1
|
Peng M, Gan M, Zhao X, Zhu J, Zhang K. Self-modified iron-based materials for efficient chromium (VI) removal: Efficacy and mechanism. ENVIRONMENTAL RESEARCH 2025; 272:121193. [PMID: 39993617 DOI: 10.1016/j.envres.2025.121193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Revised: 02/15/2025] [Accepted: 02/20/2025] [Indexed: 02/26/2025]
Abstract
Hexavalent chromium (Cr(VI)) is a typical carcinogenic contaminant, and the prerequisite for its efficient remediation is the low-cost and high-efficiency removal materials. Thus, in this study, we propose an outstanding Cr(VI) removal iron-based materials derived from the self-modification of secondary minerals by simple pyrolysis and explore their Cr(VI) removal mechanism. The resulting materials, C-AJ (from ammoniojarosite) and C-Jar (from jarosite) exhibited excellent Cr(VI) removal efficiencies, with maximum Cr(VI) removal capacities of 96.9 mg/g and 70.7 mg/g, respectively. Their excellent Cr(VI) removal capacities are mainly attributed to the self-modification of two minerals to form Fe(II) and the retained SO42-, and the N escape of ammoniojarosite [(NH4, H3O)Fe3(OH)6(SO4)2] further promotes the formation of active sites and brings higher Cr(VI) removal ability. Moreover, C-AJ and C-Jar have similar Cr(VI) removal mechanisms involving reduction and absorption. The reduction process, primarily driven by Fe(II), contributes significantly, while the adsorption process, mainly influenced by sulfate, plays a minor role. In addition, the iron-based material exhibits high resistance to interference from pH changes, maintains strong Cr(VI) removal ability in the presence of anions and organic acids, and does not pose a risk of secondary pollution. This study demonstrates that simple pyrolysis of iron-based minerals can induce self-modification, resulting in highly active Cr(VI) removal materials, which presents a potential low-cost and efficient Cr(VI) remediation solution.
Collapse
Affiliation(s)
- Minxian Peng
- School of Minerals Processing and Bioengineering, Key Laboratory of Biohydrometallurgy of Ministry of Education, Central South University, Changsha, 410083, China; Department of Neuroscience, City University of Hong Kong, Kowloon, Hong Kong, China
| | - Min Gan
- School of Minerals Processing and Bioengineering, Key Laboratory of Biohydrometallurgy of Ministry of Education, Central South University, Changsha, 410083, China
| | - Xinyi Zhao
- School of Minerals Processing and Bioengineering, Key Laboratory of Biohydrometallurgy of Ministry of Education, Central South University, Changsha, 410083, China
| | - Jianyu Zhu
- School of Minerals Processing and Bioengineering, Key Laboratory of Biohydrometallurgy of Ministry of Education, Central South University, Changsha, 410083, China
| | - Ke Zhang
- School of Minerals Processing and Bioengineering, Key Laboratory of Biohydrometallurgy of Ministry of Education, Central South University, Changsha, 410083, China.
| |
Collapse
|
2
|
Guo J, Wang D, Shi Y, Lyu H, Tang J. Minor chromium passivation of S-ZVI enhanced the long-term dechlorination performance of trichlorethylene: Effects of corrosion and passivation on the reactivity and selectivity. WATER RESEARCH 2024; 249:120973. [PMID: 38071903 DOI: 10.1016/j.watres.2023.120973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 11/14/2023] [Accepted: 12/03/2023] [Indexed: 01/03/2024]
Abstract
The corrosion and surface passivation of sulfidized zero-valent iron (S-ZVI) by common groundwater ions and contaminants are considered to be the most challenging aspects in the application of S-ZVI for remediation of chlorinated contaminants. This study investigated the impacts of corrosive chloride (Cl-) and passivation of hexavalent chromium (Cr(VI)) on the long-term reactivity, selectivity, corrosion behavior, and physicochemical properties during the 60-day aging process of S-ZVI. Although the co-existing of Cl- promoted the initial reactivity of S-ZVI, the rapid consumption of Fe° content shortened the reactive lifetime owing to the insufficient electron capacity. Severe passivation by Cr(VI) (30 mg L-1) preserved the Fe° content but significantly interfered with the reductive sulfur species, resulting in an increase in electron transfer resistance. In comparison, minor passivated S-ZVI (5.0 mg L-1 Cr(VI)) inhibited the hydrogen evolution while concurrently mitigating the further oxidation of the reductive iron and sulfur species, which significantly enhanced the long-term reactivity and selectivity of S-ZVI. Furthermore, the enhancement effect of minor passivation could be detected in the aging processes of one-step, two-step, and mechanochemically synthesized S-ZVI particles with different S/Fe ratios and precursors, which further verified the advantages of minor passivation. This observation is inspirable for the development of innovative strategies for environmental remediation by S-ZVI-based materials.
Collapse
Affiliation(s)
- Jiaming Guo
- MOE Key Laboratory of Pollution Processes and Environmental Criteria/Tianjin Engineering Center of Environmental Diagnosis and Contamination Remediation, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Dong Wang
- Environmental Protection Institute, SINOPEC Beijing Research Institute of Chemical Industry, Beijing 100013, China
| | - Yinghao Shi
- MOE Key Laboratory of Pollution Processes and Environmental Criteria/Tianjin Engineering Center of Environmental Diagnosis and Contamination Remediation, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Honghong Lyu
- Tianjin Key Laboratory of Clean Energy and Pollution Control, School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin 300401, China.
| | - Jingchun Tang
- MOE Key Laboratory of Pollution Processes and Environmental Criteria/Tianjin Engineering Center of Environmental Diagnosis and Contamination Remediation, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China.
| |
Collapse
|
3
|
Liang L, Tan W, Xue Y, Xi F, Meng X, Hu B, Du J. Effects of magnetic field on selenite removal by sulfidated zero valent iron under aerobic conditions. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 831:154755. [PMID: 35339539 DOI: 10.1016/j.scitotenv.2022.154755] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 03/14/2022] [Accepted: 03/18/2022] [Indexed: 06/14/2023]
Abstract
A novel strategy of sulfide modified zero valent iron (S-ZVI) coupled with the magnetic field (MF) is developed for selenite (Se(IV)) removal. The original ZVI particle size (30 μm), S/Fe ratio (1:80), solution pH (5), S-ZVI loading (0.75 g L-1), and MF intensity (20 mT) can exhibit the optimal enhancement effects of MF on Se(IV) removal by S-ZVI. Common corrosion promoters (Cl-, PO43-, SO42-, Mg2+, and Ca2+) and inhibitors (NO3-, SiO32-, and CO32-) show positive and negative effects on Se(IV) removal by S-ZVI, respectively. But MF can alleviate promoting or inhibiting effects of coexisting ions on Se(IV) removal by S-ZVI, and well preserve the reactivity of S-ZVI from background ions in water. Furthermore, MF can also enhance the reactivity of S-ZVI towards Se(IV) during consecutive experiments, the promotion factor (the ratio of kobs with MF to kobs without MF) increased from 2.57 to 5.83 with the increase of cycles. MF can not only improve the reactivity of ZVI covered with iron oxide or iron hydroxide but also effectively enhance the ability of ZVI covered with iron sulfide. S-ZVI exhibited good stability and recyclability in the presence of MF. XANES analysis of selenium species reveals that the reductive product of Se(IV) with or without MF is primarily Se(0), and Se(IV) removal by S-ZVI can be ascribed to adsorption and reduction. This work indicates that MF may widen the application of S-ZVI for pollutants removal in environmental remediation.
Collapse
Affiliation(s)
- Liping Liang
- College of Life Science, Shaoxing University, Shaoxing 312000, PR China; College of Chemistry, Donghua University, Shanghai 201620, PR China
| | - Weishou Tan
- College of Life Science, Shaoxing University, Shaoxing 312000, PR China
| | - Yuanyuan Xue
- College of Life Science, Shaoxing University, Shaoxing 312000, PR China
| | - Fenfen Xi
- College of Life Science, Shaoxing University, Shaoxing 312000, PR China
| | - Xu Meng
- Key Laboratory of Clean Dyeing and Finishing Technology of Zhejiang Province, Shaoxing University, Shaoxing 312000, PR China
| | - Baowei Hu
- College of Life Science, Shaoxing University, Shaoxing 312000, PR China.
| | - Juanshan Du
- Division of Environmental Science and Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea.
| |
Collapse
|
4
|
Gong L, Qi J, Lv N, Qiu X, Gu Y, Zhao J, He F. Mechanistic role of nitrate anion in TCE dechlorination by ball milled ZVI and sulfidated ZVI: Experimental investigation and theoretical analysis. JOURNAL OF HAZARDOUS MATERIALS 2021; 403:123844. [PMID: 33264925 DOI: 10.1016/j.jhazmat.2020.123844] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 08/18/2020] [Accepted: 08/21/2020] [Indexed: 06/12/2023]
Abstract
Mechanistic role of NO3- in trichloroethylene (TCE) dechlorination by ball milled, micro-scale sulfidated and unsulfidated ZVI (e.g., S-mZVIbm and mZVIbm) was explored through experiments and density functional theory (DFT) calculations. Sulfidation inhibited NO3- reduction by mZVIbm as S weakened its interaction with NO3-. mZVIbm reduced NO3- within 2 h. This just resulted in a short-term electron competition during the dechlorination process by mZVIbm and hardly affected its sluggish dechlorination kinetics (complete TCE dechlorination in 11 d). On the contrary, NO3- suppressed TCE dechlorination by S-mZVIbm. This was attributed to that inhibited NO3- reduction by S-mZVIbm (40 % reduction in 6 h) induced continuous electron competition with TCE during the time span of its dechlorination by S-mZVIbm. NO3- reduction was also observed to facilitate formation/crystallization of Fe3O4 on both ZVI particles, promoting dechlorination by mZVIbm after 4 d while not taking effect to the S-mZVIbm/TCE system, as its dechlorination time was too short for the surface of S-mZVIbm to transform. This observation has important implication on groundwater remediation by ZVI or sulfidated ZVI PRBs under a scenario of upgradient anthropogenic release of NO3-.
Collapse
Affiliation(s)
- Li Gong
- College of Environment, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Jianlong Qi
- College of Environment, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Neng Lv
- College of Environment, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Xiaojiang Qiu
- College of Environment, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Yawei Gu
- College of Environment, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Jiawei Zhao
- College of Environment, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Feng He
- College of Environment, Zhejiang University of Technology, Hangzhou, 310014, China.
| |
Collapse
|
5
|
CaCO3 coated nanoscale zero-valent iron (nZVI) for the removal of chromium(VI) in aqueous solution. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2020.117967] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
6
|
Wang X, Xin J, Yuan M, Zhao F. Electron competition and electron selectivity in abiotic, biotic, and coupled systems for dechlorinating chlorinated aliphatic hydrocarbons in groundwater: A review. WATER RESEARCH 2020; 183:116060. [PMID: 32750534 DOI: 10.1016/j.watres.2020.116060] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2019] [Revised: 06/01/2020] [Accepted: 06/13/2020] [Indexed: 06/11/2023]
Abstract
Chlorinated aliphatic hydrocarbons (CAHs) have been frequently detected in aquifers in recent years. Owing to the bioaccumulation and toxicity of CAHs, it is essential to explore high-efficiency technologies for their complete dechlorination in groundwater. At present, the most widely used abiotic and biotic remediation technologies are based on zero-valent iron (ZVI) and functional anaerobic bacteria (FAB), respectively. However, the main obstacles to the full potential of both technologies in the field include their lowered efficiencies and increased economic costs due to the co-existence of a variety of natural electron acceptors in the environment, such as dissolved oxygen (DO), nitrate (NO3-), sulfate (SO42-), ferric iron (Fe (III)), bicarbonate (HCO3-), and even water, which compete for electrons with the target contaminants. Therefore, a clear understanding of the mechanisms governing electron competition and electron selectivity is significant for the accurate evaluation of the effectiveness of both technologies under natural hydrochemical conditions. We collected data from both abiotic and biotic CAH-remediation systems, summarized the dechlorination and undesired reactions in groundwater, discussed the characterization methods and general principles of electron competition, and described strategies to improve electron selectivity in both systems. Furthermore, we reviewed the emerging ZVI-FAB coupled system, which integrates abiotic and biotic processes to enhance dechlorination performance and electron utilization efficiency. Lastly, we propose future research needs to quantitatively understand the electron competition in abiotic, biotic, and coupled systems in more detail and to promote improved electron selectivity in groundwater remediation.
Collapse
Affiliation(s)
- Xiaohui Wang
- Key Lab of Marine Environmental Science and Ecology, Ministry of Education Shandong Provincial Key Laboratory of Marine Environment and Geological Engineering College of Environmental Science and Engineering, Ocean University of China, Qingdao, 266100, China
| | - Jia Xin
- Key Lab of Marine Environmental Science and Ecology, Ministry of Education Shandong Provincial Key Laboratory of Marine Environment and Geological Engineering College of Environmental Science and Engineering, Ocean University of China, Qingdao, 266100, China.
| | - Mengjiao Yuan
- Key Lab of Marine Environmental Science and Ecology, Ministry of Education Shandong Provincial Key Laboratory of Marine Environment and Geological Engineering College of Environmental Science and Engineering, Ocean University of China, Qingdao, 266100, China
| | - Fang Zhao
- Key Lab of Marine Environmental Science and Ecology, Ministry of Education Shandong Provincial Key Laboratory of Marine Environment and Geological Engineering College of Environmental Science and Engineering, Ocean University of China, Qingdao, 266100, China
| |
Collapse
|
7
|
Xin J, Fan S, Yuan M, Wang X, Zhang X, Zheng X. Effects of co-existing nitrate on TCE removal by mZVI under different pollution load scenarios: Kinetics, electron efficiency and mechanisms. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 716:137111. [PMID: 32059314 DOI: 10.1016/j.scitotenv.2020.137111] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Revised: 01/04/2020] [Accepted: 02/03/2020] [Indexed: 06/10/2023]
Abstract
Microscale zero-valent iron in situ reaction zone (mZVI-IRZ) has proved to be effective and efficient for the removal of chlorinated aliphatic hydrocarbons (CAHs) from groundwater. However, nitrate (NO3-), which is ubiquitous in groundwater, affects the mZVI-based attenuation of CAHs in a complicated manner. Both the reaction rate constant (k) and electron efficiency (EE) of mZVI must be considered to comprehensively reflect the effects of NO3- on the short and long-term remediation performances of mZVI. Therefore, the influence of NO3- on trichloroethylene (TCE) removal under high-pollution-load (iron limited) and low-pollution-load (iron excess) conditions was investigated. Low concentrations of NO3- (10 and 50 mg N L-1) were found to enhance the TCE removal rate and efficiency, whereas high concentrations of NO3- (100 mg N L-1) inhibited the reaction. Although TCE removal was increased at low concentrations of NO3-, the EE of mZVI was dramatically decreased in the presence of NO3- at all concentration levels. Therefore, both the short-term TCE removal characteristics and the EE of mZVI should be considered when evaluating the long-term remediation effectiveness of mZVI-IRZ technology. The effects of NO3- on the TCE removal trends under high- and low-pollution-load scenarios were similar, but had different magnitudes. NO3- affected the TCE removal mainly by promoting mZVI corrosion, competing for electrons and affecting passivation product evolution. Our results provide guidance for the practical application of mZVI-IRZ technology.
Collapse
Affiliation(s)
- Jia Xin
- Key Lab of Marine Environmental Science and Ecology, Ministry of Education, Shandong Provincial Key Laboratory of Marine Environment and Geological Engineering, College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China.
| | - Shufen Fan
- Key Lab of Marine Environmental Science and Ecology, Ministry of Education, Shandong Provincial Key Laboratory of Marine Environment and Geological Engineering, College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China
| | - Mengjiao Yuan
- Key Lab of Marine Environmental Science and Ecology, Ministry of Education, Shandong Provincial Key Laboratory of Marine Environment and Geological Engineering, College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China
| | - Xiaohui Wang
- Key Lab of Marine Environmental Science and Ecology, Ministry of Education, Shandong Provincial Key Laboratory of Marine Environment and Geological Engineering, College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China
| | - Xuejiao Zhang
- Key Lab of Marine Environmental Science and Ecology, Ministry of Education, Shandong Provincial Key Laboratory of Marine Environment and Geological Engineering, College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China
| | - Xilai Zheng
- Key Lab of Marine Environmental Science and Ecology, Ministry of Education, Shandong Provincial Key Laboratory of Marine Environment and Geological Engineering, College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China
| |
Collapse
|
8
|
Qin H, Guan X, Tratnyek PG. Effects of Sulfidation and Nitrate on the Reduction of N-Nitrosodimethylamine by Zerovalent Iron. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2019; 53:9744-9754. [PMID: 31343874 DOI: 10.1021/acs.est.9b02419] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Competition among oxidizing species in groundwater and wastewater for the reductive capacity of zerovalent iron (ZVI) makes the selectivity of ZVI for target contaminant degradation over other reduction pathways a major determinant of the feasibility of ZVI-based water treatment processes. The selectivity for reduction of contaminants over water is improved by sulfidation, but the effect of sulfidation on other competing reactions is not known. The interaction between these competing reactions was investigated using N-nitrosodimethylamine (NDMA) as the target contaminant, nitrate as a co-contaminant, and micrometer-sized ZVI with and without sulfidation. Unsulfidated ZVI reduced NDMA to dimethylamine via N,N-dimethylhydrazine, but the addition of nitrate decreased the rate of NDMA reduction and increased the quantity of intermediate observed. With sulfidated ZVI, the kinetics and products of NDMA reduction were similar to those with unsulfidated ZVI, but no inhibitory effect of nitrate was observed. Conversely, the reduction of nitrate-which dominated NDMA reduction in unsulfidated ZVI systems-was strongly inhibited by sulfidation. H2 and Fe2+ generation by sulfidated ZVI was almost independent of nitrate concentration. Therefore, sulfidation improved the efficiency of NDMA reduction by ZVI in the presence of nitrate mainly by inhibiting nitrate reduction. The shift in selectivity of ZVI for NDMA over nitrate upon sulfidation was due to replacement of Fe0/FexOy surface sites with FeS.
Collapse
Affiliation(s)
- Hejie Qin
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering , Tongji University , Shanghai 200092 , P.R. China
- Shanghai Institute of Pollution Control and Ecological Security , Shanghai 200092 , P.R. China
| | - Xiaohong Guan
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering , Tongji University , Shanghai 200092 , P.R. China
- Shanghai Institute of Pollution Control and Ecological Security , Shanghai 200092 , P.R. China
| | - Paul G Tratnyek
- OHSU-PSU School of Public Health , Oregon Health & Science University , 3181 SW Sam Jackson Park Road , Portland , Oregon 97239 , United States
| |
Collapse
|
9
|
Li J, Dou X, Qin H, Sun Y, Yin D, Guan X. Characterization methods of zerovalent iron for water treatment and remediation. WATER RESEARCH 2019; 148:70-85. [PMID: 30347277 DOI: 10.1016/j.watres.2018.10.025] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Revised: 10/09/2018] [Accepted: 10/09/2018] [Indexed: 06/08/2023]
Abstract
Appropriately selecting methods for characterizing the reaction system of zerovalent iron (ZVI) favors its application for water treatment and remediation. Hence, a survey of the available ZVI characterization techniques used in laboratory and field studies are presented in this review for clarifying the characteristic properties, (in-situ) corrosion processes, and corrosion products of ZVI system. The methods are generally classified into four broad categories: morphology characterization techniques, (sub-)surface and bulk analysis mainly via the spectral protocols, along with the (physio)electrochemical alternatives. Moreover, this paper provides a critical review on the scopes and applications of ZVI characterization methodologies from several perspectives including their suitable occasions, availability, (semi-)quantitative/qualitative evaluations, in/ex-situ reaction information, advantages, limitations and challenges, as well as economic and technical remarks. In particular, the characteristic spectroscopic peak locations of typical iron (oxyhydr)oxides are also systematically summarized. In view of the complexity and variety of ZVI system, this review further addresses that different characterization methods should be employed together for better assessing the performance and mechanisms of ZVI-involved systems and thereby facilitating the deployment of ZVI-based installations in real practice.
Collapse
Affiliation(s)
- Jinxiang Li
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, PR China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, PR China; International Joint Research Center for Sustainable Urban Water System, Tongji University, Shanghai, 200092, PR China
| | - Xiaomin Dou
- College of Environmental Science and Engineering, Beijing Key Laboratory for Source Control Technology of Water Pollution, Beijing Forestry University, Beijing, 100083, PR China
| | - Hejie Qin
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, PR China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, PR China; International Joint Research Center for Sustainable Urban Water System, Tongji University, Shanghai, 200092, PR China
| | - Yuankui Sun
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, PR China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, PR China; International Joint Research Center for Sustainable Urban Water System, Tongji University, Shanghai, 200092, PR China
| | - Daqiang Yin
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, PR China; International Joint Research Center for Sustainable Urban Water System, Tongji University, Shanghai, 200092, PR China; Key Laboratory of Yangtze Water Environment of Ministry of the State Education, Tongji University, Shanghai, 200092, PR China
| | - Xiaohong Guan
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, PR China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, PR China; International Joint Research Center for Sustainable Urban Water System, Tongji University, Shanghai, 200092, PR China.
| |
Collapse
|
10
|
Shan C, Wang X, Guan X, Liu F, Zhang W, Pan B. Efficient Removal of Trace Se(VI) by Millimeter-Sized Nanocomposite of Zerovalent Iron Confined in Polymeric Anion Exchanger. Ind Eng Chem Res 2017. [DOI: 10.1021/acs.iecr.7b00507] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Chao Shan
- State
Key Laboratory of Pollution Control and Resource Reuse, School of
the Environment, Nanjing University, Nanjing 210023, China
- Research
Center for Environmental Nanotechnology (ReCENT), Nanjing University, Nanjing 210023, China
| | - Xing Wang
- State
Key Laboratory of Pollution Control and Resource Reuse, School of
the Environment, Nanjing University, Nanjing 210023, China
| | - Xiaohong Guan
- State
Key Laboratory of Pollution Control and Resources Reuse, College of
Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Fei Liu
- State
Key Laboratory of Pollution Control and Resource Reuse, School of
the Environment, Nanjing University, Nanjing 210023, China
| | - Weiming Zhang
- State
Key Laboratory of Pollution Control and Resource Reuse, School of
the Environment, Nanjing University, Nanjing 210023, China
- Research
Center for Environmental Nanotechnology (ReCENT), Nanjing University, Nanjing 210023, China
| | - Bingcai Pan
- State
Key Laboratory of Pollution Control and Resource Reuse, School of
the Environment, Nanjing University, Nanjing 210023, China
- Research
Center for Environmental Nanotechnology (ReCENT), Nanjing University, Nanjing 210023, China
| |
Collapse
|
11
|
Sun Y, Hu Y, Huang T, Li J, Qin H, Guan X. Combined Effect of Weak Magnetic Fields and Anions on Arsenite Sequestration by Zerovalent Iron: Kinetics and Mechanisms. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2017; 51:3742-3750. [PMID: 28287255 DOI: 10.1021/acs.est.6b06117] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
In this study, the effects of major anions (e.g., ClO4-, NO3-, Cl-, and SO42-) in water on the reactivity of zerovalent iron (ZVI) toward As(III) sequestration were evaluated with and without a weak magnetic field (WMF). Without WMF, ClO4- and NO3- had negligible influence on As(III) removal by ZVI, but Cl- and SO42- could improve As(III) sequestration by ZVI. Moreover, the WMF-enhancing effect on As(III) removal by ZVI was minor in ultrapure water. A synergetic effect of WMF and individual anion on improving As(III) removal by ZVI was observed for each of the investigated anion, which became more pronounced as the concentration of anion increased. Based on the extent of enhancing effects, these anions were ranked in the order of SO42- > Cl- > NO3- ≈ ClO4- (from most- to least-enhanced). Furthermore, the inhibitory effect of HSiO3-, HCO3-, and H2PO4- on ZVI corrosion could be alleviated taking advantage of the combined effect of WMF and SO42-. The coupled influence of anions and WMF was associated with the simultaneous movement of anions with paramagnetic Fe2+ to keep local electroneutrality in solution. Our findings suggest that the presence of anions is quite essential to maintaining or stimulating the WMF effect.
Collapse
Affiliation(s)
| | | | | | - Jinxiang Li
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University , Shanghai 200092, P. R. China
| | - Hejie Qin
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University , Shanghai 200092, P. R. China
| | - Xiaohong Guan
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University , Shanghai 200092, P. R. China
- Guangzhou Key Laboratory of Environmental Exposure and Health, School of Environment, Jinan University , Guangzhou 510632, P. R. China
| |
Collapse
|
12
|
Lu Q, Jeen SW, Gui L, Gillham RW. Nitrate reduction and its effects on trichloroethylene degradation by granular iron. WATER RESEARCH 2017; 112:48-57. [PMID: 28131098 DOI: 10.1016/j.watres.2017.01.031] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2016] [Revised: 01/11/2017] [Accepted: 01/17/2017] [Indexed: 06/06/2023]
Abstract
Laboratory column experiments and reactive transport modeling were performed to evaluate the reduction of nitrate and its effects on trichloroethylene (TCE) degradation by granular iron. In addition to determining degradation kinetics of TCE in the presence of nitrate, the columns used in this study were equipped with electrodes which allowed for in situ measurements of corrosion potentials of the iron material. Together with Raman spectroscopic measurements the mechanisms of decline in iron reactivity were examined. The experimental results showed that the presence of nitrate resulted in an increase in corrosion potential and the formation of thermodynamically stable passive films on the iron surface which impaired iron reactivity. The extent of the decline in iron reactivity was proportional to the nitrate concentration. Consequently, significant decreases in TCE and nitrate degradation rates and migration of degradation profiles for both compounds occurred. Furthermore, the TCE degradation kinetics deviated from the pseudo-first-order model. The results of reactive transport modeling, which related the amount of a passivating iron oxide, hematite (α-Fe2O3), to the reactivity of iron, were generally consistent with the patterns of migration of TCE and nitrate profiles observed in the column experiments. More encouragingly, the simulations successfully demonstrated the differences in performances of three columns without changing model parameters other than concentrations of nitrate in the influent. This study could be valuable in the design of iron permeable reactive barriers (PRBs) or in the development of effective maintenance procedures for PRBs treating TCE-contaminated groundwater with elevated nitrate concentrations.
Collapse
Affiliation(s)
- Qiong Lu
- Department of Earth and Environmental Sciences, University of Waterloo, Waterloo, Ontario, N2L 3G1, Canada
| | - Sung-Wook Jeen
- Department of Earth and Environmental Sciences & The Earth and Environmental Science System Research Center, Chonbuk National University, Jeonju-si, Jeollabuk-do, 561-756, Republic of Korea.
| | - Lai Gui
- Pest Management Regulatory Agency, Health Canada, Ottawa, Ontario, K1A 0K9, Canada
| | - Robert W Gillham
- Department of Earth and Environmental Sciences, University of Waterloo, Waterloo, Ontario, N2L 3G1, Canada
| |
Collapse
|
13
|
Fallahpour N, Mao X, Rajic L, Yuan S, Alshawabkeh AN. Electrochemical dechlorination of trichloroethylene in the presence of natural organic matter, metal ions and nitrates in a simulated karst media. JOURNAL OF ENVIRONMENTAL CHEMICAL ENGINEERING 2017; 5:240-245. [PMID: 29744302 PMCID: PMC5937535 DOI: 10.1016/j.jece.2016.11.046] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
A small-scale flow-through limestone column was used to evaluate the effect of common coexisting organic and inorganic compounds on the electrochemical dechlorination of trichloroethylene (TCE) in karst media. Iron anode was used to produce ferrous ions and promote reducing conditions in the column. The reduction of TCE under 90 mA current, 1 mL min-1 flow rate, and 1 mg L-1 initial TCE concentration, was inhibited in the presence of humic acids due to competition for direct electron transfer and/or reaction with atomic hydrogen produced at the cathode surface by water electrolysis. Similarly, presence of 10 mg L-1 chromate decreased TCE reduction rate to 53%. The hexavalent chromium was completely reduced to trivalent chromium due to the ferrous species produced from iron anode. Presence of 5 mg L-1 selenate decreased the removal of TCE by 10%. Chromium and selenate complexation with dissolved iron results in formation of aggregates, which cover the electrodes surface and reduce TCE dechlorination rate. Presence of 40 mg L-1 nitrates caused reductive transformation of TCE up to 80%. Therefore, TCE removal is influenced by the presence of other contaminants that are present as a mixture in groundwater in the following order: humic acid, chromate, selenate, and nitrate.
Collapse
Affiliation(s)
- Noushin Fallahpour
- Civil and Environmental Engineering Department, Northeastern University, Boston, MA, 02115, USA
| | - Xuhui Mao
- Civil and Environmental Engineering Department, Northeastern University, Boston, MA, 02115, USA
- School of Resource and Environmental Science. Wuhan University, Wuhan City, 430072, P. R. China
| | - Ljiljana Rajic
- Civil and Environmental Engineering Department, Northeastern University, Boston, MA, 02115, USA
| | - Songhu Yuan
- Civil and Environmental Engineering Department, Northeastern University, Boston, MA, 02115, USA
- State Key Lab of Biogeology and Environmental Geology, China University of Geosciences, Wuhan, 430074, P. R. China
| | - Akram N. Alshawabkeh
- Civil and Environmental Engineering Department, Northeastern University, Boston, MA, 02115, USA
| |
Collapse
|
14
|
Sun Y, Li J, Huang T, Guan X. The influences of iron characteristics, operating conditions and solution chemistry on contaminants removal by zero-valent iron: A review. WATER RESEARCH 2016; 100:277-295. [PMID: 27206056 DOI: 10.1016/j.watres.2016.05.031] [Citation(s) in RCA: 236] [Impact Index Per Article: 26.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2016] [Revised: 04/30/2016] [Accepted: 05/09/2016] [Indexed: 06/05/2023]
Abstract
For successful application of a zero-valent iron (ZVI) system, of particular interest is the performance of ZVI under various conditions. The current review comprehensively summarizes the potential effects of the major influencing factors, such as iron intrinsic characteristics (e.g., surface area, iron impurities and oxide films), operating conditions (e.g., pH, dissolved oxygen, iron dosage, iron pretreatment, mixing conditions and temperature) and solution chemistry (e.g., anions, cations and natural organic matter) on the performance of ZVI reported in literature. It was demonstrated that all of the factors could exert significant effects on the ZVI performance toward contaminants removal, negatively or positively. Depending on the removal mechanisms of the respective contaminants and other environmental conditions, an individual variable may exhibit different effects. On the other hand, many of these influences have not been well understood or cannot be individually isolated in experimental or natural systems. Thus, more research is required in order to elucidate the exact roles and mechanisms of each factor in affecting the performance of ZVI. Furthermore, based on these understandings, future research may attempt to establish some feasible strategies to minimize the deteriorating effects and utilize the positive effects so as to improve the performance of ZVI.
Collapse
Affiliation(s)
- Yuankui Sun
- Key Laboratory of Northwest Water Resources, Environment and Ecology, Ministry of Education, Xi'an University of Architecture and Technology, Xi'an 710055, PR China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, PR China
| | - Jinxiang Li
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China
| | - Tinglin Huang
- Key Laboratory of Northwest Water Resources, Environment and Ecology, Ministry of Education, Xi'an University of Architecture and Technology, Xi'an 710055, PR China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, PR China.
| | - Xiaohong Guan
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China.
| |
Collapse
|
15
|
Li Y, Cao Y, Jia D. Facile solid-state synthesis of Fe/FeOOH hierarchical nanostructures assembled from ultrathin nanosheets and their application in water treatment. CrystEngComm 2016. [DOI: 10.1039/c6ce01761d] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
16
|
Combination of aquifer thermal energy storage and enhanced bioremediation: resilience of reductive dechlorination to redox changes. Appl Microbiol Biotechnol 2015; 100:3767-80. [PMID: 26711280 PMCID: PMC4803826 DOI: 10.1007/s00253-015-7241-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2015] [Revised: 12/02/2015] [Accepted: 12/07/2015] [Indexed: 10/25/2022]
Abstract
To meet the demand for sustainable energy, aquifer thermal energy storage (ATES) is widely used in the subsurface in urban areas. However, contamination of groundwater, especially with chlorinated volatile organic compounds (CVOCs), is often being encountered. This is commonly seen as an impediment to ATES implementation, although more recently, combining ATES and enhanced bioremediation of CVOCs has been proposed. Issues to be addressed are the high water flow velocities and potential periodic redox fluctuation that accompany ATES. A column study was performed, at a high water flow velocity of 2 m/h, simulating possible changes in subsurface redox conditions due to ATES operation by serial additions of lactate and nitrate. The impacts of redox changes on reductive dechlorination as well as the microbial response of Dehalococcoides (DHC) were evaluated. The results showed that, upon lactate addition, reductive dechlorination proceeded well and complete dechlorination from cis-DCE to ethene was achieved. Upon subsequent nitrate addition, reductive dechlorination immediately ceased. Disruption of microorganisms' retention was also immediate and possibly detached DHC which preferred attaching to the soil matrix under biostimulation conditions. Initially, recovery of dechlorination was possible but required bioaugmentation and nutrient amendment in addition to lactate dosing. Repeated interruption of dechlorination and DHC activity by nitrate dosing appeared to be less easily reversible requiring more efforts for regenerating dechlorination. Overall, our results indicate that the microbial resilience of DHC in biosimulated ATES conditions is sensitive to redox fluctuations. Hence, combining ATES with bioremediation requires dedicated operation and monitoring on the aquifer geochemical conditions.
Collapse
|
17
|
Tang S, Wang XM, Mao YQ, Zhao Y, Yang HW, Xie YF. Effect of dissolved oxygen concentration on iron efficiency: Removal of three chloroacetic acids. WATER RESEARCH 2015; 73:342-352. [PMID: 25697696 DOI: 10.1016/j.watres.2015.01.027] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2014] [Revised: 01/11/2015] [Accepted: 01/20/2015] [Indexed: 06/04/2023]
Abstract
The monochloroacetic, dichloroacetic and trichloroacetic acid (MCAA, DCAA and TCAA) removed by metallic iron under controlled dissolved oxygen conditions (0, 0.75, 1.52, 2.59, 3.47 or 7.09 mg/L DO) was investigated in well-mixed batch systems. The removal of CAAs increased first and then decreased with increasing DO concentration. Compared with anoxic condition, the reduction of MCAA and DCAA was substantially enhanced in the presence of O2, while TCAA reduction was significantly inhibited above 2.59 mg/L. The 1.52 mg/L DO was optimum for the formation of final product, acetic acid. Chlorine mass balances were 69-102%, and carbon mass balances were 92-105%. With sufficient mass transfer from bulk to the particle surface, the degradation of CAAs was limited by their reduction or migration rate within iron particles, which were dependent on the change of reducing agents and corrosion coatings. Under anoxic conditions, the reduction of CAAs was mainly inhibited by the available reducing agents in the conductive layer. Under low oxic conditions, the increasing reducing agents and thin lepidocrocite layer were favorable for CAA dechlorination. Under high oxic conditions, the redundant oxygen competing for reducing agents and significant lepidocrocite growth became the major restricting factors. Various CAA removal mechanisms could be potentially applied to explaining the effect of DO concentration on iron efficiency for contaminant reduction in water and wastewater treatment.
Collapse
Affiliation(s)
- Shun Tang
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, PR China
| | - Xiao-mao Wang
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, PR China
| | - Yu-qin Mao
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, PR China
| | - Yu Zhao
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, PR China
| | - Hong-wei Yang
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, PR China.
| | - Yuefeng F Xie
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, PR China; Environmental Programs, The Pennsylvania State University, 777 West Harrisburg Pike, Middletown, PA 17057, USA
| |
Collapse
|
18
|
Ou C, Zhang S, Liu J, Shen J, Han W, Sun X, Li J, Wang L. Enhanced reductive transformation of 2,4-dinitroanisole in a anaerobic system: the key role of zero valent iron. RSC Adv 2015. [DOI: 10.1039/c5ra11197h] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Accelerated reduction of typical multi-substituted nitroaromatic compounds (NACs),i.e., 2,4-dinitroanisole (DNAN), was achieved in an anaerobic system coupled with zero valent iron (ZVI), with the underlying role of ZVI in this process elucidated.
Collapse
Affiliation(s)
- Changjin Ou
- Jiangsu Key Laboratory for Chemical Pollution Control and Resources Reuse
- School of Environmental and Biological Engineering
- Nanjing University of Science and Technology
- Nanjing
- China
| | - Shuai Zhang
- Jiangsu Key Laboratory for Chemical Pollution Control and Resources Reuse
- School of Environmental and Biological Engineering
- Nanjing University of Science and Technology
- Nanjing
- China
| | - Jianguo Liu
- Jiangsu Key Laboratory for Chemical Pollution Control and Resources Reuse
- School of Environmental and Biological Engineering
- Nanjing University of Science and Technology
- Nanjing
- China
| | - Jinyou Shen
- Jiangsu Key Laboratory for Chemical Pollution Control and Resources Reuse
- School of Environmental and Biological Engineering
- Nanjing University of Science and Technology
- Nanjing
- China
| | - Weiqing Han
- Jiangsu Key Laboratory for Chemical Pollution Control and Resources Reuse
- School of Environmental and Biological Engineering
- Nanjing University of Science and Technology
- Nanjing
- China
| | - Xiuyun Sun
- Jiangsu Key Laboratory for Chemical Pollution Control and Resources Reuse
- School of Environmental and Biological Engineering
- Nanjing University of Science and Technology
- Nanjing
- China
| | - Jiansheng Li
- Jiangsu Key Laboratory for Chemical Pollution Control and Resources Reuse
- School of Environmental and Biological Engineering
- Nanjing University of Science and Technology
- Nanjing
- China
| | - Lianjun Wang
- Jiangsu Key Laboratory for Chemical Pollution Control and Resources Reuse
- School of Environmental and Biological Engineering
- Nanjing University of Science and Technology
- Nanjing
- China
| |
Collapse
|
19
|
Vernon JD, Bonzongo JCJ. Volatilization and sorption of dissolved mercury by metallic iron of different particle sizes: implications for treatment of mercury contaminated water effluents. JOURNAL OF HAZARDOUS MATERIALS 2014; 276:408-414. [PMID: 24929302 DOI: 10.1016/j.jhazmat.2014.05.054] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2014] [Revised: 05/15/2014] [Accepted: 05/17/2014] [Indexed: 06/03/2023]
Abstract
Batch experiments were conducted to investigate the interactions between metallic iron particles and mercury (Hg) dissolved in aqueous solutions. The effect of bulk zero valent iron (ZVI) particles was tested by use of (i) granular iron and (ii) iron particles with diameters in the nano-size range and referred to herein as nZVI. The results show that the interactions between Hg(n+) and Fe(0) are dominated by Hg volatilization and Hg adsorption; with Hg adsorption being the main pathway for Hg removal from solution. Hg adsorption kinetic studies using ZVI and nZVI resulted in higher rate constants (k) for nZVI when k values were expressed as a function of mass of iron used (day(-1)g(-1)). In contrast, ZVI showed higher rates of Hg removal from solution when k values were expressed as a function iron particles' specific surface area (gm(-2)day(-1)). Overall, nZVI particles had a higher maximum sorption capacity for Hg than ZVI, and appeared to be an efficient adsorbent for Hg dissolved in aqueous solutions.
Collapse
Affiliation(s)
- Julianne D Vernon
- Engineering School of Sustainable Infrastructure and Environment, Department of Environmental Engineering Sciences, University of Florida, P.O. Box 116450, Gainesville, FL 32611-6450, USA.
| | - Jean-Claude J Bonzongo
- Engineering School of Sustainable Infrastructure and Environment, Department of Environmental Engineering Sciences, University of Florida, P.O. Box 116450, Gainesville, FL 32611-6450, USA.
| |
Collapse
|
20
|
Chen L, Liu Y, Liu F, Jin S. Treatment of co-mingled benzene, toluene and TCE in groundwater. JOURNAL OF HAZARDOUS MATERIALS 2014; 275:116-120. [PMID: 24857895 DOI: 10.1016/j.jhazmat.2014.04.057] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2014] [Revised: 04/22/2014] [Accepted: 04/23/2014] [Indexed: 06/03/2023]
Abstract
This work addressed a hypothetical but practical scenario that includes biological oxidation and reductive dechlorination in treating groundwater containing co-mingled plume of trichloroethene (TCE), benzene and toluene. Groundwater immediately downgradient from the commonly used zero-valent iron (ZVI) has shown alkaline pH (up to 10.7). The elevated pH may influence BTEX compounds (i.e., benzene, toluene, ethyl benzene, and xylenes) biodegradation, which could also be inhibited by elevated concentrations of TCE. Data from this work suggests that the inhibition coefficients (IC) value for 100 μg/L and 500 μg/L of TCE on benzene and toluene degradation are 2.1-2.8 at pH 7.9, and 3.5-6.1 at pH 10.5. For a co-mingled plume, it appears to be more effective to reduce TCE by ZVI before addressing benzene and toluene biodegradation. The ample buffering capacity of most groundwater and the adaptation of benzene and toluene-degrading microbes are likely able to eliminate the adverse influence of pH shifts downgradient from a ZVI-PRB.
Collapse
Affiliation(s)
- Liang Chen
- State Key Laboratory of Hydraulic Engineering Simulation and Safety, Tianjin University, Tianjin 300072, PR China; Beijing Key Laboratory of Water Resources and Environmental Engineering, China University of Geosciences, Beijing 100083, PR China
| | - Yulong Liu
- Research Institute of Safety and Environment Technology, China National Petroleum Corporation, Beijing 102206, PR China
| | - Fei Liu
- Beijing Key Laboratory of Water Resources and Environmental Engineering, China University of Geosciences, Beijing 100083, PR China
| | - Song Jin
- Department of Civil and Architectural Engineering, University of Wyoming, Laramie, WY 82071, USA; Advanced Environmental Technologies LLC., Fort Collins, CO 80525, USA.
| |
Collapse
|
21
|
Liang L, Guan X, Shi Z, Li J, Wu Y, Tratnyek PG. Coupled effects of aging and weak magnetic fields on sequestration of selenite by zero-valent iron. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2014; 48:6326-6334. [PMID: 24804570 DOI: 10.1021/es500958b] [Citation(s) in RCA: 88] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
The sequestration of Se(IV) by zero-valent iron (ZVI) is strongly influenced by the coupled effects of aging ZVI and the presence of a weak magnetic field (WMF). ZVI aged at pH 6.0 with MES as buffer between 6 and 60 h gave nearly constant rates of Se(IV) removal with WMF but with rate constants that are 10- to 100-fold greater than without. XANES analysis showed that applying WMF changes the mechanism of Se(IV) removal by ZVI aged for 6-60 h from adsorption followed by reduction to direct reduction. The strong correlation between Se(IV) removal and Fe2+ release suggests direct reduction of Se(IV) to Se(0) by Fe0, in agreement with the XANES analysis. The numerical simulation of ZVI magnetization revealed that the WMF influence on Se(IV) sequestration is associated mainly with the ferromagnetism of ZVI and the paramagnetism of Fe2+. In the presence of the WMF, the Lorentz force gives rise to convection in the solution, which narrows the diffusion layer, and the field gradient force, which tends to move paramagnetic ions (esp. Fe2+) along the higher field gradient at the ZVI particle surface, thereby inducing nonuniform depassivation and eventually localized corrosion of the ZVI surface.
Collapse
Affiliation(s)
- Liping Liang
- State Key Lab of Urban Water Resource and Environment, Harbin Institute of Technology , Harbin 150090, Heilongjiang, PR China
| | | | | | | | | | | |
Collapse
|
22
|
Reardon EJ. Capture and storage of hydrogen gas by zero-valent iron. JOURNAL OF CONTAMINANT HYDROLOGY 2014; 157:117-124. [PMID: 24389351 DOI: 10.1016/j.jconhyd.2013.11.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2013] [Revised: 11/09/2013] [Accepted: 11/26/2013] [Indexed: 06/03/2023]
Abstract
Granular Fe(o), used to reductively degrade a variety of contaminants in groundwater, corrodes in water to produce H2(g). A portion enters the Fe(o) lattice where it is stored in trapping sites such as lattice defects and microcracks. The balance is dissolved by the groundwater where it may exsolve as a gas if its solubility is exceeded. Gas exsolution can reduce the effectiveness of the Fe(o) treatment zone by reducing contact of the contaminant with iron surfaces or by diverting groundwater flow. It also represents a lost electron resource that otherwise could be involved in reductive degradation of contaminants. It is advantageous to select an iron for remediation purposes that captures a large proportion of the H2(g) it generates. This study examines various aspects of the H2(g) uptake process and has found 1) H2(g) does not have to be generated at the water/iron interface to enter the lattice. It can enter directly from the gas/water phases, 2) exposure of granular sponge iron to H2(g) reduces the dormant period for the onset of iron corrosion, 3) the large quantities of H2(g) generated by nano-Fe(o) injected into a reactive barrier of an appropriate granular iron can be captured in the lattice of that iron, and 4) lattice-bound hydrogen represents an additional electron resource to Fe(o) for remediation purposes and may be accessible using physical or chemical means.
Collapse
Affiliation(s)
- Eric J Reardon
- Department of Earth and Environmental Sciences, University of Waterloo, Waterloo, ON N2L 3G1, Canada.
| |
Collapse
|
23
|
Zhuang L, Gui L, Gillham RW, Landis RC. Laboratory and pilot-scale bioremediation of pentaerythritol tetranitrate (PETN) contaminated soil. JOURNAL OF HAZARDOUS MATERIALS 2014; 264:261-268. [PMID: 24316800 DOI: 10.1016/j.jhazmat.2013.11.035] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2013] [Revised: 10/31/2013] [Accepted: 11/14/2013] [Indexed: 06/02/2023]
Abstract
PETN (pentaerythritol tetranitrate), a munitions constituent, is commonly encountered in munitions-contaminated soils, and pose a serious threat to aquatic organisms. This study investigated anaerobic remediation of PETN-contaminated soil at a site near Denver Colorado. Both granular iron and organic carbon amendments were used in both laboratory and pilot-scale tests. The laboratory results showed that, with various organic carbon amendments, PETN at initial concentrations of between 4500 and 5000mg/kg was effectively removed within 84 days. In the field trial, after a test period of 446 days, PETN mass removal of up to 53,071mg/kg of PETN (80%) was achieved with an organic carbon amendment (DARAMEND) of 4% by weight. In previous laboratory studies, granular iron has shown to be highly effective in degrading PETN. However, for both the laboratory and pilot-scale tests, granular iron was proven to be ineffective. This was a consequence of passivation of the iron surfaces caused by the very high concentrations of nitrate in the contaminated soil. This study indicated that low concentration of organic carbon was a key factor limiting bioremediation of PETN in the contaminated soil. Furthermore, the addition of organic carbon amendments such as the DARAMEND materials or brewers grain, proved to be highly effective in stimulating the biodegradation of PETN and could provide the basis for full-scale remediation of PETN-contaminated sites.
Collapse
Affiliation(s)
- Li Zhuang
- Guangdong Institute of Eco-environmental and Soil Sciences, Guangzhou 510650, China.
| | - Lai Gui
- Department of Earth and Environmental Sciences, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada; Pest Management and Regulatory Agency, Health Canada, Ottawa, Ontario K1A 0K9, Canada
| | - Robert W Gillham
- Department of Earth and Environmental Sciences, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
| | | |
Collapse
|
24
|
Wu X, Lu S, Qiu Z, Sui Q, Lin K, Du X, Luo Q. The reductive degradation of 1,1,1-trichloroethane by Fe(0) in a soil slurry system. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2014; 21:1401-1410. [PMID: 23904257 DOI: 10.1007/s11356-013-2029-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2013] [Accepted: 07/19/2013] [Indexed: 06/02/2023]
Abstract
Most studies on the treatment of chlorinated contaminants by Fe(0) focus on aqueous system tests. However, few is known about the effectiveness of these tests for degrading chlorinated contaminants such as 1,1,1-trichloroethane (TCA) in soil. In this work, the reductive degradation performance of 1,1,1-TCA by Fe(0) was thoroughly investigated in a soil slurry system. The effects of various factors including acid-washed iron, the initial 1,1,1-TCA concentration, Fe(0) dosage, slurry pH, and common constituents in groundwater and soil such as Cl(-), HCO3 (-), SO4 (2-), and NO3 (-) anions and humic acid (HA) were evaluated. The experimental results showed that 1,1,1-TCA could be effectively degraded in 12 h for an initial Fe(0) dosage of 10 g L(-1) and a soil/water mass ratio of 1:5. The soil slurry experiments showed two-stage degradation kinetics: a slow reaction in the first stage and a fast reductive degradation of 1,1,1-TCA in the second stage. The reductive degradation of 1,1,1-TCA was expedited as the mass concentration of Fe(0) increased. In addition, high pHs adversely affected the degradation of 1,1,1-TCA over a pH range of 5.4-8.0 and the reductive degradation efficiency decreased with increasing slurry pH. The initial 1,1,1-TCA concentration and the presence of Cl(-) and SO4(2-) anions had negligible effects. HCO3(-) anions had a accelerative effect on 1,1,1-TCA removal, and both NO3(-) and HA had inhibitory effects. A Cl(-) mass balance showed that the amount of Cl(-) ions released into the soil slurry system during the 1,1,1-TCA degradation increased with increasing reaction time, suggesting that the main degradation mechanism of 1,1,1-TCA by Fe(0) in a soil slurry system was reductive dechlorination with 1,1-DCA as the main intermediate. In conclusion, this study provides a theoretical basis for the practical application of the remediation of contaminated sites containing chlorinated solvent.
Collapse
Affiliation(s)
- Xiaoliang Wu
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, East China University of Science and Technology, Shanghai, 200237, China
| | | | | | | | | | | | | |
Collapse
|
25
|
Jeen SW, Yang Y, Gui L, Gillham RW. Treatment of trichloroethene and hexavalent chromium by granular iron in the presence of dissolved CaCO3. JOURNAL OF CONTAMINANT HYDROLOGY 2013; 144:108-121. [PMID: 23247400 DOI: 10.1016/j.jconhyd.2012.11.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2012] [Revised: 10/22/2012] [Accepted: 11/08/2012] [Indexed: 06/01/2023]
Abstract
Column experiments and numerical simulations were conducted to evaluate the effects of Cr(VI) and dissolved CaCO(3) on the iron reactivity towards trichloroethene (TCE) and Cr(VI) reduction. Column experiments included measurements of iron corrosion potential and characterization of surface film composition using Raman spectroscopy. Three columns received different combinations of TCE (5 mg L(-1)), Cr(VI) (10 mg L(-1)) and dissolved CaCO(3) (300 mg L(-1)), after short periods of conditioning with Millipore water followed by 10 mg L(-1) TCE in Millipore water, for a total of 8 months. The results showed that co-existence with TCE did not affect Cr(VI) reduction kinetics, however, the presence of Cr(VI) reduced TCE degradation rates significantly. The formation of Fe(III)/Cr(III) products caused progressive passivation of the iron and was consistent with the increase in corrosion potential. The presence of dissolved CaCO(3) resulted in a stable corrosion potential and faster degradation rates of TCE and Cr(VI). Over time, however, the accumulation of secondary carbonate minerals on the iron surface decreased the iron reactivity. Numerical simulation using a reactive transport model reproduced the observations from the column experiments reasonably well. The simulation can be valuable in the design of PRBs or in the development of effective maintenance procedures for PRBs treating groundwater co-contaminated with Cr(VI) and TCE in the presence of dissolved CaCO(3).
Collapse
Affiliation(s)
- Sung-Wook Jeen
- Department of Earth and Environmental Sciences, University of Waterloo, Waterloo, Ontario, Canada.
| | | | | | | |
Collapse
|
26
|
Gibson BD, Blowes DW, Lindsay MBJ, Ptacek CJ. Mechanistic investigations of Se(VI) treatment in anoxic groundwater using granular iron and organic carbon: an EXAFS study. JOURNAL OF HAZARDOUS MATERIALS 2012; 241-242:92-100. [PMID: 23040313 DOI: 10.1016/j.jhazmat.2012.09.015] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2012] [Revised: 09/10/2012] [Accepted: 09/10/2012] [Indexed: 06/01/2023]
Abstract
The removal of aqueous Se(VI) from a simulated groundwater by granular iron (GI), organic carbon (OC), and a mixture of these reactive materials (GI-OC) was evaluated in laboratory batch experiments. The experiments were performed under anoxic conditions to simulate subsurface treatment. A total reaction time of 120 h (5 d) was chosen to investigate the rapid changes in speciation occurring over reaction times that are reasonable for permeable reactive barrier (PRB) systems. After 120 h, concentrations of Se decreased by >90% in the GI system, 15% in the OC system and 35% in the GI-OC mixture. Analysis of the materials after contact with Se using synchrotron-radiation based X-ray absorption spectroscopy (XAS) indicated the presence of Se(IV) and Se(0) on the margins of GI grains after 6h with evidence of SeO and SeSe bonding, whereas Se(VI) was not observed. After 72 h, Se(0) was the only form of Se present in the GI experiments. In the OC batches, the XAS analysis indicated binding consistent with sorption of aqueous Se(VI) onto the OC with only minor reduction to Se(IV) and Se(0) after 120 h. Selenium XAS spectra collected for the GI-OC mixture were consistent with spectra for Se(IV) and Se(0) on both the margins of GI grains and OC particles, suggesting that the presence of dissolved Fe may have mediated the reduction of sorbed Se(VI). The results suggest that the application of granular Fe is effective at inducing aqueous Se removal in anoxic conditions through reductive precipitation processes.
Collapse
Affiliation(s)
- Blair D Gibson
- Department of Earth and Environmental Sciences, University of Waterloo, 200 University Ave. W., Waterloo, ON N2L 3G1, Canada.
| | | | | | | |
Collapse
|
27
|
Chen L, Jin S, Fallgren PH, Swoboda-Colberg NG, Liu F, Colberg PJS. Electrochemical depassivation of zero-valent iron for trichloroethene reduction. JOURNAL OF HAZARDOUS MATERIALS 2012; 239-240:265-269. [PMID: 23009798 DOI: 10.1016/j.jhazmat.2012.08.074] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2012] [Revised: 08/28/2012] [Accepted: 08/29/2012] [Indexed: 06/01/2023]
Abstract
Permeable reactive barriers (PRBs) composed of zero-valent iron (ZVI) are susceptible to passivation, resulting in substantially decreased rates of chlorinated solvent removal over time. In this study, the application of low electrical direct current (DC) to restore the reductive capacity of passivated ZVI was examined. Electrical current was applied to a laboratory column reactor filled with a mixture of pre-passivated ZVI and sand. Variable voltage settings (0-12 V) were applied through two stainless steel electrodes placed at the ends of the reactor. While only partial restoration of the reductive capacity of the passivated ZVI was observed, higher rates of trichloroethene (TCE) removal were always obtained when current was applied, and the rates of TCE removal were roughly proportional to the voltage level. Although differences were observed between the rates and extent of TCE removal within the column, it is noteworthy that TCE removal was not restricted to that region of the column where the electrons entered (i.e., at the cathode). While complete "depassivation" of ZVI may be difficult to achieve in practice, the application of DC demonstrated observable restoration of reactivity of the passivated ZVI. This study provides evidence that this approach may significantly extend the life of a ZVI PRB.
Collapse
Affiliation(s)
- Liang Chen
- Beijing Key Laboratory of Water Resources and Environmental Engineering, China University of Geosciences, Beijing 100083, PR China
| | | | | | | | | | | |
Collapse
|
28
|
Ruhl AS, Weber A, Jekel M. Influence of dissolved inorganic carbon and calcium on gas formation and accumulation in iron permeable reactive barriers. JOURNAL OF CONTAMINANT HYDROLOGY 2012; 142-143:22-32. [PMID: 23069647 DOI: 10.1016/j.jconhyd.2012.09.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2011] [Revised: 09/10/2012] [Accepted: 09/13/2012] [Indexed: 06/01/2023]
Abstract
Uncertainties in long-term reactivity and gas accumulation in Fe(0) permeable reactive barriers still hinder a broad application of this groundwater remediation technology. In this study long-term column experiments were conducted under varying geochemical conditions. Generation of hydrogen by anaerobic corrosion in Fe(0) reactive filters was mainly influenced by the mass flux of dissolved inorganic carbon. Both increased concentrations and volume flows led to a substantial rise in gas generation but only to slight differences of gas accumulation within the pores of the reactive filter. Comparisons of columns with different lengths showed higher averaged corrosion rates in the shorter and lower corrosion rates in the longer columns. Calcium in conjunction with dissolved inorganic carbon formed compact and localized aragonite minerals, while in the absence of calcium chukanovite dominated, which covered and passivated the reactive surface to a higher extent. Magnetite was the major crystalline corrosion product in the absence of carbonate and no decline in long term corrosion rates was observed within up to 700 days of operation. Total gas yields of columns were restricted by passivation and approached a volume of approximately 13.5 mL/g granulated cast iron.
Collapse
Affiliation(s)
- Aki S Ruhl
- Berlin Institute of Technology, Water Quality Control, Str des 17 Juni 135, 10623 Berlin, Germany.
| | | | | |
Collapse
|
29
|
Zhuang L, Gui L, Gillham RW. Biodegradation of pentaerythritol tetranitrate (PETN) by anaerobic consortia from a contaminated site. CHEMOSPHERE 2012; 89:810-816. [PMID: 22647196 DOI: 10.1016/j.chemosphere.2012.04.062] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2012] [Revised: 04/23/2012] [Accepted: 04/30/2012] [Indexed: 06/01/2023]
Abstract
This study examined the role of denitrifying and sulfate-reducing bacteria in biodegradation of pentaerythritol tetranitrate (PETN). Microbial inocula were obtained from a PETN-contaminated soil. PETN degradation was evaluated using nitrate and/or sulfate as electron acceptors and acetate as a carbon source. Results showed that under different electron acceptor conditions tested, PETN was sequentially reduced to pentaerythritol via the intermediary formation of tri-, di- and mononitrate pentaerythritol (PETriN, PEDN and PEMN). The addition of nitrate enhanced the degradation rate of PETN by stimulating greater microbial activity and growth of nitrite reducing bacteria that were responsible for degrading PETN. However, a high concentration of nitrite (350mgL(-1)) accumulated from nitrate reduction, consequently caused self-inhibition and temporarily delayed PETN biodegradation. In contrast, PETN degraded at very similar rates in the presence and absence of sulfate, while PETN inhibited sulfate reduction. It is apparent that denitrifying bacteria possessing nitrite reductase were capable of using PETN and its intermediates as terminal electron acceptors in a preferential utilization sequence of PETN, PETriN, PEDN and PEMN, while sulfate-reducing bacteria were not involved in PETN biodegradation. This study demonstrated that under anaerobic conditions and with sufficient carbon source, PETN can be effectively biotransformed by indigenous denitrifying bacteria, providing a viable means of treatment for PETN-containing wastewaters and PETN-contaminated soils.
Collapse
Affiliation(s)
- Li Zhuang
- Guangdong Institute of Eco-environmental and Soil Sciences, Guangzhou, China.
| | | | | |
Collapse
|
30
|
Xie Y, Cwiertny DM. Influence of anionic cosolutes and pH on nanoscale zerovalent iron longevity: time scales and mechanisms of reactivity loss toward 1,1,1,2-tetrachloroethane and Cr(VI). ENVIRONMENTAL SCIENCE & TECHNOLOGY 2012; 46:8365-8373. [PMID: 22780331 DOI: 10.1021/es301753u] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Nanoscale zerovalent iron (NZVI) was aged over 30 days in suspension (2 g/L) with different anions (chloride, perchlorate, sulfate, carbonate, nitrate), anion concentrations (5, 25, 100 mN), and pH (7, 8). During aging, suspension samples were reacted periodically with 1,1,1,2-tetrachloroethane (1,1,1,2-TeCA) and Cr(VI) to determine the time scales and primary mode of NZVI reactivity loss. Rate constants for 1,1,1,2-TeCA reduction in Cl(-), SO(4)(2-), and ClO(4)(-) suspensions decreased by 95% over 1 month but were generally equivalent to one another, invariant of concentration and independent of pH. In contrast, longevity toward 1,1,1,2-TeCA depended upon NO(3)(-) and HCO(3)(-) concentration, with complete reactivity loss over 1 and 14 days, respectively, in 25 mN suspensions. X-ray diffraction suggests that reactivity loss toward 1,1,1,2-TeCA in most systems results from Fe(0) conversion into magnetite, whereas iron carbonate hydroxide formation limits reactivity in HCO(3)(-) suspensions. Markedly different trends in Cr(VI) removal capacity (mg Cr/g NZVI) were observed during aging, typically exhibiting greater longevity and a pronounced pH-dependence. Notably, a strong linear correlation exists between Cr(VI) removal capacities and rates of Fe(II) production measured in the absence of Cr(VI). While Fe(0) availability dictates longevity toward 1,1,1,2-TeCA, this correlation suggests surface-associated Fe(II) species are primarily responsible for Cr(VI) reduction.
Collapse
Affiliation(s)
- Yang Xie
- Department of Chemical and Environmental Engineering, University of California , Riverside A242 Bourns Hall Riverside, California 92521, USA
| | | |
Collapse
|
31
|
Tobiszewski M, Namieśnik J. Abiotic degradation of chlorinated ethanes and ethenes in water. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2012; 19:1994-2006. [PMID: 22293908 PMCID: PMC3390699 DOI: 10.1007/s11356-012-0764-9] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2011] [Accepted: 01/16/2012] [Indexed: 05/04/2023]
Abstract
INTRODUCTION Chlorinated ethanes and ethenes are among the most frequently detected organic pollutants of water. Their physicochemical properties are such that they can contaminate aquifers for decades. In favourable conditions, they can undergo degradation. In anaerobic conditions, chlorinated solvents can undergo reductive dechlorination. DEGRADATION PATHWAYS Abiotic dechlorination is usually slower than microbial but abiotic dechlorination is usually complete. In favourable conditions, abiotic reactions bring significant contribution to natural attenuation processes. Abiotic agents that may enhance the reductive dechlorination of chlorinated ethanes and ethenes are zero-valent metals, sulphide minerals or green rusts. OXIDATION At some sites, permanganate and Fenton's reagent can be used as remediation tool for oxidation of chlorinated ethanes and ethenes. SUMMARY Nanoscale iron or bimetallic particles, due to high efficiency in degradation of chlorinated ethanes and ethenes, have gained much interest. They allow for rapid degradation of chlorinated ethanes and ethenes in water phase, but they also give benefit of treating dense non-aqueous phase liquid.
Collapse
Affiliation(s)
- Marek Tobiszewski
- Department of Analytical Chemistry, Chemical Faculty, Gdańsk University of Technology (GUT), ul. G. Narutowicza 11/12, 80-233 Gdańsk, Poland.
| | | |
Collapse
|
32
|
Chen L, Liu F, Liu Y, Dong H, Colberg PJS. Benzene and toluene biodegradation down gradient of a zero-valent iron permeable reactive barrier. JOURNAL OF HAZARDOUS MATERIALS 2011; 188:110-115. [PMID: 21316847 DOI: 10.1016/j.jhazmat.2011.01.076] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2010] [Revised: 12/27/2010] [Accepted: 01/18/2011] [Indexed: 05/30/2023]
Abstract
This study simulated benzene and toluene biodegradation down gradient of a zero-valent iron permeable reactive barrier (ZVI PRB) that reduces trichloroethylene (TCE). The effects of elevated pH (10.5) and the presence of a common TCE dechlorination by product [cis-1,2-dichloroethene (cis-1,2-DCE)] on benzene and toluene biodegradation were evaluated in batch experiments. The data suggest that alkaline pH (pH 10.5), often observed down gradient of ZVI PRBs, inhibits Fe(III)-mediated biotransformation of both benzene and toluene. Removal was reduced by 43% for benzene and 26% for toluene as compared to the controls. The effect of the addition of cis-1,2-DCE on benzene and toluene biodegradation was positive and resulted in removal that was greater than or equal to the controls. These results suggest that, at least for cis-1,2-DCE, its formation may not be toxic to iron-reducing benzene and toluene degrading bacteria; however, for microbial benzene and toluene removal down gradient of a ZVI PRB, it may be necessary to provide pH control, especially in the case of a biological PRB that is downstream from a ZVI PRB.
Collapse
Affiliation(s)
- Liang Chen
- Beijing Key Laboratory of Water Resources and Environmental Engineering, China University of Geosciences, Beijing 100083, PR China.
| | | | | | | | | |
Collapse
|
33
|
Hernández R, Sacristán J, Asín L, Torres TE, Ibarra MR, Goya GF, Mijangos C. Magnetic Hydrogels Derived from Polysaccharides with Improved Specific Power Absorption: Potential Devices for Remotely Triggered Drug Delivery. J Phys Chem B 2010; 114:12002-7. [DOI: 10.1021/jp105556e] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- R. Hernández
- Instituto de Ciencia y Tecnología de Polímeros, CSIC, Juan Cierva 3, E-28006 Madrid, Spain, Instituto de Nanociencia de Aragón (INA), Universidad de Zaragoza, 50018 Spain, and Departamento de Física de la Materia Condensada, Universidad de Zaragoza, Zaragoza, Spain
| | - J. Sacristán
- Instituto de Ciencia y Tecnología de Polímeros, CSIC, Juan Cierva 3, E-28006 Madrid, Spain, Instituto de Nanociencia de Aragón (INA), Universidad de Zaragoza, 50018 Spain, and Departamento de Física de la Materia Condensada, Universidad de Zaragoza, Zaragoza, Spain
| | - L. Asín
- Instituto de Ciencia y Tecnología de Polímeros, CSIC, Juan Cierva 3, E-28006 Madrid, Spain, Instituto de Nanociencia de Aragón (INA), Universidad de Zaragoza, 50018 Spain, and Departamento de Física de la Materia Condensada, Universidad de Zaragoza, Zaragoza, Spain
| | - T. E. Torres
- Instituto de Ciencia y Tecnología de Polímeros, CSIC, Juan Cierva 3, E-28006 Madrid, Spain, Instituto de Nanociencia de Aragón (INA), Universidad de Zaragoza, 50018 Spain, and Departamento de Física de la Materia Condensada, Universidad de Zaragoza, Zaragoza, Spain
| | - M. R. Ibarra
- Instituto de Ciencia y Tecnología de Polímeros, CSIC, Juan Cierva 3, E-28006 Madrid, Spain, Instituto de Nanociencia de Aragón (INA), Universidad de Zaragoza, 50018 Spain, and Departamento de Física de la Materia Condensada, Universidad de Zaragoza, Zaragoza, Spain
| | - G. F. Goya
- Instituto de Ciencia y Tecnología de Polímeros, CSIC, Juan Cierva 3, E-28006 Madrid, Spain, Instituto de Nanociencia de Aragón (INA), Universidad de Zaragoza, 50018 Spain, and Departamento de Física de la Materia Condensada, Universidad de Zaragoza, Zaragoza, Spain
| | - C. Mijangos
- Instituto de Ciencia y Tecnología de Polímeros, CSIC, Juan Cierva 3, E-28006 Madrid, Spain, Instituto de Nanociencia de Aragón (INA), Universidad de Zaragoza, 50018 Spain, and Departamento de Física de la Materia Condensada, Universidad de Zaragoza, Zaragoza, Spain
| |
Collapse
|
34
|
Song H, Carraway ER, Kim YH, Batchelor B, Jeon BH, Kim JG. Amendment of hydroxyapatite in reduction of tetrachloroethylene by zero-valent zinc: its rate enhancing effect and removal of Zn(II). CHEMOSPHERE 2008; 73:1420-7. [PMID: 18823642 DOI: 10.1016/j.chemosphere.2008.08.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2008] [Revised: 08/06/2008] [Accepted: 08/06/2008] [Indexed: 05/11/2023]
Abstract
The effects of hydroxyapatite (HAP) on dechlorination of tetrachloroethylene (PCE) by zero-valent zinc (ZVZ) were examined in batch systems. PCE was primarily transformed to trichloroethylene by ZVZ, with 1,2-trans-dichloroethylene representing a minor product. Dechlorination of PCE was accelerated by the presence of HAP, and the pseudo-first order rate constants increased with increasing amount of HAP. Zn(II), mostly generated from oxidative dissolution of ZVZ by PCE, was effectively removed from the solution by HAP. Ion substitution, coprecipitation, and adsorption are proposed as the possible mechanisms for Zn(II) removal. These reactions appeared to occur simultaneously and the contribution of each reaction to overall removal of Zn(II) was primarily dependent on HAP loading at constant ZVZ loading. The results indicate that the use of HAP in combination with conventional zero-valent metals is promising in that it can achieve both degradation of organic contaminants and stabilization of inorganic contaminants.
Collapse
Affiliation(s)
- Hocheol Song
- Korea Institute of Geoscience and Mineral Resources, Daejeon 305-350, South Korea.
| | | | | | | | | | | |
Collapse
|
35
|
Zhuang L, Gui L, Gillham RW. Degradation of pentaerythritol tetranitrate (PETN) by granular iron. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2008; 42:4534-4539. [PMID: 18605582 DOI: 10.1021/es7029703] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Pentaerythritol tetranitrate (PETN), a nitrate ester, is used primarily as an explosive. It is of environmental concern, posing a threat to aquatic organisms with an estimated EC50 five times greater than that of RDX. This study evaluated the kinetics and products of PETN degradation in the presence of granular iron. PETN transformation in columns containing 100% granular iron and 30% iron mixed with 70% silica sand followed pseudo first-order kinetics, with average half-lives of 0.26 and 1.58 min, respectively. The reduction pathway was proposed to be sequential denitration, in which PETN was stepwise reduced to pentaerythritol with the formation of pentaerythritol trinitrate and pentaerythritol dinitrate as intermediates. The intermediate of pentaerythritol mononitrate was not detected; however, the nearly 100% nitrogen mass recovery supported complete denitration. Nitrite was released in each denitration step and was subsequently reduced to ammonium by iron. Nitrate was not detected during the experiment suggesting that hydrolysis was not involved in PETN degradation. Batch experiments showed that when solid-phase PETN is present, dissolution is the rate-limiting factorfor PETN mass removal. Using 50% methanol as a cosolvent PETN solubility was enhanced and thus the removal efficiency was improved. The results demonstrate excellent potential of using iron to remediate PETN-contaminated water.
Collapse
Affiliation(s)
- Li Zhuang
- Department of Earth and Environmental Sciences, University of Waterloo, Waterloo, Ontario, Canada N2L 3G1
| | | | | |
Collapse
|
36
|
Min JE, Kim M, Pardue JH, Park JW. Reduction of trichloroethylene and nitrate by zero-valent iron with peat. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART A, TOXIC/HAZARDOUS SUBSTANCES & ENVIRONMENTAL ENGINEERING 2008; 43:144-153. [PMID: 18172806 DOI: 10.1080/10934520701781244] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
The feasibility of using zero-valent iron (ZVI) and peat mixture as in situ barriers for contaminated sediments and groundwater was investigated. Trichloroethylene (TCE) and nitrate (NO(3)(-)), redox sensitive contaminants were reduced by ZVI and peat soil mixture under anaerobic condition. Peat was used to support the sorption of TCE, microbial activity for biodegradation of TCE and denitrification while TCE and nitrate were reduced by ZVI. Decreases in TCE concentrations were mainly due to ZVI, while peat supported denitrifying microbes and further affected the sorption of TCE. Due to the competition of electrons, nitrate reduction was inhibited by TCE, while TCE reduction was not affected by nitrate. From the results of peat and sterilized peat, it can be concluded that peat was involved in both dechlorination and denitrification but biological reduction of TCE was negligible compared to that of nitrate. The results from hydrogen and methane gas analyses confirmed that hydrogen utilization by microbes and methanogenic process had occurred in the ZVI-peat system. Even though effect of the peat on TCE reduction were quantitatively small, ZVI and peat contributed to the removal of TCE and nitrate independently. The 16S rRNA analysis revealed that viable bacterial diversity was narrow and the most frequently observed genera were Bacillus and Staphylococcus spp.
Collapse
Affiliation(s)
- Jee-Eun Min
- Department of Civil Engineering, Hanyang University, Seoul, Korea
| | | | | | | |
Collapse
|
37
|
Liu Y, Phenrat T, Lowry GV. Effect of TCE concentration and dissolved groundwater solutes on NZVI-promoted TCE dechlorination and H2 evolution. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2007; 41:7881-7887. [PMID: 18075103 DOI: 10.1021/es0711967] [Citation(s) in RCA: 197] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Nanoscale zero-valent iron (NZVI) is used to remediate contaminated groundwater plumes and contaminant source zones. The target contaminant concentration and groundwater solutes (NO3-, Cl-, HCO3-, SO4(2-), and HPO4(2-)) should affect the NZVI longevity and reactivity with target contaminants, but these effects are not well understood. This study evaluates the effect of trichloroethylene (TCE) concentration and common dissolved groundwater solutes on the rates of NZVI-promoted TCE dechlorination and H2 evolution in batch reactors. Both model systems and real groundwater are evaluated. The TCE reaction rate constant was unaffected by TCE concentration for [TCE] < or = 0.46 mM and decreased by less than a factor of 2 for further increases in TCE concentration up to water saturation (8.4 mM). For [TCE] > or = 0.46 mM, acetylene formation increased, and the total amount of H2 evolved at the end of the particle reactive lifetime decreased with increasing [TCE], indicating a higher Fe0 utilization efficiency for TCE dechlorination. Common groundwater anions (5mN) had a minor effect on H2 evolution but inhibited TCE reduction up to 7-fold in increasing order of Cl- < SO4(2-) < HCO3- < HPO4(2). This order is consistent with their affinity to form complexes with iron oxide. Nitrate, a NZVI-reducible groundwater solute, present at 0.2 and 1 mN did not affect the rate of TCE reduction but increased acetylene production and decreased H2 evolution. NO3- present at > 3 mM slowed TCE dechlorination due to surface passivation. NO3- present at 5 mM stopped TCE dechlorination and H2 evolution after 3 days. Dissolved solutes accounted for the observed decrease of NZVI reactivity for TCE dechlorination in natural groundwater when the total organic content was small (< 1 mg/L).
Collapse
Affiliation(s)
- Yueqiang Liu
- Department of Civil & Environmental Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213-3890, USA
| | | | | |
Collapse
|
38
|
Lyon JL, Stevenson KJ. Anomalous electrochemical dissolution and passivation of iron growth catalysts in carbon nanotubes. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2007; 23:11311-8. [PMID: 17910488 DOI: 10.1021/la7019186] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Catalytically synthesized carbon nanotubes (CNTs) such as those prepared via chemical vapor deposition (CVD) contain metallic impurities including Fe, Ni, Co, and Mo. Transition metal contaminants such as Fe can participate in redox cycling reactions that catalyze the generation of reactive oxygen species and other products. Through the nature of the CVD growth process, metallic nanoparticles become encased within the CNT graphene lattice and may still be chemically accessible and participate in redox chemistry, especially when these materials are utilized as electrodes in electrochemical applications. We demonstrate that metallic impurities can be selectively dissolved and/or passivated during electrochemical potential cycling. Anomalous Fe dissolution and passivation behavior is observed in neutral (pH=6.40+/-0.03) aqueous solutions when using multiwalled CNTs prepared from CVD. Fe particles contained within these CNTs display intriguing, potential-dependent Fe redox activity that varies with supporting electrolyte composition. In neutral solutions containing dibasic sodium phosphate, sodium acetate, and sodium citrate, FeII dissolution and surface confined FeII/III redox activity are significant despite Fe being encapsulated within CNT graphene layers. However, no apparent Fe dissolution is observed in 1 M potassium nitrate solutions, suggesting that the electrolyte composition plays an important role in observing FeII dissolution, passivation, and surface confined FeII/III redox activity. Between potentials of 0 and -1.1 V versus Hg/Hg2SO4, the primary redox-active Fe species are surface FeII/III oxides/oxyhydroxides. This FeII/III surface oxide redox chemistry can be completely suppressed by passivating Fe through repeated cycling of the CNTs in supporting electrolyte. By increasing the potential to more negative values (>-1.3 V), FeII dissolution may be induced in electrolyte solutions containing acetate and phosphate and inhibited by addition of sodium benzoate, which adsorbs on exposed Fe particles, effectively passivating them. Finally, we observe that the FeII/III redox chemistry or subsequent passivation does not affect the onset of oxygen reduction at nitrogen-doped CNTs, suggesting that the surface-bound FeII species is not the primary catalytically active site for oxygen reduction in these materials.
Collapse
Affiliation(s)
- Jennifer L Lyon
- Department of Chemistry and Biochemistry, Center for Electrochemistry, The University of Texas at Austin, 1 University Station MC A5300, Austin, Texas 78712, USA
| | | |
Collapse
|
39
|
Kouznetsova I, Bayer P, Ebert M, Finkel M. Modelling the long-term performance of zero-valent iron using a spatio-temporal approach for iron aging. JOURNAL OF CONTAMINANT HYDROLOGY 2007; 90:58-80. [PMID: 17113680 DOI: 10.1016/j.jconhyd.2006.09.014] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2005] [Revised: 09/11/2006] [Accepted: 09/23/2006] [Indexed: 05/12/2023]
Abstract
Zero-valent iron (ZVI) permeable reactive barriers (PRBs) have become popular for the degradation of chlorinated ethenes (CEs) in groundwater. However, a knowledge gap exists pertaining to the longevity of ZVI. The present investigation addresses this situation by suggesting a numerical simulation model that is intended to be used in conjunction with field or column tests in order to describe long-term ZVI performance at individual sites. As ZVI aging processes are not yet completely understood and are still subject to research, we propose a phenomenological modelling technique instead of a common process-based approach. We describe ZVI aging by parameters that characterise the extent and rate of ZVI reactivity change depending on the propagation of the precipitation front through ZVI. We approximate degradation of CEs by pseudo-first order kinetics accounting for the formation of partially dechlorinated products, and describe ZVI reactivity change by scaling the degradation rate constants. Three independent modelling studies were carried out to test the suitability of the conceptual and numerical model to describe the observations of accelerated column tests. All three tests indicated that ZVI reactivity declined with an increasing number of exchanged pore volumes. Measured and modelled concentrations showed good agreement, thereby proving that resolving spatial as well as temporal changes in ZVI reactivity is reasonable.
Collapse
Affiliation(s)
- Irina Kouznetsova
- Center for Applied Geoscience, University of Tuebingen, Sigwartstrasse 10, 72076 Tuebingen, Germany
| | | | | | | |
Collapse
|
40
|
Huang YH, Zhang TC. Reduction of nitrobenzene and formation of corrosion coatings in zerovalent iron systems. WATER RESEARCH 2006; 40:3075-3082. [PMID: 16901528 DOI: 10.1016/j.watres.2006.06.016] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2006] [Revised: 05/07/2006] [Accepted: 06/22/2006] [Indexed: 05/11/2023]
Abstract
Batch tests were conducted to investigate reduction of nitrobenzene in a zerovalent iron system (Fe0) under various conditions. The results indicated that a limited amount of nitrobenzene (ArNO2) could be reduced to aniline by Fe0, but formation of a lepidocrocite (gamma-FeOOH) coating could significantly slow down the reaction. However, augmenting Fe0 with substoichiometric FeCl2 could dramatically accelerate the reaction. Surface-adsorbed Fe(II), not pH nor Cl-, was found to be responsible for rejuvenating the system. O2 and nitrobenzene could be concomitantly reduced by Fe0 in the presence of Fe2+. In the Fe0 system, both nitrobenzene and O2 favored formation of lepidocrocite; in the presence of aq. Fe(II), a stratified corrosion coating could develop, with magnetite (Fe3O4) as the inner layer and lepidocrocite as the outer layer. Fe2+ was not the main reductant for the reactions, but might accelerate the autoreduction of lepidocrocite to magnetite by the underlying Fe0. Our understanding on the role of Fe(II) in conjunction with a stratified, evolving corrosion coating may be useful for establishing an iron aquatic corrosion model.
Collapse
Affiliation(s)
- Yong H Huang
- Department of Civil Engineering, University of Nebraska-Lincoln at Omaha Campus, Omaha, NE 68182-0178, USA.
| | - Tian C Zhang
- Department of Civil Engineering, University of Nebraska-Lincoln at Omaha Campus, Omaha, NE 68182-0178, USA
| |
Collapse
|
41
|
Zhang TC, Huang YH. Profiling iron corrosion coating on iron grains in a zerovalent iron system under the influence of dissolved oxygen. WATER RESEARCH 2006; 40:2311-20. [PMID: 16782169 DOI: 10.1016/j.watres.2006.04.026] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2005] [Revised: 04/12/2006] [Accepted: 04/21/2006] [Indexed: 05/10/2023]
Abstract
Rapid oxidation of Fe(0) by O(2) occurred when Fe(0) grains were bathed in 0.54 mM FeCl(2) solution saturated with dissolved oxygen (DO), forming a substantial corrosion coating on Fe(0) grains. A sonication method was developed to strip the corrosion coating off the iron grains layer by layer. The transformation of the constituents and the morphology of the corrosion coating along its depth and over reaction time were investigated with composition analysis, X-ray diffraction and scanning electron microscopy. Results indicate that the sonication method could consistently recover >90% iron oxides produced by the Fe(0)-DO redox reaction. Magnetite (Fe(3)O(4)) and lepidocrocite (gamma-FeOOH) were identified as the corrosion products. Initially, lepidocrocite was the preferential product in the presence of DO. As the oxide coating thickened, the inner layer transformed to magnetite, which retained as the only stable corrosion product once DO was depleted. The study confirms the phase transformations between gamma-FeOOH and Fe(3)O(4) within a stratified corrosion coating. The sonication technique exemplifies a new approach for investigating more complicated processes in Fe(0)/oxides/contaminants systems.
Collapse
Affiliation(s)
- Tian C Zhang
- Department of Civil Engineering, University of Nebraska-Lincoln, Omaha, 68182-0178, USA
| | | |
Collapse
|
42
|
Ebert M, Köber R, Parbs A, Plagentz V, Schäfer D, Dahmke A. Assessing degradation rates of chlorinated ethylenes in column experiments with commercial iron materials used in permeable reactive barriers. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2006; 40:2004-10. [PMID: 16570628 DOI: 10.1021/es051720e] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Multiple column experiments were performed using two commercial iron materials to evaluate the necessity and usefulness of preliminary investigations in permeable reactive barrier (PRB) design for chlorinated organics. Experiments were performed with contaminated groundwater and involved fresh iron granules or altered iron material excavated from PRBs. The determination of first-order rate coefficients by global nonlinear least-squares fittings indicated a variability in rate coefficients on 1 or 2 orders of magnitude. Geometric mean values of surface area normalized rate coefficients (in 10(-5) L m(-2) h(-1)) for fresh gray cast iron and iron sponge, respectively, are: tetrachloroethene (4.5, 2.6), trichloroethene (8.1, 3.3), cis-1,2-dichloroethene (3.1, 2.9), trans-1,2-dichloroethene (9.5, 5.3), 1,1-dichloroethene (4.0, 4.4), and vinyl chloride (1.6, 6.1). The increasing rate coefficients with decreasing grade of chlorination, which characterize degradation at iron sponge are linearly related to diffusion coefficients in water, suggesting diffusion limitation in the degradation process for this particular material, possibly due to a high inner surface. The variability in rate coefficients seems to be too high to use mean rate coefficients from published studies in the design procedure of PRBs, and variabilities cannot be related to groundwater characteristics, waterflow through the reactive cells, or secondary corrosion reactions.
Collapse
Affiliation(s)
- Markus Ebert
- Institute of Geosciences, Christian-Albrechts-Universität zu Kiel, Ludewig-Meyn Strasse 10, 24118 Kiel, Germany.
| | | | | | | | | | | |
Collapse
|
43
|
Kohn T, Roberts AL. The effect of silica on the degradation of organohalides in granular iron columns. JOURNAL OF CONTAMINANT HYDROLOGY 2006; 83:70-88. [PMID: 16364495 DOI: 10.1016/j.jconhyd.2005.10.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2004] [Revised: 10/14/2005] [Accepted: 10/20/2005] [Indexed: 05/05/2023]
Abstract
Dissolved silica species are naturally occurring, ubiquitous groundwater constituents with corrosion-inhibiting properties. Their influence on the performance and longevity of iron-based permeable reactive barriers for treatment of organohalides was investigated through long-term column studies using Connelly iron as the reactive medium. Addition of dissolved silica (0.5 mM) to the column feed solution led to a reduction in iron reactivity of 65% for trichloroethylene (TCE), 74% for 1,1,2-trichloroethane (1,1,2-TCA), and 93% for 1,1,1-trichloroethane (1,1,1-TCA), compared to columns operated under silica-free conditions. Even though silica adsorption was a gradual process, the inhibitory effect was evident within the first week, with subsequent decreases in reactivity over 288 days being relatively minor. Lower concentrations of dissolved silica species (0.2 mM) led to a lesser decrease (70%) in iron reactivity toward 1,1,1-TCA. The presence of dissolved silica species produced a shift in TCE product distribution toward the more highly chlorinated product cis-dichloroethylene (cis-DCE), although it did not appear to alter products originating from the trichloroethanes. The major corrosion products identified were magnetite (Fe3O4) or maghemite (gamma-Fe2O3) and carbonate green rust ([Fe4(2+)Fe(2)3+(OH)12][CO(3).2H2O]). Iron carbonate hydroxide (Fe(II)1.8Fe(III)0.2(OH)2.2CO3) was only found in the silica-free column, indicating that silica may hinder its formation. A comparison with columns operated under the same conditions, but using Master Builder iron as the reactive matrix, showed that Connelly iron is initially less reactive, but performs better than Master Builder iron over 288 days.
Collapse
Affiliation(s)
- Tamar Kohn
- Department of Geography and Environmental Engineering, 313 Ames Hall Johns Hopkins University, 3400 N. Charles St., Baltimore, MD 21218-2686, USA
| | | |
Collapse
|
44
|
Reardon EJ. Zerovalent irons: styles of corrosion and inorganic control on hydrogen pressure buildup. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2005; 39:7311-7. [PMID: 16201664 DOI: 10.1021/es050507f] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Apparent corrosion rates have been measured for several commercially available zerovalent irons by monitoring hydrogen evolution in closed cells. Sievert-type rate constants (ks) were determined to account for hydrogen entering the iron lattice. Thus corrected corrosion rates (Rcorr) are provided for all irons tested in this study. Because the rate of hydrogen entering the iron lattice increases with PH2(1/2), and the rate of hydrogen production from corrosion, far from equilibrium conditions, is independent of PH2, at some time under closed system conditions the two rates become equal and a steady-state PH2 is attained. A relation describing this condition has been derived: PH2SS = [Rcorr/ ks]2 For the granular irons considered in this study, PH2SS values vary from less than one to eight bars, in contrast to the calculated thermodynamic equilibrium PH2 values for anaerobic corrosion, which range from 138 to 631 bar depending on the assumed product of corrosion. Because groundwater flow at an iron permeable reactive barrier removes hydrogen gas in the dissolved state, PH2SS values will be less than calculated using the relation above. A method is presented to calculate PH2 values along the flow direction in a PRB, and thus the maximum PH2 value that can possibly develop, assuming no bacterial utilization of the produced hydrogen.
Collapse
Affiliation(s)
- Eric J Reardon
- Department of Earth Sciences, University of Waterloo, Waterloo, Ontario, Canada.
| |
Collapse
|
45
|
Huang YH, Zhang TC. Effects of dissolved oxygen on formation of corrosion products and concomitant oxygen and nitrate reduction in zero-valent iron systems with or without aqueous Fe2+. WATER RESEARCH 2005; 39:1751-60. [PMID: 15899273 DOI: 10.1016/j.watres.2005.03.002] [Citation(s) in RCA: 146] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2004] [Revised: 02/15/2005] [Indexed: 05/02/2023]
Abstract
Batch tests were conducted in zero-valent iron (ZVI or Fe0) systems to investigate oxygen consumption and the effect of dissolved oxygen (DO) on formation of iron corrosion products, nitrate reduction, the reactivity of Fe0, the role Fe2+ (aq) played, and the fate of Fe2+. The study indicates that without augmenting Fe2+ (aq), neither nitrate nor DO could be removed efficiently by Fe0. In the presence of Fe2+ (aq), nitrate and DO could be reduced concomitantly with limited interference with each other. Unlike nitrate reduction, DO removal by Fe0 did not consume Fe2+ (aq). A two-layer structure, with an inner layer of magnetite and an outer layer of lepidocrocite, may be formed in the presence of DO. When DO depleted, the outer lepidocrocite layer was transformed to magnetite. The inner layer of magnetite, even in a substantial thickness, might not impede the Fe0 reactivity as much as the thin interfacial layer between the oxide coating and liquid. Surface-bound Fe2+ may greatly enhance the electron transfer from the Fe0 core to the solid-liquid interface, and thus improve the performance of the Fe0 process.
Collapse
Affiliation(s)
- Yong H Huang
- Civil Engineering Department, University of Nebraska-Lincoln at Omaha Campus, Omaha, NE 68182-0178, USA
| | | |
Collapse
|
46
|
Mishra D, Farrell J. Understanding nitrate reactions with zerovalent iron using tafel analysis and electrochemical impedance spectroscopy. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2005; 39:645-650. [PMID: 15707067 DOI: 10.1021/es049259y] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
This study investigated the reaction mechanisms of nitrate (NO3-) with zerovalent iron (ZVI) media under conditions relevantto groundwatertreatment using permeable reactive barriers (PRB). Reaction rates of NO3- with freely corroding and with cathodically or anodically polarized iron wires were measured in batch reactors. Tafel analysis and electrochemical impedance spectroscopy (EIS) were used to investigate the reactions occurring on the iron surfaces. Reduction of NO3- by corroding iron resulted in near stoichiometric production of NO2-, which did not measurably react in the absence of added Fe(II). Increasing NO3- concentrations resulted in increasing corrosion currents. However, EIS and Tafel analyses indicated that there was little direct reduction of NO3- at the ZVI surface, despite the presence of water reduction. This behavior can be attributed to formation of a microporous oxide on the iron surfaces that blocked reduction of NO3- and NO2- but did not block water reduction. This finding is consistent with previous observations that NO3- impedes reduction of organic compounds by ZVI. Nitrite concentrations greater than 4 mM resulted in anodic passivation of the iron, but passivation was not observed with NO3- concentrations as high as 96 mM. This indicates that the passivating oxide preventing NO3- reduction was permeable toward cation migration. Since reaction with Fe(0) can be excluded asthe mechanism for NO3- and NO2- reduction, reaction with Fe(II)-containing oxides coating the iron surface is the most likely reaction mechanism. This suggests that short-term batch tests requiring little turnover of reactive sites on the iron surface may overestimate long-term rates of NO3- removal because the effects of passivation are not apparent in batch tests conducted with high initial Fe(II) to NO3- ratios.
Collapse
Affiliation(s)
- Dhananjay Mishra
- Department of Chemical and Environmental Engineering, University of Arizona, Tucson, Arizona 85721, USA
| | | |
Collapse
|
47
|
Chourpa I, Douziech-Eyrolles L, Ngaboni-Okassa L, Fouquenet JF, Cohen-Jonathan S, Soucé M, Marchais H, Dubois P. Molecular composition of iron oxide nanoparticles, precursors for magnetic drug targeting, as characterized by confocal Raman microspectroscopy. Analyst 2005; 130:1395-403. [PMID: 16172665 DOI: 10.1039/b419004a] [Citation(s) in RCA: 142] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The chemical and structural properties of ferrite-based nanoparticles, precursors for magnetic drug targeting, have been studied by Raman confocal multispectral imaging. The nanoparticles were synthesised as aqueous magnetic fluids by co-precipitation of ferrous and ferric salts. Dehydrated particles corresponding to co-precipitation (CP) and oxidation (OX) steps of the magnetic fluid preparation have been compared in order to establish oxidation-related Raman features. These are discussed in correlation with the spectra of bulk iron oxides (magnetite, maghemite and hematite) recorded under the same experimental conditions. Considering a risk of laser-induced conversion of magnetite into hematite, this reaction was studied as a function of laser power and exposure to oxygen. Under hematite-free conditions, the Raman data indicated that nanoparticles consisted of magnetite and maghemite, and no oxyhydroxide species were detected. The relative maghemite/magnetite spectral contributions were quantified via fitting of their characteristic bands with Lorentzian profiles. Another quality parameter, contamination of the samples with carbon-related species, was assessed via a broad Raman band at 1580 cm(-1). The optimised Raman parameters permitted assessment of the homogeneity and stability of the solid phase of prepared magnetic fluids using chemical imaging by Raman multispectral mapping. These data were statistically averaged over each image and over six independently prepared lots of each of the CP and OX nanoparticles. The reproducibility of oxidation rates of the particles was satisfactory: the maghemite spectral fraction varied from 27.8 +/- 3.6% for the CP to 43.5 +/- 5.6% for the OX samples. These values were used to speculate about the layered structure of isolated particles. Our data were in agreement with a model with maghemite core and magnetite nucleus. The overall oxidation state of the particles remained nearly unchanged for at least one month.
Collapse
Affiliation(s)
- Igor Chourpa
- Laboratoire de Chimie Analytique, UFR de Pharmacie, Université François Rabelais de Tours, 37200 Tours, France.
| | | | | | | | | | | | | | | |
Collapse
|
48
|
Meyer D, Wood K, Bachas L, Bhattacharyya D. Degradation of chlorinated organics by membrane-immobilized nanosized metals. ACTA ACUST UNITED AC 2004. [DOI: 10.1002/ep.10031] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
49
|
Su C, Puls RW. Significance of iron(II,III) hydroxycarbonate green rust in arsenic remediation using zerovalent iron in laboratory column tests. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2004; 38:5224-5231. [PMID: 15506221 DOI: 10.1021/es0495462] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
We examined the corrosion products of zerovalent iron used in three column tests for removing arsenic from water under dynamic flow conditions. Each column test lasted 3-4 months using columns consisting of a 10.3-cm depth of 50:50 (w:w, Peerless iron:sand) in the middle and a 10.3cm depth of a sediment from Elizabeth City, NC, in both upper and lower portions of the 31-cm-long glass column (2.5 cm in diameter). The feeding solutions were 1 mg of As(V) L(-1) + 1 mg of As(III) L(-1) in 7 mM NaCl + 0.86 mM CaSO4 with or without added phosphate (0.5 or 1 mg of P L(-1)) and silicate (10 or 20 mg of Si L(-1)) at pH 6.5. Iron(II,III) hydroxycarbonate green rust (or simply, carbonate green rust) and magnetite were the major iron corrosion products identified with X-ray diffraction for the separated fractions (5 and 1 min sedimentation and residual). The presence of carbonate green rust was confirmed by scanning electron microscopy (hexagonal morphology) and FTIR-photoacoustic spectroscopy (interlayer carbonate stretching mode at 1352-1365 cm(-1)). X-ray photoelectron spectroscopy investigation revealed the presence of predominantly As(V) at the surface of corroded iron particles despite the fact that the feeding solution in contact with Peerless iron contained more As(III) than As(V) as a result of a preferential uptake of As(V) over As(III) by the Elizabeth City sediment. Extraction of separated corrosion products with 1.0 M HCI showed that from 86 to 96% of the total extractable As (6.9-14.6 g kg(-1)) was in the form of As(V) in agreement with the XPS results. Combined microscopic and macroscopic wet chemistry results suggest that sorbed As(III) was partially oxidized by the carbonate green rust at the early stage of iron corrosion. The column experiments suggest that either carbonate green rust is kinetically favored or is thermodynamically more stable than sulfate green rust in the studied Peerless iron corrosion systems.
Collapse
Affiliation(s)
- Chunming Su
- Ground Water and Ecosystems Restoration Division, National Risk Management Research Laboratory, Office of Research and Development, US Environmental Protection Agency, Ada, Oklahoma 74820, USA.
| | | |
Collapse
|
50
|
Odziemkowski MS, Simpraga RP. Distribution of oxides on iron materials used for remediation of organic groundwater contaminants Implications for hydrogen evolution reactions. CAN J CHEM 2004. [DOI: 10.1139/v04-120] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The distribution of oxides on commercial iron materials used for remediation of organic groundwater contaminants was studied using confocal Raman microspectroscopy. Raman microprobe mapping experiments revealed that commercial iron materials used for the construction of permeable reactive barriers are covered with an oxide film consisting of an inner film of magnetite Fe3O4 and an outer film of Fe2O3. The calculated probability of the charge transfer process (i.e., electron tunnelling probability) at commercial Fe | Fe2O3 (semiconductor) | solution interfaces approaches zero, indicating that "as received" commercial iron materials should not be reactive towards both organic contaminants and water. The combination of OCP (corrosion potential) time measurements with in situ Raman spectroscopy demonstrated that the breakdown of the protective Fe2O3 oxide film followed by autoreduction of Fe2O3 is a requirement for the commercial materials to be chemically active towards both water and organic contaminants. Hydrogen evolution reactions on metals and oxide-covered iron were also investigated. In particular, spectroscopic evidence for adsorption of atomic hydrogen on polycrystalline Pt is presented. The possibility of adsorption of H on magnetite-covered iron was considered using thermodynamic calculations after Marcus and Protopopoff. The evolution of hydrogen on commercial iron materials is described. It is suggested that the separation of the anodic and cathodic sites because of opening of pores in the bulk metallic Fe and the involvement of spill-over hydrogen may play a crucial role in the catalytic hydrogenation of groundwater contaminants.Key words: Raman microprobe confocal spectroscopy, iron oxides, hydrogen evolution, remediation of organic groundwater contaminants.
Collapse
|