1
|
De Meyer A, Meuleman P. Preclinical animal models to evaluate therapeutic antiviral antibodies. Antiviral Res 2024; 225:105843. [PMID: 38548022 DOI: 10.1016/j.antiviral.2024.105843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 02/25/2024] [Indexed: 04/05/2024]
Abstract
Despite the availability of effective preventative vaccines and potent small-molecule antiviral drugs, effective non-toxic prophylactic and therapeutic measures are still lacking for many viruses. The use of monoclonal and polyclonal antibodies in an antiviral context could fill this gap and provide effective virus-specific medical interventions. In order to develop these therapeutic antibodies, preclinical animal models are of utmost importance. Due to the variability in viral pathogenesis, immunity and overall characteristics, the most representative animal model for human viral infection differs between virus species. Therefore, throughout the years researchers sought to find the ideal preclinical animal model for each virus. The most used animal models in preclinical research include rodents (mice, ferrets, …) and non-human primates (macaques, chimpanzee, ….). Currently, antibodies are tested for antiviral efficacy against a variety of viruses including different hepatitis viruses, human immunodeficiency virus (HIV), influenza viruses, respiratory syncytial virus (RSV), severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and rabies virus. This review provides an overview of the current knowledge about the preclinical animal models that are used for the evaluation of therapeutic antibodies for the abovementioned viruses.
Collapse
Affiliation(s)
- Amse De Meyer
- Laboratory of Liver Infectious Diseases, Department of Diagnostic Sciences, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium
| | - Philip Meuleman
- Laboratory of Liver Infectious Diseases, Department of Diagnostic Sciences, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium.
| |
Collapse
|
2
|
Time to Revise the WHO Categories for Severe Rabies Virus Exposures–Category IV? Viruses 2022; 14:v14051111. [PMID: 35632852 PMCID: PMC9146666 DOI: 10.3390/v14051111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 05/09/2022] [Accepted: 05/19/2022] [Indexed: 12/04/2022] Open
Abstract
Rabies is a devastating disease and affects millions of people globally, yet it is preventable with appropriate and timely postexposure prophylaxis (PEP). The current WHO exposure categories (Categories I, II, and III) need revision, with a special Category IV for severe exposures. Rare cases of PEP failure have occurred in severe bites to the head and neck. Multiple factors, including route, wound severity, depth, contamination, viral dose, proximity to highly innervated areas and the CNS, and the number of lesions, remain unconsidered. Injuries in areas of high neural density are the most significant considering lyssavirus pathophysiology. Current recommendations do not account for these factors. A Category IV designation would acknowledge the severity and the increased risk of progression. Subsequently, patient management would be optimized with wound care and the appropriate administration of rabies-immune globulin/monoclonal antibodies (RIG/MAbs). All Category IV exposures would be infiltrated with the full dose of intact RIG (i.e., human RIG or MAbs) if the patient was previously unvaccinated. More concentrated RIG/MAb formulations would be preferred. As a world rabies community, we cannot tolerate PEP failures. A fourth WHO categorization will improve the care of these high-risk patients and highlight the global health urgency of this neglected disease.
Collapse
|
3
|
Phoolcharoen W, Banyard AC, Prehaud C, Selden D, Wu G, Birch CPD, Szeto TH, Lafon M, Fooks AR, Ma JKC. In vitro and in vivo evaluation of a single chain antibody fragment generated in planta with potent rabies neutralisation activity. Vaccine 2019; 37:4673-4680. [PMID: 29523449 PMCID: PMC6677913 DOI: 10.1016/j.vaccine.2018.02.057] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Revised: 01/31/2018] [Accepted: 02/15/2018] [Indexed: 12/13/2022]
Abstract
Rabies causes more than 60,000 human deaths annually in areas where the virus is endemic. Importantly, rabies is one of the few pathogens for which there is no treatment following the onset of clinical disease with the outcome of infection being death in almost 100% of cases. Whilst vaccination, and the combination of vaccine and rabies immunoglobulin treatment for post-exposure administration are available, no tools have been identified that can reduce or prevent rabies virus replication once clinical disease has initiated. The search for effective antiviral molecules to treat those that have already developed clinical disease associated with rabies virus infection is considered one of the most important goals in rabies research. The current study assesses a single chain antibody molecule (ScFv) based on a monoclonal antibody that potently neutralises rabies in vitro as a potential therapeutic candidate. The recombinant ScFv was generated in Nicotiana benthamiana by transient expression, and was chemically conjugated (ScFv/RVG) to a 29 amino acid peptide, specific for nicotinic acetylcholine receptor (nAchR) binding in the CNS. This conjugated molecule was able to bind nAchR in vitro and enter neuronal cells more efficiently than ScFv. The ability of the ScFv/RVG to neutralise virus in vivo was assessed using a staggered administration where the molecule was inoculated either four hours before, two days after or four days after infection. The ScFv/RVG conjugate was evaluated in direct comparison with HRIG and a potential antiviral molecule, Favipiravir (also known as T-705) to indicate whether there was greater bioavailability of the ScFv in the brains of treated mice. The study indicated that the approach taken with the ScFv/RVG conjugate may have utility in the design and implementation of novel tools targetting rabies virus infection in the brain.
Collapse
Affiliation(s)
- Waranyoo Phoolcharoen
- Institute for Infection and Immunity, St. George's Hospital Medical School, University of London, London, UK; Pharmacognosy and Pharmaceutical Botany, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, Thailand
| | - Ashley C Banyard
- Wildlife Zoonoses and Vector-borne Diseases Research Group, Animal and Plant Health Agency (APHA), Addlestone, Surrey KT15 3NB, UK
| | - Christophe Prehaud
- Institut Pasteur, Unité de Neuroimmunologie Virale, Département de Virologie, Paris, France
| | - David Selden
- Wildlife Zoonoses and Vector-borne Diseases Research Group, Animal and Plant Health Agency (APHA), Addlestone, Surrey KT15 3NB, UK
| | - Guanghui Wu
- Wildlife Zoonoses and Vector-borne Diseases Research Group, Animal and Plant Health Agency (APHA), Addlestone, Surrey KT15 3NB, UK
| | - Colin P D Birch
- Biomathematics and Risk Research Group, Animal and Plant Health Agency (APHA), Addlestone, Surrey KT15 3NB, UK
| | - Tim H Szeto
- Institute for Infection and Immunity, St. George's Hospital Medical School, University of London, London, UK
| | - Monique Lafon
- Institut Pasteur, Unité de Neuroimmunologie Virale, Département de Virologie, Paris, France
| | - Anthony R Fooks
- Wildlife Zoonoses and Vector-borne Diseases Research Group, Animal and Plant Health Agency (APHA), Addlestone, Surrey KT15 3NB, UK
| | - Julian K-C Ma
- Institute for Infection and Immunity, St. George's Hospital Medical School, University of London, London, UK.
| |
Collapse
|
4
|
Fooks AR, Cliquet F, Finke S, Freuling C, Hemachudha T, Mani RS, Müller T, Nadin-Davis S, Picard-Meyer E, Wilde H, Banyard AC. Rabies. Nat Rev Dis Primers 2017; 3:17091. [PMID: 29188797 DOI: 10.1038/nrdp.2017.91] [Citation(s) in RCA: 196] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Rabies is a life-threatening neglected tropical disease: tens of thousands of cases are reported annually in endemic countries (mainly in Africa and Asia), although the actual numbers are most likely underestimated. Rabies is a zoonotic disease that is caused by infection with viruses of the Lyssavirus genus, which are transmitted via the saliva of an infected animal. Dogs are the most important reservoir for rabies viruses, and dog bites account for >99% of human cases. The virus first infects peripheral motor neurons, and symptoms occur after the virus reaches the central nervous system. Once clinical disease develops, it is almost certainly fatal. Primary prevention involves dog vaccination campaigns to reduce the virus reservoir. If exposure occurs, timely post-exposure prophylaxis can prevent the progression to clinical disease and involves appropriate wound care, the administration of rabies immunoglobulin and vaccination. A multifaceted approach for human rabies eradication that involves government support, disease awareness, vaccination of at-risk human populations and, most importantly, dog rabies control is necessary to achieve the WHO goal of reducing the number of cases of dog-mediated human rabies to zero by 2030.
Collapse
Affiliation(s)
- Anthony R Fooks
- Animal and Plant Health Agency (APHA), Wildlife Zoonoses and Vector Borne Diseases Research Group, (WHO Collaborating Centre for the Characterisation of Rabies and Rabies-Related Viruses, World Organisation for Animal Health (OIE) Reference Laboratory for Rabies), Weybridge, New Haw, Addlestone, Surrey KT15 3NB, UK.,Institute of Infection &Global Health, University of Liverpool, Liverpool, UK.,Institute for Infection and Immunity, St. George's Hospital Medical School, University of London, London, UK
| | - Florence Cliquet
- French Agency for Food, Environmental and Occupational Health &Safety (ANSES)-Nancy Laboratory for Rabies and Wildlife (European Union Reference Laboratory for Rabies, WHO Collaborating Centre for Research and Management in Zoonoses Control, OIE Reference Laboratory for Rabies, European Union Reference Institute for Rabies Serology), Technopôle Agricole et Vétérinaire de Pixérécourt, Malzéville, France
| | - Stefan Finke
- Institute of Molecular Virology and Cell Biology (WHO Collaborating Centre for Rabies Surveillance and Research, OIE Reference Laboratory for Rabies), Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Greifswald-Insel Riems, Germany
| | - Conrad Freuling
- Institute of Molecular Virology and Cell Biology (WHO Collaborating Centre for Rabies Surveillance and Research, OIE Reference Laboratory for Rabies), Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Greifswald-Insel Riems, Germany
| | - Thiravat Hemachudha
- Department of Medicine (Neurology) and (WHO Collaborating Centre for Research and Training on Viral Zoonoses), Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand.,Thai Red Cross Emerging Infectious Disease-Health Science Centre, Thai Red Cross Society, Bangkok, Thailand
| | - Reeta S Mani
- Department of Neurovirology (WHO Collaborating Centre for Reference and Research in Rabies), National Institute of Mental Health and Neurosciences (NIMHANS), Bangalore, India
| | - Thomas Müller
- Institute of Molecular Virology and Cell Biology (WHO Collaborating Centre for Rabies Surveillance and Research, OIE Reference Laboratory for Rabies), Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Greifswald-Insel Riems, Germany
| | - Susan Nadin-Davis
- Ottawa Laboratory Fallowfield, Canadian Food Inspection Agency (WHO Collaborating Centre for Control, Pathogenesis and Epidemiology of Rabies in Carnivores), Ottawa, Ontario, Canada
| | - Evelyne Picard-Meyer
- French Agency for Food, Environmental and Occupational Health &Safety (ANSES)-Nancy Laboratory for Rabies and Wildlife (European Union Reference Laboratory for Rabies, WHO Collaborating Centre for Research and Management in Zoonoses Control, OIE Reference Laboratory for Rabies, European Union Reference Institute for Rabies Serology), Technopôle Agricole et Vétérinaire de Pixérécourt, Malzéville, France
| | - Henry Wilde
- Department of Medicine (Neurology) and (WHO Collaborating Centre for Research and Training on Viral Zoonoses), Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Ashley C Banyard
- Animal and Plant Health Agency (APHA), Wildlife Zoonoses and Vector Borne Diseases Research Group, (WHO Collaborating Centre for the Characterisation of Rabies and Rabies-Related Viruses, World Organisation for Animal Health (OIE) Reference Laboratory for Rabies), Weybridge, New Haw, Addlestone, Surrey KT15 3NB, UK
| |
Collapse
|
5
|
Bharti OK, Madhusudana SN, Wilde H. Injecting rabies immunoglobulin (RIG) into wounds only: A significant saving of lives and costly RIG. Hum Vaccin Immunother 2017; 13:762-765. [PMID: 28277089 PMCID: PMC5404375 DOI: 10.1080/21645515.2016.1255834] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2016] [Revised: 10/17/2016] [Accepted: 10/28/2016] [Indexed: 10/20/2022] Open
Abstract
An increasing number of dog bite victims were being presented to public hospitals in Himachal Pradesh in 2014 amidst virtual non availability of any rabies immunoglobulin (RIG). Only a small quantity of equine rabies immunoglobulin (eRIG) was available from the government owned Central Research Institute (CRI) Kasauli. This available eRIG was used in 269 patients as an emergency response and only for local infiltration of severe bite wounds by suspected rabid dogs. This was followed by rabies vaccination, using the WHO approved intra-dermal Thai Red Cross Society vaccination schedule. A subgroup of 26 patients were later identified who had been severely bitten by laboratory confirmed rabid dogs. They were followed for more than one year and all were found to be alive.
Collapse
Affiliation(s)
- Omesh Kumar Bharti
- State Intra-dermal Anti-rabies Clinic and Research Centre, DDU Zonal Hospital Shimla, Government of Himachal Pradesh, Shimla, India
| | - Shampur Narayan Madhusudana
- Department of Neurovirology, WHO-Collaborating Centre for Reference and Research on Rabies, NIMHANS, Bangalore, India
| | - Henry Wilde
- WHO- Collaborating Centre for Research and Training on Zoonoses, Faculty of Medicine and King Chulalongkorn Memorial Hospital, Chulalongkorn University, Bangkok, Thailand
| |
Collapse
|
6
|
Tarantola A. Four Thousand Years of Concepts Relating to Rabies in Animals and Humans, Its Prevention and Its Cure. Trop Med Infect Dis 2017; 2:E5. [PMID: 30270864 PMCID: PMC6082082 DOI: 10.3390/tropicalmed2020005] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2017] [Revised: 03/16/2017] [Accepted: 03/17/2017] [Indexed: 12/11/2022] Open
Abstract
The epitome of the One Health paradigm-and of its shortcomings-rabies has been known to humankind for at least 4000 years. We review the evolution through history of concepts leading to our current understanding of rabies in dogs and humans and its prevention, as transmitted by accessible and surviving written texts. The tools and concepts currently available to control rabies were developed at the end of the 19th Century, including the first live, attenuated vaccine ever developed for humans and the first post-exposure prophylaxis (PEP) regimen. No progress, however, has been made in etiological treatment, leaving clinicians who provide care to animals or patients with symptomatic rabies as powerless today as their colleagues in Mesopotamia, 40 centuries ago. Rabies remains to date the most lethal infectious disease known to humans. Widespread access to timely, effective, and affordable PEP in rural areas of developing countries is urgently needed.
Collapse
Affiliation(s)
- Arnaud Tarantola
- Epidemiology & Public Health Unit, Institut Pasteur du Cambodge, BP983 Phnom Penh, Cambodia.
- Unité de Recherche et d'Expertise en Maladies Infectieuses (UREMI), Institut Pasteur de Nouvelle-Calédonie, 9800 Nouméa, New Caledonia.
| |
Collapse
|
7
|
De Benedictis P, Minola A, Rota Nodari E, Aiello R, Zecchin B, Salomoni A, Foglierini M, Agatic G, Vanzetta F, Lavenir R, Lepelletier A, Bentley E, Weiss R, Cattoli G, Capua I, Sallusto F, Wright E, Lanzavecchia A, Bourhy H, Corti D. Development of broad-spectrum human monoclonal antibodies for rabies post-exposure prophylaxis. EMBO Mol Med 2016; 8:407-21. [PMID: 26992832 PMCID: PMC4818751 DOI: 10.15252/emmm.201505986] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2015] [Revised: 02/08/2016] [Accepted: 02/15/2016] [Indexed: 12/25/2022] Open
Abstract
Currently available rabies post-exposure prophylaxis (PEP) for use in humans includes equine or human rabies immunoglobulins (RIG). The replacement of RIG with an equally or more potent and safer product is strongly encouraged due to the high costs and limited availability of existing RIG. In this study, we identified two broadly neutralizing human monoclonal antibodies that represent a valid and affordable alternative to RIG in rabies PEP. Memory B cells from four selected vaccinated donors were immortalized and monoclonal antibodies were tested for neutralizing activity and epitope specificity. Two antibodies, identified as RVC20 and RVC58 (binding to antigenic site I and III, respectively), were selected for their potency and broad-spectrum reactivity. In vitro, RVC20 and RVC58 were able to neutralize all 35 rabies virus (RABV) and 25 non-RABV lyssaviruses. They showed higher potency and breath compared to antibodies under clinical development (namely CR57, CR4098, and RAB1) and commercially available human RIG. In vivo, the RVC20-RVC58 cocktail protected Syrian hamsters from a lethal RABV challenge and did not affect the endogenous hamster post-vaccination antibody response.
Collapse
MESH Headings
- Animals
- Antibodies, Monoclonal/administration & dosage
- Antibodies, Monoclonal/immunology
- Antibodies, Monoclonal/isolation & purification
- Antibodies, Neutralizing/administration & dosage
- Antibodies, Neutralizing/immunology
- Antibodies, Neutralizing/isolation & purification
- Antibodies, Viral/administration & dosage
- Antibodies, Viral/immunology
- Antibodies, Viral/isolation & purification
- Disease Models, Animal
- Humans
- Immunization, Passive/methods
- Immunologic Factors/administration & dosage
- Immunologic Factors/immunology
- Immunologic Factors/isolation & purification
- Mesocricetus
- Post-Exposure Prophylaxis/methods
- Rabies/prevention & control
- Rabies virus/immunology
- Survival Analysis
- Treatment Outcome
Collapse
Affiliation(s)
- Paola De Benedictis
- FAO and National Reference Centre for Rabies, National Reference Centre and OIE Collaborating Centre for Diseases at the Animal-Human Interface, Istituto Zooprofilattico Sperimentale delle Venezie, Legnaro, Padua, Italy
| | | | - Elena Rota Nodari
- FAO and National Reference Centre for Rabies, National Reference Centre and OIE Collaborating Centre for Diseases at the Animal-Human Interface, Istituto Zooprofilattico Sperimentale delle Venezie, Legnaro, Padua, Italy
| | - Roberta Aiello
- FAO and National Reference Centre for Rabies, National Reference Centre and OIE Collaborating Centre for Diseases at the Animal-Human Interface, Istituto Zooprofilattico Sperimentale delle Venezie, Legnaro, Padua, Italy
| | - Barbara Zecchin
- FAO and National Reference Centre for Rabies, National Reference Centre and OIE Collaborating Centre for Diseases at the Animal-Human Interface, Istituto Zooprofilattico Sperimentale delle Venezie, Legnaro, Padua, Italy
| | - Angela Salomoni
- FAO and National Reference Centre for Rabies, National Reference Centre and OIE Collaborating Centre for Diseases at the Animal-Human Interface, Istituto Zooprofilattico Sperimentale delle Venezie, Legnaro, Padua, Italy
| | - Mathilde Foglierini
- Institute for Research in Biomedicine, Università della Svizzera Italiana, Bellinzona, Switzerland
| | | | | | - Rachel Lavenir
- Institut Pasteur, Unit of Lyssavirus Dynamics and Host Adaptation National Reference Centre for Rabies World Health Organization Collaborating Centre for Reference and Research on Rabies, Paris Cedex 15, France
| | - Anthony Lepelletier
- Institut Pasteur, Unit of Lyssavirus Dynamics and Host Adaptation National Reference Centre for Rabies World Health Organization Collaborating Centre for Reference and Research on Rabies, Paris Cedex 15, France
| | - Emma Bentley
- Viral Pseudotype Unit, Faculty of Science and Technology, University of Westminster, London, UK
| | - Robin Weiss
- Division of Infection and Immunity, University College London, London, UK
| | - Giovanni Cattoli
- FAO and National Reference Centre for Rabies, National Reference Centre and OIE Collaborating Centre for Diseases at the Animal-Human Interface, Istituto Zooprofilattico Sperimentale delle Venezie, Legnaro, Padua, Italy
| | - Ilaria Capua
- FAO and National Reference Centre for Rabies, National Reference Centre and OIE Collaborating Centre for Diseases at the Animal-Human Interface, Istituto Zooprofilattico Sperimentale delle Venezie, Legnaro, Padua, Italy
| | - Federica Sallusto
- Institute for Research in Biomedicine, Università della Svizzera Italiana, Bellinzona, Switzerland
| | - Edward Wright
- Viral Pseudotype Unit, Faculty of Science and Technology, University of Westminster, London, UK
| | - Antonio Lanzavecchia
- Institute for Research in Biomedicine, Università della Svizzera Italiana, Bellinzona, Switzerland Institute of Microbiology, ETH Zurich, Zurich, Switzerland
| | - Hervé Bourhy
- Institut Pasteur, Unit of Lyssavirus Dynamics and Host Adaptation National Reference Centre for Rabies World Health Organization Collaborating Centre for Reference and Research on Rabies, Paris Cedex 15, France
| | - Davide Corti
- Humabs BioMed SA, Bellinzona, Switzerland Institute for Research in Biomedicine, Università della Svizzera Italiana, Bellinzona, Switzerland
| |
Collapse
|
8
|
Terryn S, Francart A, Lamoral S, Hultberg A, Rommelaere H, Wittelsberger A, Callewaert F, Stohr T, Meerschaert K, Ottevaere I, Stortelers C, Vanlandschoot P, Kalai M, Van Gucht S. Protective effect of different anti-rabies virus VHH constructs against rabies disease in mice. PLoS One 2014; 9:e109367. [PMID: 25347556 PMCID: PMC4210127 DOI: 10.1371/journal.pone.0109367] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2014] [Accepted: 09/08/2014] [Indexed: 11/18/2022] Open
Abstract
Rabies virus causes lethal brain infection in about 61000 people per year. Each year, tens of thousands of people receive anti-rabies prophylaxis with plasma-derived immunoglobulins and vaccine soon after exposure. Anti-rabies immunoglobulins are however expensive and have limited availability. VHH are the smallest antigen-binding functional fragments of camelid heavy chain antibodies, also called Nanobodies. The therapeutic potential of anti-rabies VHH was examined in a mouse model using intranasal challenge with a lethal dose of rabies virus. Anti-rabies VHH were administered directly into the brain or systemically, by intraperitoneal injection, 24 hours after virus challenge. Anti-rabies VHH were able to significantly prolong survival or even completely rescue mice from disease. The therapeutic effect depended on the dose, affinity and brain and plasma half-life of the VHH construct. Increasing the affinity by combining two VHH with a glycine-serine linker into bivalent or biparatopic constructs, increased the neutralizing potency to the picomolar range. Upon direct intracerebral administration, a dose as low as 33 µg of the biparatopic Rab-E8/H7 was still able to establish an anti-rabies effect. The effect of systemic treatment was significantly improved by increasing the half-life of Rab-E8/H7 through linkage with a third VHH targeted against albumin. Intraperitoneal treatment with 1.5 mg (2505 IU, 1 ml) of anti-albumin Rab-E8/H7 prolonged the median survival time from 9 to 15 days and completely rescued 43% of mice. For comparison, intraperitoneal treatment with the highest available dose of human anti-rabies immunoglobulins (65 mg, 111 IU, 1 ml) only prolonged survival by 2 days, without rescue. Overall, the therapeutic benefit seemed well correlated with the time of brain exposure and the plasma half-life of the used VHH construct. These results, together with the ease-of-production and superior thermal stability, render anti-rabies VHH into valuable candidates for development of alternative post exposure treatment drugs against rabies.
Collapse
Affiliation(s)
- Sanne Terryn
- National Reference Centre of Rabies, Viral Diseases, Scientific Institute of Public Health (WIV-ISP), Brussels, Belgium; Laboratory of Virology, Department of Virology, Parasitology and Immunology, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Aurélie Francart
- National Reference Centre of Rabies, Viral Diseases, Scientific Institute of Public Health (WIV-ISP), Brussels, Belgium
| | - Sophie Lamoral
- National Reference Centre of Rabies, Viral Diseases, Scientific Institute of Public Health (WIV-ISP), Brussels, Belgium
| | | | | | | | | | | | | | | | | | | | - Michael Kalai
- National Reference Centre of Rabies, Viral Diseases, Scientific Institute of Public Health (WIV-ISP), Brussels, Belgium
| | - Steven Van Gucht
- National Reference Centre of Rabies, Viral Diseases, Scientific Institute of Public Health (WIV-ISP), Brussels, Belgium; Laboratory of Virology, Department of Virology, Parasitology and Immunology, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| |
Collapse
|
9
|
|
10
|
Both L, Banyard AC, van Dolleweerd C, Horton DL, Ma JKC, Fooks AR. Passive immunity in the prevention of rabies. THE LANCET. INFECTIOUS DISEASES 2012; 12:397-407. [PMID: 22541629 DOI: 10.1016/s1473-3099(11)70340-1] [Citation(s) in RCA: 77] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Prevention of clinical disease in those exposed to viral infection is an important goal of human medicine. Using rabies virus infection as an example, we discuss the advances in passive immunoprophylaxis, most notably the shift from the recommended polyclonal human or equine immunoglobulins to monoclonal antibody therapies. The first rabies-specific monoclonal antibodies are undergoing clinical trials, so passive immunisation might finally become an accessible, affordable, and routinely used part of global health practices for rabies. Coupled with an adequate supply of modern tissue-culture vaccines, replacing the less efficient and unsafe nerve-tissue-derived rabies vaccines, the burden of this disease could be substantially reduced.
Collapse
Affiliation(s)
- Leonard Both
- Hotung Molecular Immunology Unit, Division of Clinical Sciences, St George's University of London, London, UK
| | | | | | | | | | | |
Collapse
|
11
|
Sun L, Chen Z, Yu L, Wei J, Li C, Jin J, Shen X, Lv X, Tang Q, Li D, Liang M. Generation and characterization of neutralizing human recombinant antibodies against antigenic site II of rabies virus glycoprotein. Appl Microbiol Biotechnol 2012; 96:357-66. [DOI: 10.1007/s00253-012-4171-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2012] [Revised: 05/04/2012] [Accepted: 05/10/2012] [Indexed: 01/09/2023]
|
12
|
Salvi N, Deopurkar R, Waghmare A, Khadilkar M, Kalolikar M, Gade S, Mohite L. Validation of Indirect ELISA for Quantitative Testing of Rabies Antibodies During Production of Antirabies Serum using Equines. ACTA ACUST UNITED AC 2010. [DOI: 10.1016/j.provac.2010.03.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
13
|
Evidence for a 4-dose vaccine schedule for human rabies post-exposure prophylaxis in previously non-vaccinated individuals. Vaccine 2009; 27:7141-8. [DOI: 10.1016/j.vaccine.2009.09.029] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2009] [Accepted: 09/03/2009] [Indexed: 11/18/2022]
|
14
|
Quiambao BP, DyTioco HZ, Dizon RM, Crisostomo ME, Laot TM, Teuwen DE. Rabies post-exposure prophylaxis in the Philippines: health status of patients having received purified equine F(ab')(2) fragment rabies immunoglobulin (Favirab). PLoS Negl Trop Dis 2008; 2:e243. [PMID: 18509475 PMCID: PMC2386244 DOI: 10.1371/journal.pntd.0000243] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2007] [Accepted: 04/24/2008] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Recommended treatment for severe rabies exposure in unvaccinated individuals includes wound cleaning, administration of rabies immunoglobulins (RIG), and rabies vaccination. We conducted a survey of rabies treatment outcomes in the Philippines. METHODS This was a case series involving 7,660 patients (4 months to 98 years of age) given purified equine RIG (pERIG) at the Research Institute for Tropical Medicine (Muntinlupa, Philippines) from July 2003 to August 2004 following Category II or III exposures. Data on local and systemic adverse reactions (AR) within 28 days and biting animal status were recorded; outcome data were obtained by telephone or home visit 6-29 months post-exposure. RESULTS Follow-up data were collected for 6,464 patients. Of 151 patients with laboratory-confirmed rabies exposure, 143 were in good health 6-48 months later, seven could not be contacted, and one 4-year-old girl died. Of 16 deaths in total, 14 were unrelated to rabies exposure or treatment. Two deaths were considered PEP failures: the 4-year old girl, who had multiple deep lacerated wounds from a rabid dog of the nape, neck, and shoulders requiring suturing on the day of exposure, and an 8-year-old boy who only received rabies PEP on the day of exposure. CONCLUSIONS This extensive review of outcomes in persons with Category III exposure shows the recommended treatment schedule at RITM using pERIG is well tolerated, while survival of 143 laboratory-confirmed rabies exposures confirms the intervention efficacy. Two PEP intervention failures demonstrate that sustained education and training is essential in rabies management.
Collapse
Affiliation(s)
| | | | | | - Marilyn E. Crisostomo
- College of Public Health, University of the Philippines, Quezon City, Manila, Philippines
| | - Thelma M. Laot
- Research Institute for Tropical Medicine, Alabang, Manila, Philippines
| | | |
Collapse
|
15
|
Rabies vaccines. Vaccines (Basel) 2008. [DOI: 10.1016/b978-1-4160-3611-1.50031-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/18/2023] Open
|
16
|
Nagarajan T, Rupprecht CE, Dessain SK, Rangarajan PN, Thiagarajan D, Srinivasan VA. Human monoclonal antibody and vaccine approaches to prevent human rabies. Curr Top Microbiol Immunol 2007; 317:67-101. [PMID: 17990790 DOI: 10.1007/978-3-540-72146-8_3] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Rabies, being a major zoonotic disease, significantly impacts global public health. It is invariably fatal once clinical signs are apparent. The majority of human rabies deaths occur in developing countries. India alone reports more than 50% of the global rabies deaths. Although it is a vaccine-preventable disease, effective rabies prevention in humans with category III bites requires the combined administration of rabies immunoglobulin (RIG) and vaccine. Cell culture rabies vaccines have become widely available in developing countries, virtually replacing the inferior and unsafe nerve tissue vaccines. Limitations inherent to the conventional RIG of either equine or human origin have prompted scientists to look for monoclonal antibody-based human RIG as an alternative. Fully human monoclonal antibodies have been found to be safer and equally efficacious than conventional RIG when tested in mice and hamsters. In this chapter, rabies epidemiology, reservoir control measures, post-exposure prophylaxis of human rabies, and combination therapy for rabies are discussed. Novel human monoclonal antibodies, their production, and the significance of plants as expression platforms are emphasized.
Collapse
Affiliation(s)
- T Nagarajan
- Indian Immunologicals Limited Gachibowli Post, Hyderabad, India.
| | | | | | | | | | | |
Collapse
|
17
|
Wilde H. Failures of post-exposure rabies prophylaxis. Vaccine 2007; 25:7605-9. [PMID: 17905484 DOI: 10.1016/j.vaccine.2007.08.054] [Citation(s) in RCA: 102] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2007] [Revised: 08/27/2007] [Accepted: 08/27/2007] [Indexed: 11/27/2022]
Abstract
Rabies remains a public health problem in many emerging countries. Virtually all is known that should enable us to eliminate this scourge by controlling the disease in canine populations and by diligent provision of WHO recommended post-exposure prophylaxis (PEP). Nevertheless, post-exposure prophylaxis failures do occur. Most common failures are due to deviations from WHO management recommendations and lack of essential biologicals. True failures, where all was done according to WHO recommendations, are fortunately extremely rare. Presented are seven such deaths. Other examples of common management deviations that resulted in deaths are also shown.
Collapse
Affiliation(s)
- Henry Wilde
- Infectious Disease Unit, Department of Medicine, Division of Research and Development, Faculty of Medicine, Chulalongkorn University, Rama IV Road, Bangkok 10330, Thailand.
| |
Collapse
|
18
|
Sloan SE, Hanlon C, Weldon W, Niezgoda M, Blanton J, Self J, Rowley KJ, Mandell RB, Babcock GJ, Thomas WD, Rupprecht CE, Ambrosino DM. Identification and characterization of a human monoclonal antibody that potently neutralizes a broad panel of rabies virus isolates. Vaccine 2006; 25:2800-10. [PMID: 17240489 DOI: 10.1016/j.vaccine.2006.12.031] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2006] [Accepted: 12/13/2006] [Indexed: 12/25/2022]
Abstract
Rabies is a zoonosis that results in millions of human exposures worldwide each year. Human monoclonal antibodies (HuMAbs) that neutralize rabies virus may represent one viable strategy for post-exposure prophylaxis in humans, and have many advantages over current human or equine rabies immune globulin. Transgenic mice carrying human immunoglobulin genes were used to isolate human monoclonal antibodies that neutralized rabies virus. Several HuMAbs were identified that neutralized rabies virus variants from a broad panel of isolates of public health significance. HuMAb 17C7 was the most promising antibody identified because it neutralized all rabies virus isolates tested. HuMAb 17C7 recognizes a conformational epitope on the rabies virus glycoprotein which includes antigenic site III. HuMAb 17C7 protected hamsters from a lethal dose of rabies virus in a well-established in vivo model of post-exposure prophylaxis.
Collapse
Affiliation(s)
- Susan E Sloan
- Massachusetts Biologic Laboratories, University of Massachusetts Medical School, 305 South Street, Jamaica Plain, MA 02130, United States
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Daher EDF, da Silva Júnior GB, Ferreira MT, Barros FADS, Gurgel TM, Patroćinio RMDSV. Renal involvement in human rabies: clinical manifestations and autopsy findings of nine cases from northeast of Brazil. Rev Inst Med Trop Sao Paulo 2006; 47:315-20. [PMID: 16553320 DOI: 10.1590/s0036-46652005000600002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
A retrospective study was conducted in nine patients with rabies admitted to a hospital of Fortaleza, Brazil. Autopsy was performed in all cases. The ages ranged from three to 81 years and six were males. They all were bitten by dogs. The time between the accident and the hospital admission ranged from 20 to 120 days (mean 45 +/- 34 days). The time until death ranged from one to nine days (mean 3.3 +/- 5.5 days). The signs and symptoms presented were fever, hydrophobia, aerophobia, agitation, disorientation, dyspnea, sialorrhea, vomiting, oliguria, sore throat, pain and hypoesthesia in the site of the bite, headache, syncope, cough, hematemesis, mydriasis, hematuria, constipation, cervical pain and priapism. In three out of six patients, there was evidence of acute renal failure, defined as serum creatinine > or = 1.4 mg/dL. The post-mortem findings in the kidneys were mild to moderate glomerular congestion and mild to intense peritubular capillary congestion. Acute tubular necrosis was seen in only two cases. This study shows some evidence of renal involvement in rabies. Histopathologic findings are nonspecific, so hemodynamic instability, caused by autonomic dysfunction, hydrophobia and dehydration must be responsible for acute renal failure in rabies.
Collapse
Affiliation(s)
- Elizabeth De Francesco Daher
- Hospital Universitário Walter Cantídio, Departamento de Medicina Clínica, Faculdade de Medicina, Universidade Federal do Ceará, Fortaleza, Brasil.
| | | | | | | | | | | |
Collapse
|
20
|
Bakker ABH, Marissen WE, Kramer RA, Rice AB, Weldon WC, Niezgoda M, Hanlon CA, Thijsse S, Backus HHJ, de Kruif J, Dietzschold B, Rupprecht CE, Goudsmit J. Novel human monoclonal antibody combination effectively neutralizing natural rabies virus variants and individual in vitro escape mutants. J Virol 2005; 79:9062-8. [PMID: 15994800 PMCID: PMC1168753 DOI: 10.1128/jvi.79.14.9062-9068.2005] [Citation(s) in RCA: 112] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The need to replace rabies immune globulin (RIG) as an essential component of rabies postexposure prophylaxis is widely acknowledged. We set out to discover a unique combination of human monoclonal antibodies (MAbs) able to replace RIG. Stringent criteria concerning neutralizing potency, affinity, breadth of neutralization, and coverage of natural rabies virus (RV) isolates and in vitro escape mutants were set for each individual antibody, and the complementarities of the two MAbs were defined at the onset. First, we identified and characterized one human MAb (CR57) with high in vitro and in vivo neutralizing potency and a broad neutralization spectrum. The linear antibody binding site was mapped on the RV glycoprotein as antigenic site I by characterizing CR57 escape mutants. Secondly, we selected using phage display a complementing antibody (CR4098) that recognized a distinct, nonoverlapping epitope (antigenic site III), showed similar neutralizing potency and breadth as CR57, and neutralized CR57 escape mutants. Reciprocally, CR57 neutralized RV variants escaping CR4098. Analysis of glycoprotein sequences of natural RV isolates revealed that the majority of strains contain both intact epitopes, and the few remaining strains contain at least one of the two. In vitro exposure of RV to the combination of CR57 and CR4098 yielded no escape mutants. In conclusion, a novel combination of human MAbs was discovered suitable to replace RIG.
Collapse
Affiliation(s)
- Alexander B H Bakker
- Crucell Holland B.V., Archimedesweg 4, P.O. Box 2048, 2301 CA Leiden, The Netherlands
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Eisinger D, Thulke HH, Selhorst T, Müller T. Emergency vaccination of rabies under limited resources -- combating or containing? BMC Infect Dis 2005; 5:10. [PMID: 15752423 PMCID: PMC1274270 DOI: 10.1186/1471-2334-5-10] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2004] [Accepted: 03/07/2005] [Indexed: 11/26/2022] Open
Abstract
Background Rabies is the most important viral zoonosis from a global perspective. Worldwide efforts to combat the disease by oral vaccination of reservoirs have managed to eradicate wildlife rabies in large areas of central Europe and North-America. Thus, repeated vaccination has been discontinued recently on a geographical scale. However, as rabies has not yet been eradicated globally, a serious risk of re-introduction remains. What is the best spatial design for an emergency vaccination program – particularly if resources are limited? Either, we treat a circular area around the detected case and run the risk of infected hosts leaving the limited control area, because a sufficient immunisation level has not yet been built up. Or, initially concentrate the SAME resources in order to establish a protective ring which is more distant from the infected local area, and which then holds out against the challenge of the approaching epidemic. Methods We developed a simulation model to contrast the two strategies for emergency vaccination. The spatial-explicit model is based on fox group home-ranges, which facilitates the simulation of rabies spread to larger areas relevant to management. We used individual-based fox groups to follow up the effects of vaccination in a detailed manner. Thus, regionally – bait distribution orientates itself to standard schemes of oral immunisation programs and locally – baits are assigned to individual foxes. Results Surprisingly, putting the controlled area ring-like around the outbreak does not outperform the circular area of the same size centred on the outbreak. Only during the very first baitings, does the ring area result in fewer breakouts. But then as rabies is eliminated within the circle area, the respective ring area fails, due to the non-controlled inner part. We attempt to take advantage of the initially fewer breakouts beyond the ring when applying a mixed strategy. Therefore, after a certain number of baitings, the area under control was increased for both strategies towards the same larger circular area. The circle-circle strategy still outperforms the ring-circle strategy and analysis of the spatial-temporal disease spread reveals why: improving control efficacy by means of a mixed strategy is impossible in the field, due to the build-up time of population immunity. Conclusion For practical emergency management of a new outbreak of rabies, the ring-like application of oral vaccination is not a favourable strategy at all. Even if initial resources are substantially low and there is a serious risk of rabies cases outside the limited control area, our results suggest circular application instead of ring vaccination.
Collapse
Affiliation(s)
- Dirk Eisinger
- Department of Ecological Modelling, UFZ-Centre for Environmental Research Leipzig/Halle, Leipzig, Germany
| | - Hans-Hermann Thulke
- Department of Ecological Modelling, UFZ-Centre for Environmental Research Leipzig/Halle, Leipzig, Germany
| | - Thomas Selhorst
- Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Wusterhausen, Germany
| | - Thomas Müller
- Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Wusterhausen, Germany
| |
Collapse
|
22
|
Servat A, Lutsch C, Delore V, Lang J, Veitch K, Cliquet F. Efficacy of rabies immunoglobulins in an experimental post-exposure prophylaxis rodent model. Vaccine 2004; 22:244-9. [PMID: 14615152 DOI: 10.1016/s0264-410x(03)00559-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
In a recently published Syrian hamster animal challenge study [Vaccine 19 (2001) 2273], a highly purified, heat-treated equine rabies immunoglobulin (pERIG HT, Favirab) did not elicit satisfactory protection. The efficacies of this batch, a second stage pERIG HT batch and reference RIG preparations (Imorab, Imogam Rage pasteurised, Berna antiserum) were compared in mice challenged with either Ariana canine field strain or CVS strain. Survival rates against Ariana challenge with the second pERIG HT batch were indistinguishable from those of other licensed preparations (83-90% survival), but the deficient batch did not provide satisfactory protection (53%). These data confirm the inadequate response to a first stage pERIG HT batch, but a current batch provides equivalent protection to that afforded by licensed HRIG and ERIG preparations.
Collapse
Affiliation(s)
- Alexandre Servat
- Laboratoire d'études et de recherches sur la rage et la pathologie des animaux sauvages, Agence Française de Sécurité Sanitaire des Aliments (AFSSA), Domaine de Pixérécourt, B.P. 9, Nancy, 54220, Malzéville, France.
| | | | | | | | | | | |
Collapse
|
23
|
|
24
|
Wilde H, Briggs DJ, Meslin FX, Hemachudha T, Sitprija V. Rabies update for travel medicine advisors. Clin Infect Dis 2003; 37:96-100. [PMID: 12830414 DOI: 10.1086/375605] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2003] [Accepted: 03/25/2003] [Indexed: 11/03/2022] Open
Abstract
Rabies is a neglected disease in many developing countries. It is preventable, and the tools to prevent it are known. There is urgent need for more funding, for study of innovative dog population-control measures, and for sustainable canine immunization. Safe and effective tissue-culture rabies vaccines and human and equine rabies immunoglobulins (HRIG and ERIG) are not readily available in many regions where rabies is endemic. This and the continuing presence and spread of rabies have increased the risk for travelers, who cannot rely on being able to receive optimal postexposure treatment in many parts of the world. Alternatives to HRIG or ERIG are not available. Travelers who leave the safe environments of tourist hotels and buses in regions of Asia, Russia, Africa, and Latin America where canine rabies is endemic may be at risk of life-threatening exposure to rabies.
Collapse
Affiliation(s)
- Henry Wilde
- Queen Saovabha Memorial Institute, Thai Red Cross Society, and Department of Medicine, Chulalongkorn University Hospital, Bangkok, Thailand.
| | | | | | | | | |
Collapse
|
25
|
Warrilow D, Harrower B, Smith IL, Field H, Taylor R, Walker C, Smith GA. Public health surveillance for Australian bat lyssavirus in Queensland, Australia, 2000-2001. Emerg Infect Dis 2003; 9:262-4. [PMID: 12604002 PMCID: PMC2901949 DOI: 10.3201/eid0902.020264] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
From February 1, 2000, to December 4, 2001, a total of 119 bats (85 Megachiroptera and 34 Microchiroptera) were tested for Australian bat lyssavirus (ABLV) infection. Eight Megachiroptera were positive by immunofluorescence assay that used cross-reactive ntibodies to rabies nucleocapsid protein. A case study of cross-species transmission of ABLV supports the conclusion that a bat reservoir exists for ABLV in which the virus circulates across Megachiroptera species within mixed communities.
Collapse
Affiliation(s)
- David Warrilow
- Queensland Health Scientific Services, Archerfield, Queensland, Australia.
| | | | | | | | | | | | | |
Collapse
|
26
|
Abstract
OBJECTIVE To evaluate postexposure prophylaxis (PEP) in dogs experimentally infected with rabies. ANIMALS 29 Beagles. PROCEDURE Dogs were sedated and inoculated in the right masseter muscle with a salivary gland homogenate from a naturally infected rabid dog (day 0). Six hours later, 5 dogs were treated by administration of 2 murine anti-rabies glycoprotein monoclonal antibodies (mAb) and commercial vaccine; 5 received mAb alone; 5 received purified, heat-treated, equine rabies immune globulin (PHT-ERIG) and vaccine; 5 received PHT-ERIG alone; 4 received vaccine alone; and 5 control dogs were not treated. The mAb or PHT-ERIG was administered at the site of rabies virus inoculation. Additional vaccine doses for groups mAb plus vaccine, PHT-ERIG plus vaccine, and vaccine alone were administered IM in the right hind limb on days 3, 7, 14, and 35. RESULTS All control dogs and dogs that received only vaccine developed rabies. In the PHT-ERIG and vaccine group, 2 of 5 dogs were protected, whereas none were protected with PHT-ERIG alone. Use of mAb alone resulted in protection in 4 of 5 dogs. Administration of mAb in combination with vaccine provided protection in all 5 dogs. CONCLUSIONS AND CLINICAL RELEVANCE Current national guidelines recommend euthanasia or a 6-month quarantine for unvaccinated animals exposed to rabies. Findings from this study document that vaccine alone following severe exposure was unable to provide protection from rabies. However, vaccine combined with mAb resulted in protection in all treated dogs, revealing the potential use of mAb in PEP against rabies in naive dogs.
Collapse
Affiliation(s)
- Cathleen A Hanlon
- Centers for Disease Control and Prevention, Division of Viral and Rickettsial Diseases, Atlanta, GA 30333, USA
| | | | | |
Collapse
|
27
|
Abstract
Rabies remains an important public health problem worldwide due to endemic dog rabies in developing countries. Rabies was a re-emerging disease in the United States during the 1990s due to bat rabies virus variants. Australian bat lyssavirus also emerged in Australian bat populations and caused two human deaths. There have been important recent advances in our knowledge of the pathogenesis of rabies and in our ability to diagnose and prevent it.
Collapse
Affiliation(s)
- Alan C Jackson
- Department of Medicine, Queen's University, Kingston General Hospital, Connell 725, 76 Stuart Street, Kingston, Ontario K7L 2V7, Canada.
| |
Collapse
|
28
|
Abstract
Rabies is an acute, progressive, incurable viral encephalitis. The causative agents are neurotropic RNA viruses in the family Rhabdoviridae, genus Lyssavirus. Mammalian reservoirs include the Carnivora and Chiroptera, but rabid dogs still pose the greatest hazard worldwide. Viral transmission occurs mainly via animal bite, and once the virus is deposited in peripheral wounds, centripetal passage occurs towards the central nervous system. After viral replication, there is centrifugal spread to major exit portals, the salivary glands. The epidemiological significance of any host "carrier" state remains highly speculative. Although incubation periods average 1-3 months, disease occurrence days or years after exposure has been documented. Rabies should be suspected in patients with a concomitant history of animal bite and traditional clinical presentation, but a lack of such clues makes antemortem diagnosis a challenge. Pathogenetic mechanisms remain poorly understood, and current care entails palliative measures only. Current medical emphasis relies heavily on prevention of exposure and intervention before clinical onset. Prophylaxis encompasses thorough wound treatment, vaccine administration, and inoculation of rabies immunoglobulin. Although it is a major zoonosis, canine rabies can be eliminated, and application of new vaccine technologies permits significant disease control among wildlife species. Nevertheless, despite much technical progress in the past century, rabies is a disease of neglect and presents a modern public-health conundrum.
Collapse
Affiliation(s)
- Charles E Rupprecht
- Rabies Section, WHO Collaborating Centre for Reference and Research on Rabies, Centers for Disease Control and Prevention, Atlanta, GA 30333, USA.
| | | | | |
Collapse
|
29
|
Lodmell DL, Parnell MJ, Bailey JR, Ewalt LC, Hanlon CA. Rabies DNA vaccination of non-human primates: post-exposure studies using gene gun methodology that accelerates induction of neutralizing antibody and enhances neutralizing antibody titers. Vaccine 2002; 20:2221-8. [PMID: 12009276 DOI: 10.1016/s0264-410x(02)00143-3] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Pre-exposure DNA vaccination protects non-human primates against rabies virus. Post-exposure protection of monkeys against rabies virus by DNA vaccination has not been attempted. Presumably, post-exposure experiments have not been undertaken because neutralizing antibody is usually slow to be induced after DNA vaccination. In this study, we initially attempted to accelerate the induction of neutralizing antibody by varying the route and site of DNA vaccination and booster frequency. Gene gun (GG) vaccinations above axillary and inguinal lymph nodes or in ear pinnae generated higher levels of neutralizing antibody than intradermal (ID) needle vaccinations in the pinnae. Concurrent GG booster vaccinations above axillary and inguinal lymph nodes and in ear pinnae, 3 days after primary vaccination, accelerated detectable neutralizing antibody. GG booster vaccinations also resulted in higher neutralizing antibody levels and increased the durability of this response. Post-exposure vaccination with DNA or the human diploid cell vaccine (HDCV), in combination with an one-time treatment with human rabies immune globulin (HRIG), protected 50 and 75% of the monkeys, respectively, as compared to 75% mortality of the controls. These data will be useful for the refinement, development, and implementation of future pre- and post-exposure rabies DNA vaccination studies.
Collapse
Affiliation(s)
- Donald L Lodmell
- Laboratory of Persistent Viral Diseases, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, Hamilton, MT 59840, USA.
| | | | | | | | | |
Collapse
|
30
|
Wilde H, Khawplod P, Hemachudha T, Sitprija V. Postexposure treatment of rabies infection: can it be done without immunoglobulin? Clin Infect Dis 2002; 34:477-80. [PMID: 11797174 DOI: 10.1086/324628] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2001] [Revised: 08/06/2001] [Indexed: 11/03/2022] Open
Abstract
The last remaining international manufacturer of equine rabies immunoglobulin (ERIG) discontinued production in 2001. However, ERIG remains an essential biological that has no substitute other than human rabies immunoglobulin (HRIG), which is in short supply and virtually unaffordable in developing countries. Physicians in regions where canine rabies is endemic and neither ERIG nor HRIG is available are providing less-than-optimal treatment to patients exposed to rabies. If no immunoglobulin is available, they have only 1 therapy option: use of a vaccine schedule that produces the highest and, hopefully, earliest neutralizing antibody response. However, treatment failures must still be expected. Early, aggressive wound cleansing and more intensive efforts at canine control and are ever more important. Countries that have the resources to manufacture their own rabies immunoglobulins must be encouraged to do so.
Collapse
Affiliation(s)
- Henry Wilde
- Queen Saovabha Memorial Institute (Thai Red Cross Society) and Department of Medicine, Chulalongkorn University, Bangkok, Thailand.
| | | | | | | |
Collapse
|