observed across sediment cores, and bacterial classes containing known hydrocarbon degraders were found to be low in relative abundance. Depth-resolved functional and structural profiling revealed the strongest gradients in the iron-reducing zone, displaying the greatest variability with depth. This study provides important insight into biogeochemical characteristics in different regions of contaminant plumes, which will aid in improving models of contaminant fate and natural attenuation rates.
Collapse
Affiliation(s)
- Nicole Fahrenfeld
- Civil and Environmental Engineering, Rutgers, The State University of New Jersey, 96 Frelinghuysen Rd, Piscataway, NJ, USA,
| | | | | | | |
Collapse
|
19
|
Holmes DE, Giloteaux L, Orellana R, Williams KH, Robbins MJ, Lovley DR. Methane production from protozoan endosymbionts following stimulation of microbial metabolism within subsurface sediments. Front Microbiol 2014; 5:366. [PMID: 25147543 PMCID: PMC4123621 DOI: 10.3389/fmicb.2014.00366] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2014] [Accepted: 07/01/2014] [Indexed: 11/13/2022] Open
Abstract
Previous studies have suggested that protozoa prey on Fe(III)- and sulfate-reducing bacteria that are enriched when acetate is added to uranium contaminated subsurface sediments to stimulate U(VI) reduction. In order to determine whether protozoa continue to impact subsurface biogeochemistry after these acetate amendments have stopped, 18S rRNA and ß-tubulin sequences from this phase of an in situ uranium bioremediation field experiment were analyzed. Sequences most similar to Metopus species predominated, with the majority of sequences most closely related to M. palaeformis, a cilitated protozoan known to harbor methanogenic symbionts. Quantification of mcrA mRNA transcripts in the groundwater suggested that methanogens closely related to Metopus endosymbionts were metabolically active at this time. There was a strong correlation between the number of mcrA transcripts from the putative endosymbiotic methanogen and Metopus ß-tubulin mRNA transcripts during the course of the field experiment, suggesting that the activity of the methanogens was dependent upon the activity of the Metopus species. Addition of the eukaryotic inhibitors cyclohexamide and colchicine to laboratory incubations of acetate-amended subsurface sediments significantly inhibited methane production and there was a direct correlation between methane concentration and Metopus ß-tubulin and putative symbiont mcrA gene copies. These results suggest that, following the stimulation of subsurface microbial growth with acetate, protozoa harboring methanogenic endosymbionts become important members of the microbial community, feeding on moribund biomass and producing methane.
Collapse
Affiliation(s)
- Dawn E Holmes
- Department of Microbiology, University of Massachusetts Amherst, MA, USA ; Physical and Biological Sciences, Western New England University Springfield, MA, USA
| | - Ludovic Giloteaux
- Department of Microbiology, University of Massachusetts Amherst, MA, USA
| | - Roberto Orellana
- Department of Microbiology, University of Massachusetts Amherst, MA, USA
| | | | | | - Derek R Lovley
- Department of Microbiology, University of Massachusetts Amherst, MA, USA
| |
Collapse
|
20
|
Ng GHC, Bekins BA, Cozzarelli IM, Baedecker MJ, Bennett PC, Amos RT. A mass balance approach to investigating geochemical controls on secondary water quality impacts at a crude oil spill site near Bemidji, MN. JOURNAL OF CONTAMINANT HYDROLOGY 2014; 164:1-15. [PMID: 24908586 DOI: 10.1016/j.jconhyd.2014.04.006] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2013] [Revised: 04/11/2014] [Accepted: 04/25/2014] [Indexed: 06/03/2023]
Abstract
Secondary water quality impacts can result from a broad range of coupled reactions triggered by primary groundwater contaminants. Data from a crude-oil spill research site near Bemidji, MN provide an ideal test case for investigating the complex interactions controlling secondary impacts, including depleted dissolved oxygen and elevated organic carbon, inorganic carbon, CH4, Mn, Fe, and other dissolved ions. To better understand these secondary impacts, this study began with an extensive data compilation of various data types, comprising aqueous, sediment, gas, and oil phases, covering a 260m cross-sectional domain over 30years. Mass balance calculations are used to quantify pathways that control secondary components, by using the data to constrain the sources and sinks for the important redox processes. The results show that oil constituents other than BTEX (benzene, toluene, ethylbenzene, o-, m- and p-xylenes), including n-alkanes and other aromatic compounds, play significant roles in plume evolution and secondary water quality impacts. The analysis underscores previous results on the importance of non-aqueous phases. Over 99.9% of the Fe(2+) plume is attenuated by immobilization on sediments as Fe(II) and 85-95% of the carbon biodegradation products are outgassed. Gaps identified in carbon and Fe mass balances and in pH buffering mechanisms are used to formulate a new conceptual model. This new model includes direct out-gassing of CH4 and CO2 from organic carbon biodegradation, dissolution of directly produced CO2, and sorption with H(+) exchange to improve pH buffering. The identification of these mechanisms extends understanding of natural attenuation of potential secondary impacts at enhanced reductive dechlorination sites, particularly for reduced Fe plumes, produced CH4, and pH perturbations.
Collapse
Affiliation(s)
- G-H Crystal Ng
- U.S. Geological Survey, 345 Middlefield Rd, Menlo Park, CA 94025, United States.
| | - Barbara A Bekins
- U.S. Geological Survey, 345 Middlefield Rd, Menlo Park, CA 94025, United States.
| | | | - Mary Jo Baedecker
- U.S. Geological Survey, 12201 Sunrise Valley Dr, Reston, VA 20192, United States.
| | - Philip C Bennett
- University of Texas at Austin, Dept. of Geological Sciences, 1 University Station C1100, Austin, TX 78712, United States.
| | - Richard T Amos
- University of Waterloo, Dept. of Earth and Environmental Sciences, 200 University Ave. W, Waterloo, ON N2L 3G1, Canada.
| |
Collapse
|
21
|
Warren E, Sihota NJ, Hostettler FD, Bekins BA. Comparison of surficial CO2 efflux to other measures of subsurface crude oil degradation. JOURNAL OF CONTAMINANT HYDROLOGY 2014; 164:275-284. [PMID: 25038543 DOI: 10.1016/j.jconhyd.2014.06.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2014] [Revised: 06/12/2014] [Accepted: 06/13/2014] [Indexed: 06/03/2023]
Abstract
At a spill site near Bemidji, Minnesota, crude oil at the water table has been undergoing anaerobic biodegradation for over 30years. Previous work at this site has shown that methane produced from biodegradation of the oil migrates upward and is oxidized in a methanotrophic zone midway between the water table and the surface. To compare microbial activity measurement methods from multiple locations in the oil body, surficial carbon dioxide efflux, methanogen and methanotroph concentrations, and oil degradation state were collected. Carbon dioxide effluxes over the oil body averaged more than four times those at the background site. Methanotrophic bacteria concentrations measured using pmoA were over 10(5) times higher above the oil-contaminated sediments compared with the background site. Methanogenic archaea measured using mcrA ranged from 10(5) to over 10(7) in the oil and were below detection in the background. Methanogens correlated very well with methanotroph concentrations (r=0.99), n-alkylcyclohexane losses as a proxy for degradation state (r=-0.96), and somewhat less well with carbon dioxide efflux (r=0.92). Carbon dioxide efflux similarly correlated to methanotroph concentrations (r=0.90) and n-alkylcyclohexane losses (r=-0.91).
Collapse
Affiliation(s)
- Ean Warren
- U.S. Geological Survey, 345 Middlefield Road, Menlo Park, CA 94025, United States.
| | - Natasha J Sihota
- Department of Earth, Ocean and Atmospheric Sciences, The University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada.
| | - Frances D Hostettler
- U.S. Geological Survey, 345 Middlefield Road, Menlo Park, CA 94025, United States.
| | - Barbara A Bekins
- U.S. Geological Survey, 345 Middlefield Road, Menlo Park, CA 94025, United States.
| |
Collapse
|
22
|
Cassiani G, Binley A, Kemna A, Wehrer M, Orozco AF, Deiana R, Boaga J, Rossi M, Dietrich P, Werban U, Zschornack L, Godio A, JafarGandomi A, Deidda GP. Noninvasive characterization of the Trecate (Italy) crude-oil contaminated site: links between contamination and geophysical signals. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2014; 21:8914-8931. [PMID: 24619658 DOI: 10.1007/s11356-014-2494-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2013] [Accepted: 12/23/2013] [Indexed: 06/03/2023]
Abstract
The characterization of contaminated sites can benefit from the supplementation of direct investigations with a set of less invasive and more extensive measurements. A combination of geophysical methods and direct push techniques for contaminated land characterization has been proposed within the EU FP7 project ModelPROBE and the affiliated project SoilCAM. In this paper, we present results of the investigations conducted at the Trecate field site (NW Italy), which was affected in 1994 by crude oil contamination. The less invasive investigations include ground-penetrating radar (GPR), electrical resistivity tomography (ERT), and electromagnetic induction (EMI) surveys, together with direct push sampling and soil electrical conductivity (EC) logs. Many of the geophysical measurements were conducted in time-lapse mode in order to separate static and dynamic signals, the latter being linked to strong seasonal changes in water table elevations. The main challenge was to extract significant geophysical signals linked to contamination from the mix of geological and hydrological signals present at the site. The most significant aspects of this characterization are: (a) the geometrical link between the distribution of contamination and the site's heterogeneity, with particular regard to the presence of less permeable layers, as evidenced by the extensive surface geophysical measurements; and (b) the link between contamination and specific geophysical signals, particularly evident from cross-hole measurements. The extensive work conducted at the Trecate site shows how a combination of direct (e.g., chemical) and indirect (e.g., geophysical) investigations can lead to a comprehensive and solid understanding of a contaminated site's mechanisms.
Collapse
Affiliation(s)
- Giorgio Cassiani
- Dipartimento di Geoscienze, Università di Padova, Padova, Italy,
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Amos RT, Bekins BA, Cozzarelli IM, Voytek MA, Kirshtein JD, Jones EJP, Blowes DW. Evidence for iron-mediated anaerobic methane oxidation in a crude oil-contaminated aquifer. GEOBIOLOGY 2012; 10:506-517. [PMID: 22925422 DOI: 10.1111/j.1472-4669.2012.00341.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2011] [Accepted: 07/12/2012] [Indexed: 05/28/2023]
Abstract
In a methanogenic crude oil contaminated aquifer near Bemidji, Minnesota, the decrease in dissolved CH(4) concentrations along the groundwater flow path, along with the positive shift in δ(13) C(CH) (4) and negative shift in δ(13) C(DIC) , is indicative of microbially mediated CH(4) oxidation. Calculations of electron acceptor transport across the water table, through diffusion, recharge, and the entrapment and release of gas bubbles, suggest that these processes can account for at most 15% of the observed total reduced carbon oxidation, including CH(4) . In the anaerobic plume, the characteristic Fe(III)-reducing genus Geobacter was the most abundant of the microbial groups tested, and depletion of labile sediment iron is observed over time, confirming that reduced carbon oxidation coupled to iron reduction is an important process. Electron mass balance calculations suggest that organic carbon sources in the aquifer, BTEX and non-volatile dissolved organic carbon, are insufficient to account for the loss in sediment Fe(III), implying that CH(4) oxidation may also be related to Fe(III) reduction. The results support a hypothesis of Fe(III)-mediated CH(4) oxidation in the contaminated aquifer.
Collapse
Affiliation(s)
- R T Amos
- Department of Earth and Environmental Sciences, University of Waterloo, Waterloo, ON, Canada.
| | | | | | | | | | | | | |
Collapse
|
24
|
Hibi Y, Kanou Y, Ohira Y. Estimation of mechanical dispersion and dispersivity in a soil-gas system by column experiments and the dusty gas model. JOURNAL OF CONTAMINANT HYDROLOGY 2012; 131:39-53. [PMID: 22326690 DOI: 10.1016/j.jconhyd.2012.01.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2011] [Revised: 01/06/2012] [Accepted: 01/10/2012] [Indexed: 05/31/2023]
Abstract
In a previous study, column experiments were carried out with Toyoura sand (permeability 2.05×10(-11)m(2)) and Toyoura sand mixed with bentonite (permeability 9.96×10(-13)m(2)) to obtain the molecular diffusion coefficient, the Knudsen diffusion coefficient, the tortuosity for the molecular diffusion coefficient, and the mechanical dispersion coefficient of soil-gas systems. In this study, we conducted column experiments with field soil (permeability 2.0×10(-13)m(2)) and showed that the above parameters can be obtained for both less-permeable and more-permeable soils by using the proposed method for obtaining the parameters and performing column experiments. We then estimated dispersivity from the mechanical dispersion coefficients obtained by the column experiments. We found that the dispersivity depended on the mole fraction of the tracer gas and could be represented by a quadratic equation.
Collapse
Affiliation(s)
- Yoshihiko Hibi
- Department of Environmental Science and Technology, Faculty of Science and Technology, Meijo University, Tenpaku-ku, Nagoya, Aichi, Japan.
| | | | | |
Collapse
|
25
|
Baedecker MJ, Eganhouse RP, Bekins BA, Delin GN. Loss of volatile hydrocarbons from an LNAPL oil source. JOURNAL OF CONTAMINANT HYDROLOGY 2011; 126:140-152. [PMID: 22115081 DOI: 10.1016/j.jconhyd.2011.06.006] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2010] [Revised: 06/10/2011] [Accepted: 06/23/2011] [Indexed: 05/31/2023]
Abstract
The light nonaqueous phase liquid (LNAPL) oil pool in an aquifer that resulted from a pipeline spill near Bemidji, Minnesota, was analyzed for volatile hydrocarbons (VHCs) to determine if the composition of the oil remains constant over time. Oil samples were obtained from wells at five locations in the oil pool in an anaerobic part of the glacial outwash aquifer. Samples covering a 21-year period were analyzed for 25 VHCs. Compared to the composition of oil from the pipeline source, VHCs identified in oil from wells sampled in 2008 were 13 to 64% depleted. The magnitude of loss for the VHCs analyzed was toluene≫o-xylene, benzene, C(6) and C(10-12)n-alkanes>C(7)-C(9)n-alkanes>m-xylene, cyclohexane, and 1- and 2-methylnaphthalene>1,2,4-trimethylbenzene and ethylbenzene. Other VHCs including p-xylene, 1,3,5- and 1,2,3-trimethylbenzenes, the tetramethylbenzenes, methyl- and ethyl-cyclohexane, and naphthalene were not depleted during the time of the study. Water-oil and air-water batch equilibration simulations indicate that volatilization and biodegradation is most important for the C(6)-C(9)n-alkanes and cyclohexanes; dissolution and biodegradation is important for most of the other hydrocarbons. Depletion of the hydrocarbons in the oil pool is controlled by: the lack of oxygen and nutrients, differing rates of recharge, and the spatial distribution of oil in the aquifer. The mass loss of these VHCs in the 5 wells is between 1.6 and 7.4% in 29years or an average annual loss of 0.06-0.26%/year. The present study shows that the composition of LNAPL changes over time and that these changes are spatially variable. This highlights the importance of characterizing the temporal and spatial variabilities of the source term in solute-transport models.
Collapse
Affiliation(s)
- Mary Jo Baedecker
- U.S. Geological Survey, MS 430, Federal Center, 12201 Sunrise Valley Drive, Reston, VA 20192, USA.
| | | | | | | |
Collapse
|
26
|
Essaid HI, Bekins BA, Herkelrath WN, Delin GN. Crude oil at the bemidji site: 25 years of monitoring, modeling, and understanding. GROUND WATER 2011; 49:706-726. [PMID: 20015222 DOI: 10.1111/j.1745-6584.2009.00654.x] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
The fate of hydrocarbons in the subsurface near Bemidji, Minnesota, has been investigated by a multidisciplinary group of scientists for over a quarter century. Research at Bemidji has involved extensive investigations of multiphase flow and transport, volatilization, dissolution, geochemical interactions, microbial populations, and biodegradation with the goal of providing an improved understanding of the natural processes limiting the extent of hydrocarbon contamination. A considerable volume of oil remains in the subsurface today despite 30 years of natural attenuation and 5 years of pump-and-skim remediation. Studies at Bemidji were among the first to document the importance of anaerobic biodegradation processes for hydrocarbon removal and remediation by natural attenuation. Spatial variability of hydraulic properties was observed to influence subsurface oil and water flow, vapor diffusion, and the progression of biodegradation. Pore-scale capillary pressure-saturation hysteresis and the presence of fine-grained sediments impeded oil flow, causing entrapment and relatively large residual oil saturations. Hydrocarbon attenuation and plume extent was a function of groundwater flow, compound-specific volatilization, dissolution and biodegradation rates, and availability of electron acceptors. Simulation of hydrocarbon fate and transport affirmed concepts developed from field observations, and provided estimates of field-scale reaction rates and hydrocarbon mass balance. Long-term field studies at Bemidji have illustrated that the fate of hydrocarbons evolves with time, and a snap-shot study of a hydrocarbon plume may not provide information that is of relevance to the long-term behavior of the plume during natural attenuation.
Collapse
Affiliation(s)
- Hedeff I Essaid
- U.S. Geological Survey, 345 Middlefield Rd., Menlo Park, CA 94025, USA.
| | | | | | | |
Collapse
|
27
|
Amos RT, Bekins BA, Delin GN, Cozzarelli IM, Blowes DW, Kirshtein JD. Methane oxidation in a crude oil contaminated aquifer: Delineation of aerobic reactions at the plume fringes. JOURNAL OF CONTAMINANT HYDROLOGY 2011; 125:13-25. [PMID: 21612840 DOI: 10.1016/j.jconhyd.2011.04.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2010] [Revised: 04/08/2011] [Accepted: 04/14/2011] [Indexed: 05/30/2023]
Abstract
High resolution direct-push profiling over short vertical distances was used to investigate CH(4) attenuation in a petroleum contaminated aquifer near Bemidji, Minnesota. The contaminant plume was delineated using dissolved gases, redox sensitive components, major ions, carbon isotope ratios in CH(4) and CO(2), and the presence of methanotrophic bacteria. Sharp redox gradients were observed near the water table. Shifts in δ(13)C(CH4) from an average of -57.6‰ (±1.7‰) in the methanogenic zone to -39.6‰ (±8.7‰) at 105m downgradient, strongly suggest CH(4) attenuation through microbially mediated degradation. In the downgradient zone the aerobic/anaerobic transition is up to 0.5m below the water table suggesting that transport of O(2) across the water table is leading to aerobic degradation of CH(4) at this interface. Dissolved N(2) concentrations that exceeded those expected for water in equilibrium with the atmosphere indicated bubble entrapment followed by preferential stripping of O(2) through aerobic degradation of CH(4) or other hydrocarbons. Multivariate and cluster analysis were used to distinguish between areas of significant bubble entrapment and areas where other processes such as the infiltration of O(2) rich recharge water were important O(2) transport mechanisms.
Collapse
Affiliation(s)
- Richard T Amos
- Dept. of Earth and Environmental Sciences, Univ. Waterloo, Waterloo, ON, N2L 3G1, Canada.
| | | | | | | | | | | |
Collapse
|
28
|
Monitoring the metabolic status of geobacter species in contaminated groundwater by quantifying key metabolic proteins with Geobacter-specific antibodies. Appl Environ Microbiol 2011; 77:4597-602. [PMID: 21551286 DOI: 10.1128/aem.00114-11] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Simple and inexpensive methods for assessing the metabolic status and bioremediation activities of subsurface microorganisms are required before bioremediation practitioners will adopt molecular diagnosis of the bioremediation community as a routine practice for guiding the development of bioremediation strategies. Quantifying gene transcripts can diagnose important aspects of microbial physiology during bioremediation but is technically challenging and does not account for the impact of translational modifications on protein abundance. An alternative strategy is to directly quantify the abundance of key proteins that might be diagnostic of physiological state. To evaluate this strategy, an antibody-based quantification approach was developed to investigate subsurface Geobacter communities. The abundance of citrate synthase corresponded with rates of metabolism of Geobacter bemidjiensis in chemostat cultures. During in situ bioremediation of uranium-contaminated groundwater the quantity of Geobacter citrate synthase increased with the addition of acetate to the groundwater and decreased when acetate amendments stopped. The abundance of the nitrogen-fixation protein, NifD, increased as ammonium became less available in the groundwater and then declined when ammonium concentrations increased. In a petroleum-contaminated aquifer, the abundance of BamB, an enzyme subunit involved in the anaerobic degradation of mono-aromatic compounds by Geobacter species, increased in zones in which Geobacter were expected to play an important role in aromatic hydrocarbon degradation. These results suggest that antibody-based detection of key metabolic proteins, which should be readily adaptable to standardized kits, may be a feasible method for diagnosing the metabolic state of microbial communities responsible for bioremediation, aiding in the rational design of bioremediation strategies.
Collapse
|
29
|
Cozzarelli IM, Bekins BA, Eganhouse RP, Warren E, Essaid HI. In situ measurements of volatile aromatic hydrocarbon biodegradation rates in groundwater. JOURNAL OF CONTAMINANT HYDROLOGY 2010; 111:48-64. [PMID: 20060615 DOI: 10.1016/j.jconhyd.2009.12.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2009] [Revised: 12/04/2009] [Accepted: 12/07/2009] [Indexed: 05/28/2023]
Abstract
Benzene and alkylbenzene biodegradation rates and patterns were measured using an in situ microcosm in a crude-oil contaminated aquifer near Bemidji, Minnesota. Benzene-D6, toluene, ethylbenzene, o-, m- and p-xylenes and four pairs of C(3)- and C(4)-benzenes were added to an in situ microcosm and studied over a 3-year period. The microcosm allowed for a mass-balance approach and quantification of hydrocarbon biodegradation rates within a well-defined iron-reducing zone of the anoxic plume. Among the BTEX compounds, the apparent order of persistence is ethylbenzene > benzene > m,p-xylenes > o-xylene >or= toluene. Threshold concentrations were observed for several compounds in the in situ microcosm, below which degradation was not observed, even after hundreds of days. In addition, long lag times were observed before the onset of degradation of benzene or ethylbenzene. The isomer-specific degradation patterns were compared to observations from a multi-year study conducted using data collected from monitoring wells along a flowpath in the contaminant plume. The data were fit with both first-order and Michaelis-Menten models. First-order kinetics provided a good fit for hydrocarbons with starting concentrations below 1mg/L and Michaelis-Menten kinetics were a better fit when starting concentrations were above 1mg/L, as was the case for benzene. The biodegradation rate data from this study were also compared to rates from other investigations reported in the literature.
Collapse
Affiliation(s)
- Isabelle M Cozzarelli
- U.S. Geological Survey, 431 National Center, 12201 Sunrise Valley Drive, Reston, VA 20192, USA.
| | | | | | | | | |
Collapse
|
30
|
Yagi JM, Neuhauser EF, Ripp JA, Mauro DM, Madsen EL. Subsurface ecosystem resilience: long-term attenuation of subsurface contaminants supports a dynamic microbial community. ISME JOURNAL 2009; 4:131-43. [PMID: 19776766 DOI: 10.1038/ismej.2009.101] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The propensity for groundwater ecosystems to recover from contamination by organic chemicals (in this case, coal-tar waste) is of vital concern for scientists and engineers who manage polluted sites. The microbially mediated cleanup processes are also of interest to ecologists because they are an important mechanism for the resilience of ecosystems. In this study we establish the long-term dynamic nature of a coal-tar waste-contaminated site and its microbial community. We present 16 years of chemical monitoring data, tracking responses of a groundwater ecosystem to organic contamination (naphthalene, xylenes, toluene, 2-methyl naphthalene and acenaphthylene) associated with coal-tar waste. In addition, we analyzed small-subunit (SSU) ribosomal RNA (rRNA) genes from two contaminated wells at multiple time points over a 2-year period. Principle component analysis of community rRNA fingerprints (terminal-restriction fragment length polymorphism (T-RFLP)) showed that the composition of native microbial communities varied temporally, yet remained distinctive from well to well. After screening and analysis of 1178 cloned SSU rRNA genes from Bacteria, Archaea and Eukarya, we discovered that the site supports a robust variety of eukaryotes (for example, alveolates (especially anaerobic and predatory ciliates), stramenopiles, fungi, even the small metazoan flatworm, Suomina) that are absent from an uncontaminated control well. This study links the dynamic microbial composition of a contaminated site with the long-term attenuation of its subsurface contaminants.
Collapse
Affiliation(s)
- Jane M Yagi
- Department of Microbiology, Cornell University, Ithaca, NY, USA
| | | | | | | | | |
Collapse
|
31
|
Abstract
The horizontal transfer of genes encoded on mobile genetic elements (MGEs) such as plasmids and phage and their associated hitchhiking elements (transposons, integrons, integrative and conjugative elements, and insertion sequences) rapidly accelerate genome diversification of microorganisms, thereby affecting their physiology, metabolism, pathogenicity,and ecological character. The analyses of completed prokaryotic genomes reveal that horizontal gene transfer (HGT) continues to be an important factor contributing to the innovation of microbial genomes. Indeed, microbial genomes are remarkably dynamic and a considerable amount of genetic information is inserted or deleted by HGT mechanisms. Thus, HGT and the vast pool of MGEs provide microbial communities with an unparalleled means by which to respond rapidly to changing environmental conditions and exploit new ecological niches. Metals and radionuclide contamination in soils, the subsurface, and aquifers poses a serious challenge to microbial growth and survival because these contaminants cannot be transformed or biodegraded into non-toxic forms as often occurs with organic xenobiotic contaminants. In this chapter we present cases in which HGT has been demonstrated to contribute to the dissemination of genes that provide adaptation to contaminant stress (i.e., toxic heavy metals and radionuclides). In addition, we present directions for future studies that could provide even greater insights into the contributions of HGT to adaptation for survival in mixed waste sites.
Collapse
|
32
|
Weiss JV, Cozzarelli IM. Biodegradation in contaminated aquifers: incorporating microbial/molecular methods. GROUND WATER 2008; 46:305-322. [PMID: 18194318 DOI: 10.1111/j.1745-6584.2007.00409.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
In order to evaluate natural attenuation in contaminated aquifers, there has been a recent recognition that a multidisciplinary approach, incorporating microbial and molecular methods, is required. Observed decreases in contaminant mass and identified footprints of biogeochemical reactions are often used as evidence of intrinsic bioremediation, but characterizing the structure and function of the microbial populations at contaminated sites is needed. In this paper, we review the experimental approaches and microbial methods that are available as tools to evaluate the controls on microbially mediated degradation processes in contaminated aquifers. We discuss the emerging technologies used in biogeochemical studies and present a synthesis of recent studies that serve as models of integrating microbiological approaches with more traditional geochemical and hydrogeologic approaches in order to address important biogeochemical questions about contaminant fate.
Collapse
Affiliation(s)
- Johanna V Weiss
- Biotechnology Program, Northern Virginia Community College, Manassas, VA 20109, USA
| | | |
Collapse
|
33
|
Winderl C, Anneser B, Griebler C, Meckenstock RU, Lueders T. Depth-resolved quantification of anaerobic toluene degraders and aquifer microbial community patterns in distinct redox zones of a tar oil contaminant plume. Appl Environ Microbiol 2008; 74:792-801. [PMID: 18083871 PMCID: PMC2227732 DOI: 10.1128/aem.01951-07] [Citation(s) in RCA: 168] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2007] [Accepted: 11/27/2007] [Indexed: 11/20/2022] Open
Abstract
Microbial degradation is the only sustainable component of natural attenuation in contaminated groundwater environments, yet its controls, especially in anaerobic aquifers, are still poorly understood. Hence, putative spatial correlations between specific populations of key microbial players and the occurrence of respective degradation processes remain to be unraveled. We therefore characterized microbial community distribution across a high-resolution depth profile of a tar oil-impacted aquifer where benzene, toluene, ethylbenzene, and xylene (BTEX) degradation depends mainly on sulfate reduction. We conducted depth-resolved terminal restriction fragment length polymorphism fingerprinting and quantitative PCR of bacterial 16S rRNA and benzylsuccinate synthase genes (bssA) to quantify the distribution of total microbiota and specific anaerobic toluene degraders. We show that a highly specialized degrader community of microbes related to known deltaproteobacterial iron and sulfate reducers (Geobacter and Desulfocapsa spp.), as well as clostridial fermenters (Sedimentibacter spp.), resides within the biogeochemical gradient zone underneath the highly contaminated plume core. This zone, where BTEX compounds and sulfate--an important electron acceptor--meet, also harbors a surprisingly high abundance of the yet-unidentified anaerobic toluene degraders carrying the previously detected F1-cluster bssA genes (C. Winderl, S. Schaefer, and T. Lueders, Environ. Microbiol. 9:1035-1046, 2007). Our data suggest that this biogeochemical gradient zone is a hot spot of anaerobic toluene degradation. These findings show that the distribution of specific aquifer microbiota and degradation processes in contaminated aquifers are tightly coupled, which may be of value for the assessment and prediction of natural attenuation based on intrinsic aquifer microbiota.
Collapse
MESH Headings
- Bacteria, Anaerobic/classification
- Bacteria, Anaerobic/genetics
- Bacteria, Anaerobic/growth & development
- Bacteria, Anaerobic/metabolism
- Benzene Derivatives/metabolism
- Biodegradation, Environmental
- Carbon-Carbon Lyases
- Deltaproteobacteria/classification
- Deltaproteobacteria/genetics
- Deltaproteobacteria/growth & development
- Deltaproteobacteria/metabolism
- Ecosystem
- Fresh Water/chemistry
- Fresh Water/microbiology
- Iron/metabolism
- Molecular Sequence Data
- Oxidation-Reduction
- Phylogeny
- Polymerase Chain Reaction
- Polymorphism, Restriction Fragment Length
- RNA, Ribosomal, 16S
- Sequence Analysis, DNA
- Sulfates/metabolism
- Toluene/metabolism
- Water Pollutants, Chemical/metabolism
- Water Supply
Collapse
Affiliation(s)
- Christian Winderl
- Institute of Groundwater Ecology, Helmholtz Center Munich, German Research Center for Environmental Health, Ingolstaedter Landstrasse 1, 85764 Neuherberg, Germany
| | | | | | | | | |
Collapse
|
34
|
Salminen JM, Hänninen PJ, Leveinen J, Lintinen PTJ, Jørgensen KS. Occurrence and rates of terminal electron-accepting processes and recharge processes in petroleum hydrocarbon-contaminated subsurface. JOURNAL OF ENVIRONMENTAL QUALITY 2006; 35:2273-82. [PMID: 17071898 DOI: 10.2134/jeq2006.0075] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
The occurrence and rates of terminal electron acceptor processes, and recharge processes in the unsaturated zone of a boreal site contaminated with petroleum hydrocarbons in the range C(10) to C(40) were examined. Soil microcosms were used to determine the rates of denitrification, iron (Fe) reduction, sulfate (SO(4)) reduction, and methanogenesis in two vertical soil profiles contaminated with oil, and in a noncontaminated reference sample. Furthermore, the abundances of the 16S rRNA genes belonging to Geobacteracaea in the samples were determined by real-time quantitative polymerase chain reaction (PCR). Analyses of ground water chemistry and soil gas composition were also performed together with continuous in situ monitoring of soil water and ground water chemistry. Several lines of evidence were obtained to demonstrate that both Fe reduction and methanogenesis played significant roles in the vertical profiles: Fe reduction rates up to 3.7 nmol h(-1) g(-1) were recorded and they correlated with the abundances of the Geobacteracaea 16S rRNA genes (range: 2.3 x 10(5) to 4.9 x 10(7) copies g(-1)). In the ground water, ferrous iron (Fe(2+)) concentration up to 55 mg L(-1) was measured. Methane production rates up to 2.5 nmol h(-1) g(-1) were obtained together with methane content up to 15% (vol/vol) in the soil gas. The continuous monitoring of soil water and ground water chemistry, microcosm experiments, and soil gas monitoring together demonstrated that the high microbial activity in the unsaturated zone resulted in rapid removal of oxygen from the infiltrating recharge thus leaving the anaerobic microbial processes dominant below 1.5 m depth both in the unsaturated and the saturated zones of the subsurface.
Collapse
Affiliation(s)
- Jani M Salminen
- Finnish Environment Institute, P.O. Box 140, FI-00251 Helsinki, Finland.
| | | | | | | | | |
Collapse
|
35
|
Tuxen N, Albrechtsen HJ, Bjerg PL. Identification of a reactive degradation zone at a landfill leachate plume fringe using high resolution sampling and incubation techniques. JOURNAL OF CONTAMINANT HYDROLOGY 2006; 85:179-94. [PMID: 16524640 DOI: 10.1016/j.jconhyd.2006.01.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2005] [Revised: 01/10/2006] [Accepted: 01/19/2006] [Indexed: 05/07/2023]
Abstract
Vertical small-scale variation in phenoxy acid herbicide degradation across a landfill leachate plume fringe was studied using laboratory degradation experiments. Sediment cores (subdivided into 5 cm segments) were collected in the aquifer and the sediment and porewater were used for microcosm experiments (50 experiments) and for determination of solid organic carbon, solid-water partitioning coefficients, specific phenoxy acid degraders and porewater chemistry. Results from a multi-level sampler installed next to the cores provided information on the plume position and oxygen concentration in the groundwater. Oxygen concentration was controlled individually in each microcosm to mimic the conditions at their corresponding depths. A highly increased degradation potential existed at the narrow plume fringe (37.7 to 38.6 masl), governed by the presence of phenoxy acids and oxygen. This resulted in the proliferation of a microbial population of specific phenoxy acid degraders, which further enhanced the degradation potential for phenoxy acids at the fringe. The results illustrate the importance of fringe degradation processes in contaminant plumes. Furthermore, they highlight the relevance of using high-resolution sampling techniques as well as controlled microcosm experiments in the assessment of the natural attenuation capacity of contaminant plumes in groundwater.
Collapse
Affiliation(s)
- Nina Tuxen
- Technical University of Denmark, Institute of Environment and Resources, Bygningstorvet 115, 2800 Lyngby, Denmark.
| | | | | |
Collapse
|
36
|
Bekins BA, Cozzarelli IM, Curtis GP. A simple method for calculating growth rates of petroleum hydrocarbon plumes. GROUND WATER 2005; 43:817-26. [PMID: 16324003 DOI: 10.1111/j.1745-6584.2005.00093.x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Consumption of aquifer Fe(III) during biodegradation of ground water contaminants may result in expansion of a contaminant plume, changing the outlook for monitored natural attenuation. Data from two research sites contaminated with petroleum hydrocarbons show that toluene and xylenes degrade under methanogenic conditions, but the benzene and ethylbenzene plumes grow as aquifer Fe(III) supplies are depleted. By considering a one-dimensional reaction front in a constant unidirectional flow field, it is possible to derive a simple expression for the growth rate of a benzene plume. The method balances the mass flux of benzene with the Fe(III) content of the aquifer, assuming that the biodegradation reaction is instantaneous. The resulting expression shows that the benzene front migration is retarded relative to the ground water velocity by a factor that depends on the concentrations of hydrocarbon and bioavailable Fe(III). The method provides good agreement with benzene plumes at a crude oil study site in Minnesota and a gasoline site in South Carolina. Compared to the South Carolina site, the Minnesota site has 25% higher benzene flux but eight times the Fe(III), leading to about one-sixth the expansion rate. Although it was developed for benzene, toluene, ethylbenzene, and xylenes, the growth-rate estimation method may have applications to contaminant plumes from other persistent contaminant sources.
Collapse
|
37
|
Scow KM, Hicks KA. Natural attenuation and enhanced bioremediation of organic contaminants in groundwater. Curr Opin Biotechnol 2005; 16:246-53. [PMID: 15961025 DOI: 10.1016/j.copbio.2005.03.009] [Citation(s) in RCA: 153] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2005] [Revised: 03/15/2005] [Accepted: 03/24/2005] [Indexed: 11/22/2022]
Abstract
An area of intense scientific and practical interest is the biogeochemical and microbial processes determining the success of natural attenuation, biostimulation and/or bioaugmentation treatments for organic contaminants in groundwater. Recent studies in this area have focused on the reductive dechlorination of chlorinated solvents, the degradation of the fuel additive methyl tert-butyl ether, and the removal of long-term hydrocarbon contamination. These studies have been facilitated by the use of stable isotope analysis to demonstrate in situ bioremediation and push-pull tests, in which isotopes are injected into aquifers and then quickly retrieved and analyzed, to measure in situ activity. Molecular tools such as quantitative PCR, the detection of mRNA expression, and numerous DNA fingerprinting methods have also proved valuable, being employed to identify and sometimes quantify environmentally important organisms or changes in communities. Methods to track bacteria and tools to characterize bacterial attachment properties have also offered insight into bacterial transport in situ.
Collapse
Affiliation(s)
- Kate M Scow
- Land, Air and Water Resources, University of California, 1 Shields Avenue Davis, California 95616, USA
| | | |
Collapse
|
38
|
Song D, Katayama A. Monitoring microbial community in a subsurface soil contaminated with hydrocarbons by quinone profile. CHEMOSPHERE 2005; 59:305-314. [PMID: 15763082 DOI: 10.1016/j.chemosphere.2004.10.053] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2004] [Revised: 10/14/2004] [Accepted: 10/19/2004] [Indexed: 05/24/2023]
Abstract
A natural attenuation experiment was carried out using a lysimeter for 308 days after contaminating the subsoil with hydrocarbons (HCs) and the changes in the structures of microbial community in the hydrocarbon (HC) contaminated subsoil were monitored by quinone profile analysis. The residues of HCs remained for 217 days in the subsoil after the contamination. The amount of total quinones (TQ), an indicator of microbial biomass, significantly increased in the HC contaminated subsoil for 217 days, comparing with that of the background subsoil or the subsoil before the addition of HCs. The major quinone species and the quinone composition, indicators of community structure, were significantly different between the HC contaminated soil and the background soil for 217 days. The major increased quinine species in the HC contaminated soil were menaquinone-8(H4), menaquinone-9(H2) and ubiquinone-9, indicating the propagation of Gram-positive bacteria with high guanine and cytosine content and gamma-subclass of Proteobacteria and fungi. There was no significant difference in the diversity of the quinone species (DQ), an indicator of taxonomic diversity of microbial community, except for the decrease in DQ in the shallow subsoil after 35 days when a high concentration of HCs was detected. After 308 days when the HCs in the subsoil disappeared, TQ returned to the level of the background soil, and no significant difference in quinone composition were observed between the HC contaminated soil and the background soil. The results suggested that respiratory quinones are effective biomarkers for characterizing the temporal changes of microbial community in the HC contaminated subsoil.
Collapse
Affiliation(s)
- Dejun Song
- Kiso-Jiban Consultants Co., Ltd., Tokyo, Japan
| | | |
Collapse
|
39
|
Haack SK, Fogarty LR, West TG, Alm EW, McGuire JT, Long DT, Hyndman DW, Forney LJ. Spatial and temporal changes in microbial community structure associated with recharge-influenced chemical gradients in a contaminated aquifer. Environ Microbiol 2004; 6:438-48. [PMID: 15049917 DOI: 10.1111/j.1462-2920.2003.00563.x] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
In a contaminated water-table aquifer, we related microbial community structure on aquifer sediments to gradients in 24 geochemical and contaminant variables at five depths, under three recharge conditions. Community amplified ribsosomal DNA restriction analysis (ARDRA) using universal 16S rDNA primers and denaturing gradient gel electrophoresis (DGGE) using bacterial 16S rDNA primers indicated: (i). communities in the anoxic, contaminated central zone were similar regardless of recharge; (ii). after recharge, communities at greatest depth were similar to those in uncontaminated zones; and (iii). after extended lack of recharge, communities at upper and lower aquifer margins differed from communities at the same depths on other dates. General aquifer geochemistry was as important as contaminant or terminal electron accepting process (TEAP) chemistry in discriminant analysis of community groups. The Shannon index of diversity (H) and the evenness index (E), based on DGGE operational taxonomic units (OTUs), were statistically different across community groups and aquifer depths. Archaea or sulphate-reducing bacteria 16S rRNA abundance was not clearly correlated with TEAP chemistry indicative of methanogenesis or sulphate reduction. Eukarya rRNA abundance varied by depth and date from 0 to 13% of the microbial community. This contaminated aquifer is a dynamic ecosystem, with complex interactions between physical, chemical and biotic components, which should be considered in the interpretation of aquifer geochemistry and in the development of conceptual or predictive models for natural attenuation or remediation.
Collapse
Affiliation(s)
- Sheridan K Haack
- US Geological Survey, 6520 Mercantile Way, Suite 5, Lansing, MI 48911, USA.
| | | | | | | | | | | | | | | |
Collapse
|
40
|
Kaufmann K, Christophersen M, Buttler A, Harms H, Höhener P. Microbial community response to petroleum hydrocarbon contamination in the unsaturated zone at the experimental field site Værløse, Denmark. FEMS Microbiol Ecol 2004; 48:387-99. [DOI: 10.1016/j.femsec.2004.02.011] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|
41
|
Stack AG, Eggleston CM, Engelhard MH. Reaction of hydroquinone with hematite. J Colloid Interface Sci 2004; 274:433-41. [PMID: 15144814 DOI: 10.1016/j.jcis.2003.12.026] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2003] [Accepted: 12/12/2003] [Indexed: 11/21/2022]
Abstract
The reaction of hematite with quinones and the quinone moieties of larger molecules may be an important factor in limiting the rate of reductive dissolution, especially by iron-reducing bacteria. Here, the electrochemical and physical properties of hydroquinone adsorbed on hematite surfaces at pH 2.5-3 were investigated with cyclic voltammetry (CV), electrochemical-scanning tunneling microscopy (EC-STM), and X-ray photoelectron spectroscopy (XPS). An oxidation peak for hydroquinone was observed in the CV experiments, as well as (photo)reduction of iron and decomposition of the solvent. The EC-STM results indicate that hydroquinone sometimes forms an ordered monolayer with approximately 1.1 QH(2)/nm(2), but can be fairly disordered (especially when viewed at larger scales). XPS results indicate that hydroquinone and benzoquinone are retained at the interface in increasing amounts as the reaction proceeds, but reduced iron is not observed. These results suggest that quinones do not adsorb by an inner-sphere complex where adsorbate-surface interactions determine the adsorbate surface structure, but rather in an outer-sphere complex where interactions among the adsorbate molecules dominate.
Collapse
Affiliation(s)
- Andrew G Stack
- Department of Geology and Geophysics, University of Wyoming, Laramie, WY 82071-3006, USA.
| | | | | |
Collapse
|
42
|
Essaid HI, Cozzarelli IM, Eganhouse RP, Herkelrath WN, Bekins BA, Delin GN. Inverse modeling of BTEX dissolution and biodegradation at the Bemidji, MN crude-oil spill site. JOURNAL OF CONTAMINANT HYDROLOGY 2003; 67:269-299. [PMID: 14607480 DOI: 10.1016/s0169-7722(03)00034-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
The U.S. Geological Survey (USGS) solute transport and biodegradation code BIOMOC was used in conjunction with the USGS universal inverse modeling code UCODE to quantify field-scale hydrocarbon dissolution and biodegradation at the USGS Toxic Substances Hydrology Program crude-oil spill research site located near Bemidji, MN. This inverse modeling effort used the extensive historical data compiled at the Bemidji site from 1986 to 1997 and incorporated a multicomponent transport and biodegradation model. Inverse modeling was successful when coupled transport and degradation processes were incorporated into the model and a single dissolution rate coefficient was used for all BTEX components. Assuming a stationary oil body, we simulated benzene, toluene, ethylbenzene, m,p-xylene, and o-xylene (BTEX) concentrations in the oil and ground water, respectively, as well as dissolved oxygen. Dissolution from the oil phase and aerobic and anaerobic degradation processes were represented. The parameters estimated were the recharge rate, hydraulic conductivity, dissolution rate coefficient, individual first-order BTEX anaerobic degradation rates, and transverse dispersivity. Results were similar for simulations obtained using several alternative conceptual models of the hydrologic system and biodegradation processes. The dissolved BTEX concentration data were not sufficient to discriminate between these conceptual models. The calibrated simulations reproduced the general large-scale evolution of the plume, but did not reproduce the observed small-scale spatial and temporal variability in concentrations. The estimated anaerobic biodegradation rates for toluene and o-xylene were greater than the dissolution rate coefficient. However, the estimated anaerobic biodegradation rates for benzene, ethylbenzene, and m,p-xylene were less than the dissolution rate coefficient. The calibrated model was used to determine the BTEX mass balance in the oil body and groundwater plume. Dissolution from the oil body was greatest for compounds with large effective solubilities (benzene) and with large degradation rates (toluene and o-xylene). Anaerobic degradation removed 77% of the BTEX that dissolved into the water phase and aerobic degradation removed 17%. Although goodness-of-fit measures for the alternative conceptual models were not significantly different, predictions made with the models were quite variable.
Collapse
Affiliation(s)
- Hedeff I Essaid
- US Geological Survey, 345 Middlefield Road, MS 496, Menlo Park, CA 94025, USA.
| | | | | | | | | | | |
Collapse
|
43
|
Abstract
Microbial reactions are a key determinant in natural attenuation. However, providing unequivocal evidence of the extent of their involvement is challenging. Several approaches are being developed to meet this challenge, including the use of contaminant-specific transformation products, carbon- or hydrogen-based stable isotopic analysis and reactive transport modeling. These approaches emphasize the ongoing need to integrate strategically between temporally and spatially variant geochemical conditions, the ecological characteristics of the resident microbial communities and their resultant pollutant-transformation capabilities.
Collapse
Affiliation(s)
- Barth F Smets
- Department of Civil and Environmental Engineering and Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT 06269-3037, USA.
| | | |
Collapse
|
44
|
Hommel EL, Allen HC. The air-liquid interface of benzene, toluene, m-xylene, and mesitylene: a sum frequency, Raman, and infrared spectroscopic study. Analyst 2003; 128:750-5. [PMID: 12866899 DOI: 10.1039/b301032p] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The air-liquid interface and the liquid-phase of benzene, toluene, 1,3-dimethylbenzene, and 1,3,5-trimethylbenzene are studied using broad bandwidth sum frequency generation spectroscopy, Raman and infrared spectroscopy. A vibrationally resonant sum frequency response is observed from these surfaces in spite of the small hyperpolarizabilities, in particular, the zero and near-zero hyperpolarizabilities of benzene and 1,3,5-trimethylbenzene. The orientation of the aromatic rings of these compounds at their air-liquid interfaces is tilted relative to the surface plane. Thus, on average, the plane of the aromatic ring does not lie in the interfacial plane. Comparison of the square root of the sum frequency intensity to that of the Raman multiplied bythe infrared intensity provides additional information about the molecular environment at their respective air-liquid interface.
Collapse
Affiliation(s)
- Elizabeth L Hommel
- The Ohio State University, Department of Chemistry, 100 West 18th Ave., Columbus, Ohio 43210, USA
| | | |
Collapse
|
45
|
Cozzarelli IM, Bekins BA, Baedecker MJ, Aiken GR, Eganhouse RP, Tuccillo ME. Progression of natural attenuation processes at a crude-oil spill site: I. Geochemical evolution of the plume. JOURNAL OF CONTAMINANT HYDROLOGY 2001; 53:369-385. [PMID: 11820478 DOI: 10.1016/s0169-7722(01)00174-7] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
A 16-year study of a hydrocarbon plume shows that the extent of contaminant migration and compound-specific behavior have changed as redox reactions, most notably iron reduction, have progressed over time. Concentration changes at a small scale, determined from analysis of pore-water samples drained from aquifer cores, are compared with concentration changes at the plume scale, determined from analysis of water samples from an observation well network. The small-scale data show clearly that the hydrocarbon plume is growing slowly as sediment iron oxides are depleted. Contaminants, such as ortho-xylene that appeared not to be moving downgradient from the oil on the basis of observation well data, are migrating in thin layers as the aquifer evolves to methanogenic conditions. However, the plume-scale observation well data show that the downgradient extent of the Fe2+ and BTEX plume did not change between 1992 and 1995. Instead, depletion of the unstable Fe (III) oxides near the subsurface crude-oil source has caused the maximum dissolved iron concentration zone within the plume to spread at a rate of approximately 3 m/year. The zone of maximum concentrations of benzene, toluene, ethylbenzene and xylene (BTEX) has also spread within the anoxic plume. In monitoring the remediation of hydrocarbon-contaminated ground water by natural attenuation, subtle concentration changes in observation well data from the anoxic zone may be diagnostic of depletion of the intrinsic electron-accepting capacity of the aquifer. Recognition of these subtle patterns may allow early prediction of growth of the hydrocarbon plume.
Collapse
|