1
|
De Groot AS, Levitz L, Ardito MT, Skowron G, Mayer KH, Buus S, Boyle CM, Martin WD. Further progress on defining highly conserved immunogenic epitopes for a global HIV vaccine: HLA-A3-restricted GAIA vaccine epitopes. Hum Vaccin Immunother 2012; 8:987-1000. [PMID: 22777092 DOI: 10.4161/hv.20528] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Two major obstacles confronting HIV vaccine design have been the extensive viral diversity of HIV-1 globally and viral evolution driven by escape from CD8(+) cytotoxic T-cell lymphocyte (CTL)-mediated immune pressure. Regions of the viral genome that are not able to escape immune response and that are conserved in sequence and across time may represent the "Achilles' heel" of HIV and would be excellent candidates for vaccine development. In this study, T-cell epitopes were selected using immunoinformatics tools, combining HLA-A3 binding predictions with relative sequence conservation in the context of global HIV evolution. Twenty-seven HLA-A3 epitopes were chosen from an analysis performed in 2003 on 10,803 HIV-1 sequences, and additional sequences were selected in 2009 based on an expanded set of 43,822 sequences. These epitopes were tested in vitro for HLA binding and for immunogenicity with PBMCs of HIV-infected donors from Providence, Rhode Island. Validation of these HLA-A3 epitopes conserved across time, clades, and geography supports the hypothesis that epitopes such as these would be candidates for inclusion in our globally relevant GAIA HIV vaccine constructs.
Collapse
|
2
|
Abstract
Hepatitis delta virus (HDV) infection may occur as coinfection with hepatitis B virus (HBV) or as superinfection of a chronically HBV-infected patient. A strong antibody response is mounted, which persists for many years; however, it is not able to modulate the course of infection. In most cases the superinfection takes a chronic course. In patients with inactive disease (HDV PCR negative) an oligospecific T-helper cell immune response and a cytotoxic T-cell response were found, which were absent in patients with persistent viremia. The role of the cellular immune response in liver injury during acute infection has not been investigated. Vaccination strategies tested in the woodchuck model induced specific B- and T-cell responses but failed to protect from HDV infection.
Collapse
Affiliation(s)
- M Fiedler
- Institute of Virology, University Clinic Essen, Germany
| | | |
Collapse
|
3
|
Schepis A, Schramm B, de Haan CAM, Locker JK. Vaccinia virus-induced microtubule-dependent cellular rearrangements. Traffic 2006; 7:308-23. [PMID: 16497225 DOI: 10.1111/j.1600-0854.2005.00381.x] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Although infection with vaccinia virus (VV) is known to affect the cytoskeleton, it is not known how this affects the cellular architecture or whether the attenuated modified VV ankara (MVA) behaves similar to wild-type VV (wtVV). In the present study, we therefore compared effects of wtVV and MVA infection on the cellular architecture. WtVV-infection induces cell rounding early in infection, which coincides with the retraction of microtubules (MTs) and intermediate filaments from the cellular periphery, whereas mitochondria and late endosomes cluster around the nucleus. Nocodazole treatment demonstrates that cell rounding and organelle clustering require intact MTs. At the onset of virus assembly late in infection, cells reflatten, a process that coincides with the regrowth of MTs into the cellular periphery. We find that the actin network undergoes several rearrangements that occur sequentially in time and that closely follow the cell-shape changes. Unexpectedly, these actin changes are blocked or reversed upon nocodazole treatment, indicating that intact MTs are also responsible for the wtVV-induced actin rearrangements. Finally, MVA infection does not induce any of these cellular changes. Because this virus lacks a substantial number of VV genes, MVA opens up a system to search for the molecules involved in wtVV-induced cellular changes; in particular, those that may regulate actin/MT interactions.
Collapse
Affiliation(s)
- Antonino Schepis
- European Molecular Biology Laboratory, Cell biology and Biophysics Programme, Meyerhofstrasse 1, 69117 Heidelberg, Germany
| | | | | | | |
Collapse
|
4
|
Slyker JA, Lohman BL, Mbori-Ngacha DA, Reilly M, Wee EGT, Dong T, McMichael AJ, Rowland-Jones SL, Hanke T, John-Stewart G. Modified vaccinia Ankara expressing HIVA antigen stimulates HIV-1-specific CD8 T cells in ELISpot assays of HIV-1 exposed infants. Vaccine 2005; 23:4711-9. [PMID: 16043269 PMCID: PMC3382083 DOI: 10.1016/j.vaccine.2005.01.145] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2004] [Revised: 01/20/2005] [Accepted: 01/21/2005] [Indexed: 11/25/2022]
Abstract
Recombinant modified vaccinia virus Ankara expressing HIV-1 antigens (MVA.HIVA) was used in ELISpot assays to monitor HIV-1-specific T cell responses in infants. Responses to MVA.HIVA and HIV-1 peptides were examined in 13 infected and 81 exposed uninfected infants in Nairobi, Kenya. Responses to MVA.HIVA (38%) and peptide stimulation (38%) were similar in frequency (p=1.0) and magnitude (mean 176 versus 385 HIVSFU/10(6), p=0.96) in HIV-1 infected infants. In exposed uninfected infants, MVA.HIVA detected more positive responses and higher magnitude responses as compared to peptide. MVA.HIVA ELISpot is a sensitive method for quantification of HIV-1-specific CD8+ T cell responses in HIV-1 exposed infants. These results demonstrate the relevance of HIV-1 clade A consensus-derived immunogen HIVA for the viruses currently circulating in Nairobi.
Collapse
|
5
|
Didierlaurent A, Ramirez JC, Gherardi M, Zimmerli SC, Graf M, Orbea HA, Pantaleo G, Wagner R, Esteban M, Kraehenbuhl JP, Sirard JC. Attenuated poxviruses expressing a synthetic HIV protein stimulate HLA-A2-restricted cytotoxic T-cell responses. Vaccine 2004; 22:3395-403. [PMID: 15308364 DOI: 10.1016/j.vaccine.2004.02.025] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2003] [Revised: 02/16/2004] [Accepted: 02/26/2004] [Indexed: 11/27/2022]
Abstract
Efficient HIV vaccines have to trigger cell-mediated immunity directed against various viral antigens. However little is known about the breadth of the response induced by vaccines carrying multiple proteins. Here, we report on the immunogenicity of a construct harbouring a fusion of the HIV-1 IIIB gag, pol and nef genes (gpn) designed for optimal safety and equimolar expression of the HIV proteins. The attenuated poxviruses, MVA and NYVAC, harbouring the gpn construct, induced potent immune responses in conventional mice characterised by stimulation of Gpn-specific IFN-gamma-producing cells and cytotoxic T cells. In HLA-A2 transgenic mice, recombinant MVA elicited cytotoxic responses against epitopes recognised in most HLA-A2+ HIV-1-infected individuals. We also found that the MVA vaccine triggered the in vitro expansion of peripheral blood cells isolated from a HIV-1-seropositive patient and with similar specificity as found in immunised HLA-A2 transgenic mice. In conclusion, the synthetic HIV polyantigen Gpn delivered by MVA is immunogenic, efficiently processed and presented by human MHC class I molecules.
Collapse
Affiliation(s)
- Arnaud Didierlaurent
- Swiss Institute for Experimental Cancer Research (ISREC), Institute of Biochemistry, University of Lausanne, CH-1066 Epalinges, Switzerland
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Drillien R, Spehner D, Hanau D. Modified vaccinia virus Ankara induces moderate activation of human dendritic cells. J Gen Virol 2004; 85:2167-2175. [PMID: 15269355 DOI: 10.1099/vir.0.79998-0] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Modified vaccinia virus Ankara (MVA) is a highly attenuated strain known to be an effective vaccine vector. Here it is demonstrated that MVA, unlike standard vaccinia virus (VACV) strains, activates monocyte-derived human dendritic cells (DCs) as testified by an increase in surface co-stimulatory molecules and the secretion of pro-inflammatory cytokines. Inhibition of virus gene expression by subjecting MVA to UV light or heat treatment did not alter its ability to activate DCs. On the other hand, standard VACV strains activated DCs if virus gene expression was prevented by prior UV light or heat treatment. These results suggest that MVA or standard VACV particles are responsible for DC activation but, in the case of standard VACV strains, virus gene expression prevents activation. Additional experiments showed that DCs were activated by MVA-infected HeLa cells and, under these conditions, could induce secretion of gamma interferon from T lymphocytes more efficiently than if a replication-competent VACV strain was employed. These data provide one explanation for the remarkable immune-stimulating capacity of MVA in the absence of virus multiplication.
Collapse
Affiliation(s)
- Robert Drillien
- INSERM E 0345, EFS-Alsace, 10 rue Spielmann, BP 36, 67065 Strasbourg Cédex, France
| | - Danièle Spehner
- INSERM E 0345, EFS-Alsace, 10 rue Spielmann, BP 36, 67065 Strasbourg Cédex, France
| | - Daniel Hanau
- INSERM E 0345, EFS-Alsace, 10 rue Spielmann, BP 36, 67065 Strasbourg Cédex, France
| |
Collapse
|
7
|
Mwau M, McMichael AJ, Hanke T. Design and validation of an enzyme-linked immunospot assay for use in clinical trials of candidate HIV vaccines. AIDS Res Hum Retroviruses 2002; 18:611-8. [PMID: 12079556 DOI: 10.1089/088922202760019301] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The enzyme-linked immunosorbent (ELISPOT) assay, which enumerates peripheral blood mononuclear cells (PBMCs) releasing interferon gamma (IFN-gamma) on specific antigen stimulation, is becoming the assay of choice for evaluation of vaccine-induced cell-mediated immune responses in many clinical trials. A properly conducted trial requires the assays to be validated, especially should the trial lead to vaccine licensure. Here, the design and validation of an ELISPOT assay are described for use in clinical trials of candidate human immunodeficiency virus (HIV) vaccines, using a particular immunogen termed HIVA. This assay employs eight pools of 20 to 23 peptides each: seven pools are derived from the immunogen and one pool is derived from cytotoxic T cell epitopes of common human viruses serving as an internal positive control. The validation determined that first, the overall variation of a positive response of approximately 500 spot-forming units (SFU)/10(6) cells was 21%, while second, the average of 5 SFU/10(6) cells was detected for the seven HIVA-derived pools in HIV-uninfected individuals; third, a positive response to a peptide added to the assay pools was not occluded by the other pool peptides; fourth, the frequencies detected in fresh PBMCs were 2- to 3-fold higher compared with the same samples that had been cryopreserved; and finally, all seven HIV-derived pools induced IFN-gamma responses in PBMCs isolated from HIV-infected individuals. The limits of the validation of assays involving biological responses of living cells are discussed.
Collapse
Affiliation(s)
- Matilu Mwau
- MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, The John Radcliffe, Oxford, OX3 9DS, United Kingdom
| | | | | |
Collapse
|
8
|
Reignat S, Webster GJM, Brown D, Ogg GS, King A, Seneviratne SL, Dusheiko G, Williams R, Maini MK, Bertoletti A. Escaping high viral load exhaustion: CD8 cells with altered tetramer binding in chronic hepatitis B virus infection. THE JOURNAL OF EXPERIMENTAL MEDICINE 2002. [PMID: 11994415 DOI: 10.1084/jem.20011723].] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Deletion, anergy, and a spectrum of functional impairments can affect virus-specific CD8 cells in chronic viral infections. Here we characterize a low frequency population of CD8 cells present in chronic hepatitis B virus (HBV) infection which survive in the face of a high quantity of viral antigen. Although they do not appear to exert immunological pressure in vivo, these CD8 cells are not classically "tolerant" since they proliferate, lyse, and produce antiviral cytokines in vitro. They are characterized by altered HLA/peptide tetramer reactivity, which is not explained by TCR down-regulation or reduced functional avidity and which can be reversed with repetitive stimulation. CD8 cells with altered tetramer binding appear to have a specificity restricted to envelope antigen and not to other HBV antigens, suggesting that mechanisms of CD8 cell dysfunction are differentially regulated according to the antigenic form and presentation of individual viral antigens.
Collapse
Affiliation(s)
- Stephanie Reignat
- Institute of Hepatology, University College London, London WC1 E6HX, United Kingdom
| | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Fiedler M, Roggendorf M. Vaccination against hepatitis delta virus infection: studies in the woodchuck (Marmota monax) model. Intervirology 2002; 44:154-61. [PMID: 11509876 DOI: 10.1159/000050042] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Hepatitis delta virus (HDV) superinfection of hepatitis B virus carriers causes severe liver disease and results in a high rate of chronicity. So far, neither sufficient therapy nor vaccines to prevent HBV carriers from superinfection are available. A good model to test vaccine candidates is the woodchuck chronically infected with the woodchuck hepatitis virus (WHV); the woodchuck can be superinfected with HDV and shows a course of infection similar to that of patients. Different strategies have been investigated to establish a protective vaccine against HDV superinfection. Both proteins of HDV (HDAg p24 and p27), which differ only in the C-terminal amino acid sequence, have been used as vaccine candidates. Synthetic peptides derived from B cell epitopes of HDAg and HDAg p24 expressed in Escherichia coli, yeast, or baculovirus have been used to immunize woodchucks. The protein immunization induced a specific antibody response, however, no protection from HDV superinfection was achieved. Vaccinations with vaccinia virus expressing HDAg p24 or p27 and DNA immunization with vectors expressing p24 were also not able to induce a protective immune response, but seemed to modulate the course of HDV superinfection. Thus, new strategies to develop a vaccine to prevent HDV superinfection are needed.
Collapse
Affiliation(s)
- M Fiedler
- Institute of Virology, Universitätsklinikum Essen, Germany.
| | | |
Collapse
|
10
|
Reignat S, Webster GJM, Brown D, Ogg GS, King A, Seneviratne SL, Dusheiko G, Williams R, Maini MK, Bertoletti A. Escaping high viral load exhaustion: CD8 cells with altered tetramer binding in chronic hepatitis B virus infection. J Exp Med 2002; 195:1089-101. [PMID: 11994415 PMCID: PMC2193712 DOI: 10.1084/jem.20011723] [Citation(s) in RCA: 189] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Deletion, anergy, and a spectrum of functional impairments can affect virus-specific CD8 cells in chronic viral infections. Here we characterize a low frequency population of CD8 cells present in chronic hepatitis B virus (HBV) infection which survive in the face of a high quantity of viral antigen. Although they do not appear to exert immunological pressure in vivo, these CD8 cells are not classically "tolerant" since they proliferate, lyse, and produce antiviral cytokines in vitro. They are characterized by altered HLA/peptide tetramer reactivity, which is not explained by TCR down-regulation or reduced functional avidity and which can be reversed with repetitive stimulation. CD8 cells with altered tetramer binding appear to have a specificity restricted to envelope antigen and not to other HBV antigens, suggesting that mechanisms of CD8 cell dysfunction are differentially regulated according to the antigenic form and presentation of individual viral antigens.
Collapse
Affiliation(s)
- Stephanie Reignat
- Institute of Hepatology, University College London, London WC1 E6HX, United Kingdom
| | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Reignat S, Webster GJM, Brown D, Ogg GS, King A, Seneviratne SL, Dusheiko G, Williams R, Maini MK, Bertoletti A. Escaping high viral load exhaustion: CD8 cells with altered tetramer binding in chronic hepatitis B virus infection. THE JOURNAL OF EXPERIMENTAL MEDICINE 2002. [PMID: 11994415 DOI: 10.1084/jem.20011723]] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Deletion, anergy, and a spectrum of functional impairments can affect virus-specific CD8 cells in chronic viral infections. Here we characterize a low frequency population of CD8 cells present in chronic hepatitis B virus (HBV) infection which survive in the face of a high quantity of viral antigen. Although they do not appear to exert immunological pressure in vivo, these CD8 cells are not classically "tolerant" since they proliferate, lyse, and produce antiviral cytokines in vitro. They are characterized by altered HLA/peptide tetramer reactivity, which is not explained by TCR down-regulation or reduced functional avidity and which can be reversed with repetitive stimulation. CD8 cells with altered tetramer binding appear to have a specificity restricted to envelope antigen and not to other HBV antigens, suggesting that mechanisms of CD8 cell dysfunction are differentially regulated according to the antigenic form and presentation of individual viral antigens.
Collapse
Affiliation(s)
- Stephanie Reignat
- Institute of Hepatology, University College London, London WC1 E6HX, United Kingdom
| | | | | | | | | | | | | | | | | | | |
Collapse
|