1
|
Chandran AS, Joshi S, Suresh S, Savarraj J, Snyder K, Vasconcellos FDN, Vakilna YS, Modiano YA, Pati S, Tandon N. Efficacy of neuromodulation of the pulvinar nucleus for drug-resistant epilepsy. Epilepsia 2025; 66:1059-1070. [PMID: 39797738 DOI: 10.1111/epi.18244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 12/14/2024] [Accepted: 12/16/2024] [Indexed: 01/13/2025]
Abstract
OBJECTIVE The pulvinar nucleus of the thalamus has extensive cortical connections with the temporal, parietal, and occipital lobes. Deep brain stimulation (DBS) targeting the pulvinar nucleus, therefore, carries the potential for therapeutic benefit in patients with drug-resistant posterior quadrant epilepsy (PQE) and neocortical temporal lobe epilepsy (TLE). Here, we present a single-center experience of patients managed via bilateral DBS of the pulvinar nucleus. METHODS A single-institution retrospective review of five patients who underwent bilateral pulvinar DBS for drug-resistant TLE or PQE was performed. Stimulation parameters were adjusted monthly as needed, and side effects were monitored. The primary outcome was the percentage reduction in patient-reported seizure frequency in comparison to the preimplant baseline. The location of the active electrode contacts in relation to pulvinar thalami that produced the best seizure outcome was identified. Chronic sensing of the pulvinar local field potentials (LFPs) and circadian pattern of modulation of the LFP amplitudes were analyzed. RESULTS Four patients (80%) experienced a >70% reduction in seizure frequency, whereas one patient had >50% reduction in seizure. Mean seizure reduction was 79% at a median follow-up of 13 months (range = 9-21 months). No significant side effects were noted. Of all the pulvinar subnuclei, stimulation of the medial pulvinar nucleus (MPN) produced the best seizure outcome in all patients except for two, in whom active contacts in the MPN but also in more lateral and inferior locations resulted in the most significant reduction in seizures. Chronic timeline data identified changes in LFP amplitude associated with stimulation and seizure occurrences. SIGNIFICANCE In this first ever report on a series of patients undergoing bilateral pulvinar DBS for drug-resistant epilepsy, we demonstrate that stimulation of the pulvinar and in particular the MPN is a safe and viable option for patients with nonlesional PQE or TLE. The optimal target for stimulation and relative merits of open versus closed loop stimulation should be delineated in future studies.
Collapse
Affiliation(s)
- Arjun Suresh Chandran
- Texas Comprehensive Epilepsy Program, Department of Neurosurgery, University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Stuti Joshi
- Texas Comprehensive Epilepsy Program, Department of Neurology, University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Surya Suresh
- Texas Comprehensive Epilepsy Program, Department of Neurology, University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Jude Savarraj
- Texas Comprehensive Epilepsy Program, Department of Neurosurgery, University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Kathryn Snyder
- Texas Comprehensive Epilepsy Program, Department of Neurosurgery, University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Fernando De Nigris Vasconcellos
- Texas Comprehensive Epilepsy Program, Department of Neurosurgery, University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Yash S Vakilna
- Texas Comprehensive Epilepsy Program, Department of Neurology, University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Yosefa A Modiano
- Texas Comprehensive Epilepsy Program, Department of Neurosurgery, University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Sandipan Pati
- Texas Comprehensive Epilepsy Program, Department of Neurology, University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Nitin Tandon
- Texas Comprehensive Epilepsy Program, Department of Neurosurgery, University of Texas Health Science Center at Houston, Houston, Texas, USA
| |
Collapse
|
2
|
Ikegaya N, Aung T, Mallela A, Hect JL, Damiani A, Gonzalez-Martinez JA. Thalamic stereoelectroencephalography for neuromodulation target selection: Proof of concept and review of literature of pulvinar direct electrical stimulation. Epilepsia 2024; 65:e79-e86. [PMID: 38625609 DOI: 10.1111/epi.17986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 04/01/2024] [Accepted: 04/02/2024] [Indexed: 04/17/2024]
Abstract
In patients with drug-resistant epilepsy (DRE) who are not candidates for resective surgery, various thalamic nuclei, including the anterior, centromedian, and pulvinar nuclei, have been extensively investigated as targets for neuromodulation. However, the therapeutic effects of different targets for thalamic neuromodulation on various types of epilepsy are not well understood. Here, we present a 32-year-old patient with multifocal bilateral temporoparieto-occipital epilepsy and bilateral malformations of cortical development (MCDs) who underwent bilateral stereoelectroencephalographic (SEEG) recordings of the aforementioned three thalamic nuclei bilaterally. The change in the rate of interictal epileptiform discharges (IEDs) from baseline were compared in temporal, central, parietal, and occipital regions after direct electrical stimulation (DES) of each thalamic nucleus. A significant decrease in the rate of IEDs (33% from baseline) in the posterior quadrant regions was noted in the ipsilateral as well as contralateral hemisphere following DES of the pulvinar. A scoping review was also performed to better understand the current standpoint of pulvinar thalamic stimulation in the treatment of DRE. The therapeutic effect of neuromodulation can differ among thalamic nuclei targets and epileptogenic zones (EZs). In patients with multifocal EZs with extensive MCDs, personalized thalamic targeting could be achieved through DES with thalamic SEEG electrodes.
Collapse
Affiliation(s)
- Naoki Ikegaya
- Department of Neurological Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Department of Neurosurgery, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Thandar Aung
- Department of Neurological Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Department of Neurology, Epilepsy Center, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA
| | - Arka Mallela
- Department of Neurological Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Jasmine L Hect
- Department of Neurological Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Arianna Damiani
- Department of Neurological Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | | |
Collapse
|
3
|
Jordán Z, Szabó JP, Sákovics A, Kelemen A, Halász L, Erőss L, Fabó D. Epileptiform discharges in the anterior thalamus of epilepsy patients. iScience 2024; 27:109582. [PMID: 38726366 PMCID: PMC11079473 DOI: 10.1016/j.isci.2024.109582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 07/25/2023] [Accepted: 03/25/2024] [Indexed: 05/12/2024] Open
Abstract
Anterior thalamus (ANT) deep-brain stimulation (DBS) is an approved therapy for drug resistant epilepsy. We aimed to identify interictal epileptiform discharges (IED) in the ANT and to investigate their relationship with surface IEDs. Fifteen patients were monitored for two consecutive nights with externalized thalamic leads to analyze the intrathalamic epileptiform activities (TIED). Forty-six % of all contacts were located within the ANT. We found that all the responders had TIEDs within the ANT, while this held true only for 44% of the non-responders. The overall response rate (RR) at 1-year follow-up was 40%, while it was 44% in bilateral ANT hit patients and 45% in epileptic focus side hit. However, in case of TIEDs present in the focus side the RR reached as high as 71%. TIED activity may prove the pathophysiological connection to the seizure focus, and stimulation of this area might have a better suppressing effect on seizures.
Collapse
Affiliation(s)
- Zsófia Jordán
- Epilepsy Unit, Department of Neurosurgery and Neurointervention, Faculty of Medicine, Semmelweis University, 1145 Budapest, Hungary
- Member of the ERN EpiCARE, Budapest, Hungary
| | - Johanna-Petra Szabó
- Epilepsy Unit, Department of Neurosurgery and Neurointervention, Faculty of Medicine, Semmelweis University, 1145 Budapest, Hungary
- Member of the ERN EpiCARE, Budapest, Hungary
- János Szentágothai Neuroscience Program, School of PhD Studies, Semmelweis University, 1085 Budapest, Hungary
- Lendület Laboratory of Systems Neuroscience, Institute of Experimental Medicine, 1083 Budapest, Hungary
| | - Anna Sákovics
- Epilepsy Unit, Department of Neurosurgery and Neurointervention, Faculty of Medicine, Semmelweis University, 1145 Budapest, Hungary
- Member of the ERN EpiCARE, Budapest, Hungary
- János Szentágothai Neuroscience Program, School of PhD Studies, Semmelweis University, 1085 Budapest, Hungary
| | - Anna Kelemen
- Epilepsy Unit, Department of Neurosurgery and Neurointervention, Faculty of Medicine, Semmelweis University, 1145 Budapest, Hungary
- Member of the ERN EpiCARE, Budapest, Hungary
- András Pető Faculty, Semmelweis University, 1125 Budapest, Hungary
| | - László Halász
- Functional Neurosurgery Unit, Department of Neurosurgery and Neurointervention, Faculty of Medicine, Semmelweis University, 1145 Budapest, Hungary
| | - Loránd Erőss
- Functional Neurosurgery Unit, Department of Neurosurgery and Neurointervention, Faculty of Medicine, Semmelweis University, 1145 Budapest, Hungary
| | - Dániel Fabó
- Epilepsy Unit, Department of Neurosurgery and Neurointervention, Faculty of Medicine, Semmelweis University, 1145 Budapest, Hungary
- Member of the ERN EpiCARE, Budapest, Hungary
- Department of Neurology, University of Szeged, 6720 Szeged, Hungary
| |
Collapse
|
4
|
Ye H, Dima M, Hall V, Hendee J. Cellular mechanisms underlying carry-over effects after magnetic stimulation. Sci Rep 2024; 14:5167. [PMID: 38431662 PMCID: PMC10908793 DOI: 10.1038/s41598-024-55915-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Accepted: 02/28/2024] [Indexed: 03/05/2024] Open
Abstract
Magnetic fields are widely used for neuromodulation in clinical settings. The intended effect of magnetic stimulation is that neural activity resumes its pre-stimulation state right after stimulation. Many theoretical and experimental works have focused on the cellular and molecular basis of the acute neural response to magnetic field. However, effects of magnetic stimulation can still last after the termination of the magnetic stimulation (named "carry-over effects"), which could generate profound effects to the outcome of the stimulation. However, the cellular and molecular mechanisms of carry-over effects are largely unknown, which renders the neural modulation practice using magnetic stimulation unpredictable. Here, we investigated carry-over effects at the cellular level, using the combination of micro-magnetic stimulation (µMS), electrophysiology, and computation modeling. We found that high frequency magnetic stimulation could lead to immediate neural inhibition in ganglion neurons from Aplysia californica, as well as persistent, carry-over inhibition after withdrawing the magnetic stimulus. Carry-over effects were found in the neurons that fired action potentials under a variety of conditions. The carry-over effects were also observed in the neurons when the magnetic field was applied across the ganglion sheath. The state of the neuron, specifically synaptic input and membrane potential fluctuation, plays a significant role in generating the carry-over effects after magnetic stimulation. To elucidate the cellular mechanisms of such carry-over effects under magnetic stimulation, we simulated a single neuron under magnetic stimulation with multi-compartment modeling. The model successfully replicated the carry-over effects in the neuron, and revealed that the carry-over effect was due to the dysfunction of the ion channel dynamics that were responsible for the initiation and sustaining of membrane excitability. A virtual voltage-clamp experiment revealed a compromised Na conductance and enhanced K conductance post magnetic stimulation, rendering the neurons incapable of generating action potentials and, therefore, leading to the carry over effects. Finally, both simulation and experimental results demonstrated that the carry-over effects could be controlled by disturbing the membrane potential during the post-stimulus inhibition period. Delineating the cellular and ion channel mechanisms underlying carry-over effects could provide insights to the clinical outcomes in brain stimulation using TMS and other modalities. This research incentivizes the development of novel neural engineering or pharmacological approaches to better control the carry-over effects for optimized clinical outcomes.
Collapse
Affiliation(s)
- Hui Ye
- Department of Biology, Loyola University Chicago, Quinlan Life Sciences Education and Research Center, 1032 W. Sheridan Rd., Chicago, IL, 60660, USA.
| | - Maria Dima
- Department of Biology, Loyola University Chicago, Quinlan Life Sciences Education and Research Center, 1032 W. Sheridan Rd., Chicago, IL, 60660, USA
| | - Vincent Hall
- Department of Biology, Loyola University Chicago, Quinlan Life Sciences Education and Research Center, 1032 W. Sheridan Rd., Chicago, IL, 60660, USA
| | - Jenna Hendee
- Department of Biology, Loyola University Chicago, Quinlan Life Sciences Education and Research Center, 1032 W. Sheridan Rd., Chicago, IL, 60660, USA
| |
Collapse
|
5
|
Remore LG, Rifi Z, Nariai H, Eliashiv DS, Fallah A, Edmonds BD, Matsumoto JH, Salamon N, Tolossa M, Wei W, Locatelli M, Tsolaki EC, Bari AA. Structural connections of the centromedian nucleus of thalamus and their relevance for neuromodulation in generalized drug-resistant epilepsy: insight from a tractography study. Ther Adv Neurol Disord 2023; 16:17562864231202064. [PMID: 37822361 PMCID: PMC10563482 DOI: 10.1177/17562864231202064] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Accepted: 09/01/2023] [Indexed: 10/13/2023] Open
Abstract
Background Epilepsy is a widespread neurologic disorder and almost one-third of patients suffer from drug-resistant epilepsy (DRE). Neuromodulation targeting the centromediannucleus of the thalamus (CM) has been showing promising results for patients with generalized DRE who are not surgical candidates. Recently, the effect of CM- deep brain stimulation (DBS) in DRE patients was investigated in the Electrical Stimulation of Thalamus for Epilepsy of Lennox-Gastaut phenotype (ESTEL) trial, a monocentric randomized-controlled study. The same authors described a 'cold-spot' and a 'sweet-spot', which are defined as the volume of stimulation in the thalamus yielding the least and the best clinical response, respectively. However, it remains unclear which structural connections may contribute to the anti-seizure effect of the stimulation. Objective We investigated the differences in structural connectivity among CM, the sweet-spot and the cold-spot. Furthermore, we tried to validate our results in a cohort of DRE patients who underwent CM-DBS or CM-RNS (responsive neurostimulation). We hypothesized that the sweet-spot would share similar structural connectivity with responder patients. Methods By using the software FMRIB Software Library (FSL), probabilistic tractography was performed on 100 subjects from the Human Connectome Project to calculate the probability of connectivity of the whole CM, the sweet-spot and the cold-spot to 45 cortical and subcortical areas. Results among the three seeds were compared with multivariate analysis of variance (MANOVA). Similarly, the structural connectivity of volumes of tissue activated (VTAs) from eight DRE patients was investigated. Patients were divided into responders and non-responders based on the degree of reduction in seizure frequency, and the mean probabilities of connectivity were similarly compared between the two groups. Results The sweet-spot demonstrated a significantly higher probability of connectivity (p < 0.001) with the precentral gyrus, superior frontal gyrus, and the cerebellum than the whole CM and the cold-spot. Responder patients displayed a higher probability of connectivity with both ipsilateral (p = 0.011) and contralateral cerebellum (p = 0.04) than the non-responders. Conclusion Cerebellar connections seem to contribute to the beneficial effects of CM-neuromodulation in patients with drug-resistant generalized epilepsy.
Collapse
Affiliation(s)
- Luigi G. Remore
- Surgical Neuromodulation and Brain Mapping Laboratory, ULCA
- Department of Neurosurgery, 300 Stein Plaza, Los Angeles, CA 90095, USA
- University of Milan ‘La Statale’, Milan, Italy
- Department of Neurosurgery, Fondazione IRCCS Ca’Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Ziad Rifi
- Department of Neurosurgery, University of California Los Angeles, Los Angeles, CA, USA
| | - Hiroki Nariai
- Division of Pediatric Neurology, Department of Pediatrics, University of California Los Angeles, Los Angeles, CA, USA
- David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Dawn S. Eliashiv
- David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
- Department of Neurology, University of California Los Angeles, Los Angeles, CA, USA
| | - Aria Fallah
- Department of Neurosurgery, University of California Los Angeles, Los Angeles, CA, USA
- Division of Pediatric Neurology, Department of Pediatrics, University of California Los Angeles, Los Angeles, CA, USA
- David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Benjamin D. Edmonds
- Division of Pediatric Neurology, Department of Pediatrics, University of California Los Angeles, Los Angeles, CA, USA
| | - Joyce H. Matsumoto
- Division of Pediatric Neurology, Department of Pediatrics, University of California Los Angeles, Los Angeles, CA, USA
| | - Noriko Salamon
- David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
- Department of Radiology, University of California Los Angeles, Los Angeles, CA, USA
| | - Meskerem Tolossa
- Department of Neurosurgery, University of California Los Angeles, Los Angeles, CA, USA
| | - Wexin Wei
- Department of Neurosurgery, University of California Los Angeles, Los Angeles, CA, USA
| | - Marco Locatelli
- University of Milan ‘La Statale’, Milan, Italy
- Department of Neurosurgery, Fondazione IRCCS Ca’Granda Ospedale Maggiore Policlinico, Milan, Italy
- Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
- ‘Aldo Ravelli’ Research Center for Neurotechnology and Experimental Brain Therapeutics, University of Milan, Milan, Italy
| | - Evangelia C. Tsolaki
- Department of Neurosurgery, University of California Los Angeles, Los Angeles, CA, USA
| | - Ausaf A. Bari
- Department of Neurosurgery, University of California Los Angeles, Los Angeles, CA, USA
- Geffen School of Medicine David California Los Angeles University of Angeles Los CA, USA
| |
Collapse
|
6
|
Fields MC, Eka O, Schreckinger C, Dugan P, Asaad WF, Blum AS, Bullinger K, Willie JT, Burdette DE, Anderson C, Quraishi IH, Gerrard J, Singh A, Lee K, Yoo JY, Ghatan S, Panov F, Marcuse LV. A multicenter retrospective study of patients treated in the thalamus with responsive neurostimulation. Front Neurol 2023; 14:1202631. [PMID: 37745648 PMCID: PMC10516547 DOI: 10.3389/fneur.2023.1202631] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Accepted: 06/19/2023] [Indexed: 09/26/2023] Open
Abstract
Introduction For drug resistant epilepsy patients who are either not candidates for resective surgery or have already failed resective surgery, neuromodulation is a promising option. Neuromodulatory approaches include responsive neurostimulation (RNS), deep brain stimulation (DBS), and vagal nerve stimulation (VNS). Thalamocortical circuits are involved in both generalized and focal onset seizures. This paper explores the use of RNS in the centromedian nucleus of the thalamus (CMN) and in the anterior thalamic nucleus (ANT) of patients with drug resistant epilepsy. Methods This is a retrospective multicenter study from seven different epilepsy centers in the United States. Patients that had unilateral or bilateral thalamic RNS leads implanted in the CMN or ANT for at least 6 months were included. Primary objectives were to describe the implant location and determine changes in the frequency of disabling seizures at 6 months, 1 year, 2 years, and > 2 years. Secondary objectives included documenting seizure free periods, anti-seizure medication regimen changes, stimulation side effects, and serious adverse events. In addition, the global clinical impression scale was completed. Results Twelve patients had at least one lead placed in the CMN, and 13 had at least one lead placed in the ANT. The median baseline seizure frequency was 15 per month. Overall, the median seizure reduction was 33% at 6 months, 55% at 1 year, 65% at 2 years, and 74% at >2 years. Seizure free intervals of at least 3 months occurred in nine patients. Most patients (60%, 15/25) did not have a change in anti-seizure medications post RNS placement. Two serious adverse events were recorded, one related to RNS implantation. Lastly, overall functioning seemed to improve with 88% showing improvement on the global clinical impression scale. Discussion Meaningful seizure reduction was observed in patients who suffer from drug resistant epilepsy with unilateral or bilateral RNS in either the ANT or CMN of the thalamus. Most patients remained on their pre-operative anti-seizure medication regimen. The device was well tolerated with few side effects. There were rare serious adverse events. Most patients showed an improvement in global clinical impression scores.
Collapse
Affiliation(s)
- Madeline C Fields
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Onome Eka
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | | | - Patricia Dugan
- Department of Neurology, Langone Medical Center, New York University, New York, NY, United States
| | - Wael F Asaad
- Department of Neurosurgery, Warren Alpert Medical School, Brown University, Providence, RI, United States
| | - Andrew S Blum
- Department of Neurology, Warren Alpert Medical School, Brown University, Providence, RI, United States
| | - Katie Bullinger
- Department of Neurology, School of Medicine, Emory University, Atlanta, GA, United States
| | - Jon T Willie
- Department of Neurosurgery, School of Medicine, Washington University in St Louis, St. Louis, MO, United States
| | - David E Burdette
- Department of Neurosciences, Corewell Health, Grand Rapids, MI, United States
| | - Christopher Anderson
- Department of Neurology, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Imran H Quraishi
- Department of Neurology, School of Medicine, Yale University, New Haven, CT, United States
| | - Jason Gerrard
- Department of Neurosurgery, School of Medicine, Yale University, New Haven, CT, United States
| | - Anuradha Singh
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Kyusang Lee
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Ji Yeoun Yoo
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Saadi Ghatan
- Department of Neurosurgery, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Fedor Panov
- Department of Neurosurgery, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Lara V Marcuse
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| |
Collapse
|
7
|
Fisher RS. Deep brain stimulation of thalamus for epilepsy. Neurobiol Dis 2023; 179:106045. [PMID: 36809846 DOI: 10.1016/j.nbd.2023.106045] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Revised: 02/10/2023] [Accepted: 02/13/2023] [Indexed: 02/22/2023] Open
Abstract
Neuromodulation (neurostimulation) is a relatively new and rapidly growing treatment for refractory epilepsy. Three varieties are approved in the US: vagus nerve stimulation (VNS), deep brain stimulation (DBS) and responsive neurostimulation (RNS). This article reviews thalamic DBS for epilepsy. Among many thalamic sub-nuclei, DBS for epilepsy has been targeted to the anterior nucleus (ANT), centromedian nucleus (CM), dorsomedial nucleus (DM) and pulvinar (PULV). Only ANT is FDA-approved, based upon a controlled clinical trial. Bilateral stimulation of ANT reduced seizures by 40.5% at three months in the controlled phase (p = .038) and 75% by 5 years in the uncontrolled phase. Side effects related to paresthesias, acute hemorrhage, infection, occasional increased seizures, and usually transient effects on mood and memory. Efficacy was best documented for focal onset seizures in temporal or frontal lobe. CM stimulation may be useful for generalized or multifocal seizures and PULV for posterior limbic seizures. Mechanisms of DBS for epilepsy are largely unknown, but animal work points to changes in receptors, channels, neurotransmitters, synapses, network connectivity and neurogenesis. Personalization of therapies, in terms of connectivity of the seizure onset zone to the thalamic sub- nucleus and individual characteristics of the seizures, might lead to improved efficacy. Many questions remain about DBS, including the best candidates for different types of neuromodulation, the best targets, the best stimulation parameters, how to minimize side effects and how to deliver current noninvasively. Despite the questions, neuromodulation provides useful new opportunities to treat people with refractory seizures not responding to medicines and not amenable to resective surgery.
Collapse
Affiliation(s)
- Robert S Fisher
- Department of Neurology and Neurological Sciences and Neurosurgery by Courtesy, Department of Neurology and Neurological Sciences, Stanford University School of Medicine, 213 Quarry Road, Room 4865, Palo Alto, CA 94304, USA.
| |
Collapse
|
8
|
Arnts H, Coolen SE, Fernandes FW, Schuurman R, Krauss JK, Groenewegen HJ, van den Munckhof P. The intralaminar thalamus: a review of its role as a target in functional neurosurgery. Brain Commun 2023; 5:fcad003. [PMID: 37292456 PMCID: PMC10244065 DOI: 10.1093/braincomms/fcad003] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 10/06/2022] [Accepted: 01/03/2023] [Indexed: 09/29/2023] Open
Abstract
The intralaminar thalamus, in particular the centromedian-parafascicular complex, forms a strategic node between ascending information from the spinal cord and brainstem and forebrain circuitry that involves the cerebral cortex and basal ganglia. A large body of evidence shows that this functionally heterogeneous region regulates information transmission in different cortical circuits, and is involved in a variety of functions, including cognition, arousal, consciousness and processing of pain signals. Not surprisingly, the intralaminar thalamus has been a target area for (radio)surgical ablation and deep brain stimulation (DBS) in different neurological and psychiatric disorders. Historically, ablation and stimulation of the intralaminar thalamus have been explored in patients with pain, epilepsy and Tourette syndrome. Moreover, DBS has been used as an experimental treatment for disorders of consciousness and a variety of movement disorders. In this review, we provide a comprehensive analysis of the underlying mechanisms of stimulation and ablation of the intralaminar nuclei, historical clinical evidence, and more recent (experimental) studies in animals and humans to define the present and future role of the intralaminar thalamus as a target in the treatment of neurological and psychiatric disorders.
Collapse
Affiliation(s)
- Hisse Arnts
- Department of Neurosurgery, Amsterdam University Medical Centers, location Academic Medical Center, Amsterdam, The Netherlands
- Department of Neurosurgery, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Stan E Coolen
- Department of Neurosurgery, Amsterdam University Medical Centers, location Academic Medical Center, Amsterdam, The Netherlands
| | | | - Rick Schuurman
- Department of Neurosurgery, Amsterdam University Medical Centers, location Academic Medical Center, Amsterdam, The Netherlands
| | - Joachim K Krauss
- Department of Neurosurgery, Hannover Medical School, Hannover, Germany
| | - Henk J Groenewegen
- Department of Anatomy and Neurosciences, Neuroscience Campus Amsterdam, Amsterdam University Medical Centers, location VU University Medical Center, Amsterdam, The Netherlands
| | - Pepijn van den Munckhof
- Department of Neurosurgery, Amsterdam University Medical Centers, location Academic Medical Center, Amsterdam, The Netherlands
| |
Collapse
|
9
|
Zheng B, Liu DD, Theyel BB, Abdulrazeq H, Kimata AR, Lauro PM, Asaad WF. Thalamic neuromodulation in epilepsy: A primer for emerging circuit-based therapies. Expert Rev Neurother 2023; 23:123-140. [PMID: 36731858 DOI: 10.1080/14737175.2023.2176752] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
INTRODUCTION Epilepsy is a common, often debilitating disease of hyperexcitable neural networks. While medically intractable cases may benefit from surgery, there may be no single, well-localized focus for resection or ablation. In such cases, approaching the disease from a network-based perspective may be beneficial. AREAS COVERED Herein, the authors provide a narrative review of normal thalamic anatomy and physiology and propose general strategies for preventing and/or aborting seizures by modulating this structure. Additionally, they make specific recommendations for targeting the thalamus within different contexts, motivated by a more detailed discussion of its distinct nuclei and their respective connectivity. By describing important principles governing thalamic function and its involvement in seizure networks, the authors aim to provide a primer for those now entering this fast-growing field of thalamic neuromodulation for epilepsy. EXPERT OPINION The thalamus is critically involved with the function of many cortical and subcortical areas, suggesting it may serve as a compelling node for preventing or aborting seizures, and so it has increasingly been targeted for the surgical treatment of epilepsy. As various thalamic neuromodulation strategies for seizure control are developed, there is a need to ground such interventions in a mechanistic, circuit-based framework.
Collapse
Affiliation(s)
- Bryan Zheng
- The Warren Alpert Medical School of Brown University, Providence, RI, USA.,Department of Neurosurgery, Rhode Island Hospital, Providence, RI, USA
| | - David D Liu
- The Warren Alpert Medical School of Brown University, Providence, RI, USA
| | - Brian B Theyel
- Department of Psychiatry, Rhode Island Hospital, Providence, RI, USA.,Department of Neuroscience, Brown University, Providence, RI, USA
| | - Hael Abdulrazeq
- Department of Neurosurgery, Rhode Island Hospital, Providence, RI, USA
| | - Anna R Kimata
- The Warren Alpert Medical School of Brown University, Providence, RI, USA.,Department of Neurosurgery, Rhode Island Hospital, Providence, RI, USA
| | - Peter M Lauro
- The Warren Alpert Medical School of Brown University, Providence, RI, USA.,Department of Neuroscience, Brown University, Providence, RI, USA
| | - Wael F Asaad
- Department of Neurosurgery, Rhode Island Hospital, Providence, RI, USA.,Department of Neuroscience, Brown University, Providence, RI, USA.,The Carney Institute for Brain Science, Brown University, Providence, RI, USA.,The Norman Prince Neurosciences Institute, Rhode Island Hospital, Providence, RI, USA
| |
Collapse
|
10
|
Deep brain stimulation of thalamic nuclei for the treatment of drug-resistant epilepsy: Are we confident with the precise surgical target? Seizure 2023; 105:22-28. [PMID: 36657225 DOI: 10.1016/j.seizure.2023.01.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 01/10/2023] [Accepted: 01/12/2023] [Indexed: 01/16/2023] Open
Abstract
Deep brain stimulation (DBS) of the thalamic nuclei for the treatment of drug-resistant epilepsy (DRE) has been investigated for decades. In recent years, DBS targeting the anterior nucleus of the thalamus (ANT) was approved by CE and FDA for the treatment of focal-onset DRE in light of the results from the multicentric randomized controlled SANTE trial. However, stereotactic targeting of thalamic nuclei is not straightforward because of the low contrast definition among thalamic nuclei on the current MRI sequences. When the FGATIR sequence is added to the preoperative MRI protocol, the mammillothalamic tract can be identified and used as a visible landmark to directly target ANT. According to the current evidence, the trans-ventricular trajectory allows the placement of stimulating contact into the nucleus more frequently than the trans-cortical trajectory. Another thalamic nucleus whose stimulation for the treatment of generalized DRE is receiving increasing attention is the centromedian nucleus (CM). CM-DBS seems to be particularly efficacious in patients suffering from Lennox-Gastault syndrome (LGS) and the recent monocentric randomized controlled ESTEL trial also described a beneficial "sweet-spot". However, CM targeting is still based on indirect stereotactic coordinates, since acquisition times and post-processing techniques of the actual MRI sequences are not applicable in clinical practice. Moreover, the results of the ESTEL trial await confirmation from similar studies accounting for epileptic syndromes other than LGS. Therefore, novel neuroimaging approaches are advisable to improve the surgical targeting of CM and potentially tailor the stimulation based on the patient's specific epileptic phenotype.
Collapse
|
11
|
Piper RJ, Richardson RM, Worrell G, Carmichael DW, Baldeweg T, Litt B, Denison T, Tisdall MM. Towards network-guided neuromodulation for epilepsy. Brain 2022; 145:3347-3362. [PMID: 35771657 PMCID: PMC9586548 DOI: 10.1093/brain/awac234] [Citation(s) in RCA: 88] [Impact Index Per Article: 29.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 05/30/2022] [Accepted: 06/16/2022] [Indexed: 11/30/2022] Open
Abstract
Epilepsy is well-recognized as a disorder of brain networks. There is a growing body of research to identify critical nodes within dynamic epileptic networks with the aim to target therapies that halt the onset and propagation of seizures. In parallel, intracranial neuromodulation, including deep brain stimulation and responsive neurostimulation, are well-established and expanding as therapies to reduce seizures in adults with focal-onset epilepsy; and there is emerging evidence for their efficacy in children and generalized-onset seizure disorders. The convergence of these advancing fields is driving an era of 'network-guided neuromodulation' for epilepsy. In this review, we distil the current literature on network mechanisms underlying neurostimulation for epilepsy. We discuss the modulation of key 'propagation points' in the epileptogenic network, focusing primarily on thalamic nuclei targeted in current clinical practice. These include (i) the anterior nucleus of thalamus, now a clinically approved and targeted site for open loop stimulation, and increasingly targeted for responsive neurostimulation; and (ii) the centromedian nucleus of the thalamus, a target for both deep brain stimulation and responsive neurostimulation in generalized-onset epilepsies. We discuss briefly the networks associated with other emerging neuromodulation targets, such as the pulvinar of the thalamus, piriform cortex, septal area, subthalamic nucleus, cerebellum and others. We report synergistic findings garnered from multiple modalities of investigation that have revealed structural and functional networks associated with these propagation points - including scalp and invasive EEG, and diffusion and functional MRI. We also report on intracranial recordings from implanted devices which provide us data on the dynamic networks we are aiming to modulate. Finally, we review the continuing evolution of network-guided neuromodulation for epilepsy to accelerate progress towards two translational goals: (i) to use pre-surgical network analyses to determine patient candidacy for neurostimulation for epilepsy by providing network biomarkers that predict efficacy; and (ii) to deliver precise, personalized and effective antiepileptic stimulation to prevent and arrest seizure propagation through mapping and modulation of each patients' individual epileptogenic networks.
Collapse
Affiliation(s)
- Rory J Piper
- Department of Neurosurgery, Great Ormond Street Hospital, London, UK
- Developmental Neurosciences, UCL Great Ormond Street Institute of Child Health, University College London, London, UK
| | - R Mark Richardson
- Department of Neurosurgery, Massachusetts General Hospital and Harvard Medical School, Boston, USA
| | | | | | - Torsten Baldeweg
- Developmental Neurosciences, UCL Great Ormond Street Institute of Child Health, University College London, London, UK
| | - Brian Litt
- Department of Neurology and Bioengineering, University of Pennsylvania, Philadelphia, USA
| | | | - Martin M Tisdall
- Department of Neurosurgery, Great Ormond Street Hospital, London, UK
- Developmental Neurosciences, UCL Great Ormond Street Institute of Child Health, University College London, London, UK
| |
Collapse
|
12
|
Zillgitt AJ, Haykal MA, Chehab A, Staudt MD. Centromedian thalamic neuromodulation for the treatment of idiopathic generalized epilepsy. Front Hum Neurosci 2022; 16:907716. [PMID: 35992953 PMCID: PMC9381751 DOI: 10.3389/fnhum.2022.907716] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 07/13/2022] [Indexed: 11/20/2022] Open
Abstract
Idiopathic generalized epilepsy (IGE) is a common type of epilepsy and despite an increase in the number of available anti-seizure medications, approximately 20–30% of people with IGE continue to experience seizures despite adequate medication trials. Unlike focal epilepsy, resective surgery is not a viable treatment option for IGE; however, neuromodulation may be an effective surgical treatment for people with IGE. Thalamic stimulation through deep brain stimulation (DBS) and responsive neurostimulation (RNS) have been explored for the treatment of generalized and focal epilepsies. Although the data regarding DBS and RNS in IGE is limited to case reports and case series, the results of the published studies have been promising. The current manuscript will review the published literature of DBS and RNS within the centromedian nucleus of the thalamus for the treatment of IGE, as well as highlight an illustrative case.
Collapse
Affiliation(s)
- Andrew J. Zillgitt
- Department of Neurology, Beaumont Health Adult Comprehensive Epilepsy Center, Neuroscience Center, Royal Oak, MI, United States
| | - M. Ayman Haykal
- Department of Neurology, Beaumont Health Adult Comprehensive Epilepsy Center, Neuroscience Center, Royal Oak, MI, United States
| | - Ahmad Chehab
- Department of Neurosurgery, Beaumont Neuroscience Center, Royal Oak, MI, United States
| | - Michael D. Staudt
- Department of Neurosurgery, Beaumont Neuroscience Center, Royal Oak, MI, United States
- Department of Neurosurgery, Oakland University William Beaumont School of Medicine, Rochester, MI, United States
- Michigan Head and Spine Institute, Southfield, MI, United States
- *Correspondence: Michael D. Staudt,
| |
Collapse
|
13
|
Yang JC, Bullinger KL, Isbaine F, Alwaki A, Opri E, Willie JT, Gross RE. Centromedian thalamic deep brain stimulation for drug-resistant epilepsy: single-center experience. J Neurosurg 2022; 137:1591-1600. [PMID: 35395630 DOI: 10.3171/2022.2.jns212237] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2021] [Accepted: 02/07/2022] [Indexed: 11/06/2022]
Abstract
OBJECTIVE Neuromodulation of the centromedian nucleus of the thalamus (CM) has unclear effectiveness in the treatment of drug-resistant epilepsy. Prior reports suggest that it may be more effective in the generalized epilepsies such as Lennox-Gastaut syndrome (LGS). The objective of this study was to determine the outcome of CM deep brain stimulation (DBS) at the authors' institution. METHODS Retrospective chart review was performed for all patients who underwent CM DBS at Emory University, which occurred between December 2018 and May 2021. CM DBS electrodes were implanted using three different surgical methods, including frame-based, robot-assisted, and direct MRI-guided. Seizure frequency, stimulation parameters, and adverse events were recorded from subsequent clinical follow-up visits. RESULTS Fourteen patients underwent CM DBS: 9 had symptomatic generalized epilepsy (including 5 with LGS), 3 had primary or idiopathic generalized epilepsy, and 2 had bifrontal focal epilepsy. At last follow-up (mean [± SEM] 19 ± 5 months, range 4.1-33 months, ≥ 6 months in 11 patients), the median seizure frequency reduction was 91%. Twelve patients (86%) were considered responders (≥ 50% decrease in seizure frequency), including 10 of 12 with generalized epilepsy and both patients with bifrontal epilepsy. Surgical adverse events were rare and included 1 patient with hardware breakage, 1 with a postoperative aspiration event, and 1 with a nonclinically significant intracranial hemorrhage. CONCLUSIONS CM DBS was an effective treatment for drug-resistant generalized and bifrontal epilepsies. Additional studies and analyses may investigate whether CM DBS is best suited for specific epilepsy types, and the relationship of lead location to outcome in different epilepsies.
Collapse
Affiliation(s)
| | - Katie L Bullinger
- 2Neurology, Emory University School of Medicine, Atlanta, Georgia; and
| | | | | | - Enrico Opri
- 2Neurology, Emory University School of Medicine, Atlanta, Georgia; and
| | - Jon T Willie
- 3Department of Neurosurgery, Washington University School of Medicine, St. Louis, Missouri
| | - Robert E Gross
- Departments of1Neurosurgery and.,2Neurology, Emory University School of Medicine, Atlanta, Georgia; and
| |
Collapse
|
14
|
Phillips RK, Aghagoli G, Blum AS, Asaad WF. Bilateral thalamic responsive neurostimulation for multifocal, bilateral frontotemporal epilepsy: illustrative case. JOURNAL OF NEUROSURGERY: CASE LESSONS 2022; 3:CASE21672. [PMID: 36273865 PMCID: PMC9379679 DOI: 10.3171/case21672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Accepted: 01/24/2022] [Indexed: 11/06/2022]
Abstract
BACKGROUND
Patients with refractory, bilateral, multifocal epilepsy have few treatment options that typically include a combination of antiseizure medications (ASMs) and vagus nerve stimulation (VNS). A man in his 40s presented with epilepsy refractory to a combination of five ASMs plus VNS; he was still experiencing 7–10 seizures per week. His seizure network involved multiple foci in both frontal and temporal lobes. Bilateral depth electrodes were implanted into the centromedian/parafascicular (CM/PF) complex of the thalamus and connected to the responsive neurostimulation (RNS) system for closed-loop stimulation and neurophysiological monitoring.
OBSERVATIONS
The patient reported clear improvement in his seizures since the procedure, with a markedly reduced number of seizures and decreased seizure intensity. He also reported stretches of seizure freedom not typical of his preoperative baseline, and his remaining seizures were milder, more often with preserved awareness. Generalized seizures with loss of consciousness have decreased to about one per month. RNS data confirmed a right-sided predominance of the bilateral seizure onsets.
LESSONS
In this patient with multifocal, bilateral frontotemporal epilepsy, RNS of the CM/PF thalamic complex combined with VNS was found to be beneficial. The RNS device was able to detect seizures propagating through the thalamus, and stimulation produced a decrease in seizure burden and intensity.
Collapse
Affiliation(s)
| | | | - Andrew S. Blum
- Neurology, Rhode Island Hospital, The Warren Alpert Medical School of Brown University, Providence, Rhode Island
| | | |
Collapse
|
15
|
Velasco AL, Saucedo-Alvarado PE, Alejandre-Sánchez M, Guzmán-Jiménez DE, González-Garcia I, Velasco F. New Horizons in Temporal Lobe Seizure Control. J Clin Neurophysiol 2021; 38:478-484. [PMID: 34261115 DOI: 10.1097/wnp.0000000000000715] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
SUMMARY In patients with mesial temporal lobe epilepsy, high-frequency, low-amplitude electrical stimulation (ES) was applied during 3 weeks through contacts of intracranial electrodes that defined the epileptogenic zone. This subacute ES induced cessation of spontaneous seizures, decreased the number of EEG interictal spikes, caused a 10-fold increase in threshold to induce postdischarges, and showed a profound decrease in regional blood flow of the stimulated area in SPECT studies. Autoradiography analysis of surgical specimens from these patients demonstrated increased expression of benzodiazepine receptors and in gamma-aminobutyric acid content, particularly in the parahippocampal cortex. These observations provided evidence of a gamma-aminobutyric acid-mediated antiepileptic effect induced by ES. Several reports of long-term hippocampal ES through internalized neurostimulators have confirmed the antiepileptic effect on mesial temporal lobe-initiated seizures, with preservation of neuropsychological performance, in particular memory functions. The experience of the authors is that the response is optimal in patients without hippocampal sclerosis evidenced by MRI, whereas it is less significant and delayed in patients with hippocampal sclerosis. Other studies reported the best result stimulating through the contacts in the subiculum, the transition between the hippocampus and parahippocampal cortex, that usually escapes to the hippocampal sclerosis. Currently, the effect of ES directed at the subiculum and the parahippocampal cortex in patients with hippocampal sclerosis is under investigation.
Collapse
Affiliation(s)
- Ana L Velasco
- Unit for Stereotactic and Functional Neurosurgery, Epilepsy Clinic, Hospital General de México, Mexico City, Mexico
| | | | | | | | | | | |
Collapse
|
16
|
Yang JC, Harid NM, Nascimento FA, Kokkinos V, Shaughnessy A, Lam AD, Westover MB, Leslie-Mazwi TM, Hochberg LR, Rosenthal ES, Cole AJ, Richardson RM, Cash SS. Responsive neurostimulation for focal motor status epilepticus. Ann Clin Transl Neurol 2021; 8:1353-1361. [PMID: 33955717 PMCID: PMC8164849 DOI: 10.1002/acn3.51318] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 01/09/2021] [Accepted: 01/25/2021] [Indexed: 12/12/2022] Open
Abstract
No clear evidence‐based treatment paradigm currently exists for refractory and super‐refractory status epilepticus, which can result in significant mortality and morbidity. While patients are typically treated with antiepileptic drugs and anesthetics, neurosurgical neuromodulation techniques can also be considered. We present a novel case in which responsive neurostimulation was used to effectively treat a patient who had developed super‐refractory status epilepticus, later consistent with epilepsia partialis continua, that was refractory to antiepileptic drugs, immunomodulatory therapies, and transcranial magnetic stimulation. This case demonstrates how regional therapy provided by responsive neurostimulation can be effective in treating super‐refractory status epilepticus through neuromodulation of seizure networks.
Collapse
Affiliation(s)
- Jimmy C Yang
- Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA.,Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Nitish M Harid
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Fábio A Nascimento
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Vasileios Kokkinos
- Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Abigail Shaughnessy
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Alice D Lam
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA.,Center for Neurotechnology and Neurorecovery, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - M Brandon Westover
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Thabele M Leslie-Mazwi
- Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA.,Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Leigh R Hochberg
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA.,Center for Neurotechnology and Neurorecovery, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Eric S Rosenthal
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA.,Center for Neurotechnology and Neurorecovery, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Andrew J Cole
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Robert M Richardson
- Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA.,Center for Neurotechnology and Neurorecovery, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Sydney S Cash
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA.,Center for Neurotechnology and Neurorecovery, Massachusetts General Hospital, Boston, Massachusetts, USA
| |
Collapse
|
17
|
Kokkinos V, Urban A, Sisterson ND, Li N, Corson D, Richardson RM. Responsive Neurostimulation of the Thalamus Improves Seizure Control in Idiopathic Generalized Epilepsy: A Case Report. Neurosurgery 2021; 87:E578-E583. [PMID: 32023343 DOI: 10.1093/neuros/nyaa001] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Accepted: 12/01/2019] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND AND IMPORTANCE At least 25% of patients with idiopathic generalized epilepsy do not obtain adequate seizure control with medication. This report describes the first use of responsive neurostimulation (RNS), bilaterally targeting the centromedian/ventrolateral (CM/VL) region in a patient with drug-refractory Jeavons syndrome (eyelid myoclonia with absences). CLINICAL PRESENTATION A patient, diagnosed with eyelid myoclonia with absences (EMA) and refractory to medication, was offered RNS treatment in the CM/VL region of the thalamus. Stimulation was triggered by thalamic neural activity having morphological, spectral, and synchronous features that corresponded to 3- to 5-Hz spike-wave discharges recorded on prior scalp electroencephalography. CONCLUSION RNS decreased daily absence seizures from a mean of 60 to ≤10 and maintained the patient's level of consciousness during the occurring episodes. This therapy should be evaluated further for its potential to treat patients with pharmaco-refractory generalized epilepsy.
Collapse
Affiliation(s)
- Vasileios Kokkinos
- Department of Neurosurgery, Massachusetts General Hospital, Boston, Massachusetts.,Harvard Medical School, Boston, Massachusetts
| | - Alexandra Urban
- University of Pittsburgh Comprehensive Epilepsy Center, Pittsburgh, Pennsylvania.,Department of Neurology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Nathaniel D Sisterson
- Department of Neurological Surgery, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Ningfei Li
- Department for Neurology, Charité - University Medicine Berlin, Berlin, Germany
| | - Danielle Corson
- University of Pittsburgh Comprehensive Epilepsy Center, Pittsburgh, Pennsylvania.,Department of Neurological Surgery, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - R Mark Richardson
- Department of Neurosurgery, Massachusetts General Hospital, Boston, Massachusetts.,Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
18
|
Radiofrequency ablation of the centromedian thalamic nucleus in the treatment of drug-resistant epilepsy. Epilepsy Behav 2021; 114:107560. [PMID: 33243680 DOI: 10.1016/j.yebeh.2020.107560] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 09/28/2020] [Accepted: 09/28/2020] [Indexed: 11/23/2022]
Abstract
OBJECTIVE To determine the usefulness and efficacy of radiofrequency ablations (RFA) of the Centromedian thalamic nucleus (CMN) to control primarily generalized or multifocal seizures in refractory epilepsy. METHODS Six patients with clinical diagnosis of multifocal or primarily generalized drug-resistant epilepsy were included. Bilateral RFA of the CMN was performed through a monopolar 1.8 mm. tip electrode with a temperature of 80 °C during 90 seconds. Patients were followed in every 3 months visit for 20 to 36 months and kept a monthly seizure count calendar. We also compared maximal paroxysmal electroencephalogram (EEG) activity and neuropsychological evaluation pre and 6 months postoperatively. RESULTS A significant reduction in the number of generalized seizures was observed in all subjects in the range of 79-98%, starting the first post-operative month. Although focal aware seizures remained unchanged throughout follow-up, there was an important reduction on paroxysmal activity between the pre and postoperative EEG. No major changes on cognitive status were detected. There was post-operative dysphagia and odynophagia lasting one week and there was no mortality in this group of patients. CONCLUSION Preliminary results of CMN RFA suggest safety and a trend toward reduction of some seizure types, it may reduce the seizure frequency like other palliative procedures since the first post-operative month, but a larger, controlled study would be needed to establish the value of this therapy.
Collapse
|
19
|
Brain-responsive corticothalamic stimulation in the centromedian nucleus for the treatment of regional neocortical epilepsy. Epilepsy Behav 2020; 112:107354. [PMID: 32919199 DOI: 10.1016/j.yebeh.2020.107354] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 07/15/2020] [Accepted: 07/16/2020] [Indexed: 12/16/2022]
Abstract
OBJECTIVE The aim of the study was to determine if corticothalamic responsive stimulation targeting the centromedian nucleus of the thalamus (CMT) is a potential treatment for neocortical epilepsies with regional onsets. METHODS We assessed efficacy and safety of CMT and neocortical responsive stimulation, detection, and stimulation programming, methods for implantation, and location and patterns of electrographic seizure onset and spread in 7 patients with medically intractable focal seizures with a regional neocortical onset. RESULTS The median follow-up duration was 17 months (average: 17 months, range: 8-28 months). The median % reduction in disabling seizures (excludes auras) in the 7 patients was 88% (mean: 80%, range: 55-100%). The median % reduction in all seizure types (disabling + auras) was 73% (mean: 67%, range: 15-94%). There were no adverse events related to implantation of the responsive neurostimulator and leads or related to the delivery of responsive stimulation. Stimulation-related contralateral paresthesias were addressed by adjusting stimulation parameters in the clinic during stimulation testing. Electrographic seizures were detected in the CMT and neocortex in all seven patients. Four patients had simultaneous or near simultaneous seizure onsets in the neocortex and CMT and three had onsets in the neocortex with spread to the CMT. CONCLUSION In this small series of patients with medically intractable focal seizures and regional neocortical onset, responsive neurostimulation to the neocortex and CMT improved seizure control and was well tolerated. SIGNIFICANCE Responsive corticothalamic neurostimulation of the CMT and neocortex is a potential treatment for patients with regional neocortical epilepsies.
Collapse
|
20
|
Deep brain stimulation for the treatment of refractory and super-refractory status epilepticus. Seizure 2020; 81:58-62. [DOI: 10.1016/j.seizure.2020.07.022] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2020] [Revised: 07/21/2020] [Accepted: 07/23/2020] [Indexed: 02/06/2023] Open
|
21
|
Focal Suppression of Epileptiform Activity in the Hippocampus by a High-frequency Magnetic Field. Neuroscience 2020; 432:1-14. [PMID: 32105740 DOI: 10.1016/j.neuroscience.2020.02.018] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2019] [Revised: 02/13/2020] [Accepted: 02/14/2020] [Indexed: 12/21/2022]
Abstract
Electric current has been used for epilepsy treatment by targeting specific neural circuitries. Despite its success, direct contact between the electrode and tissue could cause side effects including pain, inflammation, and adverse biological reactions. Magnetic stimulation overcomes these limitations by offering advantages over biocompatibility and operational feasibility. However, the underlying neurological mechanisms of its action are largely unknown. In this work, a magnetic generating system was assembled that included a miniature coil. The coil was positioned above the CA3 area of mouse hippocampal slices. Epileptiform activity (EFA) was induced with low Mg2+/high K+ perfusion or with 100 µM 4-aminopyridine (4-AP). The miniature coil generated a sizable electric field that suppressed the local EFA in the hippocampus in the low-Mg2+/high-K+ model. The inhibition effect was dependent on the frequency and duration of the magnetic stimulus, with high frequency being more effective in suppressing EFA. EFA suppression by the magnetic field was also observed in the 4-AP model, in a frequency and duration - dependent manner. The study provides a platform for further investigation of cellular and molecular mechanisms underlying epilepsy treatment with time varying magnetic fields.
Collapse
|
22
|
Bay HH, Özkan M, Onat F, Çavdar S. Do the Dento-Thalamic Connections of Genetic Absence Epilepsy Rats from Strasbourg Differ from Those of Control Wistar Rats? Brain Connect 2019; 9:703-710. [PMID: 31591912 DOI: 10.1089/brain.2019.0694] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The thalamo-cortical circuit is important in the genesis of absence epilepsy. This circuit can be influenced by connecting pathways from various parts of central nervous system. The aim of the present study is to define the dento-thalamic connections in Wistar animals and compare the results with genetic absence epilepsy rats from Strasbourg (GAERS) using the biotinylated dextran amine (BDA) tracer. We injected BDA into the dentate nucleus of 13 (n = 6 Wistar and n = 7 GAERS) animals. The dento-thalamic connections in the Wistar animals were denser and were connected to a wider range of thalamic nuclei compared with GAERS. The dentate nucleus was bilaterally connected to the central (central medial [CM], paracentral [PC]), ventral (ventral medial [VM], ventral lateral [VL], and ventral posterior lateral [VPL]), and posterior (Po) thalamic nuclei in Wistar animals. The majority of these connections were dense contralaterally and scarce ipsilaterally. Contralateral connections were present with the parafascicular (PF), ventral posterior medial, ventral anterior (VA), and central lateral (CL) thalamic nuclei in Wistar animals. Whereas in GAERS, bilateral connections were observed with the VL and CM. Contralateral connections were present with the PC, VM, VA, and PF thalamic nuclei in GAERS. The CL, VPL, and Po thalamic nucleus connections were not observed in GAERS. The present study showed weak/deficit dento-thalamic connections in GAERS compared with control Wistar animals. The scarce information flow from the dentate nucleus to thalamus in GAERS may have a deficient modulatory role on the thalamus and thus may affect modulation of the thalamo-cortical circuit.
Collapse
Affiliation(s)
| | - Mazhar Özkan
- Department of Anatomy, Marmara University School of Medicine, Istanbul, Turkey
| | - Filiz Onat
- Department of Pharmacology and Clinic Pharmacology, Marmara University School of Medicine, Istanbul, Turkey
| | - Safiye Çavdar
- Department of Anatomy, Koç University School of Medicine, Istanbul, Turkey
| |
Collapse
|
23
|
Ye H, Kaszuba S. Neuromodulation with electromagnetic stimulation for seizure suppression: From electrode to magnetic coil. IBRO Rep 2019; 7:26-33. [PMID: 31360792 PMCID: PMC6639724 DOI: 10.1016/j.ibror.2019.06.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Accepted: 06/25/2019] [Indexed: 12/31/2022] Open
Abstract
Non-invasive brain tissue stimulation with a magnetic coil provides several irreplaceable advantages over that with an implanted electrode, in altering neural activities under pathological situations. We reviewed clinical cases that utilized time-varying magnetic fields for the treatment of epilepsy, and the safety issues related to this practice. Animal models have been developed to foster understanding of the cellular/molecular mechanisms underlying magnetic control of epileptic activity. These mechanisms include (but are not limited to) (1) direct membrane polarization by the magnetic field, (2) depolarization blockade by the deactivation of ion channels, (3) alteration in synaptic transmission, and (4) interruption of ephaptic interaction and cellular synchronization. Clinical translation of this technology could be improved through the advancement of magnetic design, optimization of stimulation protocols, and evaluation of the long-term safety. Cellular and molecular studies focusing on the mechanisms of magnetic stimulation are of great value in facilitating this translation.
Collapse
Key Words
- 4-AP, 4-aminopyridine
- Animal models
- CD50, convulsant dose
- Cellular mechanisms
- DBS, deep brain stimulation
- EEG, electroencephalography
- ELF-MF, extremely low frequency magnetic fields
- EcoG, electrocorticography
- Epilepsy
- GABA, gamma-aminobutyric acid
- HFS, high frequency stimulation
- KA, kainic acid
- LD50, lethal dose
- LTD, long-term depression
- LTP, long-term potential
- MEG, magnetoencephalography
- MRI, magnetic resonance imaging
- Magnetic stimulation
- NMDAR, N-methyl-d-aspartate receptor
- PTZ, pentylenetetrazol
- REM, rapid eye movement
- SMF, static magnetic field
- TES, transcranial electrical stimulation
- TLE, temporal lobe epilepsy
- TMS, transcranial magnetic stimulation
- rTMS, repetitive transcranial magnetic stimulation
- tDCS, transcranial direct-current stimulation
Collapse
Affiliation(s)
- Hui Ye
- Department of Biology, Loyola University Chicago, Chicago, 1032 W. Sheridan Rd., IL, 60660, United States
| | - Stephanie Kaszuba
- Chicago Medical School, Rosalind Franklin University of Medicine and Science, 3333 Green Bay Rd., North Chicago, IL, 60064, United States
| |
Collapse
|
24
|
Ilyas A, Pizarro D, Romeo AK, Riley KO, Pati S. The centromedian nucleus: Anatomy, physiology, and clinical implications. J Clin Neurosci 2019; 63:1-7. [PMID: 30827880 DOI: 10.1016/j.jocn.2019.01.050] [Citation(s) in RCA: 73] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Accepted: 01/30/2019] [Indexed: 02/02/2023]
Abstract
Of all the truncothalamic nuclei, the centromedian-parafascicular nuclei complex (CM-Pf) is the largest and is considered the prototypic thalamic projection system. Located among the caudal intralaminar thalamic nuclei, the CM-Pf been described by Jones as "the forgotten components of the great loop of connections joining the cerebral cortex via the basal ganglia". The CM, located lateral relative to the Pf, is a major source of direct input to the striatum and also has connections to other, distinct region of the basal ganglia as well as the brainstem and cortex. Functionally, the CM participates in sensorimotor coordination, cognition (e.g. attention, arousal), and pain processing. The role of CM as 'gate control' function by propagating only salient stimuli during attention-demanding tasks has been proposed. Given its rich connectivity and diverse physiologic role, recent studies have explored the CM as potential target for neuromodulation therapy for Tourette syndrome, Parkinson's disease, generalized epilepsy, intractable neuropathic pain, and in restoring consciousness. This comprehensive review summarizes the structural and functional anatomy of the CM and its physiologic role with a focus on clinical implications.
Collapse
Affiliation(s)
- Adeel Ilyas
- Department of Neurosurgery, University of Alabama at Birmingham, Birmingham, AL, United States.
| | - Diana Pizarro
- Department of Neurology, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Andrew K Romeo
- Department of Neurosurgery, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Kristen O Riley
- Department of Neurosurgery, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Sandipan Pati
- Department of Neurology, University of Alabama at Birmingham, Birmingham, AL, United States
| |
Collapse
|
25
|
Gummadavelli A, Zaveri HP, Spencer DD, Gerrard JL. Expanding Brain-Computer Interfaces for Controlling Epilepsy Networks: Novel Thalamic Responsive Neurostimulation in Refractory Epilepsy. Front Neurosci 2018; 12:474. [PMID: 30108472 PMCID: PMC6079216 DOI: 10.3389/fnins.2018.00474] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Accepted: 06/22/2018] [Indexed: 01/01/2023] Open
Abstract
Seizures have traditionally been considered hypersynchronous excitatory events and epilepsy has been separated into focal and generalized epilepsy based largely on the spatial distribution of brain regions involved at seizure onset. Epilepsy, however, is increasingly recognized as a complex network disorder that may be distributed and dynamic. Responsive neurostimulation (RNS) is a recent technology that utilizes intracranial electroencephalography (EEG) to detect seizures and delivers stimulation to cortical and subcortical brain structures for seizure control. RNS has particular significance in the clinical treatment of medically refractory epilepsy and brain–computer interfaces in epilepsy. Closed loop RNS represents an important step forward to understand and target nodes in the seizure network. The thalamus is a central network node within several functional networks and regulates input to the cortex; clinically, several thalamic nuclei are safe and feasible targets. We highlight the network theory of epilepsy, potential targets for neuromodulation in epilepsy and the first reported use of RNS as a first generation brain–computer interface to detect and stimulate the centromedian intralaminar thalamic nucleus in a patient with bilateral cortical onset of seizures. We propose that advances in network analysis and neuromodulatory techniques using brain–computer interfaces will significantly improve outcomes in patients with epilepsy. There are numerous avenues of future direction in brain–computer interface devices including multi-modal sensors, flexible electrode arrays, multi-site targeting, and wireless communication.
Collapse
Affiliation(s)
- Abhijeet Gummadavelli
- Department of Neurosurgery, Yale University School of Medicine, Yale University, New Haven, CT, United States
| | - Hitten P Zaveri
- Department of Neurology, Yale University School of Medicine, Yale University, New Haven, CT, United States
| | - Dennis D Spencer
- Department of Neurosurgery, Yale University School of Medicine, Yale University, New Haven, CT, United States
| | - Jason L Gerrard
- Department of Neurosurgery, Yale University School of Medicine, Yale University, New Haven, CT, United States.,Department of Neuroscience, Yale University School of Medicine, Yale University, New Haven, CT, United States
| |
Collapse
|
26
|
Ghasemi M, Mehranfard N. Mechanisms underlying anticonvulsant and proconvulsant actions of norepinephrine. Neuropharmacology 2018; 137:297-308. [DOI: 10.1016/j.neuropharm.2018.05.015] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Revised: 05/09/2018] [Accepted: 05/10/2018] [Indexed: 01/02/2023]
|
27
|
Abstract
BACKGROUND Despite optimal medical treatment, including epilepsy surgery, many epilepsy patients have uncontrolled seizures. Since the 1970s interest has grown in invasive intracranial neurostimulation as a treatment for these patients. Intracranial stimulation includes both deep brain stimulation (DBS) (stimulation through depth electrodes) and cortical stimulation (subdural electrodes). This is an updated version of a previous Cochrane review published in 2014. OBJECTIVES To assess the efficacy, safety and tolerability of DBS and cortical stimulation for refractory epilepsy based on randomized controlled trials (RCTs). SEARCH METHODS We searched the Cochrane Epilepsy Group Specialized Register on 29 September 2015, but it was not necessary to update this search, because records in the Specialized Register are included in CENTRAL. We searched the Cochrane Central Register of Controlled Trials (CENTRAL) (the Cochrane Library 2016, Issue 11, 5 November 2016), PubMed (5 November 2016), ClinicalTrials.gov (5 November 2016), the WHO International Clinical Trials Registry Platform ICTRP (5 November 2016) and reference lists of retrieved articles. We also contacted device manufacturers and other researchers in the field. No language restrictions were imposed. SELECTION CRITERIA RCTs comparing deep brain or cortical stimulation versus sham stimulation, resective surgery, further treatment with antiepileptic drugs or other neurostimulation treatments (including vagus nerve stimulation). DATA COLLECTION AND ANALYSIS Four review authors independently selected trials for inclusion. Two review authors independently extracted the relevant data and assessed trial quality and overall quality of evidence. The outcomes investigated were seizure freedom, responder rate, percentage seizure frequency reduction, adverse events, neuropsychological outcome and quality of life. If additional data were needed, the study investigators were contacted. Results were analysed and reported separately for different intracranial targets for reasons of clinical heterogeneity. MAIN RESULTS Twelve RCTs were identified, eleven of these compared one to three months of intracranial neurostimulation with sham stimulation. One trial was on anterior thalamic DBS (n = 109; 109 treatment periods); two trials on centromedian thalamic DBS (n = 20; 40 treatment periods), but only one of the trials (n = 7; 14 treatment periods) reported sufficient information for inclusion in the quantitative meta-analysis; three trials on cerebellar stimulation (n = 22; 39 treatment periods); three trials on hippocampal DBS (n = 15; 21 treatment periods); one trial on nucleus accumbens DBS (n = 4; 8 treatment periods); and one trial on responsive ictal onset zone stimulation (n = 191; 191 treatment periods). In addition, one small RCT (n = 6) compared six months of hippocampal DBS versus sham stimulation. Evidence of selective reporting was present in four trials and the possibility of a carryover effect complicating interpretation of the results could not be excluded in five cross-over trials without any or a sufficient washout period. Moderate-quality evidence could not demonstrate statistically or clinically significant changes in the proportion of patients who were seizure-free or experienced a 50% or greater reduction in seizure frequency (primary outcome measures) after one to three months of anterior thalamic DBS in (multi)focal epilepsy, responsive ictal onset zone stimulation in (multi)focal epilepsy patients and hippocampal DBS in (medial) temporal lobe epilepsy. However, a statistically significant reduction in seizure frequency was found for anterior thalamic DBS (mean difference (MD), -17.4% compared to sham stimulation; 95% confidence interval (CI) -31.2 to -1.0; high-quality evidence), responsive ictal onset zone stimulation (MD -24.9%; 95% CI -40.1 to -6.0; high-quality evidence) and hippocampal DBS (MD -28.1%; 95% CI -34.1 to -22.2; moderate-quality evidence). Both anterior thalamic DBS and responsive ictal onset zone stimulation do not have a clinically meaningful impact on quality life after three months of stimulation (high-quality evidence). Electrode implantation resulted in postoperative asymptomatic intracranial haemorrhage in 1.6% to 3.7% of the patients included in the two largest trials and 2.0% to 4.5% had postoperative soft tissue infections (9.4% to 12.7% after five years); no patient reported permanent symptomatic sequelae. Anterior thalamic DBS was associated with fewer epilepsy-associated injuries (7.4 versus 25.5%; P = 0.01) but higher rates of self-reported depression (14.8 versus 1.8%; P = 0.02) and subjective memory impairment (13.8 versus 1.8%; P = 0.03); there were no significant differences in formal neuropsychological testing results between the groups. Responsive ictal-onset zone stimulation seemed to be well-tolerated with few side effects.The limited number of patients preclude firm statements on safety and tolerability of hippocampal DBS. With regards to centromedian thalamic DBS, nucleus accumbens DBS and cerebellar stimulation, no statistically significant effects could be demonstrated but evidence is of only low to very low quality. AUTHORS' CONCLUSIONS Except for one very small RCT, only short-term RCTs on intracranial neurostimulation for epilepsy are available. Compared to sham stimulation, one to three months of anterior thalamic DBS ((multi)focal epilepsy), responsive ictal onset zone stimulation ((multi)focal epilepsy) and hippocampal DBS (temporal lobe epilepsy) moderately reduce seizure frequency in refractory epilepsy patients. Anterior thalamic DBS is associated with higher rates of self-reported depression and subjective memory impairment. There is insufficient evidence to make firm conclusive statements on the efficacy and safety of hippocampal DBS, centromedian thalamic DBS, nucleus accumbens DBS and cerebellar stimulation. There is a need for more, large and well-designed RCTs to validate and optimize the efficacy and safety of invasive intracranial neurostimulation treatments.
Collapse
Affiliation(s)
- Mathieu Sprengers
- Ghent University HospitalDepartment of Neurology1K12, 185 De PintelaanGhentBelgiumB‐9000
| | - Kristl Vonck
- Ghent University HospitalDepartment of Neurology1K12, 185 De PintelaanGhentBelgiumB‐9000
| | - Evelien Carrette
- Ghent University HospitalDepartment of Neurology1K12, 185 De PintelaanGhentBelgiumB‐9000
| | - Anthony G Marson
- Institute of Translational Medicine, University of LiverpoolDepartment of Molecular and Clinical PharmacologyClinical Sciences Centre for Research and Education, Lower LaneFazakerleyLiverpoolMerseysideUKL9 7LJ
| | - Paul Boon
- Ghent University HospitalDepartment of Neurology1K12, 185 De PintelaanGhentBelgiumB‐9000
| | | |
Collapse
|
28
|
Yang L, Li H, Zhu L, Yu X, Jin B, Chen C, Wang S, Ding M, Zhang M, Chen Z, Wang S. Localized shape abnormalities in the thalamus and pallidum are associated with secondarily generalized seizures in mesial temporal lobe epilepsy. Epilepsy Behav 2017; 70:259-264. [PMID: 28427841 DOI: 10.1016/j.yebeh.2017.02.011] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2016] [Revised: 02/06/2017] [Accepted: 02/06/2017] [Indexed: 01/16/2023]
Abstract
Mesial temporal lobe epilepsy (mTLE) is a common type of drug-resistant epilepsy and secondarily generalized tonic-clonic seizures (sGTCS) have devastating consequences for patients' safety and quality of life. To probe the mechanism underlying the genesis of sGTCS, we investigated the structural differences between patients with and without sGTCS in a cohort of mTLE with radiologically defined unilateral hippocampal sclerosis. We performed voxel-based morphometric analysis of cortex and vertex-wise shape analysis of subcortical structures (the basal ganglia and thalamus) on MRI of 39 patients (21 with and 18 without sGTCS). Comparisons were initially made between sGTCS and non-sGTCS groups, and subsequently made between uncontrolled-sGTCS and controlled-sGTCS subgroups. Regional atrophy of the ipsilateral ventral pallidum (cluster size=450 voxels, corrected p=0.047, Max voxel coordinate=107, 120, 65), medial thalamus (cluster size=1128 voxels, corrected p=0.049, Max voxel coordinate=107, 93, 67), middle frontal gyrus (cluster size=60 voxels, corrected p<0.05, Max voxel coordinate=-30, 49.5, 6), and contralateral posterior cingulate cortex (cluster size=130 voxels, corrected p<0.05, Max voxel coordinate=16.5, -57, 27) was found in the sGTCS group relative to the non-sGTCS group. Furthermore, the uncontrolled-sGTCS subgroup showed more pronounced atrophy of the ipsilateral medial thalamus (cluster size=1240 voxels, corrected p=0.014, Max voxel coordinate=107, 93, 67) than the controlled-sGTCS subgroup. These findings indicate a central role of thalamus and pallidum in the pathophysiology of sGTCS in mTLE.
Collapse
Affiliation(s)
- Linglin Yang
- Epilepsy Center, Department of Neurology, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Hong Li
- Departments of Radiology, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Lujia Zhu
- Epilepsy Center, Department of Neurology, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Xinfeng Yu
- Departments of Radiology, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Bo Jin
- Epilepsy Center, Department of Neurology, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Cong Chen
- Epilepsy Center, Department of Neurology, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Shan Wang
- Epilepsy Center, Department of Neurology, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Meiping Ding
- Epilepsy Center, Department of Neurology, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Minming Zhang
- Departments of Radiology, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Zhong Chen
- Epilepsy Center, Department of Neurology, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Shuang Wang
- Epilepsy Center, Department of Neurology, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China.
| |
Collapse
|
29
|
Cota VR, Drabowski BMB, de Oliveira JC, Moraes MFD. The epileptic amygdala: Toward the development of a neural prosthesis by temporally coded electrical stimulation. J Neurosci Res 2017; 94:463-85. [PMID: 27091311 DOI: 10.1002/jnr.23741] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2015] [Revised: 03/09/2016] [Accepted: 03/09/2016] [Indexed: 02/06/2023]
Abstract
Many patients with epilepsy do not obtain proper control of their seizures through conventional treatment. We review aspects of the pathophysiology underlying epileptic phenomena, with a special interest in the role of the amygdala, stressing the importance of hypersynchronism in both ictogenesis and epileptogenesis. We then review experimental studies on electrical stimulation of mesiotemporal epileptogenic areas, the amygdala included, as a means to treat medically refractory epilepsy. Regular high-frequency stimulation (HFS) commonly has anticonvulsant effects and sparse antiepileptogenic properties. On the other hand, HFS is related to acute and long-term increases in excitability related to direct neuronal activation, long-term potentiation, and kindling, raising concerns regarding its safety and jeopardizing in-depth understanding of its mechanisms. In turn, the safer regular low-frequency stimulation (LFS) has a robust antiepileptogenic effect, but its pro- or anticonvulsant effect seems to vary at random among studies. As an alternative, studies by our group on the development and investigation of temporally unstructured electrical stimulation applied to the amygdala have shown that nonperiodic stimulation (NPS), which is a nonstandard form of LFS, is capable of suppressing both acute and chronic spontaneous seizures. We hypothesize two noncompetitive mechanisms for the therapeutic role of amygdala in NPS, 1) a direct desynchronization of epileptic circuitry in the forebrain and brainstem and 2) an indirect desynchronization/inhibition through nucleus accumbens activation. We conclude by reintroducing the idea that hypersynchronism, rather than hyperexcitability, may be the key for epileptic phenomena and epilepsy treatment.
Collapse
Affiliation(s)
- Vinícius Rosa Cota
- Laboratório Interdisciplinar de Neuroengenharia e Neurociências, Departamento de Engenharia Elétrica (DEPEL), Universidade Federal de São João Del-Rei, São João Del-Rei, Minas Gerais, Brazil
| | - Bruna Marcela Bacellar Drabowski
- Laboratório Interdisciplinar de Neuroengenharia e Neurociências, Departamento de Engenharia Elétrica (DEPEL), Universidade Federal de São João Del-Rei, São João Del-Rei, Minas Gerais, Brazil
| | - Jasiara Carla de Oliveira
- Laboratório Interdisciplinar de Neuroengenharia e Neurociências, Departamento de Engenharia Elétrica (DEPEL), Universidade Federal de São João Del-Rei, São João Del-Rei, Minas Gerais, Brazil
| | - Márcio Flávio Dutra Moraes
- Núcleo de Neurociências, Instituto de Ciências Biológicas (ICB), Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| |
Collapse
|
30
|
Kim SH, Lim SC, Yang DW, Cho JH, Son BC, Kim J, Hong SB, Shon YM. Thalamo-cortical network underlying deep brain stimulation of centromedian thalamic nuclei in intractable epilepsy: a multimodal imaging analysis. Neuropsychiatr Dis Treat 2017; 13:2607-2619. [PMID: 29089767 PMCID: PMC5655132 DOI: 10.2147/ndt.s148617] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
OBJECTIVE Deep brain stimulation (DBS) of the centromedian thalamic nucleus (CM) can be an alternative treatment option for intractable epilepsy patients. Since CM may be involved in widespread cortico-subcortical networks, identification of the cortical sub-networks specific to the target stimuli may provide further understanding on the underlying mechanisms of CM DBS. Several brain structures have distinguishing brain connections that may be related to the pivotal propagation and subsequent clinical effect of DBS. METHODS To explore core structures and their connections relevant to CM DBS, we applied electroencephalogram (EEG) and diffusion tensor imaging (DTI) to 10 medically intractable patients - three generalized epilepsy (GE) and seven multifocal epilepsy (MFE) patients unsuitable for resective surgery. Spatiotemporal activation pattern was mapped from scalp EEG by delivering low-frequency stimuli (5 Hz). Structural connections between the CM and the cortical activation spots were assessed using DTI. RESULTS We confirmed an average 72% seizure reduction after CM DBS and its clinical efficiency remained consistent during the observation period (mean 21 months). EEG data revealed sequential source propagation from the anterior cingulate, followed by the frontotemporal regions bilaterally. In addition, maximal activation was found in the left cingulate gyrus and the right medial frontal cortex during the right and left CM stimulation, respectively. From DTI data, we confirmed concrete structural connections between CM and those maximal activation spots identified from EEG data. CONCLUSION These results suggest that the anterior cingulate can be a core cortical structure for the bilateral propagation of CM stimulation. Our DTI findings also indicate that the propagation of CM stimulation may rely upon integrity of structural connections between CM and these key cortical regions. Structures and their connections found in this study may be relevant in the interpretation of the clinical outcomes of CM DBS.
Collapse
Affiliation(s)
| | | | | | | | - Byung-Chul Son
- Department of Neurosurgery, Catholic Neuroscience Institute, College of Medicine, The Catholic University of Korea, Seoul
| | - Jiyeon Kim
- Department of Neurology, Korea University Ansan Hospital, College of Medicine, Korea University, Ansan
| | - Seung Bong Hong
- Department of Neurology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Young-Min Shon
- Department of Neurology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| |
Collapse
|
31
|
Luan G, Wang X. Nondrug Treatment for Refractory Status Epilepticus. REFRACTORY STATUS EPILEPTICUS 2017:247-273. [DOI: 10.1007/978-981-10-5125-8_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
32
|
Gummadavelli A, Kundishora AJ, Willie JT, Andrews JP, Gerrard JL, Spencer DD, Blumenfeld H. Neurostimulation to improve level of consciousness in patients with epilepsy. Neurosurg Focus 2016; 38:E10. [PMID: 26030698 DOI: 10.3171/2015.3.focus1535] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
When drug-resistant epilepsy is poorly localized or surgical resection is contraindicated, current neurostimulation strategies such as deep brain stimulation and vagal nerve stimulation can palliate the frequency or severity of seizures. However, despite medical and neuromodulatory therapy, a significant proportion of patients continue to experience disabling seizures that impair awareness, causing disability and risking injury or sudden unexplained death. We propose a novel strategy in which neuromodulation is used not only to reduce seizures but also to ameliorate impaired consciousness when the patient is in the ictal and postictal states. Improving or preventing alterations in level of consciousness may have an effect on morbidity (e.g., accidents, drownings, falls), risk for death, and quality of life. Recent studies may have elucidated underlying networks and mechanisms of impaired consciousness and yield potential novel targets for neuromodulation. The feasibility, benefits, and pitfalls of potential deep brain stimulation targets are illustrated in human and animal studies involving minimally conscious/vegetative states, movement disorders, depth of anesthesia, sleep-wake regulation, and epilepsy. We review evidence that viable therapeutic targets for impaired consciousness associated with seizures may be provided by key nodes of the consciousness system in the brainstem reticular activating system, hypothalamus, basal ganglia, thalamus, and basal forebrain.
Collapse
Affiliation(s)
| | | | - Jon T Willie
- 2Departments of Neurosurgery and Neurology, Emory University School of Medicine, Atlanta, Georgia
| | | | | | | | - Hal Blumenfeld
- Departments of 1Neurosurgery.,3Neurology, and.,4Neurobiology, Yale University School of Medicine, New Haven, Connecticut; and
| |
Collapse
|
33
|
Pantoja-Jiménez CR, Magdaleno-Madrigal VM, Almazán-Alvarado S, Fernández-Mas R. Anti-epileptogenic effect of high-frequency stimulation in the thalamic reticular nucleus on PTZ-induced seizures. Brain Stimul 2014; 7:587-94. [PMID: 24794164 DOI: 10.1016/j.brs.2014.03.012] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2013] [Revised: 01/31/2014] [Accepted: 03/27/2014] [Indexed: 01/03/2023] Open
Abstract
BACKGROUND Deep brain stimulation, specifically high-frequency stimulation (HFS), is an alternative and promising treatment for intractable epilepsies; however, the optimal targets are still unknown. The thalamic reticular nucleus (TRN) occupies a key position in the modulation of the cortico-thalamic and thalamo-cortical pathways. OBJECTIVE We determined the efficacy of HFS in the TRN against tonic-clonic generalized seizures (TCGS) and status epilepticus (SE), which were induced by scheduled pentylenetetrazole (PTZ) injections. METHODS Male Wistar rats were stereotactically implanted and assigned to three experimental groups: Control group, which received only PTZ injections; HFS-TRN group, which received HFS in the left TRN prior to PTZ injections; and HFS-Adj group, which received HFS in the left adjacent nuclei prior to PTZ injections. RESULTS The HFS-TRN group reported a significant increase in the latency for development of TCGS and SE compared with the HFS-Adj and Control groups (P < 0.009). The number of PTZ-doses required for SE was also significantly increased (P < 0.001). Spectral analysis revealed a significant decrease in the frequency band from 0.5 Hz to 4.5 Hz of the left motor cortex in the HFS-TRN and HFS-Adj groups, compared to the Control group. Conversely, HFS-TRN provoked a significant increase in all frequency bands in the TRN. EEG asynchrony was observed during spike-wave discharges by HFS-TRN. CONCLUSION These data indicate that HFS-TRN has an anti-epileptogenic effect and is able to modify seizure synchrony and interrupt abnormal EEG recruitment of thalamo-cortical and, indirectly, cortico-thalamic pathways.
Collapse
Affiliation(s)
- C R Pantoja-Jiménez
- Laboratorio de Neurofisiología del Control y la Regulación, Dirección de Investigaciones en Neurociencias, Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz, Mexico; Carrera de Psicología, Facultad de Estudios Superiores Zaragoza-UNAM, Ciudad de México, Mexico
| | - V M Magdaleno-Madrigal
- Laboratorio de Neurofisiología del Control y la Regulación, Dirección de Investigaciones en Neurociencias, Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz, Mexico; Carrera de Psicología, Facultad de Estudios Superiores Zaragoza-UNAM, Ciudad de México, Mexico.
| | - S Almazán-Alvarado
- Laboratorio de Neurofisiología del Control y la Regulación, Dirección de Investigaciones en Neurociencias, Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz, Mexico
| | - R Fernández-Mas
- Laboratorio de Neurofisiología del Control y la Regulación, Dirección de Investigaciones en Neurociencias, Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz, Mexico
| |
Collapse
|
34
|
Treating Refractory Generalized Epilepsy with Stimulation. Epilepsy Curr 2014; 14:76-7. [DOI: 10.5698/1535-7597-14.2.76] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
35
|
Chen CR, Yang SR, Liu YY, Qu WM, Urade Y, Huang ZL. Roles of adrenergic α1 and dopamine D1 and D2 receptors in the mediation of the desynchronization effects of modafinil in a mouse EEG synchronization model. PLoS One 2013; 8:e76102. [PMID: 24116090 DOI: 10.1371/journal.pone.0076102] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2013] [Accepted: 08/20/2013] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Synchronized electroencephalogram (EEG) activity is observed in pathological stages of cognitive impairment and epilepsy. Modafinil, known to increase the release of catecholamines, is a potent wake-promoting agent, and has shown some abilities to desynchronize EEG,but its receptor mechanisms by which modafinil induces desynchoronization remain to be elucidated. Here we used a pharmacological EEG synchronization model to investigate the involvement of adrenergic α1 receptors (R, α1R) and dopamine (DA) D1 and D2 receptors (D1Rs and D2Rs) on modafinil-induced desynchronization in mice. METHODOLOGY/PRINCIPAL FINDINGS Mice were treated with cholinergic receptor antagonist scopolamine and monoamine depletor reserpine to produce experimental EEG synchronization characterized by continuous large-amplitude synchronized activity, with prominent increased delta and decreased theta, alpha, and beta power density. The results showed that modafinil produced an EEG desynchronization in the model. This was characterized by a general decrease in amplitude of all the frequency bands between 0 and 20 Hz, a prominent reduction in delta power density, and an increase in theta power density. Adrenergic α1R antagonist terazosin (1 mg/kg, i.p.) completely antagonized the EEG desynchronization effects of modafinil at 90 mg/kg. However, DA D1R and D2R blockers partially attenuated the effects of modafinil. The modafinil-induced decrease in the amplitudes of the delta, theta, alpha, and beta waves and in delta power density were completely abolished by pretreatment with a combination of the D1R antagonist SCH 23390 (30 µg/kg) and the D2R antagonist raclopride (2 mg/kg, i.p.). CONCLUSIONS/SIGNIFICANCE These results suggest that modafinil-mediated desynchronization may be attributed to the activation of adrenergic α1R, and dopaminergic D1R and D2R in a model of EEG synchronization.
Collapse
Affiliation(s)
- Chang-Rui Chen
- Department of Pharmacology, Shanghai Medical College, Fudan University, Shanghai, China
| | | | | | | | | | | |
Collapse
|
36
|
Mina F, Benquet P, Pasnicu A, Biraben A, Wendling F. Modulation of epileptic activity by deep brain stimulation: a model-based study of frequency-dependent effects. Front Comput Neurosci 2013; 7:94. [PMID: 23882212 PMCID: PMC3712286 DOI: 10.3389/fncom.2013.00094] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2012] [Accepted: 06/23/2013] [Indexed: 11/23/2022] Open
Abstract
A number of studies showed that deep brain stimulation (DBS) can modulate the activity in the epileptic brain and that a decrease of seizures can be achieved in “responding” patients. In most of these studies, the choice of stimulation parameters is critical to obtain desired clinical effects. In particular, the stimulation frequency is a key parameter that is difficult to tune. A reason is that our knowledge about the frequency-dependant mechanisms according to which DBS indirectly impacts the dynamics of pathological neuronal systems located in the neocortex is still limited. We address this issue using both computational modeling and intracerebral EEG (iEEG) data. We developed a macroscopic (neural mass) model of the thalamocortical network. In line with already-existing models, it includes interconnected neocortical pyramidal cells and interneurons, thalamocortical cells and reticular neurons. The novelty was to introduce, in the thalamic compartment, the biophysical effects of direct stimulation. Regarding clinical data, we used a quite unique data set recorded in a patient (drug-resistant epilepsy) with a focal cortical dysplasia (FCD). In this patient, DBS strongly reduced the sustained epileptic activity of the FCD for low-frequency (LFS, < 2 Hz) and high-frequency stimulation (HFS, > 70 Hz) while intermediate-frequency stimulation (IFS, around 50 Hz) had no effect. Signal processing, clustering, and optimization techniques allowed us to identify the necessary conditions for reproducing, in the model, the observed frequency-dependent stimulation effects. Key elements which explain the suppression of epileptic activity in the FCD include: (a) feed-forward inhibition and synaptic short-term depression of thalamocortical connections at LFS, and (b) inhibition of the thalamic output at HFS. Conversely, modeling results indicate that IFS favors thalamic oscillations and entrains epileptic dynamics.
Collapse
Affiliation(s)
- Faten Mina
- INSERM, U1099, Universite de Rennes 1 Rennes, France ; Laboratoire Traitement du Signal et de L'Image, Université de Rennes 1 Rennes, France
| | | | | | | | | |
Collapse
|
37
|
Abstract
Deep brain stimulation (DBS) is a method of treatment utilized to control medically refractory epilepsy (RE). Patients with medically refractory epilepsy who do not achieve satisfactory control of seizures with pharmacological treatment or surgical resection of the epileptic focus and those who do not qualify for surgery could benefit from DBS. The most frequently used stereotactic targets for DBS are the anterior thalamic nucleus, subthalamic nucleus, central-medial thalamic nucleus, hippocampus, amygdala and cerebellum. The DBS is believed to be an effective method of treatment for various types of epilepsy among adults and adolescents. Side effects may be associated with implantation of electrodes and with the stimulation itself. An increasing number of publications and growing interest in DBS application for RE may result in standardization of the qualification and treatment protocol for RE with DBS.
Collapse
Affiliation(s)
- Tomasz Tykocki
- Department of Neurosurgery, Institute of Psychiatry and Neurology, Warsaw, Poland
| | - Tomasz Mandat
- Department of Neurosurgery, Institute of Oncology, Warsaw, Poland
| | | | - Henryk Koziara
- Department of Neurosurgery, Institute of Oncology, Warsaw, Poland
| | - Paweł Nauman
- Department of Neurosurgery, Institute of Psychiatry and Neurology, Warsaw, Poland
| |
Collapse
|
38
|
Tellez-Zenteno JF, Wiebe S. Hippocampal stimulation in the treatment of epilepsy. Neurosurg Clin N Am 2012; 22:465-75, vi. [PMID: 21939845 DOI: 10.1016/j.nec.2011.07.008] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
Neuromodulation is one of the fastest growing fields in neurosurgery, as reflected by the growing interest in the use of electrical brain stimulation (EBS) to treat drug-resistant epilepsy, pain, and movement disorders. Hippocampal stimulation should be regarded as an experimental therapy for epilepsy, and patients considered for this intervention should do so in the context of a well-designed randomized controlled trial. Only well-conducted, blinded, randomized trials, followed by long-term systematic observation will yield a clear picture of the effect of this promising therapy, and will help guide its future use. This article provides a critical review of the best available evidence on hippocampal stimulation for epilepsy.
Collapse
Affiliation(s)
- Jose F Tellez-Zenteno
- Division of Neurology, Department of Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | | |
Collapse
|
39
|
HAMANI CLEMENT, ANDRADE DANIELLE, HODAIE MOJGAN, WENNBERG RICHARD, LOZANO ANDRES. DEEP BRAIN STIMULATION FOR THE TREATMENT OF EPILEPSY. Int J Neural Syst 2011; 19:213-26. [DOI: 10.1142/s0129065709001975] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
During the last decade, deep brain stimulation (DBS) has been used to treat several neurologic disorders, including epilepsy. Promising results have been reported with stimulation in different brain regions. At present however, several issues remain unanswered. As an example, it is still unclear whether particular seizure types and syndromes should be treated with DBS in different targets or with different stimulation parameters. In addition, clinical, electrophysiological and anatomical features capable of predicting a good postoperative outcome are still unknown. We review the published literature on DBS, cortical and cerebellar stimulation for the treatment of epilepsy focusing predominantly on the rationale and clinical outcome in each target.
Collapse
Affiliation(s)
- CLEMENT HAMANI
- Division of Neurosurgery Toronto Western Hospital — University of Toronto, Division of Neurosurgery, Toronto Western Hospital, 399 Bathurst Street 4th floor WW, Toronto, ON, Canada
| | - DANIELLE ANDRADE
- Division of Neurology Toronto Western Hospital — University of, Toronto
| | - MOJGAN HODAIE
- Division of Neurosurgery Toronto Western Hospital — University of Toronto, Division of Neurosurgery, Toronto Western Hospital, 399 Bathurst Street 4th floor WW, Toronto, ON, Canada
| | - RICHARD WENNBERG
- Division of Neurology Toronto Western Hospital — University of, Toronto
| | - ANDRES LOZANO
- Division of Neurosurgery Toronto Western Hospital — University of Toronto, Division of Neurosurgery, Toronto Western Hospital, 399 Bathurst Street 4th floor WW, Toronto, ON, Canada
| |
Collapse
|
40
|
|
41
|
Du H, Zhang Y, Xie B, Wu N, Wu G, Wang J, Jiang T, Feng H. Regional atrophy of the basal ganglia and thalamus in idiopathic generalized epilepsy. J Magn Reson Imaging 2011; 33:817-21. [PMID: 21448945 DOI: 10.1002/jmri.22416] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
PURPOSE To determine the regional changes in the shapes of subcortical structures in idiopathic generalized epilepsy using a vertex-based analysis method. Earlier studies found that gray matter volume in the frontal, parietal, and temporal lobes is significantly altered in idiopathic generalized epilepsy (IGE). Research has indicated that a relationship exists between the brain's subcortical structures and epilepsy. However, little is known about possible changes in the subcortical structures in IGE. MATERIALS AND METHODS This study aims to determine the changes in the shape of subcortical structures in IGE using vertex analysis. Fourteen male patients with IGE and 28 age- and sex-matched healthy controls were included in this study, which used high-resolution magnetic resonance imaging. We performed a vertex-based shape analysis, in which we compared patients with IGE with the controls, on the subcortical structures that we had obtained from the MRI data. RESULTS Statistical analysis showed significant regional atrophy in the left thalamus, left putamen and bilateral globus pallidus in patients with IGE. CONCLUSION These results indicate that regional atrophy of the basal ganglia and the thalamus may be related to seizure disorder. In the future, these findings may prove useful for choosing new therapeutic regimens.
Collapse
Affiliation(s)
- Hanjian Du
- Department of Neurosurgery, Third Military Medical University, Chongqing, People's Republic of China
| | | | | | | | | | | | | | | |
Collapse
|
42
|
Abstract
Abstract
Neuromodulation strategies have been proposed to treat a variety of neurological disorders, including medication-resistant epilepsy. Electrical stimulation of both central and peripheral nervous systems has emerged as a possible alternative for patients who are not deemed to be good candidates for resective procedures. In addition to well-established treatments such as vagus nerve stimulation, epilepsy centers around the world are investigating the safety and efficacy of neurostimulation at different brain targets, including the hippocampus, thalamus, and subthalamic nucleus. Also promising are the preliminary results of responsive neuromodulation studies, which involve the delivery of stimulation to the brain in response to detected epileptiform or preepileptiform activity. In addition to electrical stimulation, novel therapeutic methods that may open new horizons in the management of epilepsy include transcranial magnetic stimulation, focal drug delivery, cellular transplantation, and gene therapy. We review the current strategies and future applications of neuromodulation in epilepsy.
Collapse
Affiliation(s)
- Faisal A Al-Otaibi
- King Faisal Specialist Hospital & Research Centre, Neurosciences Department, Riyadh, Saudi Arabia
| | - Clement Hamani
- Division of Neurosurgery, Toronto Western Hospital, Toronto Western Research Institute, Ontario, Canada
| | - Andres M Lozano
- Division of Neurosurgery, Toronto Western Hospital, Toronto Western Research Institute, Ontario, Canada
| |
Collapse
|
43
|
Abstract
Mesial temporal lobe epilepsy (MTLE) is characterized by focal seizures, associated with hippocampal sclerosis, and often resistance to antiepileptic drugs. The parafascicular nucleus (PF) of the thalamus is involved in the generation of physiological oscillatory rhythms. It receives excitatory inputs from the cortex and inhibitory inputs from the basal ganglia, a system implicated in the control of epileptic seizures. The aim of this study was to examine the involvement of the PF in the occurrence of hippocampal paroxysmal discharges (HPDs) in a chronic animal model of MTLE in male mice. We recorded the local field potential (LFP) and the extracellular and intracellular activity of hippocampal and PF neurons during spontaneous HPDs in vivo. The end of the HPDs was concomitant with a slow repolarization in hippocampal neurons leading to an electrical silence. In contrast, it was associated in the PF with a transient increase in the power of the 10-20 Hz band in LFPs and a depolarization of PF neurons resulting in a sustained firing. We tested the role of the PF in the control of HPDs by single 130 Hz electrical stimulation of this nucleus and bilateral intra-PF injection of NMDA and GABA(A) antagonist and agonist. High-frequency PF stimulation interrupted ongoing HPDs at an intensity devoid of behavioral effects. NMDA antagonist and GABA(A) agonist suppressed hippocampal discharges in a dose-dependent way, whereas NMDA agonist and GABA(A) antagonist increased HPDs. Altogether, these data suggest that the PF nucleus plays a role in the modulation of MTLE seizures.
Collapse
|
44
|
|
45
|
Wang S, Wu DC, Fan XN, Zhu MZ, Hu QY, Zhou D, Ding MP, Chen Z. Mediodorsal thalamic stimulation is not protective against seizures induced by amygdaloid kindling in rats. Neurosci Lett 2010; 481:97-101. [PMID: 20600600 DOI: 10.1016/j.neulet.2010.06.060] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2010] [Revised: 06/17/2010] [Accepted: 06/21/2010] [Indexed: 11/25/2022]
Abstract
Deep brain stimulation (DBS) is now emerging as a new option for treating intractable epilepsy. Cumulative studies suggest that the mediodorsal thalamic nucleus (MD) is involved in limbic seizure activity. This study aims to investigate whether DBS of the MD can protect against seizures induced by amygdaloid kindling. We studied the effect of low-frequency stimulation (LFS, 1 Hz) or high-frequency stimulation (HFS, 100 Hz) in the MD on amygdaloid kindling seizures. During the kindling acquisition, DBS in the MD was daily administered immediately after the kindling stimulus or before the kindling stimulus (preemptive DBS). The effects of both post-treatment of DBS and preemptive DBS in the MD on the expression of amygdaloid kindling seizures were evaluated. We found the DBS or preemptive DBS in the MD, either LFS or HFS, did not significantly change the rate of amygdaloid kindling. Similarly, DBS or preemptive DBS in the MD did not significantly change any parameters representing the expression of amygdaloid kindling. Our study suggests that DBS in the MD may have no significant effect on limbic seizures.
Collapse
Affiliation(s)
- Shuang Wang
- Department of Pharmacology, Institute of Neuroscience, School of Medicine, Zhejiang University, Hangzhou 310058, China
| | | | | | | | | | | | | | | |
Collapse
|
46
|
Gubellini P, Salin P, Kerkerian-Le Goff L, Baunez C. Deep brain stimulation in neurological diseases and experimental models: From molecule to complex behavior. Prog Neurobiol 2009; 89:79-123. [DOI: 10.1016/j.pneurobio.2009.06.003] [Citation(s) in RCA: 119] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2008] [Revised: 04/28/2009] [Accepted: 06/18/2009] [Indexed: 11/30/2022]
|
47
|
|
48
|
Adhikari MH, Heeroma JH, di Bernardo M, Krauskopf B, Richardson MP, Walker MC, Terry JR. Characterisation of cortical activity in response to deep brain stimulation of ventral-lateral nucleus: modelling and experiment. J Neurosci Methods 2009; 183:77-85. [PMID: 19616579 DOI: 10.1016/j.jneumeth.2009.06.044] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2009] [Revised: 06/26/2009] [Accepted: 06/29/2009] [Indexed: 11/19/2022]
Abstract
Motivated by its success as a therapeutic treatment in other neurological disorders, most notably Parkinson's disease, Deep Brain Stimulation (DBS) is currently being trialled in a number of patients with drug unresponsive epilepsies. However, the mechanisms by which DBS interferes with neuronal activity linked to the disorder are not well understood. Furthermore, there is a need to identify optimized values of parameters (for example in amplitude/frequency space) of the stimulation protocol with which one aims to achieve the desired outcome. In this paper we characterise the system response to stimulation, to gain an understanding of the role different brain regions play in generating the output observed in EEG. We perform a number of experiments in healthy rats, where the ventral-lateral thalamic nucleus is stimulated using a train of square-waves with different frequency and amplitudes. The response to stimulation in the motor cortex is recorded and the drive-response relationship over frequency/amplitude space is considered. Subsequently, we compare the experimental data with simulations of a mean-field model, finding good agreement between the output of the model and the experimental data--both in the time and frequency domains--when considering a transition to oscillatory activity in the cortex as the frequency of stimulation is increased. Overall, our study suggests that mean-field models can appropriately characterise the stimulus-response relationship of DBS in healthy animals. In this way, it constitutes a first step towards the goal of developing a closed-loop feedback control protocol for suppressing epileptic activity, by adaptively adjusting the stimulation protocol in response to EEG activity.
Collapse
Affiliation(s)
- Mohit H Adhikari
- Department of Engineering Mathematics, University of Bristol, Bristol BS8 1TR, UK
| | | | | | | | | | | | | |
Collapse
|
49
|
Good LB, Sabesan S, Marsh ST, Tsakalis K, Treiman D, Iasemidis L. Control of synchronization of brain dynamics leads to control of epileptic seizures in rodents. Int J Neural Syst 2009; 19:173-96. [PMID: 19575507 PMCID: PMC3120842 DOI: 10.1142/s0129065709001951] [Citation(s) in RCA: 96] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
We have designed and implemented an automated, just-in-time stimulation, seizure control method using a seizure prediction method from nonlinear dynamics coupled with deep brain stimulation in the centromedial thalamic nuclei in epileptic rats. A comparison to periodic stimulation, with identical stimulation parameters, was also performed. The two schemes were compared in terms of their efficacy in control of seizures, as well as their effect on synchronization of brain dynamics. The automated just-in-time (JIT) stimulation showed reduction of seizure frequency and duration in 5 of the 6 rats, with significant reduction of seizure frequency (>50%) in 33% of the rats. This constituted a significant improvement over the efficacy of the periodic control scheme in the same animals. Actually, periodic stimulation showed an increase of seizure frequency in 50% of the rats, reduction of seizure frequency in 3 rats and significant reduction in 1 rat. Importantly, successful seizure control was highly correlated with desynchronization of brain dynamics. This study provides initial evidence for the use of closed-loop feedback control systems in epileptic seizures combining methods from seizure prediction and deep brain stimulation.
Collapse
Affiliation(s)
- Levi B. Good
- Harrington Department of Bioengineering, Arizona State University, Tempe, Arizona, USA, Department of Neurology Research, Barrow Neurological Institute, St. Joseph's Hospital & Medical Center, Phoenix, Arizona, USA
| | - Shivkumar Sabesan
- Department of Electrical Engineering, Arizona State University, Tempe, Arizona, USA
| | - Steven T. Marsh
- Department of Neurology Research, Barrow Neurological Institute, St. Joseph's Hospital & Medical Center, Phoenix, Arizona, USA
| | - Kostas Tsakalis
- Department of Electrical Engineering, Arizona State University, Tempe, Arizona, USA
| | - David Treiman
- Department of Neurology, St. Joseph's Hospital & Medical Center, Phoenix, Arizona, USA, Harrington Department of Bioengineering, Arizona State University, Tempe, Arizona, USA
| | - Leon Iasemidis
- Harrington Department of Bioengineering, Arizona State University, Tempe, Arizona, USA, , http://www.fulton.asu.edu
| |
Collapse
|
50
|
Abstract
Epilepsy is a chronic neurological disorder that affects 0.5-1% of the population. Up to one-third of patients will have incompletely controlled seizures or debilitating side effects of anticonvulsant medications. Although some of these patients may be candidates for resection, many are not. The desire to find alternative treatments for epilepsy has led to a resurgence of interest in the use of deep brain stimulation (DBS), which has been used quite successfully in movement disorders. Small pilot studies and open-label trials have yielded results that may support the use of DBS in selected patients with refractory seizures. Because of the diversity of regions involved with seizure initiation and propagation, a variety of targets for stimulation have been examined. Moreover, stimulation parameters such as amplitude, frequency, pulse duration, and continuous versus intermittent on vary from one study to the next. More studies are necessary to determine if there is an appropriate population of seizure patients for DBS, the optimal target, and the most efficacious stimulation parameters.
Collapse
Affiliation(s)
- Thomas L Ellis
- Department of Neurosurgery, Wake Forest University School of Medicine, Winston-Salem, North Carolina 27157, USA.
| | | |
Collapse
|