1
|
Zhou Y, Chen L, Hao S, Cao X, Ni S. Zebrafish ANGPT4, member of fibrinogen-related proteins, is an LTA-, LPS- and PGN-binding protein with a bacteriolytic activity. FISH & SHELLFISH IMMUNOLOGY 2024; 147:109451. [PMID: 38360193 DOI: 10.1016/j.fsi.2024.109451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 02/11/2024] [Accepted: 02/13/2024] [Indexed: 02/17/2024]
Abstract
Fibrinogen-related proteins (FREPs) are a family of glycoproteins that contain a fibrinogen-like (FBG) domain. Many members of FREPs have been shown to play an important role in innate immune response in both vertebrates and invertebrates. Here we reported the immune functional characterization of ANGPT4, member of FREPs, in zebrafish Danio rerio. Quantitative real time PCR showed that the expression of zebrafish ANGPT4 gene is up-regulated by the challenge with lipoteichoic acid (LTA) or lipopolysaccharides (LPS), hinting its involvement in innate immune response. The recombinant ANGPT4 (rANGPT4) could bind to both gram-positive bacteria Staphylococcus aureus and Bacillus subtilis and the gram-negative bacteria Escherichia coli and Aeromonas hydrophila as well as the pathogen-associated molecular patterns (PAMPs) on the bacterial surfaces including LTA, LPS and peptidoglycan (PGN), suggesting it capable of identifying pathogens via LTA, LPS and PGN. In addition, rANGPT4 also displayed strong bacteriolytic activities against both gram-positive and -negative bacteria tested via inducing membrane depolarization and intracellular ROS production. Moreover, the bacterial clearance assay in vivo showed that the rANGPT4 could also accelerate the clearance of bacteria in zebrafish embryos/larvae. Finally, we showed that the eukaryotically expressed recombinant ANGPT4 maintained antibacterial activity and binding activity to bacteria and LTA, LPS and PGN. All these suggested that ANGPT4 could not only capable of recognizing pathogens via LTA, LPS and PGN, but also capable of killing the Gram-positive and Gram-negative bacteria, in innate immune response. This work also provides further information to understand the biological roles of FREPs and the innate immunity in vertebrates.
Collapse
Affiliation(s)
- Yang Zhou
- School of Basic Medical Sciences, Shandong Second Medical University, Weifang, 261053, Shandong Province, China
| | - Lu Chen
- School of Pharmacy, Shandong Second Medical University, Weifang, 261053, Shandong Province, China
| | - Songtao Hao
- School of Bioscience and Technology, Shandong Second Medical University, Weifang, 261053, Shandong Province, China
| | - Xianke Cao
- School of Bioscience and Technology, Shandong Second Medical University, Weifang, 261053, Shandong Province, China
| | - Shousheng Ni
- School of Bioscience and Technology, Shandong Second Medical University, Weifang, 261053, Shandong Province, China.
| |
Collapse
|
2
|
Shao Y, Wang C, Lu T, Jiang J, Li C, Wang X. Dietary Bacillus cereus LS2 protects juvenile sea cucumber Apostichopus japonicus against Vibrio splendidus infection. FISH & SHELLFISH IMMUNOLOGY 2023; 143:109237. [PMID: 37984612 DOI: 10.1016/j.fsi.2023.109237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 11/13/2023] [Accepted: 11/16/2023] [Indexed: 11/22/2023]
Abstract
This study aimed to investigate the effects of Bacillus cereus LS2 on the growth performance, innate immunity, intestinal microbiota, and disease resistance of sea cucumber Apostichopus japonicus. After feeding with LS2 for 30 days, results showed that dietary with LS2 had a significant improvement in the growth rate and immune parameters (including total coelomocytes counts, phagocytosis, respiratory burst, and immune-related enzymes) of juvenile sea cucumbers. Subsequently, transcriptome sequencing and qRT-PCR verification were performed to analyze the potential mechanism of LS2 diet and thus improve the immune response of A. japonicus. GO and KEGG pathway analysis indicated that LS2 can primarily activate the "Lectins" and "complement and coagulation cascades" pathways to modulate the innate immunity of the sea cucumbers. Furthermore, 16S rRNA sequencing was used to analyze the intestinal microbial composition of sea cucumbers after dietary with LS2. Results showed that Proteobacteria, Actinobacteria, Firmicutes, and Bacteroidetes were the most prevalent phyla in A. japonicus intestinal microbiota. The abundance of Actinobacteria (46.20%) and Bacteroidetes (12.80%) were significantly higher in the LS2 group, whereas the relative abundance of Proteobacteria (49.98%) and Firmicutes (14.97%) were higher in the control group. The LDA scores of Nocardiaceae and Rhodococcus were also the highest taxa after the dietary administration of LS2, indicating that Actinobacteria phylum played a pivotal role in the intestinal microbial function of A. japonicus. Overall, these results suggested that feeding with Bacillus LS2 may be beneficial for A. japonicus farming.
Collapse
Affiliation(s)
- Yina Shao
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, PR China.
| | - Chengyang Wang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, PR China
| | - Tianyu Lu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, PR China
| | - Jianyang Jiang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, PR China
| | - Chenghua Li
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, PR China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao, PR China
| | - Xuelei Wang
- Ningbo Academy of Oceanology and Fishery, Ningbo, Zhejiang, PR China
| |
Collapse
|
3
|
Li Y, Xue Y, Peng Z, Zhang L. Immune diversity in lophotrochozoans, with a focus on recognition and effector systems. Comput Struct Biotechnol J 2023; 21:2262-2275. [PMID: 37035545 PMCID: PMC10073891 DOI: 10.1016/j.csbj.2023.03.031] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Revised: 03/11/2023] [Accepted: 03/19/2023] [Indexed: 03/30/2023] Open
Abstract
Lophotrochozoa is one of the most species-rich but immunologically poorly explored phyla. Although lack of acquired response in a narrow sense, lophotrochozoans possess various genetic mechanisms that enhance the diversity and specificity of innate immune system. Here, we review the recent advances of comparative immunology studies in lophotrochozoans with focus on immune recognition and effector systems. Haemocytes and coelomocytes are general important yet understudied player. Comparative genomics studies suggest expansion and functional divergence of lophotrochozoan immune reorganization systems is not as "homogeneous and simple" as we thought including the large-scale expansion and molecular divergence of pattern recognition receptors (PRRs) (TLRs, RLRs, lectins, etc.) and signaling adapters (MyD88s etc.), significant domain recombination of immune receptors (RLR, NLRs, lectins, etc.), extensive somatic recombination of fibrinogenrelated proteins (FREPs) in snails. Furthermore, there are repeatedly identified molecular mechanisms that generate immune effector diversity, including high polymorphism of antimicrobial peptides and proteins (AMPs), reactive oxygen and nitrogen species (RONS) and cytokines. Finally, we argue that the next generation omics tools and the recently emerged genome editing technicism will revolutionize our understanding of innate immune system in a comparative immunology perspective.
Collapse
Affiliation(s)
- Yongnan Li
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology & Center of Deep Sea Research, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Yu Xue
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology & Center of Deep Sea Research, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- Qingdao Agricultural University, Qingdao, China
| | - Zhangjie Peng
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology & Center of Deep Sea Research, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- College of Marine Science, University of Chinese Academy of Sciences, Beijing, China
| | - Linlin Zhang
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology & Center of Deep Sea Research, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
- College of Marine Science, University of Chinese Academy of Sciences, Beijing, China
- Corresponding author at: CAS and Shandong Province Key Laboratory of Experimental Marine Biology & Center of Deep Sea Research, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China.
| |
Collapse
|
4
|
Liu Y, Zhang A, Guo N, Hao Q, Li F. A pattern recognition receptor ficolin from Portunus trituberculatus (Ptficolin) regulating immune defense and hemolymph coagulation. Int J Biol Macromol 2022; 221:558-572. [PMID: 36089094 DOI: 10.1016/j.ijbiomac.2022.09.041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 07/26/2022] [Accepted: 09/06/2022] [Indexed: 11/16/2022]
Abstract
Ficolins, belonging to the fibrinogen-related protein superfamily, are important pattern recognition receptors in innate immunity. Here, a ficolin gene Ptficolin was characterized from the swimming crab Portunus trituberculatus. The completed cDNA sequence of Ptficolin encoded a signal peptide, a coiled-coil region and a fibrinogen-like domain but without the typical collagen region of vertebrate ficolins. Ptficolin showed higher expression in stomach and hepatopancreas, and presented a time-dependent response after pathogen challenge and injury stimulation. The recombinant Ptficolin (rPtficolin) could bind to various PAMPs and microorganisms, and agglutinate microorganisms and rabbit erythrocytes in a Ca2+-dependent manner, with strong binding ability to N-acetyl sugars. Meanwhile, rPtficolin promoted the hemocyte phagocytosis and clearance activity of Vibrio, while Ptficolin knockdown impaired the bacterial phagocytosis and clearance ability, suggesting the opsonin activity of Ptficolin. Knockdown of Ptficolin could downregulate the transcription of most complement-like genes and AMPs, but enhance the expression of most proPO system-related genes and key genes of Toll, IMD and JNK pathways. Moreover, knockdown of Ptficolin led to the increased hemolymph clotting time and the decreased expression of clotting-related genes. Our results indicate that Ptficolin could recognize and eliminate invading pathogens, and might be a prominent component in hemolymph coagulation of crab.
Collapse
Affiliation(s)
- Yuan Liu
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266071, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Ao Zhang
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao 266109, China
| | - Na Guo
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao 266109, China
| | - Qiang Hao
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao 266109, China
| | - Fuhua Li
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266071, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China; University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
5
|
Zhao K, Qin Y, Nan X, Zhou K, Song Y, Li W, Wang Q. The role of ficolin as a pattern recognition receptor in antibacterial immunity in Eriocheir sinensis. FISH & SHELLFISH IMMUNOLOGY 2022; 128:494-504. [PMID: 36002084 DOI: 10.1016/j.fsi.2022.08.047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 08/16/2022] [Accepted: 08/17/2022] [Indexed: 06/15/2023]
Abstract
Ficolin, a member of the fibrinogen-related proteins family (FREPs), functions as a pattern recognition receptor (PRR) in vertebrates and in invertebrates as a novel lectin. In this study, we discovered the Ficolin homolog of Chinese mitten crab (Eriocheir sinensis), which we named EsFicolin. The obtained sequence showed that it has a highly conserved C-terminal fibrinogen-related domain (FReD) and a coiled-coil structure for trimer formation. EsFicolin was up-regulated in hemocytes after being stimulated by bacteria. Recombinant EsFicolin protein binds to gram-negative and gram-positive bacteria and agglutinates bacteria through pathogen-associated molecular patterns. In-depth study found that recombinant EsFicolin could effectively remove bacteria and showed direct antibacterial activity. EsFicolin could also promote the phagocytosis of hemocytes to enhance bacterial clearance. These findings suggest that EsFicolin plays an important role in the crab antibacterial immune response.
Collapse
Affiliation(s)
- Ke Zhao
- Laboratory of Invertebrate Immunological Defense and Reproductive Biology, School of Life Sciences, East China Normal University, Shanghai, China
| | - Yukai Qin
- Laboratory of Invertebrate Immunological Defense and Reproductive Biology, School of Life Sciences, East China Normal University, Shanghai, China
| | - Xingyu Nan
- Laboratory of Invertebrate Immunological Defense and Reproductive Biology, School of Life Sciences, East China Normal University, Shanghai, China
| | - Kaimin Zhou
- Laboratory of Invertebrate Immunological Defense and Reproductive Biology, School of Life Sciences, East China Normal University, Shanghai, China
| | - Yu Song
- Laboratory of Invertebrate Immunological Defense and Reproductive Biology, School of Life Sciences, East China Normal University, Shanghai, China
| | - Weiwei Li
- Laboratory of Invertebrate Immunological Defense and Reproductive Biology, School of Life Sciences, East China Normal University, Shanghai, China.
| | - Qun Wang
- Laboratory of Invertebrate Immunological Defense and Reproductive Biology, School of Life Sciences, East China Normal University, Shanghai, China.
| |
Collapse
|
6
|
Mohammadi A, Sorensen GL, Pilecki B. MFAP4-Mediated Effects in Elastic Fiber Homeostasis, Integrin Signaling and Cancer, and Its Role in Teleost Fish. Cells 2022; 11:cells11132115. [PMID: 35805199 PMCID: PMC9265350 DOI: 10.3390/cells11132115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 06/29/2022] [Accepted: 07/01/2022] [Indexed: 11/16/2022] Open
Abstract
Microfibrillar-associated protein 4 (MFAP4) is an extracellular matrix (ECM) protein belonging to the fibrinogen-related domain superfamily. MFAP4 is highly expressed in elastin-rich tissues such as lung, blood vessels and skin. MFAP4 is involved in organization of the ECM, regulating proper elastic fiber assembly. On the other hand, during pathology MFAP4 actively contributes to disease development and progression due to its interactions with RGD-dependent integrin receptors. Both tissue expression and circulating MFAP4 levels are associated with various disorders, including liver fibrosis and cancer. In other experimental models, such as teleost fish, MFAP4 appears to participate in host defense as a macrophage-specific innate immune molecule. The aim of this review is to summarize the accumulating evidence that indicates the importance of MFAP4 in homeostasis as well as pathological conditions, discuss its known biological functions with special focus on elastic fiber assembly, integrin signaling and cancer, as well as describe the reported functions of non-mammalian MFAP4 in fish. Overall, our work provides a comprehensive overview on the role of MFAP4 in health and disease.
Collapse
|
7
|
Yang W, Lv X, Leng J, Li Y, Sun J, Yang C, Wang L, Song L. A fibrinogen-related protein mediates the recognition of various bacteria and haemocyte phagocytosis in oyster Crassostrea gigas. FISH & SHELLFISH IMMUNOLOGY 2021; 114:161-170. [PMID: 33957267 DOI: 10.1016/j.fsi.2021.04.022] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2021] [Revised: 04/19/2021] [Accepted: 04/21/2021] [Indexed: 06/12/2023]
Abstract
The family of fibrinogen-related proteins (FREPs) is a group of proteins with fibrinogen-like (FBG) domains, which play important roles as pattern recognition receptors (PRRs) in the innate immune responses. In the present study, a fibrinogen-like protein was identified from the oyster Crassostrea gigas (defined as CgFREP1). The open reading frame of CgFREP1 was of 966 bp that encoded a predicted polypeptide of 321 amino acids comprising a signal peptide and a fibrinogen-like domain. The mRNA expression of CgFREP1 was detected in all the examined tissues. The recombinant CgFREP1 (rCgFREP1) displayed binding activities to lipopolysaccharide (LPS), mannose (MAN), as well as Gram-positive bacteria (Micrococcus luteus and Staphylococcus aureus) and Gram-negative bacteria (Vibrio splendidus and Escherichia coli). The rCgFREP1 displayed the agglutinating activity towards M. luteus, V. splendidus and E. coli in the presence of Ca2+. rCgFREP1 was able to enhance the phagocytic activity of haemocytes towards V. splendidus, and exhibited binding activity to the CUB domain of CgMASPL-1. These results suggest that CgFREP1 not only serves as a PRR to recognize and agglutinate different bacteria but also mediates the haemocytes phagocytosis towards V. splendidus.
Collapse
Affiliation(s)
- Wenwen Yang
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China; Liaoning Key Laboratory of Marine Animal Immunology & Disease Control, Dalian Ocean University, Dalian, 116023, China
| | - Xiaoqian Lv
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China; Liaoning Key Laboratory of Marine Animal Immunology & Disease Control, Dalian Ocean University, Dalian, 116023, China
| | - Jinyuan Leng
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China; Liaoning Key Laboratory of Marine Animal Immunology & Disease Control, Dalian Ocean University, Dalian, 116023, China
| | - Yinan Li
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China; Liaoning Key Laboratory of Marine Animal Immunology & Disease Control, Dalian Ocean University, Dalian, 116023, China
| | - Jiejie Sun
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China; Liaoning Key Laboratory of Marine Animal Immunology & Disease Control, Dalian Ocean University, Dalian, 116023, China
| | - Chuanyan Yang
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China; Liaoning Key Laboratory of Marine Animal Immunology & Disease Control, Dalian Ocean University, Dalian, 116023, China
| | - Lingling Wang
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China; Laboratory of Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266235, China; Liaoning Key Laboratory of Marine Animal Immunology & Disease Control, Dalian Ocean University, Dalian, 116023, China; Dalian Key Laboratory of Aquatic Animal Disease Prevention and Control, Dalian Ocean University, Dalian, 116023, China.
| | - Linsheng Song
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China; Southern Laboratory of Ocean Science and Engineering (Guangdong, Zhuhai), Zhuhai, 519000, China; Laboratory of Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266235, China; Liaoning Key Laboratory of Marine Animal Immunology & Disease Control, Dalian Ocean University, Dalian, 116023, China; Dalian Key Laboratory of Aquatic Animal Disease Prevention and Control, Dalian Ocean University, Dalian, 116023, China
| |
Collapse
|
8
|
Qin N, Wu M, Tang T, Liu F. A fibrinogen-related protein (Mnfico3) acts as a novel pattern recognition receptor in Macrobrachium nipponense. FISH & SHELLFISH IMMUNOLOGY 2020; 100:272-282. [PMID: 32142875 DOI: 10.1016/j.fsi.2020.02.066] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 02/24/2020] [Accepted: 02/29/2020] [Indexed: 06/10/2023]
Abstract
Fibrinogen-related proteins (FREPs) are widely found in both vertebrates as well as invertebrates, and they play a crucial role in host immunity. In this study, we isolated a novel ficolin gene (Mnfico3) from the oriental river prawn Macrobrachium nipponense. The complete cDNA sequence of Mnfico3 was 1133 bp long, containing an open reading frame of 765 bp coding for Mnfico3, a protein consisting of 254 amino acids. The Mnfico3 protein contained a putative N-terminal signal peptide and a fibrinogen-related protein domain present at the C-terminal. Phylogenetic analysis indicated that Mnfico3 had a closer evolutionary relationship with vertebrate ficolins than with its invertebrate homologues. Tissue distribution analysis indicated that Mnfico3 was predominantly expressed in muscle, in which its transcription was increased following bacterial challenge by Aeromonas veronii. Function analysis using recombinant protein revealed that rMnFico3 had broad-spectrum binding capacity to a variety of microorganisms and pathogen-associated molecular pattern (PAMP) ligands. Furthermore, rMnFico3 exhibited Ca2+-dependent agglutinating activity against microbes in vitro, and ability to attach to the hemocyte surface which promoted phagocytosis and subsequent clearance of invasive bacteria in vivo. Silencing rMnFico3 in prawn through RNAi did not alter the expression of antimicrobial peptide genes (ALF and Crustin). These results manifested that MnFico3 functioned as a potential pattern recognition receptor (PPR) to mediate cellular immune response by recognizing PAMPs, agglutinating invasive microbes, and promoting phagocytosis of hemocytes.
Collapse
Affiliation(s)
- Nan Qin
- The Key Laboratory of Zoological Systematics and Application, College of Life Sciences, Hebei University, Baoding, Hebei, 071002, China
| | - Mengjia Wu
- The Key Laboratory of Zoological Systematics and Application, College of Life Sciences, Hebei University, Baoding, Hebei, 071002, China
| | - Ting Tang
- The Key Laboratory of Zoological Systematics and Application, College of Life Sciences, Hebei University, Baoding, Hebei, 071002, China.
| | - Fengsong Liu
- The Key Laboratory of Zoological Systematics and Application, College of Life Sciences, Hebei University, Baoding, Hebei, 071002, China.
| |
Collapse
|
9
|
Gupta P, Tripathy AS. Alternative pathway of complement activation has a beneficial role against Chandipura virus infection. Med Microbiol Immunol 2019; 209:109-124. [PMID: 31781935 PMCID: PMC7223837 DOI: 10.1007/s00430-019-00648-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Accepted: 11/19/2019] [Indexed: 12/01/2022]
Abstract
The complement system is a critical component of both innate and adaptive immune responses. It has both protective and pathogenic roles in viral infections. There are no studies regarding the role of complement system in Chandipura virus (CHPV) infection. The current study has investigated the role of complement pathways in the in vitro neutralization of CHPV in Vero E6 cells. Using normal human serum (NHS), heat-inactivated serum (HIS), human serum deficient of complement factor, respective reconstituted serum, assays like in vitro neutralization, real-time PCR, and flow cytometry-based tissue culture-based limited dose assay (TC-LDA) were carried out for assessing the activation of different complement pathways. NHS from 9/10 donors showed complement dependent neutralization, reduction in viral load and decrease in percentage of CHPV-positive cells compared to their HIS counterparts. EGTA or EDTA pretreatment experiments indicated that CHPV neutralization proceeds through the alternative pathway of the complement activation. Our data showed a strong dependence on C3 for the in vitro neutralization of CHPV. Disparity in CHPV neutralization levels between factor B-deficient and reconstituted sera could be attributed to amplification loop/“tick-over” mechanism. Assays using C3, C5, and C8 deficient sera indicated that complement-mediated CHPV neutralization and suppression of CHPV infectivity are primarily through C3 and C5, and not dependent on downstream complement factor C8. With no specific anti-viral treatment/vaccine against Chandipura, the current data, elucidating role of human complement system in the neutralization of CHPV, may help in designing effective therapeutics.
Collapse
Affiliation(s)
- Pooja Gupta
- Hepatitis Group, ICMR-National Institute of Virology, Pune, 130/1, Sus Road, Pashan, Pune, Maharashtra 411021 India
| | - Anuradha S. Tripathy
- Hepatitis Group, ICMR-National Institute of Virology, Pune, 130/1, Sus Road, Pashan, Pune, Maharashtra 411021 India
| |
Collapse
|
10
|
Han K, Chen X, Wu L, Zhang Z, Ma F, Huang X, Zhang Y, Ren Q. Novel fibrinogen-related protein with single FReD contributes to the innate immunity of Macrobrachium rosenbergii. FISH & SHELLFISH IMMUNOLOGY 2018; 82:350-360. [PMID: 30138666 DOI: 10.1016/j.fsi.2018.08.036] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Revised: 08/07/2018] [Accepted: 08/14/2018] [Indexed: 06/08/2023]
Abstract
Fibrinogen-related proteins (FREPs) are widely found in vertebrates and invertebrates, and they play crucial roles in innate immunity. Here, a new FREP named as MrFREP was identified from giant freshwater prawn (Macrobrachium rosenbergii). The full-length cDNA of MrFREP measures 1649 bp in length and consists of a 1086 bp open reading frame encoding a polypeptide composed of 361 amino acids. The MrFREP sequence has a signal peptide with 20 amino acids and a fibrinogen-related domain (FReD) with 223 amino acids. Phylogenetic analysis showed that MrFREP was grouped with FREPs from Marsupenaeus japonicus and Litopenaeus vannamei. BLASTp results showed that it had 43% identity with a FREP from M. japonicus. The expression of MrFREP was higher in gills, intestine, and hepatopancreas than in hemocytes, heart, stomach, and muscles. The expression levels of MrFREP in gills and intestine were obviously upregulated after they were exposed to Vibrio parahaemolyticus or White spot syndrome virus infection. Recombinant MrFReD protein (rMrFReD) could bind to Gram-positive and Gram-negative bacteria and agglutinate the tested bacteria in the presence of calcium. rMrFReD demonstrated lipopolysaccharide and peptidoglycan binding activities. rMrFReD could accelerate the clearance of V. parahaemolyticus in vivo. These results suggested that MrFREP could function as a pattern recognition receptor contributing to the innate immunity of M. rosenbergii.
Collapse
Affiliation(s)
- Keke Han
- Jiangsu Key Laboratory for Biodiversity & Biotechnology and Jiangsu Key Laboratory for Aquatic Crustacean Diseases, College of Life Sciences, Nanjing Normal University, 1 Wenyuan Road, Nanjing, 210046, China
| | - Xuefeng Chen
- Agriculture Ministry Key Laboratory of Healthy Freshwater Aquaculture, Key Laboratory of Freshwater Aquaculture Genetic and Breeding of Zhejiang Province, Zhejiang Institute of Freshwater Fisheries, Huzhou, 313001, China
| | - Lei Wu
- Jiangsu Key Laboratory for Biodiversity & Biotechnology and Jiangsu Key Laboratory for Aquatic Crustacean Diseases, College of Life Sciences, Nanjing Normal University, 1 Wenyuan Road, Nanjing, 210046, China
| | - Zhuoxing Zhang
- Jiangsu Key Laboratory for Biodiversity & Biotechnology and Jiangsu Key Laboratory for Aquatic Crustacean Diseases, College of Life Sciences, Nanjing Normal University, 1 Wenyuan Road, Nanjing, 210046, China
| | - Futong Ma
- Jiangsu Key Laboratory for Biodiversity & Biotechnology and Jiangsu Key Laboratory for Aquatic Crustacean Diseases, College of Life Sciences, Nanjing Normal University, 1 Wenyuan Road, Nanjing, 210046, China
| | - Xin Huang
- Jiangsu Key Laboratory for Biodiversity & Biotechnology and Jiangsu Key Laboratory for Aquatic Crustacean Diseases, College of Life Sciences, Nanjing Normal University, 1 Wenyuan Road, Nanjing, 210046, China.
| | - Yufei Zhang
- Agriculture Ministry Key Laboratory of Healthy Freshwater Aquaculture, Key Laboratory of Freshwater Aquaculture Genetic and Breeding of Zhejiang Province, Zhejiang Institute of Freshwater Fisheries, Huzhou, 313001, China.
| | - Qian Ren
- Jiangsu Key Laboratory for Biodiversity & Biotechnology and Jiangsu Key Laboratory for Aquatic Crustacean Diseases, College of Life Sciences, Nanjing Normal University, 1 Wenyuan Road, Nanjing, 210046, China; Co-Innovation Center for Marine Bio-Industry Technology of Jiangsu Province, Lianyungang, Jiangsu, 222005, China.
| |
Collapse
|
11
|
Roselli F, Karasu E, Volpe C, Huber-Lang M. Medusa's Head: The Complement System in Traumatic Brain and Spinal Cord Injury. J Neurotrauma 2017; 35:226-240. [PMID: 28816089 DOI: 10.1089/neu.2017.5168] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Traumatic brain injury (TBI) and spinal cord injury (SCI) are critical medical conditions and a public health problem for which limited therapeutic options are available. The complement cascade is activated after TBI and SCI, and the resulting effects have been investigated in gene-knockout and pharmacological models. Multiple experimental studies support a net detrimental role of C3 and C5 activation in the early stages of TBI and SCI. Less firm experimental evidence suggests that, downstream of C3/C5, effector mechanisms, including the generation of membrane-activated complex and direct damage to membranes and neutrophils infiltration, may bring about the direct damage of central nervous system tissue and enhancement of neuroinflammation. The role of upstream classical, alternative, or extrinsic complement activation cascades remains unclear. Although several issues remain to be investigated, current evidence supports the investigation of a number of complement-targeting agents targeting C3 or C5, such as eculizumab, for repurposing in TBI and SCI treatment.
Collapse
Affiliation(s)
- Francesco Roselli
- 1 Department of Neurology, Medical School, University of Ulm , Ulm, Germany
- 2 Department of Anatomy and Cell Biology, Medical School, University of Ulm , Ulm, Germany
| | - Ebru Karasu
- 3 Institute of Clinical and Experimental Trauma-Immunology, Medical School, University of Ulm , Ulm, Germany
| | - Clara Volpe
- 1 Department of Neurology, Medical School, University of Ulm , Ulm, Germany
| | - Markus Huber-Lang
- 3 Institute of Clinical and Experimental Trauma-Immunology, Medical School, University of Ulm , Ulm, Germany
| |
Collapse
|
12
|
Ding Q, Shen Y, Li D, Yang J, Yu J, Yin Z, Zhang XL. Ficolin-2 triggers antitumor effect by activating macrophages and CD8 + T cells. Clin Immunol 2017; 183:145-157. [PMID: 28844702 DOI: 10.1016/j.clim.2017.08.012] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Revised: 08/02/2017] [Accepted: 08/23/2017] [Indexed: 12/12/2022]
Abstract
Ficolin-2 is an important serum complement lectin. Here, we describe novel findings indicating that serum ficolin-2 concentrations in multiple tumor patients are significantly lower than those in healthy donors. Administration of exogenous ficolin-2 or ficolin-A (a ficolin-2-like molecule in mouse), with only once, could remarkably inhibit the tumor cells growth in murine tumor models via early macrophages, dendritic cells (DCs) and CD8+ T cells, but not CD4+ T cells. Ficolin-A (FCN-A) knockout (KO) mice exhibits significantly increased tumor cell growth. Ficolin-2 induces macrophage activation, promotes M1 polarization and facilitates proliferation and antigen-specific cytotoxicity of CD8+ T cells. Ficolin-2 binds to Toll-like receptor 4 (TLR4) on macrophages and DCs and promotes their antigen-presenting abilities to CD8+ T cells. Our findings provide a new therapeutic strategy for tumors based on the triggering of immune-mediated antitumor effect by ficolin-2.
Collapse
Affiliation(s)
- Quanquan Ding
- State Key Laboratory of Virology and Medical Research Institute, Hubei Province Key Laboratory of Allergy and Immunology and Department of Immunology, Wuhan University School of Basic Medical Sciences, Wuhan 430071, PR China
| | - Yanying Shen
- State Key Laboratory of Virology and Medical Research Institute, Hubei Province Key Laboratory of Allergy and Immunology and Department of Immunology, Wuhan University School of Basic Medical Sciences, Wuhan 430071, PR China
| | - Dongqing Li
- Department of Microbiology, Wuhan University School of Basic Medical Sciences, Wuhan 430071, PR China
| | - Juan Yang
- State Key Laboratory of Virology and Medical Research Institute, Hubei Province Key Laboratory of Allergy and Immunology and Department of Immunology, Wuhan University School of Basic Medical Sciences, Wuhan 430071, PR China
| | - Jing Yu
- Hubei Province Cancer Hospital, Wuhan 430079, PR China
| | - Zhinan Yin
- Biomedical Translational Research Institute, Jinan University, Guangzhou, Guangdong 510630, PR China
| | - Xiao-Lian Zhang
- State Key Laboratory of Virology and Medical Research Institute, Hubei Province Key Laboratory of Allergy and Immunology and Department of Immunology, Wuhan University School of Basic Medical Sciences, Wuhan 430071, PR China.
| |
Collapse
|
13
|
Li T, Wu L, Jin M, Ma F, Huang X, Ren Q. Function of two ficolin-like proteins in innate immune defense of the oriental river prawn, Macrobrachium nipponense. FISH & SHELLFISH IMMUNOLOGY 2017; 68:488-499. [PMID: 28764985 DOI: 10.1016/j.fsi.2017.07.059] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2017] [Revised: 07/24/2017] [Accepted: 07/29/2017] [Indexed: 06/07/2023]
Abstract
Ficolins have crucial functions in recognizing and eliminating pathogens in innate immunity. In this study, we identified two ficolin-like genes from the oriental river prawn, Macrobrachium nipponense. These genes were designated as MnFico1 and MnFico2. MnFico1 cDNA has 1600 bp, whereas MnFico2 has 1486 bp. In addition to a coiled-coil region or a low complexity region, the two ficolins both contained a signal peptide and a fibrinogen-related domain. qRT-PCR results showed that the highest expression level of MnFico1 expression was in the gills, whereas that of MnFico2 was in the heart. The transcripts of MnFico1 and MnFico2 could both respond to bacteria challenge. The transcription of antilipopolysaccharide factors ALFs (MnALF1 and MnALF2) and crustin genes (MnCru4, MnCru5, MnCru6, and MnCru7) was inhibited in the gills of MnFico1 or MnFico2 knockdown prawns at 24 h Vibrio parahaemolyticus challenge. Recombinant proteins of rMnFico1 and rMnFico2 could bind toward diverse bacteria and agglutinate Gram-negative and Gram-positive bacteria with the presence of calcium (Ca2+). rMnFico1 and rMnFico2 proteins also have lipopolysaccharide and peptidoglycan binding activity. Both recombinant ficolin proteins could help the prawn to facilitate the clearance of V. parahaemolyticus in vivo. Our results suggested that MnFico1 and MnFico2 might serve as pattern recognition receptors in M. nipponense.
Collapse
Affiliation(s)
- Tingting Li
- Jiangsu Key Laboratory for Biodiversity & Biotechnology, Jiangsu Key Laboratory for Aquatic Crustacean Diseases, College of Life Sciences, Nanjing Normal University, 1 Wenyuan Road, Nanjing 210046, PR China
| | - Lei Wu
- Jiangsu Key Laboratory for Biodiversity & Biotechnology, Jiangsu Key Laboratory for Aquatic Crustacean Diseases, College of Life Sciences, Nanjing Normal University, 1 Wenyuan Road, Nanjing 210046, PR China
| | - Min Jin
- State Key Laboratory Breeding Base of Marine Genetic Resource, Third Institute of Oceanography, SOA, Xiamen 361005, PR China
| | - Futong Ma
- Jiangsu Key Laboratory for Biodiversity & Biotechnology, Jiangsu Key Laboratory for Aquatic Crustacean Diseases, College of Life Sciences, Nanjing Normal University, 1 Wenyuan Road, Nanjing 210046, PR China
| | - Xin Huang
- Jiangsu Key Laboratory for Biodiversity & Biotechnology, Jiangsu Key Laboratory for Aquatic Crustacean Diseases, College of Life Sciences, Nanjing Normal University, 1 Wenyuan Road, Nanjing 210046, PR China
| | - Qian Ren
- Jiangsu Key Laboratory for Biodiversity & Biotechnology, Jiangsu Key Laboratory for Aquatic Crustacean Diseases, College of Life Sciences, Nanjing Normal University, 1 Wenyuan Road, Nanjing 210046, PR China; Co-Innovation Center for Marine Bio-Industry Technology of Jiangsu Province, Lianyungang, Jiangsu 222005, PR China.
| |
Collapse
|
14
|
Dai YJ, Wang YQ, Zhang YH, Liu Y, Li JQ, Wei S, Zhao LJ, Zhou YC, Lin L, Lan JF. The role of ficolin-like protein (PcFLP1) in the antibacterial immunity of red swamp crayfish (Procambarus clarkii). Mol Immunol 2017; 81:26-34. [PMID: 27888717 DOI: 10.1016/j.molimm.2016.11.017] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2016] [Revised: 11/14/2016] [Accepted: 11/18/2016] [Indexed: 01/04/2023]
Abstract
In invertebrates, ficolin-like proteins (FLPs) play important roles in innate immunity against pathogens. Previous studies primarily investigated the functions of FLPs in immune recognition, activation, and regulation. However, limited research has examined the functions of FLPs as immune effectors. In this work, a ficolin-like protein was identified in red swam crayfish (Procambarus clarkii) and designated as PcFLP1. Quantitative RT-PCR and western blot were employed to analyze the distribution and expression profiles of PcFLP1 in the tissues of the crayfish. The results indicated that PcFLP1 was present in all tested tissues, including hemocytes, heart, hepatopancreas, gill, stomach, and mid-intestine. The expression level of PcFLP1 was up-regulated in hemocytes, hepatopancreas and mid-intestines of the crayfish challenged with Vibrio parahaemolyticus. Further study demonstrated that PcFLP1 could protect the hepatopancreatic cells of crayfish from V. parahaemolyticus infection. The recombinant PcFLP1 enhanced bacterial elimination in crayfish, whereas the antibacterial action was inhibited after PcFLP1 was knocked down. Furthermore, PcFLP1 could bound to bacteria and inhibited bacterial replication. These results demonstrated that PcFLP1 plays an important role in the anti-Vibrio immunity of red swamp crayfish.
Collapse
Affiliation(s)
- Yun-Jia Dai
- Department of Aquatic Animal Medicine, Research Center for Marine Biology, College of Fisheries, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Yu-Qing Wang
- Department of Aquatic Animal Medicine, Research Center for Marine Biology, College of Fisheries, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Ying-Hao Zhang
- Department of Aquatic Animal Medicine, Research Center for Marine Biology, College of Fisheries, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Yan Liu
- Department of Aquatic Animal Medicine, Research Center for Marine Biology, College of Fisheries, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Jin-Quan Li
- Department of Aquatic Animal Medicine, Research Center for Marine Biology, College of Fisheries, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Shun Wei
- Department of Aquatic Animal Medicine, Research Center for Marine Biology, College of Fisheries, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Li-Juan Zhao
- Department of Aquatic Animal Medicine, Research Center for Marine Biology, College of Fisheries, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Yong-Can Zhou
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan Provincial Key Laboratory for Tropical Hydrobiology and Biotechnology, College of Marine Science, Hainan University, Haikou 570228, China
| | - Li Lin
- Department of Aquatic Animal Medicine, Research Center for Marine Biology, College of Fisheries, Huazhong Agricultural University, Wuhan, Hubei, 430070, China; State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan Provincial Key Laboratory for Tropical Hydrobiology and Biotechnology, College of Marine Science, Hainan University, Haikou 570228, China.
| | - Jiang-Feng Lan
- Department of Aquatic Animal Medicine, Research Center for Marine Biology, College of Fisheries, Huazhong Agricultural University, Wuhan, Hubei, 430070, China.
| |
Collapse
|
15
|
Luo F, Chen T, Liu J, Shen X, Zhao Y, Yang R, Zhang X. Ficolin-2 binds to HIV-1 gp120 and blocks viral infection. Virol Sin 2016; 31:406-414. [PMID: 27576476 PMCID: PMC8193375 DOI: 10.1007/s12250-016-3808-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Accepted: 08/02/2016] [Indexed: 10/21/2022] Open
Abstract
Ficolin-2 is a lectin complement pathway activator present in normal human plasma and usually associated with infectious diseases, but little is known about the role of ficolin-2 in human immunodeficiency virus (HIV) infection. Here, we describe our novel findings that serum ficolin-2 concentrations of 103 HIV-1 patients were much higher compared to those of 57 healthy donors. In vitro analysis showed that HIV-1 infection could enhance ficolin-2 expression. We further demonstrated that recombinant ficolin-2 protein could bind with HIV-1 envelope glycoprotein gp120, and subsequently induce complement dependent cytotoxicity. Moreover, ficolin-2 could block the entry of HIV-1 into target cells (TZM-b1 and MT-2 cells) and infection in a ficolin-2 dosedependent manner. To our knowledge, this is the first report about the protective role of ficolin-2 against HIV-1 infection and our study suggests that ficolin-2 is an important human innate immune molecule against HIV.
Collapse
Affiliation(s)
- Fengling Luo
- The State Key Laboratory of Virology, Department of Immunology and Hubei Province Key Laboratory of Allergy and Immune-related Diseases, Wuhan University School of Medicine, Wuhan, 430071, China
| | - Tielong Chen
- The State Key Laboratory of Virology, Department of Immunology and Hubei Province Key Laboratory of Allergy and Immune-related Diseases, Wuhan University School of Medicine, Wuhan, 430071, China
- Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Jun Liu
- The State Key Laboratory of Virology, Department of Immunology and Hubei Province Key Laboratory of Allergy and Immune-related Diseases, Wuhan University School of Medicine, Wuhan, 430071, China
| | - Xihui Shen
- Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China
| | - Yinnan Zhao
- The State Key Laboratory of Virology, Department of Immunology and Hubei Province Key Laboratory of Allergy and Immune-related Diseases, Wuhan University School of Medicine, Wuhan, 430071, China
| | - Rongge Yang
- Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China.
| | - Xiaolian Zhang
- The State Key Laboratory of Virology, Department of Immunology and Hubei Province Key Laboratory of Allergy and Immune-related Diseases, Wuhan University School of Medicine, Wuhan, 430071, China.
| |
Collapse
|
16
|
Coelho JDR, Barreto C, Silveira ADS, Vieira GC, Rosa RD, Perazzolo LM. A hemocyte-expressed fibrinogen-related protein gene (LvFrep) from the shrimp Litopenaeus vannamei: Expression analysis after microbial infection and during larval development. FISH & SHELLFISH IMMUNOLOGY 2016; 56:123-126. [PMID: 27380968 DOI: 10.1016/j.fsi.2016.06.046] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2016] [Revised: 06/23/2016] [Accepted: 06/27/2016] [Indexed: 06/06/2023]
Abstract
Fibrinogen-related proteins (FREPs) comprise a large family of microbial recognition proteins involved in many biological functions in both vertebrate and invertebrate animals. By taking advantage of publicly accessible databases, we have identified a FREP-like homolog in the most cultivated penaeid shrimp, Litopenaeus vannamei (LvFrep). The obtained sequence showed a conserved fibrinogen-related domain (FReD) and displayed significant similarities to FREP-like proteins from other invertebrates and to ficolins from crustaceans. The expression of LvFrep appeared to be limited to circulating hemocytes. Interestingly, LvFrep gene expression was induced in shrimp hemocytes only in response to a Vibrio infection but not to the White spot syndrome virus (WSSV). Moreover, LvFrep transcript levels were detected early in fertilized eggs, suggesting the participation of this immune-related gene in the antimicrobial defenses during shrimp development.
Collapse
Affiliation(s)
- Jaqueline da Rosa Coelho
- Laboratory of Immunology Applied to Aquaculture, Department of Cell Biology, Embryology and Genetics, Federal University of Santa Catarina, 88040-900 Florianópolis, SC, Brazil
| | - Cairé Barreto
- Laboratory of Immunology Applied to Aquaculture, Department of Cell Biology, Embryology and Genetics, Federal University of Santa Catarina, 88040-900 Florianópolis, SC, Brazil
| | - Amanda da Silva Silveira
- Laboratory of Immunology Applied to Aquaculture, Department of Cell Biology, Embryology and Genetics, Federal University of Santa Catarina, 88040-900 Florianópolis, SC, Brazil
| | - Graziela Cleusa Vieira
- Laboratory of Immunology Applied to Aquaculture, Department of Cell Biology, Embryology and Genetics, Federal University of Santa Catarina, 88040-900 Florianópolis, SC, Brazil
| | - Rafael Diego Rosa
- Laboratory of Immunology Applied to Aquaculture, Department of Cell Biology, Embryology and Genetics, Federal University of Santa Catarina, 88040-900 Florianópolis, SC, Brazil
| | - Luciane Maria Perazzolo
- Laboratory of Immunology Applied to Aquaculture, Department of Cell Biology, Embryology and Genetics, Federal University of Santa Catarina, 88040-900 Florianópolis, SC, Brazil.
| |
Collapse
|
17
|
Sahagún-Ruiz A, Breda LCD, Valencia MMC, Elias WP, Munthe-Fog L, Garred P, Barbosa AS, Isaac L. Studies of the binding of ficolin-2 and ficolin-3 from the complement lectin pathway to Leptospira biflexa, Pasteurella pneumotropica and Diarrheagenic Escherichia coli. Immunobiology 2015; 220:1177-85. [PMID: 26074063 DOI: 10.1016/j.imbio.2015.06.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2015] [Revised: 05/28/2015] [Accepted: 06/01/2015] [Indexed: 11/15/2022]
Abstract
Ficolins recognize pathogen associated molecular patterns and activate the lectin pathway of complement system. However, our knowledge regarding pathogen recognition of human ficolins is still limited. We therefore set out to explore and investigate the possible interactions of the two main serum ficolins, ficolin-2 and ficolin-3 with different Gram-negative bacteria. We used recombinant ficolin molecules and normal human serum, which were detected with anti-ficolin monoclonal antibodies. In addition we investigated the capacity of these pathogens to activate the lectin pathway of complement system. We show for the first time that human ficolin-2 recognizes the nonpathogenic spirochete Leptospira biflexa serovar Patoc, but not the pathogenic Leptospira interrogans serovar Kennewicki strain Fromm. Additionally, human ficolin-2 and ficolin-3 recognize pathogenic Pasteurella pneumotropica, enteropathogenic Escherichia coli (EPEC) serotype O111ab:H2 and enteroaggregative E. coli (EAEC) serogroup O71 but not four enterohemorrhagic E. coli, three EPEC, three EAEC and two nonpathogenic E. coli strains (DH5α and HB101). The lectin pathway was activated by Pasteurella pneumotropica, EPEC O111ab:H2 and EAEC O71 after incubation with C1q depleted human serum. In conclusion, this study provide novel insight in the binding and complement activating capacity of the lectin pathway initiation molecules ficolin-2 and ficolin-3 towards relevant Gram-negative pathogens of pathophysiological relevance.
Collapse
Affiliation(s)
- Alfredo Sahagún-Ruiz
- Departamento de Microbiología e Inmunología, Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Autónoma de México, Mexico
| | | | | | - Waldir P Elias
- Laboratório de Bacteriologia, Instituto Butantan, Brazil
| | - Lea Munthe-Fog
- Laboratory of Molecular Medicine, Department of Clinical Immunology, Section 7631, Rigshospitalet, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Peter Garred
- Laboratory of Molecular Medicine, Department of Clinical Immunology, Section 7631, Rigshospitalet, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | | | - Lourdes Isaac
- Departamento de Imunologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, Brazil.
| |
Collapse
|
18
|
Huang B, Zhang L, Li L, Tang X, Zhang G. Highly diverse fibrinogen-related proteins in the Pacific oyster Crassostrea gigas. FISH & SHELLFISH IMMUNOLOGY 2015; 43:485-490. [PMID: 25655328 DOI: 10.1016/j.fsi.2015.01.021] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2014] [Revised: 01/15/2015] [Accepted: 01/25/2015] [Indexed: 06/04/2023]
Abstract
Fibrinogen-related proteins (FREPs) are a family of proteins with high sequence diversity, and they play crucial roles in invertebrate immune response. However, few studies have characterized this diversity at the whole-genome level. In the present study, approximately 190 predicted FREPs with more than 200 fibrinogen-like (FBG) domains were identified in the genome of the Pacific oyster (Crassostrea gigas), suggesting a historical expansion of this protein family. A sequence analysis showed high numbers of polymorphisms in C. gigas FREP (CgFREP) genes, which may contribute to the versatile immune function of FREPs. A phylogenetic analysis of molluscan FREP sequences indicated lineage-specific duplication of these genes in C. gigas. Additionally, several CgFREP mRNAs were highly expressed in the gills, digestive glands, and hemocytes. Taken together, these findings will help elucidate FREP immune function and facilitate studies of the functional validation of this gene family.
Collapse
Affiliation(s)
- Baoyu Huang
- National & Local Joint Engineering Laboratory of Ecological Mariculture, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Linlin Zhang
- National & Local Joint Engineering Laboratory of Ecological Mariculture, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
| | - Li Li
- National & Local Joint Engineering Laboratory of Ecological Mariculture, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China.
| | - Xueying Tang
- National & Local Joint Engineering Laboratory of Ecological Mariculture, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Guofan Zhang
- National & Local Joint Engineering Laboratory of Ecological Mariculture, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China.
| |
Collapse
|
19
|
Endo Y, Matsushita M, Fujita T. New insights into the role of ficolins in the lectin pathway of innate immunity. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2015; 316:49-110. [PMID: 25805122 DOI: 10.1016/bs.ircmb.2015.01.003] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
In the innate immune system, a variety of recognition molecules provide the first-line host defense to prevent infection and maintain endogenous homeostasis. Ficolin is a soluble recognition molecule, which senses pathogen-associated molecular patterns on microbes and aberrant sugar structures on self-cells. It consists of a collagen-like stalk and a globular fibrinogen-like domain, the latter binding to carbohydrates such as N-acetylglucosamine. Ficolins have been widely identified in animals from higher invertebrates to mammals. In mammals, ficolins form complexes with mannose-binding lectin-associated serine proteases (MASPs), and ficolin-MASP complexes trigger complement activation via the lectin pathway. Once activated, complement mediates many immune responses including opsonization, phagocytosis, and cytokine production. Although the precise function of each ficolin is still under investigation, accumulating information suggests that ficolins have a crucial role in host defense by recognizing a variety of microorganisms and interacting with effector proteins.
Collapse
Affiliation(s)
- Yuichi Endo
- Department of Immunology, Fukushima Medical University School of Medicine, Fukushima, Japan; Radioisotope Research Center, Fukushima Medical University School of Medicine, Fukushima, Japan
| | - Misao Matsushita
- Department of Applied Biochemistry, Tokai University, Kanagawa, Japan
| | - Teizo Fujita
- Department of Immunology, Fukushima Medical University School of Medicine, Fukushima, Japan; Fukushima General Hygiene Institute, Fukushima, Japan
| |
Collapse
|
20
|
Lei X, Liu C, Azadzoi K, Li C, Lu F, Xiang A, Sun J, Guo Y, Zhao Q, Yan Z, Yang J. A novel IgM-H-ficolin complement pathway to attack allogenic cancer cells in vitro. Sci Rep 2015; 5:7824. [PMID: 25592840 PMCID: PMC4296296 DOI: 10.1038/srep07824] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2014] [Accepted: 12/12/2014] [Indexed: 12/27/2022] Open
Abstract
The pentameric serum IgMs are critical to immune defense and surveillance through cytotoxicity against microbes and nascent cancer cells. Ficolins, a group of oligomeric lectins with an overall structure similar to C1q and mannose-binding lectin (MBL) participate in microbe infection and apoptotic cell clearance by activating the complement lectin pathway or a primitive opsonophagocytosis. It remains unknown whether serum IgMs interplay with ficolins in cancer immunosurveillance. Here we report a natural cancer killing of different types of cancer cells by sera from a healthy human population mediated by a novel IgM-H-ficolin complement activation pathway. We demonstrate for the first time that H-ficolin bound to a subset of IgMs in positive human sera and IgM-H-ficolin deposited on cancer cells to activate complement attack in cancer cells. Our data suggest that the IgM-H-ficolin -mediated complement activation pathway may be another defensive strategy for human cancer immunosurveillance.
Collapse
Affiliation(s)
- Xiaoying Lei
- State Key Laboratory of Cancer Biology, Department of Pharmacogenomics, School of Pharmacy, the Fourth Military Medical University, Xi'an, 710032 China
| | - Chaoxu Liu
- Departments of Surgery and Urology, VA Boston Healthcare System, Boston University School of Medicine, Boston, MA 02130 USA
| | - Kazem Azadzoi
- Departments of Surgery and Urology, VA Boston Healthcare System, Boston University School of Medicine, Boston, MA 02130 USA
| | - Cuiling Li
- Cancer Research Center, School of Medicine, Shandong University, Jinan, 250000 China
| | - Fan Lu
- State Key Laboratory of Cancer Biology, Department of Biochemistry and Molecular biology, the Fourth Military Medical University, Xi'an, 710032 China
| | - An Xiang
- State Key Laboratory of Cancer Biology, Department of Pharmacogenomics, School of Pharmacy, the Fourth Military Medical University, Xi'an, 710032 China
| | - Jianbin Sun
- State Key Laboratory of Cancer Biology, Department of Pharmacogenomics, School of Pharmacy, the Fourth Military Medical University, Xi'an, 710032 China
| | - Yanhai Guo
- State Key Laboratory of Cancer Biology, Department of Pharmacogenomics, School of Pharmacy, the Fourth Military Medical University, Xi'an, 710032 China
| | - Qingchuan Zhao
- State Key Laboratory of Cancer Biology, Department of Gastroenterology, Xijing Hospital, the Fourth Military Medical University, Xi'an, 710032 China
| | - Zhen Yan
- State Key Laboratory of Cancer Biology, Department of Pharmacogenomics, School of Pharmacy, the Fourth Military Medical University, Xi'an, 710032 China
| | - Jinghua Yang
- Departments of Surgery and Urology, VA Boston Healthcare System, Boston University School of Medicine, Boston, MA 02130 USA
- Cancer Research Center, School of Medicine, Shandong University, Jinan, 250000 China
| |
Collapse
|
21
|
Vassal-Stermann E, Lacroix M, Gout E, Laffly E, Pedersen CM, Martin L, Amoroso A, Schmidt RR, Zähringer U, Gaboriaud C, Di Guilmi AM, Thielens NM. Human L-ficolin recognizes phosphocholine moieties of pneumococcal teichoic acid. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2014; 193:5699-708. [PMID: 25344472 DOI: 10.4049/jimmunol.1400127] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2023]
Abstract
Human L-ficolin is a soluble protein of the innate immune system able to sense pathogens through its fibrinogen (FBG) recognition domains and to trigger activation of the lectin complement pathway through associated serine proteases. L-Ficolin has been previously shown to recognize pneumococcal clinical isolates, but its ligands and especially its molecular specificity remain to be identified. Using solid-phase binding assays, serum and recombinant L-ficolins were shown to interact with serotype 2 pneumococcal strain D39 and its unencapsulated R6 derivative. Incubation of both strains with serum triggered complement activation, as measured by C4b and C3b deposition, which was decreased by using ficolin-depleted serum. Recombinant L-ficolin and its FBG-like recognition domain bound to isolated pneumococcal cell wall extracts, whereas binding to cell walls depleted of teichoic acid (TA) was decreased. Both proteins were also shown to interact with two synthetic TA compounds, each comprising part structures of the complete lipoteichoic acid molecule with two PCho residues. Competition studies and direct interaction measurements by surface plasmon resonance identified PCho as a novel L-ficolin ligand. Structural analysis of complexes of the FBG domain of L-ficolin and PCho revealed that the phosphate moiety interacts with amino acids previously shown to define an acetyl binding site. Consequently, binding of L-ficolin to immobilized acetylated BSA was inhibited by PCho and synthetic TA. Binding of serum L-ficolin to immobilized synthetic TA and PCho-conjugated BSA triggered activation of the lectin complement pathway, thus further supporting the hypothesis of L-ficolin involvement in host antipneumococcal defense.
Collapse
Affiliation(s)
- Emilie Vassal-Stermann
- University of Grenoble Alpes, Institut de Biologie Structurale, F-38044 Grenoble, France; Centre National de la Recherche Scientifique, Institut de Biologie Structurale, F-38044 Grenoble, France; Commissariat à l'Energie Atomique et aux Energies Alternatives, Institut de Biologie Structurale, F-38044 Grenoble, France
| | - Monique Lacroix
- University of Grenoble Alpes, Institut de Biologie Structurale, F-38044 Grenoble, France; Centre National de la Recherche Scientifique, Institut de Biologie Structurale, F-38044 Grenoble, France; Commissariat à l'Energie Atomique et aux Energies Alternatives, Institut de Biologie Structurale, F-38044 Grenoble, France
| | - Evelyne Gout
- University of Grenoble Alpes, Institut de Biologie Structurale, F-38044 Grenoble, France; Centre National de la Recherche Scientifique, Institut de Biologie Structurale, F-38044 Grenoble, France; Commissariat à l'Energie Atomique et aux Energies Alternatives, Institut de Biologie Structurale, F-38044 Grenoble, France
| | - Emmanuelle Laffly
- University of Grenoble Alpes, Institut de Biologie Structurale, F-38044 Grenoble, France; Centre National de la Recherche Scientifique, Institut de Biologie Structurale, F-38044 Grenoble, France; Commissariat à l'Energie Atomique et aux Energies Alternatives, Institut de Biologie Structurale, F-38044 Grenoble, France
| | | | - Lydie Martin
- University of Grenoble Alpes, Institut de Biologie Structurale, F-38044 Grenoble, France; Centre National de la Recherche Scientifique, Institut de Biologie Structurale, F-38044 Grenoble, France; Commissariat à l'Energie Atomique et aux Energies Alternatives, Institut de Biologie Structurale, F-38044 Grenoble, France
| | - Ana Amoroso
- Centre for Protein Engineering, Department of Life Sciences, University of Liege, B4000 Liege, Belgium
| | - Richard R Schmidt
- Department of Chemistry, University of Konstanz, D-78457 Konstanz, Germany; Chemistry Department, King Abdulaziz University of Jeddah, 21589 Jeddah, Saudi Arabia; and
| | - Ulrich Zähringer
- Division of Immunochemistry, Research Center Borstel, Leibniz-Center for Medicine and Biosciences, D-23845 Borstel, Germany
| | - Christine Gaboriaud
- University of Grenoble Alpes, Institut de Biologie Structurale, F-38044 Grenoble, France; Centre National de la Recherche Scientifique, Institut de Biologie Structurale, F-38044 Grenoble, France; Commissariat à l'Energie Atomique et aux Energies Alternatives, Institut de Biologie Structurale, F-38044 Grenoble, France
| | - Anne-Marie Di Guilmi
- University of Grenoble Alpes, Institut de Biologie Structurale, F-38044 Grenoble, France; Centre National de la Recherche Scientifique, Institut de Biologie Structurale, F-38044 Grenoble, France; Commissariat à l'Energie Atomique et aux Energies Alternatives, Institut de Biologie Structurale, F-38044 Grenoble, France;
| | - Nicole M Thielens
- University of Grenoble Alpes, Institut de Biologie Structurale, F-38044 Grenoble, France; Centre National de la Recherche Scientifique, Institut de Biologie Structurale, F-38044 Grenoble, France; Commissariat à l'Energie Atomique et aux Energies Alternatives, Institut de Biologie Structurale, F-38044 Grenoble, France
| |
Collapse
|
22
|
Sun JJ, Lan JF, Shi XZ, Yang MC, Yang HT, Zhao XF, Wang JX. A fibrinogen-related protein (FREP) is involved in the antibacterial immunity of Marsupenaeus japonicus. FISH & SHELLFISH IMMUNOLOGY 2014; 39:296-304. [PMID: 24830772 DOI: 10.1016/j.fsi.2014.05.005] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2014] [Revised: 04/25/2014] [Accepted: 05/03/2014] [Indexed: 06/03/2023]
Abstract
Fibrinogen-related proteins (FREPs) in invertebrates have important functions in innate immunity. In this study, the cDNA of FREP was identified from the kuruma shrimp Marsupenaeus japonicus (MjFREP2). The full-length cDNA of MjFREP2 is 1138 bp with an open reading frame of 954 bp that encodes a 317-amino acid protein comprising a signal peptide and a fibrinogen-like domain. MjFREP2 could be detected in hemocytes, heart, hepatopancreas, gills, stomach, and intestines. MjFREP2 could also be upregulated in hemocytes after Vibrio anguillarum and Staphylococcus aureus challenge. Agglutination and binding assay results revealed that the recombinant MjFREP2 bound to bacteria and polysaccharides. Immunocytochemical analysis results showed that MjFREP2 proteins were mainly distributed in the cytoplasm of hemocytes from unchallenged shrimp and transported to the membrane or secreted out of the cell after V. anguillarum or S. aureus challenge. The secreted MjFREP2 bound to the bacteria presented in shrimp hemolymph. The overexpression of MjFREP2 could enhance bacterial clearance by inducing the phagocytosis of hemocytes. This ability was impaired by knockdown of MjFREP2 with RNA interference. The cumulative mortality of MjFREP2-silenced shrimp was significantly higher than that of the control shrimp. These results suggested that MjFREP2 has an important function in the antibacterial immunity of M. japonicus.
Collapse
Affiliation(s)
- Jie-Jie Sun
- MOE Key Laboratory of Plant Cell Engineering and Germplasm Innovation, Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong University, Jinan, Shandong 250100, China
| | - Jiang-Feng Lan
- MOE Key Laboratory of Plant Cell Engineering and Germplasm Innovation, Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong University, Jinan, Shandong 250100, China
| | - Xiu-Zhen Shi
- MOE Key Laboratory of Plant Cell Engineering and Germplasm Innovation, Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong University, Jinan, Shandong 250100, China
| | - Ming-Chong Yang
- MOE Key Laboratory of Plant Cell Engineering and Germplasm Innovation, Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong University, Jinan, Shandong 250100, China
| | - Hui-Ting Yang
- MOE Key Laboratory of Plant Cell Engineering and Germplasm Innovation, Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong University, Jinan, Shandong 250100, China
| | - Xiao-Fan Zhao
- MOE Key Laboratory of Plant Cell Engineering and Germplasm Innovation, Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong University, Jinan, Shandong 250100, China
| | - Jin-Xing Wang
- MOE Key Laboratory of Plant Cell Engineering and Germplasm Innovation, Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong University, Jinan, Shandong 250100, China.
| |
Collapse
|
23
|
Zhang XW, Wang XW, Huang Y, Hui KM, Shi YR, Wang W, Ren Q. Cloning and characterization of two different ficolins from the giant freshwater prawn Macrobrachium rosenbergii. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2014; 44:359-69. [PMID: 24462836 DOI: 10.1016/j.dci.2014.01.009] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2013] [Revised: 01/10/2014] [Accepted: 01/10/2014] [Indexed: 06/03/2023]
Abstract
Ficolins, a kind of lectin containing collagen-like and fibrinogen-related domains (FReDs, also known as FBG or FREP), are involved in the first line of host defense against pathogens. In this study, two ficolins, namely, MrFico1 and MrFico2, from the giant freshwater prawn Macrobrachium rosenbergii were identified. In contrast to other ficolins, these two ficolins have no collagen-like domain, but such ficolins contain a coiled region and a FReD domain. Phylogenetic analysis showed that MrFico1 and MrFico2, together with two ficolin-like proteins from Pacifastacus leniusculus, belonged to one group. Quantitative RT-PCR (qRT-PCR) showed that both MrFico1 and MrFico2 were expressed in hepatopancreas, stomach and intestine, with the highest expression in stomach for MrFico1, compared to the highest expression in hepatopancreas for MrFico2. qRT-PCR analysis also showed that MrFico1 was obviously upregulated upon Vibrio anguillarium challenge, while MrFico2 was upregulated after challenged by V. anguillarium or white spot syndrome virus. Bacterium-binding experiment showed that MrFico1 and MrFico2 could bind to different microbes, and sugar-binding assay revealed that these two ficolins could also bind to lipopolysaccharide and peptidoglycan, the glycoconjugates of bacteria surface. Moreover, these two ficolins could agglutinate bacteria in a calcium-dependent manner, and the results of bacteria clearance experiment showed that both ficolins could facilitate the clearance of injected bacteria in the prawn. Our results suggested that MrFico1 and MrFico2 may function as pattern-recognition receptors in the immune system of M. rosenbergii.
Collapse
Affiliation(s)
- Xiao-Wen Zhang
- School of Life Science, Henan Normal University, Xinxiang, Henan 453007, China
| | - Xian-Wei Wang
- The Key Laboratory of Plant Cell Engineering and Germplasm Innovation of Ministry of Education/Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong University, Jinan, Shandong 250100, China
| | - Ying Huang
- Jiangsu Key Laboratory for Biodiversity & Biotechnology and Jiangsu Key Laboratory for Aquatic Crustacean Diseases, College of Life Sciences, Nanjing Normal University, 1 Wenyuan Road, Nanjing 210046, China
| | - Kai-Min Hui
- Jiangsu Key Laboratory for Biodiversity & Biotechnology and Jiangsu Key Laboratory for Aquatic Crustacean Diseases, College of Life Sciences, Nanjing Normal University, 1 Wenyuan Road, Nanjing 210046, China
| | - Yan-Ru Shi
- Jiangsu Key Laboratory for Biodiversity & Biotechnology and Jiangsu Key Laboratory for Aquatic Crustacean Diseases, College of Life Sciences, Nanjing Normal University, 1 Wenyuan Road, Nanjing 210046, China
| | - Wen Wang
- Jiangsu Key Laboratory for Biodiversity & Biotechnology and Jiangsu Key Laboratory for Aquatic Crustacean Diseases, College of Life Sciences, Nanjing Normal University, 1 Wenyuan Road, Nanjing 210046, China.
| | - Qian Ren
- Jiangsu Key Laboratory for Biodiversity & Biotechnology and Jiangsu Key Laboratory for Aquatic Crustacean Diseases, College of Life Sciences, Nanjing Normal University, 1 Wenyuan Road, Nanjing 210046, China.
| |
Collapse
|
24
|
Wu Y, Yao F, Mei Y, Chu B, Cheng C, Liu Y, Li X, Zou X, Hou L. Cloning and expression analysis of the gene encoding fibrinogen-like protein A, a novel regeneration-related protein from Apostichopus japonicus. Mol Biol Rep 2014; 41:2617-27. [PMID: 24464127 DOI: 10.1007/s11033-014-3120-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2013] [Accepted: 01/10/2014] [Indexed: 11/29/2022]
Abstract
Fibrinogen-like protein A (FGLA), a member of the fibrinogen-related protein superfamily, exists in different tissues of vertebrates and invertebrates. FGLA plays crucial roles including innate immune response, blood clotting and regeneration. In this study, the fibrinogen-like protein A (fglA) was cloned from Apostichopus japonicus using rapid amplification of cDNA ends PCR techniques. The cDNA sequence of fglA is 1,524 bp with a 849 bp open reading frame encoding a polypeptide of 282 amino acids, with an N-terminal signal peptide and a conserved C-terminal domain. Bioinformatic analysis revealed that the predicted molecular weight of the whole protein is 31.9 kDa and it has an isoelectric point of 5.64. In-situ hybridization demonstrated that fglA is widely distributed in body wall, intestines, longitudinal muscles and respiratory tree. The expression levels of fglA during different regeneration stages in the body wall, intestine and respiratory trees were analyzed by real-time PCR. The expression of fglA gradually increased within 1 h in body wall, and reached a plateau before decreasing to the basal level. This indicates that fglA is associated with the regeneration of Apostichopus japonicus.
Collapse
Affiliation(s)
- Yang Wu
- College of Life Sciences, Liaoning Normal University, Dalian, 116081, People's Republic of China
| | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Chai Y, Yu S, Liu Y, Zhu Q. A fibrinogen-related protein (TfFREP2) gene involving in the immune response of Trachidermus fasciatus against Vibrio anguillarum. FISH & SHELLFISH IMMUNOLOGY 2013; 35:1988-1992. [PMID: 24091062 DOI: 10.1016/j.fsi.2013.09.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2013] [Revised: 08/26/2013] [Accepted: 09/02/2013] [Indexed: 06/02/2023]
Abstract
Fibrinogen-related proteins play important roles in the immune responses. We have obtained a cDNA encoding a novel fibrinogen-related protein from roughskin sculpin Trachidermus fasciatus (T. fasciatus) and named it as TfFREP2. The N and C terminus of TfFREP2 contain a putative 21-amino acid signal peptide and a typical 217-amino acid fibrinogen-like domain, which is conserved in all fibrinogen-related proteins. TfFREP2 has three glycosylation sites and two potential calcium-binding sites that are possibly involved in calcium coordination. The results of tissue specific checking showed that the mRNA and protein of TfFREP2 were particularly abundant in skin and gill among all the tested tissues. TfFREP2 mRNA and protein expression changed significantly after being challenged by Vibrio anguillarum pathogen in those immune-barrier tissues, such as skin and gill. Furthermore, recombinant TfFREP2 is able to agglutinate and bind V. anguillarum in the presence of calcium ion. The above results suggest that TfFREP2 might be involved in the host defense of fish against V. anguillarum infection.
Collapse
Affiliation(s)
- Yingmei Chai
- Ocean College, Shandong University (Weihai), Weihai 264209, PR China
| | | | | | | |
Collapse
|
26
|
Yan J, Xu L, Zhang Y, Zhang C, Zhang C, Zhao F, Feng L. Comparative genomic and phylogenetic analyses of the intelectin gene family: implications for their origin and evolution. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2013; 41:189-199. [PMID: 23643964 DOI: 10.1016/j.dci.2013.04.016] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2013] [Revised: 04/08/2013] [Accepted: 04/23/2013] [Indexed: 06/02/2023]
Abstract
Intelectin is a newly characterized gene family involved in early embryogenesis, host-pathogen interactions and iron metabolism. In this study, we searched the genomes of metazoans by extensive BLAST survey and found no intelectin homologs in invertebrate metazoans but 12 in amphioxus Branchiostoma floridae and 21 in ascidians Ciona intestinalis. Some ascidians oocyte cortical granule lectins (CGLs) have unknown insertion sequences between fibrinogen-related domain (FReD) and Intelectin Domain, the boundaries of which are equivalent to exon structures. In addition to ascidians intelectins/CGLs located in the base, phylogenetic tree comprises four main clades representing mammal, frog, fish, and amphioxus, indicating that intelectin genes undergo extensive lineage-specific duplication or gene conversion. However, genomic neighborhood surrounding analysis shows that clear proto-orthologies are difficult to be established among these counterparts. In addition, sequence comparison and phylogenetic analysis of FReDs from intelectins and other fibrinogen-like proteins from choanoflagellate, anemone, frog and human indicate FReDs of intelectins are unique. Likewise, these choanoflagellate and anemone genes may be close to intelectin gene.
Collapse
Affiliation(s)
- Jie Yan
- Marine Biotechnology Research Center, Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, Institute of Developmental Biology, School of Life Sciences, Shandong University, Jinan, Shandong 250100, PR China.
| | | | | | | | | | | | | |
Collapse
|
27
|
Schelenz S, Kirchhof N, Bidula S, Wallis R, Sexton DW. Opsonizing properties of rat ficolin-A in the defence against Cryptococcus neoformans. Immunobiology 2013; 218:477-83. [PMID: 22789560 DOI: 10.1016/j.imbio.2012.06.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2012] [Revised: 06/06/2012] [Accepted: 06/07/2012] [Indexed: 01/28/2023]
Abstract
Cryptococcus neoformans is a pathogenic fungus causing life threatening infections in humans. The present in vitro study aimed to investigate the opsonizing properties of a well characterized serum ficolin (rat ficolin-A), a member of carbohydrate-recognition molecules of the innate immune system, in the defence against this fungal pathogen. Using flow cytometric analysis we have been able to demonstrate that ficolin-A readily binds to two different acapsular C. neoformans serotypes (representative of the primary infectious form of this fungus) whereas the encapsulated forms are not being recognized. The ficolin-A binding was concentration dependent and inhibited by the acetylated sugars N-acetyleglucosamine and N-acetylegalactosamine but less so by galactose, glucose and mannan. The binding was enhanced at acidic pHs (5.7 and 4.7) compared to physiological pH (7.4) which may indicate that the carbohydrate recognizing fibrinogen-like domains of ficolins undergo conformational changes providing more efficient binding at sites of inflammation where the pH is much lower than normal. We further assessed the biological consequence of the ficolin-A recognition of acapsular C. neoformans by investigating their interaction with lung epithelial cells (type II pneumocytes cell line A549). Flow cytometric analysis demonstrated that ficolin-A opsonized acapsular C. neoformans showed significantly increased adherence to A549 cells when exposed to acidic conditions compared to the unopsonized controls (p=0.04). We conclude that ficolin-A binds acapsular C. neoformans via their carbohydrate recognizing fibrinogen-like domains leading to enhanced uptake by lung epithelial cells in vitro.
Collapse
Affiliation(s)
- Silke Schelenz
- Norwich Medical School, University of East Anglia, Norwich, United Kingdom.
| | | | | | | | | |
Collapse
|
28
|
Vitashenkova N, Moeller JB, Leth-Larsen R, Schlosser A, Lund KP, Tornøe I, Vitved L, Hansen S, Willis A, Kharazova AD, Skjødt K, Sorensen GL, Holmskov U. Identification and characterization of a chitin-binding protein purified from coelomic fluid of the lugworm Arenicola marina defining a novel protein sequence family. J Biol Chem 2012; 287:42846-55. [PMID: 23115230 DOI: 10.1074/jbc.m112.420976] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We have isolated a novel type of lectin named Arenicola marina lectin-1 (AML-1) from the lugworm A. marina. The lectin was purified from the coelomic fluid by affinity chromatography on a GlcNAc-derivatized column and eluted with GlcNAc. On SDS-PAGE, AML-1 showed an apparent molecular mass of 27 and 31 kDa in the reduced state. The N-terminal amino acid sequences were identical in these two bands. In the unreduced state, a complex band pattern was observed with bands from 35 kDa to more than 200 kDa. Two different full-length clones encoding polypeptides of 241 and 243 amino acids, respectively, were isolated from a coelomocyte cDNA library. The two clones, designated AML-1a and AML-1b, were 92% identical at the protein level and represent a novel type of protein sequence family. Purified AML-1 induced agglutination of rabbit erythrocytes, which could be inhibited by N-acetylated saccharides. Recombinant AML-1b showed the same band pattern as the native protein, whereas recombinant AML-1a in the reduced state lacked a 27 kDa band. AML-1b bound GlcNAc-derivatized columns and chitin, whereas AML-1a did not bind to these matrices. Immunohistochemical analysis revealed that AML-1 is expressed by coelomocytes in the nephridium and in round cells in the epidermis and in eggs. Moreover, AML-1 expression was up-regulated in response to a parasitic infection. We conclude that AML-1 purified from coelomic fluid is encoded by AML-1b and represents a novel type of protein family that binds acetylated components.
Collapse
Affiliation(s)
- Nina Vitashenkova
- Department of Cardiovascular and Renal Research, University of Southern Denmark, J.P. Winsloews Vej 25.3, 5000 Odense C, Odense, Denmark
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Brennan FH, Anderson AJ, Taylor SM, Woodruff TM, Ruitenberg MJ. Complement activation in the injured central nervous system: another dual-edged sword? J Neuroinflammation 2012; 9:137. [PMID: 22721265 PMCID: PMC3464784 DOI: 10.1186/1742-2094-9-137] [Citation(s) in RCA: 95] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2012] [Accepted: 06/21/2012] [Indexed: 11/28/2022] Open
Abstract
The complement system, a major component of the innate immune system, is becoming increasingly recognised as a key participant in physiology and disease. The awareness that immunological mediators support various aspects of both normal central nervous system (CNS) function and pathology has led to a renaissance of complement research in neuroscience. Various studies have revealed particularly novel findings on the wide-ranging involvement of complement in neural development, synapse elimination and maturation of neural networks, as well as the progression of pathology in a range of chronic neurodegenerative disorders, and more recently, neurotraumatic events, where rapid disruption of neuronal homeostasis potently triggers complement activation. The purpose of this review is to summarise recent findings on complement activation and acquired brain or spinal cord injury, i.e. ischaemic-reperfusion injury or stroke, traumatic brain injury (TBI) and spinal cord injury (SCI), highlighting the potential for complement-targeted therapeutics to alleviate the devastating consequences of these neurological conditions.
Collapse
Affiliation(s)
- Faith H Brennan
- The University of Queensland, School of Biomedical Sciences, St Lucia, Brisbane, QLD 4072, Australia
| | | | | | | | | |
Collapse
|
30
|
Kilpatrick DC, Chalmers JD. Human L-ficolin (ficolin-2) and its clinical significance. J Biomed Biotechnol 2012; 2012:138797. [PMID: 22500076 PMCID: PMC3303570 DOI: 10.1155/2012/138797] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2011] [Accepted: 11/14/2011] [Indexed: 11/17/2022] Open
Abstract
Human L-ficolin (P35, ficolin-2) is synthesised in the liver and secreted into the bloodstream where it is one of the major pattern recognition molecules of plasma/serum. Like other ficolins, it consists of a collagen-like tail region linked to a fibrinogen-related globular head; a basic triplet subunit arises via a collagen-like triple helix, and this then forms higher multimers (typically a 12-mer, Mr 400K). Unlike other ficolins, it has a complex set of binding sites arranged within an internal cleft enabling it to recognise a variety of molecular patterns including acetylated sugars and certain 1,3-β-glucans. It is one of the few molecules known to activate the lectin pathway of complement. Recently, some disease association studies (at either the DNA or protein level) have implicated L-ficolin in innate immunity, where it might cooperate with pentraxins and collectins. Emerging lines of evidence point to a role for L-ficolin in respiratory immunity, where its affinity for Pseudomonas aeruginosa could be significant.
Collapse
Affiliation(s)
- David C Kilpatrick
- Scottish National Blood Transfusion Service, National Science Laboratory, Edinburgh, UK.
| | | |
Collapse
|
31
|
Huang H, Huang S, Yu Y, Yuan S, Li R, Wang X, Zhao H, Yu Y, Li J, Yang M, Xu L, Chen S, Xu A. Functional characterization of a ficolin-mediated complement pathway in amphioxus. J Biol Chem 2011; 286:36739-48. [PMID: 21832079 PMCID: PMC3196118 DOI: 10.1074/jbc.m111.245944] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2011] [Revised: 07/20/2011] [Indexed: 12/28/2022] Open
Abstract
The ficolin-mediated complement pathway plays an important role in vertebrate immunity, but it is not clear whether this pathway exists in invertebrates. Here we identified homologs of ficolin pathway components from the cephalochordate amphioxus and investigated whether they had been co-opted into a functional ficolin pathway. Four of these homologs, ficolin FCN1, serine protease MASP1 and MASP3, and complement component C3, were highly expressed in mucosal tissues and gonads, and were significantly up-regulated following bacterial infection. Recombinant FCN1 could induce hemagglutination, discriminate among sugar components, and specifically recognize and aggregate several bacteria (especially gram-positive strains) without showing bactericidal activity. This suggested that FCN1 is a dedicated pattern-recognition receptor. Recombinant serine protease MASP1/3 formed complexes with recombinant FCN1 and facilitated the activation of native C3 protein in amphioxus humoral fluid, in which C3 acted as an immune effector. We conclude that amphioxus have developed a functional ficolin-complement pathway. Because ficolin pathway components have not been reported in non-chordate species, our findings supported the idea that this pathway may represent a chordate-specific innovation in the evolution of the complement system.
Collapse
Affiliation(s)
- Huiqing Huang
- From the Department of Biochemistry, College of Life Sciences, State Key Laboratory of Biocontrol, National Engineering Research Center of South China Sea Marine Biotechnology, Sun Yat-sen University, Guangzhou 510275, People's Republic of China and
| | - Shengfeng Huang
- From the Department of Biochemistry, College of Life Sciences, State Key Laboratory of Biocontrol, National Engineering Research Center of South China Sea Marine Biotechnology, Sun Yat-sen University, Guangzhou 510275, People's Republic of China and
| | - Yingcai Yu
- From the Department of Biochemistry, College of Life Sciences, State Key Laboratory of Biocontrol, National Engineering Research Center of South China Sea Marine Biotechnology, Sun Yat-sen University, Guangzhou 510275, People's Republic of China and
| | - Shaochun Yuan
- From the Department of Biochemistry, College of Life Sciences, State Key Laboratory of Biocontrol, National Engineering Research Center of South China Sea Marine Biotechnology, Sun Yat-sen University, Guangzhou 510275, People's Republic of China and
| | - Rui Li
- From the Department of Biochemistry, College of Life Sciences, State Key Laboratory of Biocontrol, National Engineering Research Center of South China Sea Marine Biotechnology, Sun Yat-sen University, Guangzhou 510275, People's Republic of China and
| | - Xin Wang
- From the Department of Biochemistry, College of Life Sciences, State Key Laboratory of Biocontrol, National Engineering Research Center of South China Sea Marine Biotechnology, Sun Yat-sen University, Guangzhou 510275, People's Republic of China and
| | - Hongchen Zhao
- From the Department of Biochemistry, College of Life Sciences, State Key Laboratory of Biocontrol, National Engineering Research Center of South China Sea Marine Biotechnology, Sun Yat-sen University, Guangzhou 510275, People's Republic of China and
| | - Yanhong Yu
- the Institute of Reproductive Immunology, Jinan University, Guangzhou 510632, People's Republic of China
| | - Jun Li
- From the Department of Biochemistry, College of Life Sciences, State Key Laboratory of Biocontrol, National Engineering Research Center of South China Sea Marine Biotechnology, Sun Yat-sen University, Guangzhou 510275, People's Republic of China and
| | - Manyi Yang
- From the Department of Biochemistry, College of Life Sciences, State Key Laboratory of Biocontrol, National Engineering Research Center of South China Sea Marine Biotechnology, Sun Yat-sen University, Guangzhou 510275, People's Republic of China and
| | - Liqun Xu
- From the Department of Biochemistry, College of Life Sciences, State Key Laboratory of Biocontrol, National Engineering Research Center of South China Sea Marine Biotechnology, Sun Yat-sen University, Guangzhou 510275, People's Republic of China and
| | - Shangwu Chen
- From the Department of Biochemistry, College of Life Sciences, State Key Laboratory of Biocontrol, National Engineering Research Center of South China Sea Marine Biotechnology, Sun Yat-sen University, Guangzhou 510275, People's Republic of China and
| | - Anlong Xu
- From the Department of Biochemistry, College of Life Sciences, State Key Laboratory of Biocontrol, National Engineering Research Center of South China Sea Marine Biotechnology, Sun Yat-sen University, Guangzhou 510275, People's Republic of China and
| |
Collapse
|
32
|
|
33
|
Wu C, Söderhäll K, Söderhäll I. Two novel ficolin-like proteins act as pattern recognition receptors for invading pathogens in the freshwater crayfish Pacifastacus leniusculus. Proteomics 2011; 11:2249-64. [PMID: 21598394 DOI: 10.1002/pmic.201000728] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2010] [Revised: 02/25/2011] [Accepted: 02/28/2011] [Indexed: 12/31/2022]
Abstract
To isolate pathogen-associated molecular patterns (PAMPs)-binding molecules, the bacterium, Staphylococcus aureus was used as an affinity matrix to find bacteria-binding proteins in the plasma of the freshwater crayfish, Pacifastacus leniusculus. Two new bacteria-binding ficolin-like proteins (FLPs) were identified by 2-DE and MS analysis. The FLPs have a fibrinogen-related domain (FReD) in their C-terminal and a repeat region in their N-terminal regions with putative structural similarities to the collagen-like domain of vertebrate ficolins and mannose binding lectins (MBLs). Phylogenetic analysis shows that the newly isolated crayfish FLP1 and FLP2 cluster separately from other FReD-containing proteins. A tissue distribution study showed that the mRNA expression of FLP occurred mainly in the hematopoietic tissue (Hpt) and in the hepatopancreas. Recombinant FLPs exhibited agglutination activity of Gram-negative bacteria Escherichia coli and Aeromonas hydrophila in the presence of Ca(2+) . The FLPs could bind to A. hydrophila, E. coli as well as S. aureus as judged by bacteria adsorption. Moreover, the FLPs may help crayfish to clear Gram-negative bacteria, but not Gram-positive bacteria which had been injected into the hemolymph. When Gram-negative bacteria coated with FLPs were incubated with Hpt cells, a lower death rate of the cells was found compared with control treatment. Our results suggest that FLPs function as pattern recognition receptors in the immune response of crayfish.
Collapse
Affiliation(s)
- Chenglin Wu
- Department of Comparative Physiology, Uppsala University, Uppsala, Sweden
| | | | | |
Collapse
|
34
|
Romero A, Dios S, Poisa-Beiro L, Costa MM, Posada D, Figueras A, Novoa B. Individual sequence variability and functional activities of fibrinogen-related proteins (FREPs) in the Mediterranean mussel (Mytilus galloprovincialis) suggest ancient and complex immune recognition models in invertebrates. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2011; 35:334-344. [PMID: 21034769 DOI: 10.1016/j.dci.2010.10.007] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2010] [Revised: 10/19/2010] [Accepted: 10/19/2010] [Indexed: 05/30/2023]
Abstract
In this paper, we describe sequences of fibrinogen-related proteins (FREPs) in the Mediterranean mussel Mytilus galloprovincialis (MuFREPs) with the fibrinogen domain probably involved in the antigen recognition, but without the additional collagen-like domain of ficolins, molecules responsible for complement activation by the lectin pathway. Although they do not seem to be true or primive ficolins since the phylogenetic analysis are not conclusive enough, their expression is increased after bacterial infection or PAMPs treatment and they present opsonic activities similar to mammalian ficolins. The most remarkable aspect of these sequences was the existence of a very diverse set of FREP sequences among and within individuals (different mussels do not share any identical sequence) which parallels the extraordinary complexity of the immune system, suggesting the existence of a primitive system with a potential capacity to recognize and eliminate different kind of pathogens.
Collapse
Affiliation(s)
- Alejandro Romero
- Instituto de Investigaciones Marinas, Consejo Superior de Investigaciones Científicas (CSIC), Eduardo Cabello 6, 36208, Vigo, Spain
| | | | | | | | | | | | | |
Collapse
|
35
|
Thomsen T, Schlosser A, Holmskov U, Sorensen GL. Ficolins and FIBCD1: soluble and membrane bound pattern recognition molecules with acetyl group selectivity. Mol Immunol 2011; 48:369-81. [PMID: 21071088 DOI: 10.1016/j.molimm.2010.09.019] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2010] [Accepted: 09/30/2010] [Indexed: 12/27/2022]
Abstract
A network of molecules, which recognizes pathogens, work together to establish a quick and efficient immune response to infectious agents. Molecules containing a fibrinogen related domain in invertebrates and vertebrates have been implicated in immune responses against pathogens, and characterized as pattern recognition molecules. Ficolins are soluble oligomeric proteins composed of trimeric collagen-like regions linked to fibrinogen-related domains (FReDs) that have the ability to sense molecular patterns on both pathogens and apoptotic cell surfaces and activate the complement system. The ficolins have acetyl-binding properties, which have been localized to different binding sites in the FReD-region. A newly discovered tetrameric transmembrane protein, FIBCD1, likewise binds acetylated structures via the highly conserved FReD. This review presents current knowledge on acetyl binding FReD-containing molecules, and discusses structural resemblance but also diversity in recognition of acetylated ligands.
Collapse
Affiliation(s)
- Theresa Thomsen
- Institute of Molecular Medicine, University of Southern Denmark, Denmark
| | | | | | | |
Collapse
|
36
|
Zhang J, Yang L, Ang Z, Yoong SL, Tran TTT, Anand GS, Tan NS, Ho B, Ding JL. Secreted M-ficolin anchors onto monocyte transmembrane G protein-coupled receptor 43 and cross talks with plasma C-reactive protein to mediate immune signaling and regulate host defense. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2010; 185:6899-910. [PMID: 21037097 DOI: 10.4049/jimmunol.1001225] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2023]
Abstract
Although transmembrane C-type lectins (CLs) are known to initiate immune signaling, the participation and mechanism of action of soluble CLs have remained enigmatic. In this study, we found that M-ficolin, a conserved soluble CL of monocyte origin, overcomes its lack of membrane-anchor domain by docking constitutively onto a monocyte transmembrane receptor, G protein-coupled receptor 43 (GPCR43), to form a pathogen sensor-cum-signal transducer. On encountering microbial invaders, the M-ficolin-GPCR43 complex activates the NF-κB cascade to upregulate IL-8 production. We showed that mild acidosis at the local site of infection induces conformational changes in the M-ficolin molecule, which provokes a strong interaction between the C-reactive protein (CRP) and the M-ficolin-GPCR43 complex. The collaboration among CRP-M-ficolin-GPCR43 under acidosis curtails IL-8 production thus preventing immune overactivation. Therefore, we propose that a soluble CL may become membrane-associated through interaction with a transmembrane protein, whereupon infection collaborates with other plasma protein to transduce the infection signal and regulate host defense. Our finding implies a possible mechanism whereby the host might expand its repertoire of immune recognition-cum-regulation tactics by promiscuous protein networking. Furthermore, our identification of the pH-sensitive interfaces of M-ficolin-CRP provides a powerful template for future design of potential immunomodulators.
Collapse
Affiliation(s)
- Jing Zhang
- Department of Biological Sciences, National University of Singapore, Singapore
| | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Mares J, Richtrova P, Hricinova A, Tuma Z, Moravec J, Lysak D, Matejovic M. Proteomic profiling of blood-dialyzer interactome reveals involvement of lectin complement pathway in hemodialysis-induced inflammatory response. Proteomics Clin Appl 2010; 4:829-38. [PMID: 21137026 DOI: 10.1002/prca.201000031] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2010] [Accepted: 08/08/2010] [Indexed: 11/06/2022]
Abstract
PURPOSE dialysis-induced inflammatory response including leukocyte and complement activation is considered a significant cofactor of chronic morbidity in long-term hemodialysis (HD) patients. The aim of this study was to provide better insight into its molecular background. EXPERIMENTAL DESIGN in 16 patients, basic biocompatibility markers, i.e. leukocyte counts and C5a levels, were monitored during HD on a polysulfone membrane. Proteins adsorbed to dialyzers were eluted and separated by 2-DE. Selected proteins were identified by MS; ficolin-2 plasma levels were assessed. Data are given as medians (quartile ranges). RESULTS in total, 7.2 (34.7) mg proteins were retrieved from dialyzer eluates and were resolved into 217 protein spots. The proteins most enriched in eluates (and hence selectively adsorbed) were those involved in complement activation (C3c, ficolin-2, mannan-binding lectin serine proteases, properdin) and cell adhesion (actin, caldesmon, tropomyosin, vitronectin, vinculin). A significant decrease of plasma ficolin-2 (41% [4.7], p<0.001) was evidenced during one HD session, associated with leukopenia (r=0.73, p=0.001) and C5a production (r=-0.62, p=0.01) at 15 min. CONCLUSIONS AND CLINICAL RELEVANCE ficolin-2 adsorption to polysulfone dialyzer initiates the lectin pathway of complement activation, mediates dialysis-induced leukopenia, and results in a significant depletion of ficolin-2, an essential component of innate immunity.
Collapse
Affiliation(s)
- Jan Mares
- Department of Internal Medicine I, Charles University Medical School and Teaching Hospital, Plzen, Czech Republic.
| | | | | | | | | | | | | |
Collapse
|
38
|
Kuehn A, Simon N, Pradel G. Family members stick together: multi-protein complexes of malaria parasites. Med Microbiol Immunol 2010; 199:209-26. [PMID: 20419315 DOI: 10.1007/s00430-010-0157-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2010] [Indexed: 11/24/2022]
Abstract
Malaria parasites express a broad repertoire of proteins whose expression is tightly regulated depending on the life-cycle stage of the parasite and the environment of target organs in the respective host. Transmission of malaria parasites from the human to the anopheline mosquito is mediated by intraerythrocytic sexual stages, termed gametocytes, which circulate in the peripheral blood and are essential for the spread of the tropical disease. In Plasmodium falciparum, gametocytes express numerous extracellular proteins with adhesive motifs, which might mediate important interactions during transmission. Among these is a family of six secreted proteins with adhesive modules, termed PfCCp proteins, which are highly conserved throughout the apicomplexan clade. In P. falciparum, the proteins are expressed in the parasitophorous vacuole of gametocytes and are subsequently exposed on the surface of macrogametes during parasite reproduction in the mosquito midgut. One characteristic of the family is a co-dependent expression, such that loss of all six proteins occurs if expression of one member is disrupted via gene knockout. The six PfCCp proteins interact by adhesion domain-mediated binding and thus form complexes on the sexual stage surface having adhesive properties. To date, the PfCCp proteins represent the only protein family of the malaria parasite sexual stages that assembles to multimeric complexes, and only a small number of such protein complexes have so far been identified in other life-cycle stages of the parasite.
Collapse
Affiliation(s)
- Andrea Kuehn
- Research Center for Infectious Diseases, University of Würzburg, Josef-Schneider-Strasse 2, Building D15, Würzburg, Germany
| | | | | |
Collapse
|
39
|
Garred P, Honoré C, Ma YJ, Munthe-Fog L, Hummelshøj T. MBL2, FCN1, FCN2 and FCN3-The genes behind the initiation of the lectin pathway of complement. Mol Immunol 2009; 46:2737-44. [PMID: 19501910 DOI: 10.1016/j.molimm.2009.05.005] [Citation(s) in RCA: 115] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2009] [Revised: 05/01/2009] [Accepted: 05/03/2009] [Indexed: 10/20/2022]
Abstract
Mannose-binding lectin (MBL) and the ficolins (Ficolin-1, Ficolin-2 and Ficolin-3) are soluble collagen-like proteins that are involved in innate immune defence. They bind sugar structures or acetylated compounds present on microorganisms and on dying host cells and they initiate activation of the lectin complement pathway in varying degrees. Common variant alleles situated both in promoter and structural regions of the human MBL gene (MBL2) influence the stability and the serum concentration of the protein. Although not as thoroughly investigated as the MBL2 gene polymorphisms the ficolin genes (FCNs) also exhibit genetic variations affecting both the serum concentration, stability and binding capacity of the corresponding proteins. Epidemiological studies have suggested that the genetically determined variations in MBL serum concentrations influence the susceptibility to and the course of different types of diseases, while the importance of the ficolins in general and the genetic variation in the FCNs genes in particular is still largely unresolved. This overview will summarize the current molecular knowledge of the human MBL2, FCN1, FCN2 and FCN3 genes.
Collapse
Affiliation(s)
- Peter Garred
- Department of Clinical Immunology, Rigshospitalet, University of Copenhagen, Denmark.
| | | | | | | | | |
Collapse
|
40
|
Dong Y, Dimopoulos G. Anopheles fibrinogen-related proteins provide expanded pattern recognition capacity against bacteria and malaria parasites. J Biol Chem 2009; 284:9835-44. [PMID: 19193639 DOI: 10.1074/jbc.m807084200] [Citation(s) in RCA: 149] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The fibrinogen-related protein family (FREP, also known as FBN) is an evolutionarily conserved immune gene family found in mammals and invertebrates. It is the largest pattern recognition receptor gene family in Anopheles gambiae, with as many as 59 putative members, while the Drosophila melanogaster genome has only 14 known FREP members. Our sequence and phylogenetic analysis suggest that this remarkable gene expansion in the mosquito is the result of tandem duplication of the fibrinogen domain. We found that the majority of the FREP genes displayed immune-responsive transcription after challenge with bacteria, fungi, or Plasmodium, and these expression patterns correlated strongly with gene phylogeny and chromosomal location. Using RNAi-mediated gene-silencing assays, we further demonstrated that some FREP members are essential factors of the mosquito innate immune system that are required for maintaining immune homeostasis, and members of this family have complementary and synergistic functions. One of the most potent anti-Plasmodium FREP proteins, FBN9, was found to interact with both Gram-negative and Gram-positive bacteria and strongly co-localized with both rodent and human malaria parasites in the mosquito midgut epithelium, suggesting that its defensive activity involves direct interaction with the pathogen. Interestingly, FBN9 formed dimers that bound to the bacterial surfaces with different affinities. Our findings indicate that the A. gambiae FREP gene family plays a central role in the mosquito innate immune system and provides an expanded pattern recognition and anti-microbial defense repertoire.
Collapse
Affiliation(s)
- Yuemei Dong
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland 21205, USA
| | | |
Collapse
|
41
|
Zhang J, Koh J, Lu J, Thiel S, Leong BSH, Sethi S, He CYX, Ho B, Ding JL. Local inflammation induces complement crosstalk which amplifies the antimicrobial response. PLoS Pathog 2009; 5:e1000282. [PMID: 19180241 PMCID: PMC2629585 DOI: 10.1371/journal.ppat.1000282] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2008] [Accepted: 12/27/2008] [Indexed: 12/20/2022] Open
Abstract
By eliciting inflammatory responses, the human immunosurveillance system notably combats invading pathogens, during which acute phase proteins (CRP and cytokines) are elevated markedly. However, the Pseudomonas aeruginosa is a persistent opportunistic pathogen prevalent at the site of local inflammation, and its acquisition of multiple antibiotic-resistance factors poses grave challenges to patient healthcare management. Using blood samples from infected patients, we demonstrate that P. aeruginosa is effectively killed in the plasma under defined local infection-inflammation condition, where slight acidosis and reduced calcium levels (pH 6.5, 2 mM calcium) typically prevail. We showed that this powerful antimicrobial activity is provoked by crosstalk between two plasma proteins; CRPratioL-ficolin interaction led to communication between the complement classical and lectin pathways from which two amplification events emerged. Assays for C4 deposition, phagocytosis, and protein competition consistently proved the functional significance of the amplification pathways in boosting complement-mediated antimicrobial activity. The infection-inflammation condition induced a 100-fold increase in CRPratioL-ficolin interaction in a pH- and calcium-sensitive manner. We conclude that the infection-induced local inflammatory conditions trigger a strong interaction between CRPratioL-ficolin, eliciting complement-amplification pathways which are autonomous and which co-exist with and reinforce the classical and lectin pathways. Our findings provide new insights into the host immune response to P. aeruginosa infection under pathological conditions and the potential development of new therapeutic strategies against bacterial infection.
Collapse
Affiliation(s)
- Jing Zhang
- NUS Graduate School for Integrative Science and Engineering, National University of Singapore, Singapore
| | - Jingyun Koh
- Department of Biological Sciences, Faculty of Science, National University of Singapore, Singapore
| | - Jinhua Lu
- Department of Microbiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Steffen Thiel
- Department of Medical Microbiology and Immunology, University of Aarhus, Aarhus, Denmark
| | | | - Sunil Sethi
- Department of Pathology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Cynthia Y. X. He
- Department of Biological Sciences, Faculty of Science, National University of Singapore, Singapore
| | - Bow Ho
- Department of Microbiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Jeak L. Ding
- NUS Graduate School for Integrative Science and Engineering, National University of Singapore, Singapore
- Department of Biological Sciences, Faculty of Science, National University of Singapore, Singapore
| |
Collapse
|
42
|
Russell S, Young KM, Smith M, Hayes MA, Lumsden JS. Identification, cloning and tissue localization of a rainbow trout (Oncorhynchus mykiss) intelectin-like protein that binds bacteria and chitin. FISH & SHELLFISH IMMUNOLOGY 2008; 25:91-105. [PMID: 18502147 DOI: 10.1016/j.fsi.2008.02.018] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2007] [Revised: 02/27/2008] [Accepted: 02/27/2008] [Indexed: 05/26/2023]
Abstract
Intelectins are a recently identified group of animal lectins involved in innate immune surveillance. This paper describes the primary structure, expression and immunohistochemical localization of a rainbow trout plasma intelectin (RTInt). RTInt exhibited calcium-dependent binding to N-acetylglucosamine (GlcNAc) and mannose conjugated Toyopearl Amino 650 M matrices. When GlcNAc eluates from chromatography matrices were analyzed by reducing 1D PAGE and Western blots, the lectin appeared as approximately 37 kDa and approximately 72 kDa bands. Similar analysis of plasma revealed a single 72 kDa band under reducing conditions. MALDI-TOF MS demonstrated five, approximately 37 kDa isoforms (pI 5.3-6.1) separated by 2D-PAGE. A 975 bp cDNA sequence obtained by RT-PCR from liver and spleen tissue encoded a 325 amino acid secretory protein with homology to human and murine intelectins, which bind bacterial components and are induced during parasitic infections. Gene expression and immunohistochemistry detected RTInt in gill, spleen, hepatic sinusoid, renal interstitium, intestine, skin, swim bladder and within leukocytes. Direct binding assays demonstrated the ability of RTInt to bind relevant bacterial and chitinous targets. These findings suggest that RTInt plays a role in innate immune defense against bacterial and chitinous microbial organisms.
Collapse
Affiliation(s)
- S Russell
- Fish Pathology Laboratory, Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, Ontario, N1G 2W1, Canada
| | | | | | | | | |
Collapse
|
43
|
Fan C, Zhang S, Li L, Chao Y. Fibrinogen-related protein from amphioxus Branchiostoma belcheri is a multivalent pattern recognition receptor with a bacteriolytic activity. Mol Immunol 2008; 45:3338-46. [PMID: 18533266 DOI: 10.1016/j.molimm.2008.04.019] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2008] [Revised: 04/20/2008] [Accepted: 04/23/2008] [Indexed: 10/22/2022]
Abstract
Fibrinogen-related proteins (FREPs) containing fibrinogen-like (FBG) domain have been shown to be involved in immune responses in both invertebrates and vertebrates, but the underlying mechanisms remain ill-defined. In this study we isolated a cDNA encoding amphioxus (Branchiostoma belcheri) FREP homolog, BbFREP. BbFREP encoded a protein of 286 amino acids, which included a C-terminal FBG domain and clustered together with human fibrinogen beta and gamma chains. Quantitative real time PCR revealed that the expression of BbFREP was significantly up-regulated following challenge with lipopolysaccharides (LPS) or lipoteichoic acid (LTA). The recombinant BbFREP expressed in Pichia pastoris was able to specifically recognize the pathogen-associated molecular patterns (PAMPs) on the bacterial surfaces including LPS, peptidoglycan (PGN) and LTA, and displayed strong bacteriolytic activities against both Gram-negative bacterium Escherichia coli and Gram-positive bacterium Staphylococcus aureus. BbFREP was also able to bind to both E. coli and S. aureus. In situ hybridization indicated that BbFREP was mainly expressed in the hepatic caecum and hind-gut, agreeing basically with the primary expression of vertebrate FREP genes in the liver. All these suggest that BbFREP can function as a pattern recognition receptor with a bacteriolytic activity via interaction with LPS, LTA and PGN. It also bolsters the notion that the hepatic caecum of amphioxus is equivalent to the vertebrate liver, acting as a major tissue in acute phase response.
Collapse
Affiliation(s)
- Chunxin Fan
- Department of Marine Biology, Ocean University of China, Qingdao 266003, China
| | | | | | | |
Collapse
|
44
|
Middha S, Wang X. Evolution and potential function of fibrinogen-like domains across twelve Drosophila species. BMC Genomics 2008; 9:260. [PMID: 18513432 PMCID: PMC2429915 DOI: 10.1186/1471-2164-9-260] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2007] [Accepted: 05/30/2008] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The fibrinogen-like (FBG) domain consists of approximately 200 amino acid residues, which has high sequence similarity to the C-terminal halves of fibrinogen beta and gamma chains. Fibrinogen-related proteins (FREPs) containing one or more FBG domains are found universally in vertebrates and invertebrates. In invertebrates, FREPs are involved in immune responses and other aspects of physiology. To understand the complexity of this gene family in Drosophila, we analyzed FREPs in twelve Drosophila species. RESULTS Using the genome data from 12 Drosophila species, we identified FBG domains in each species. The results show that the gene numbers in each species vary from 14 genes up to 43 genes. Using sequence profile analysis, we found that FBG domains have high sequence similarity and are highly conserved throughout. By comparison of structure and sequence conservation, some of the FBG domains in Drosophila melanogaster are predicted to function in recognition of carbohydrates and their derivatives on the surface of microorganisms in innate immunity. CONCLUSION Sequence and structural analyses show that FREP family across 12 Drosophila species contains conserved FBG domains. Expansion of the FREP families in Drosophila is mainly accounted by a major expansion of FBG domains.
Collapse
Affiliation(s)
- Sumit Middha
- Center for Genomics and Bioinformatics, Indiana University, Bloomington, IN 47405, USA.
| | | |
Collapse
|
45
|
Man P, Kovár V, Sterba J, Strohalm M, Kavan D, Kopácek P, Grubhoffer L, Havlícek V. Deciphering Dorin M glycosylation by mass spectrometry. EUROPEAN JOURNAL OF MASS SPECTROMETRY (CHICHESTER, ENGLAND) 2008; 14:345-354. [PMID: 19136723 DOI: 10.1255/ejms.979] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
The soft tick, Ornithodoros moubata, is a vector of several bacterial and viral pathogens including Borrelia duttoni, a causative agent of relapsing fever and African swine fever virus. Previously, a sialic acid-specific lectin Dorin M was isolated from its hemolymph. Here, we report on the complete characterization of the primary sequence of Dorin M. Using liquid chromatography coupled to mass spectrometry, we identified three different glycopeptides in the tryptic digest of Dorin M. The peptide, as well as the glycan part of all glycopeptides, were further fully sequenced by means of tandem mass spectrometry (MS2) and multiple-stage mass spectrometry (MS3). Two classical N-glycosylation sites were modified by high-mannose-type glycans containing up to nine mannose residues. The third site bore a glycan with four to five mannose residues and a deoxyhexose (fucose) attached to the proximal N-acetylglycosamine. The microheterogeneity at each site was estimated based on chromatographic behavior of different glycoforms. The fourth, a non-classical N-glycosylation site (Asn-Asn-Cys), was not glycosylated, probably due to the involvement of the cysteine residue in a disulfide bridge.
Collapse
Affiliation(s)
- Petr Man
- Institute of Microbiology, Academy of Sciences of the Czech Republic, v.v.i., Vídenská 1083, 142 20 Praha 4, Czech Republic.
| | | | | | | | | | | | | | | |
Collapse
|
46
|
Zhang SM, Nian H, Zeng Y, Dejong RJ. Fibrinogen-bearing protein genes in the snail Biomphalaria glabrata: characterization of two novel genes and expression studies during ontogenesis and trematode infection. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2008; 32:1119-30. [PMID: 18417215 PMCID: PMC2585491 DOI: 10.1016/j.dci.2008.03.001] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2007] [Revised: 01/29/2008] [Accepted: 03/03/2008] [Indexed: 05/16/2023]
Abstract
All fibrinogen (FBG)-bearing proteins documented to date in the freshwater snail Biomphalaria glabrata, the intermediate host of the human blood fluke Schistosoma mansoni, possess the same molecular structure; one or two immunoglobin superfamily (IgSF) domains at the N-terminus and a FBG domain at the C-terminus (named as FBG-related protein (FREP)). Here we report two novel genes that encode FBG-bearing proteins from B. glabrata. Different from all known FREPs, the first gene encodes a protein (657 amino acids (aa)) composed of a long N-terminal region with no sequence homology to any known protein, a middle epidermal growth factor (EGF) repeat region and a C-terminal FBG domain, designated FBG-related molecule (FReM). Differential expression at 2 days post-exposure (dpe) to the trematode S. mansoni or Echinostoma paraensei was found in the S. mansoni susceptible M line and resistant BS-90 snail strains. The second gene is a new member of the FREP family, designated FREP14, which encodes a 399 aa putative secreted protein. FREP14 is different from known FREPs in that it is encoded by a single locus and is not upregulated in early or late stage S. mansoni exposure, but is upregulated in late stage E. paraensei infection. Furthermore, gene expression during the snail's ontogenesis and at a late stage of trematode infection (52 dpe) has been investigated in the two newly identified genes (FReM and FREP14) described in this paper and five representative members of known FREPs (FREPs 2, 3, 4, 12, and 13). A variety of expression patterns were observed, suggestive of functional diversity among the members of FBG-bearing proteins. Our findings further broaden our understanding of the diversity and function of the FBG-bearing protein encoded genes in B. glabrata.
Collapse
Affiliation(s)
- Si-Ming Zhang
- Department of Biology, University of New Mexico, MSC03 2020, Albuquerque, NM 87131, USA.
| | | | | | | |
Collapse
|
47
|
Runza VL, Schwaeble W, Männel DN. Ficolins: novel pattern recognition molecules of the innate immune response. Immunobiology 2007; 213:297-306. [PMID: 18406375 DOI: 10.1016/j.imbio.2007.10.009] [Citation(s) in RCA: 102] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2007] [Accepted: 10/17/2007] [Indexed: 10/22/2022]
Abstract
Ficolins are members of the collectin family of proteins which are able to recognize pathogen-associated molecular pattern (PAMP) on microbial surfaces. Upon binding to their specific PAMP, ficolins may trigger activation of the immune system by either binding to cellular receptors for collectins or by initiating activation of complement via the lectin pathway. For the latter, the human ficolins (i.e. L-, H- and M-ficolin) and murine ficolin-A were shown to associate with the lectin pathway-specific serine protease MBL-associated serine protease-2 (MASP-2) and catalyse its activation which in turn activates C4 and C4b-bound C2 to generate the C3 convertase C4b2a. There is mounting evidence underlining the lectin nature of ficolins with a wide range of carbohydrate moieties recognized on microbial surfaces. However, not all members of the ficolin family appear to act as lectin pathway recognition components. For example, murine ficolin-B does not associate with MASP-2 and appears to be absent in plasma and other humoral fluids. Its stringent cellular localization points to other functions within the immune response, possibly acting as an intracellular scavenger to target and facilitate clearance of PAMP-bearing debris. When comparing ficolin orthologues from different species, it appears evident that human, murine, and porcine ficolins differ in many aspects, a specific point that we aim to address in this review.
Collapse
Affiliation(s)
- Valeria L Runza
- Institute of Immunology, University of Regensburg, Franz-Josef-Strauss-Allee 11, 93042 Regensburg, Germany.
| | | | | |
Collapse
|
48
|
Phaneuf LR, Lillie BN, Hayes MA, Turner PV. Single nucleotide polymorphisms in mannan-binding lectins and ficolins in various strains of mice. Int J Immunogenet 2007; 34:259-67. [PMID: 17627761 DOI: 10.1111/j.1744-313x.2007.00689.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Mannan-binding lectin (MBL) and ficolin are collagenous lectins produced primarily by the liver and are involved in innate resistance to microbial pathogens. Mice have two MBL genes (Mbl1 and Mbl2) that encode MBL-A and MBL-C, respectively. Similarly, the murine Fcna and Fcnb genes encode ficolin-A and ficolin-B. Several single nucleotide polymorphisms (SNP) in the human MBL2 gene are responsible for various innate immune dysfunctions due to abnormal structure or expression of human MBL-C. In these studies, we identified SNPs in the expressed collagenous lectin genes Mbl1, Mbl2, Fcna, and Fcnb in 10 strains of mice designated high priority Group A strains by the Mouse Phenome Project (129S1/SvImJ, A/J, BALB/cByJ, C3H/HeJ, C57BL/6 J, DBA/2 J, FVB/NJ, SJL/J, CAST/EiJ and SPRET/EiJ) by sequencing gene exons by reverse transcription-polymerase chain reaction (RT-PCR). Sequence comparisons identified a total of 15 structural SNPs in Mbl1 in two strains, 27 SNPs in Mbl2 in five strains, and 19 and 15 SNPs in Fcna and Fcnb, respectively, in two strains. Two non-synonymous SNPs were identified in the collagen-like domain of mouse Fcnb that are similar to the coding polymorphisms in the collagen-like domain of human MBL2. Most of the non-synonymous SNPs identified in Mbl1 and Mbl2 occurred in the carbohydrate-recognition domains (CRDs), and some resulted in altered residues close to known ligand binding sites. Similarly, most non-synonymous SNPs of Fcna and Fcnb were identified in the fibrinogen-like CRD. The miscoding SNPs found in the CRD regions of mouse Mbl1, Mbl2, Fcna and Fcnb may be associated with strain differences in glycan binding avidity and disposition of microbial or host ligands. Furthermore, the non-synonymous mutations in the collagen-like domain of Fcnb may alter the structure of the mature ficolin-B protein leading to functional deficiencies. These differences may be important in the pathogenesis of susceptibility differences between inbred strains to various infectious microorganisms.
Collapse
Affiliation(s)
- L R Phaneuf
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, Ontario, Canada
| | | | | | | |
Collapse
|
49
|
Vu D, Neerman-Arbez M. Molecular mechanisms accounting for fibrinogen deficiency: from large deletions to intracellular retention of misfolded proteins. J Thromb Haemost 2007; 5 Suppl 1:125-31. [PMID: 17635718 DOI: 10.1111/j.1538-7836.2007.02465.x] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Fibrinogen, the soluble precursor of fibrin, which is the main protein constituent of the blood clot, is synthesized in hepatocytes in the form of a hexamer composed of two sets of three polypeptides (Aalpha, Bbeta, and gamma). Each polypeptide is encoded by a distinct gene, FGA, FGB and FGG, all three clustered in a region of 50 kb on 4q32. Congenital afibrinogenemia is characterized by the complete absence of fibrinogen. The first causative mutation for this disease was identified in Geneva in a non-consanguineous Swiss family in 1999: the four patients were homozygous for a large deletion in the fibrinogen cluster, which eliminated almost the entire FGA genomic sequence. Mutations in the fibrinogen genes may lead to deficiency of fibrinogen by several mechanisms: acting at the DNA level, at the RNA level by affecting mRNA splicing or stability, or at the protein level by affecting protein synthesis, assembly or secretion. Recent reviews have provided helpful updates for the rapidly growing number of causative mutations identified in patients with fibrinogen deficiencies, either afibrinogenemia or hypofibrinogenemia. The aim of this review is to highlight specifically the subset of mutations that allow fibrinogen chain synthesis and hexamer assembly but impair secretion. Indeed, functional studies of these mutations have shed light on the specific sequences and structures in the fibrinogen molecule involved in the quality control of fibrinogen secretion.
Collapse
Affiliation(s)
- D Vu
- Department of Genetic Medicine and Development, University Medical School, Geneva, Switzerland
| | | |
Collapse
|
50
|
Abstract
Few papers have been published on tick lectins so far, and therefore more data are needed to complete the mosaic of knowledge of their structural and functional properties. Tissue-specific lectin/haemagglutinin activities of both soft and hard ticks have been investigated. Some tick lectins are proteins with binding affinity for sialic acid, various derivatives of hexosamines and different glycoconjugates. Most tick lectin/haemagglutinin activities are blood meal enhanced, and could serve as molecular factors of self/non-self recognition in defence reactions against bacteria or fungi, as well as in pathogen/parasite transmission. Dorin M, the plasma lectin of Ornithodoros moubata, is the first tick lectin purified so far from tick haemolymph, and the first that has been fully characterized. Partial characterization of other tick lectins/haemagglutinins has been performed mainly with respect to their carbohydrate binding specificities and immunochemical features.
Collapse
Affiliation(s)
- L Grubhoffer
- Institute of Parasitology, Academy of Sciences of the Czech Republic, University of South Bohemia, Branisovská 31, 370 05 Ceské Budijovice, Czech Republic.
| | | | | |
Collapse
|