1
|
Saif LJ. A Passion for Small Things and Staying Primed: My Career in Virology and Immunology. Annu Rev Anim Biosci 2025; 13:1-24. [PMID: 39546413 DOI: 10.1146/annurev-animal-111523-101937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2024]
Abstract
A love of science and animals, perseverance, and happenstance propelled my career in veterinary virology and immunology. I have focused on deadly enteric and respiratory viral infections in neonatal livestock and humans with an aim to understand their prevalence, pathogenesis, interspecies transmission, and immunity and develop vaccines. Research on animal coronaviruses (CoVs), including their broad interspecies transmission, provided a foundation to understand emerging zoonotic fatal human respiratory CoVs [severe acute respiratory syndrome, Middle East respiratory syndrome, severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2)] and reverse zoonosis of SARS-CoV-2 to animals. A highlight of my early research was the discovery of the gut-mammary gland-sIgA axis, documenting a common mucosal immune system. The latter remains pivotal to designing maternal vaccines for passive immunity in neonates. Our discovery and innovative cell propagation of fastidious human and animal rotaviruses and caliciviruses and their infectivity in germ-free animals has provided cell-adapted and animal disease models for ongoing virologic and immunologic investigations and vaccines. Nevertheless, besides the research discoveries, my lasting legacy remains the outstanding mentees who have enriched my science and my life.
Collapse
Affiliation(s)
- Linda J Saif
- Center for Food Animal Health, Animal Sciences Department, Ohio Agricultural Research and Development Center, College of Food, Agriculture and Environmental Sciences, and Veterinary Preventive Medicine Department, College of Veterinary Medicine, The Ohio State University, Wooster, Ohio, USA;
| |
Collapse
|
2
|
Bristol LS, Duhamel GE, Zinckgraf JW, Crabb JH, Nydam DV. Effect of passive antibodies derived from rotavirus-like particles on neonatal calf diarrhea caused by rotavirus in an oral challenge model. J Dairy Sci 2021; 104:11922-11930. [PMID: 34419277 PMCID: PMC8530451 DOI: 10.3168/jds.2020-19834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Accepted: 07/07/2021] [Indexed: 12/04/2022]
Abstract
Our objective was to evaluate the efficacy of bovine rotavirus antigen-specific passive antibody for reducing the duration of diarrhea induced by oral challenge with bovine rotavirus in a neonatal calf model. The bovine rotavirus-specific passive antibodies were produced before the study by hyperimmunization of pregnant cows during the dry period with an adjuvanted vaccine containing recombinantly-expressed rotavirus virus-like particles. Eighty-three calves were cleanly collected at birth and randomly assigned to 1 of 3 groups as follows: (1) control group that was colostrum deprived and fed milk replacer for first feeding, (2) group that was colostrum deprived and fed milk replacer mixed with antirotavirus antibodies for first feeding, or (3) group that was fed colostrum replacer mixed with antirotavirus antibodies and a product approved by the US Department of Agriculture containing antibodies against Escherichia coli K99 and bovine coronavirus for first feeding. One of the 3 treatments was administered within 6 h of birth to each calf, followed by oral challenge with bovine rotavirus 3 h later. Calves were observed through 7 d of age and scored according to a standardized scale for clinical signs of diarrhea, change in appetite, depression, and dehydration. Twice daily, measurements of rectal temperature and collection of feces were performed. Fecal samples were assessed for infectious agents commonly associated with diarrhea, and bovine rotavirus shedding was quantified. There were 24 of 28 (86%) calves in the control group that received no antibodies that had signs of severe diarrhea, whereas 57% of the calves that received antirotavirus in milk replacer experienced severe diarrhea, and 7% of calves that received colostrum replacer mixed with antigen-specific bovine rotavirus antibodies showed signs of severe diarrhea. Calves that received colostrum replacer mixed with antigen-specific bovine rotavirus antibodies had a mean duration of 0.9 d of diarrhea compared with 2.7 d in the control group. Calves in the group that was colostrum deprived and fed milk replacer with antirotavirus antibodies had a mean duration of diarrhea of 1.7 d. Rotavirus peak fecal shedding was 3.5 d in the group with milk replacer only, 5.5 d in the milk replacer with antibody group, and 6.5 d in calves in the colostrum replacer group. When bovine rotavirus antigen-specific antibody was fed in milk replacer to colostrum-deprived calves or in conjunction with colostrum replacer that also contained supplemental antibodies against Escherichia coli K99 and bovine coronavirus, those calves were observed to have reduced the onset, duration, and severity of diarrhea when compared with milk replacer placebo.
Collapse
Affiliation(s)
- L S Bristol
- Department of Population Medicine and Diagnostic Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853
| | - G E Duhamel
- Department of Biomedical Sciences, Cornell University, Ithaca, NY 14853
| | | | - J H Crabb
- ImmuCell Corporation, Portland, ME 04103
| | - D V Nydam
- Department of Population Medicine and Diagnostic Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853.
| |
Collapse
|
3
|
Changotra H, Vij A. Rotavirus virus-like particles (RV-VLPs) vaccines: An update. Rev Med Virol 2017; 27. [DOI: 10.1002/rmv.1954] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2017] [Revised: 09/17/2017] [Accepted: 09/18/2017] [Indexed: 01/24/2023]
Affiliation(s)
- Harish Changotra
- Department of Biotechnology and Bioinformatics; Jaypee University of Information Technology; Solan Himachal Pradesh India
| | - Avni Vij
- Department of Biotechnology and Bioinformatics; Jaypee University of Information Technology; Solan Himachal Pradesh India
| |
Collapse
|
4
|
Hodgins DC, Chattha K, Vlasova A, Parreño V, Corbeil LB, Renukaradhya GJ, Saif LJ. Mucosal Veterinary Vaccines. Mucosal Immunol 2015. [PMCID: PMC7149859 DOI: 10.1016/b978-0-12-415847-4.00068-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
5
|
Rodríguez-Limas WA, Pastor AR, Esquivel-Soto E, Esquivel-Guadarrama F, Ramírez OT, Palomares LA. Immunogenicity and protective efficacy of yeast extracts containing rotavirus-like particles: A potential veterinary vaccine. Vaccine 2014; 32:2794-8. [DOI: 10.1016/j.vaccine.2014.02.037] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
6
|
Intra-peritoneal and intra-rectal immunogenicity induced by rotavirus virus like particles 2/6/7 in mice. Microb Pathog 2014; 67-68:48-54. [PMID: 24583154 DOI: 10.1016/j.micpath.2014.02.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2013] [Revised: 02/13/2014] [Accepted: 02/17/2014] [Indexed: 11/22/2022]
Abstract
We previously developed virus like particles of rotavirus (RV) with VP2, VP6, and VP7 proteins (VLP2/6/7) using stable High-five cell line. To evaluate the immunogenicity of our construct, we assessed the humoral and cytokine responses induced by VLP2/6/7 in BALB/c mice immunized intra-peritoneally and intra-rectally. Enzyme-linked immunosorbent assay (ELISA) and Relative quantitative (RQ) Real-time PCR were used to evaluate the antibody (IgG and IgA) levels in serum and mRNA levels of IL-6, IL-10 and IFN-γ in spleen cells, respectively. Our results showed that VLP2/6/7 is capable of intra-peritoneal (I.P.) and intra-rectal (I.R.) induction of serum IgG and IgA responses. IgA was detected in fecal samples of immunization groups by I.P. and I.R. routes. Interestingly, I.R. route induced higher IgA titer compared with I.P. route which was statistically significant. Moreover, mRNA levels of IL-6 and IFN-γ were significantly elevated in mice immunized intra-peritoneally with VLP2/6/7 compared to control group. As such, the mean change was 7.4 (P < 0.05) and 14.8 (P < 0.001) for IFN-γ and IL-6, respectively. Likewise, the same pattern was found when mice were immunized intra-rectally. Although elevated, the difference in the mean change for IL-10 was not statistically significant when compared to control group. Our findings indicated that VLPs constructed via a stable insect cell line are able to induce both humoral and cellular responses, a similar pattern as observed after immunization with live RVs.
Collapse
|
7
|
Azevedo MP, Vlasova AN, Saif LJ. Human rotavirus virus-like particle vaccines evaluated in a neonatal gnotobiotic pig model of human rotavirus disease. Expert Rev Vaccines 2014; 12:169-81. [DOI: 10.1586/erv.13.3] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
8
|
Roy P, Noad R. Virus-like particles as a vaccine delivery system: myths and facts. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2010; 655:145-58. [PMID: 20047040 PMCID: PMC7124136 DOI: 10.1007/978-1-4419-1132-2_11] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Vaccines against viral disease have traditionally relied on attenuated virus strains or inactivation of infectious virus. Subunit vaccines based on viral proteins expressed in heterologous systems have been effective for some pathogens, but have often suffered from poor immunogenicity due to incorrect protein folding or modification. In this chapter we focus on a specific class of viral subunit vaccine that mimics the overall structure of virus particles and thus preserves the native antigenic conformation of the immunogenic proteins. These virus-like particles (VLPs) have been produced for a wide range of taxonomically and structurally distinct viruses, and have unique advantages in terms of safety and immunogenicity over previous approaches. With new VLP vaccines for papillomavirus beginning to reach the market place we argue that this technology has now ‘come-of-age’ and must be considered a viable vaccine strategy.
Collapse
Affiliation(s)
- Polly Roy
- Department of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, Keppel St., London, WC1E 7HT, UK.
| | | |
Collapse
|
9
|
Rodríguez-Limas WA, Flores-Samaniego B, de la Mora G, Ramírez OT, Palomares LA. Genotypification of bovine group A rotavirus in México. Vaccine 2009; 27:6411-4. [PMID: 19559115 DOI: 10.1016/j.vaccine.2009.06.022] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Bovine scours, frequently provoked by rotavirus infection, causes significant economic losses. Nevertheless, no information exists about the bovine rotavirus genotypes present in Mexico. This information is necessary for designing efficient vaccines. In this work, 128 samples from diarrheic calves were collected between 2005 and 2006 in 26 dairy and/or beef cattle herds located in 10 regions of Mexico, and analyzed for the presence of group A rotavirus. G and P genotypes were determined by PCR in rotavirus-positive samples (12/128). Three different genotype combinations were found, G10, P[11]; G6, P[5]; and G10, P[5]; in 67, 25 and 8% of the positive samples, respectively. Some rotavirus-positive animals had been vaccinated with an inactivated rotavirus strain of a different genotype.
Collapse
Affiliation(s)
- William A Rodríguez-Limas
- Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Apdo. Postal, 510-3, Cuernavaca, Morelos, CP 62250, Mexico
| | | | | | | | | |
Collapse
|
10
|
Cao D, Igboeli B, Yuan L, Kapikian AZ, Ayers JL, Abinanti FR, Hoshino Y. A longitudinal cohort study in calves evaluated for rotavirus infections from 1 to 12 months of age by sequential serological assays. Arch Virol 2009; 154:755-63. [PMID: 19343476 DOI: 10.1007/s00705-009-0331-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2008] [Accepted: 01/21/2009] [Indexed: 11/28/2022]
Abstract
Using an immunocytochemical staining assay involving six different recombinant baculoviruses with each expressing one of the major bovine rotavirus VP7 (G6, G8 and G10) and VP4 (P6[1], P7[5] and P8[11]) serotypes, we analyzed IgG antibody responses to individual proteins in archival serum samples collected from 31 calves monthly from 1 to 12 months of age during 1974-1975 in Higley, Arizona. Seroresponses to VP7 and VP4, as determined by a fourfold or greater antibody response, were not always elicited concurrently following infection: in some calves, (1) seroresponses to VP7 were detected earlier than to VP4 or vice versa; and (2) a subsequent second seroresponse was detected for VP7 or VP4 only. In addition, a second infection was more likely to be caused by different G and/or P types. Analyses of serum samples showed that the most frequent G-P combination was G8P6[1], followed by G8P7[5], G8P8[11] and G6P6[1].
Collapse
Affiliation(s)
- Dianjun Cao
- Epidemiology Section, Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Building 50, Room 6308, Bethesda, MD 20892, USA
| | | | | | | | | | | | | |
Collapse
|
11
|
Dhama K, Chauhan RS, Mahendran M, Malik SVS. Rotavirus diarrhea in bovines and other domestic animals. Vet Res Commun 2009; 33:1-23. [PMID: 18622713 PMCID: PMC7088678 DOI: 10.1007/s11259-008-9070-x] [Citation(s) in RCA: 137] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/06/2008] [Indexed: 01/29/2023]
Abstract
Rotavirus diarrhea is the major cause of death of millions of children in developing countries besides causing economically significant malady in neonates of many domestic animals. In neonates, the infection is non-viremic, have very short incubation period, and manifests profuse diarrhea and severe dehydration. Concurrent infection with secondary pathogens may augment the disease severity. Diarrhea occurs due to virus-mediated destruction of absorption efficient enterocytes, activation of enteric nervous system, or due to a rotavirus enterotoxin. Diagnosis of the infection relies on conventional techniques like isolation in MA 104 cell lines, electron microscopy, electro-pherotyping, and various serological tests. Presently, diagnosis and molecular typing is performed using serotype specific RT-PCR, sequencing or genomic hybridization techniques. As the rotaviruses are known to exhibit extreme genetic diversity and outplay disinfection procedures, eradication of the pathogen is often difficult. Hence, for prevention, good management practices coupled with vaccination of dam for protecting young ones, has to be practiced. Recently, new generation prophylactic strategies including DNA vaccines, subunit vaccines, virus-like particles (VLPs) and edible vaccines have been found to induce sufficient levels of passive immunity. Aside to the infection in animals, zoonotic significance of the animal rotaviruses has to be further unearthed. In this review, efforts have been made to highlight the importance and prevalence of the disease in bovines, its pathogenesis along with preventive measures, salient features of rotaviruses and their inter-species transmission abilities, zoonotic implications, and a concise account of the infection in various domestic animals and poultry.
Collapse
Affiliation(s)
- K Dhama
- Division of Pathology, Indian Veterinary Research Institute, Izatnagar, Uttar Pradesh 243 122, India.
| | | | | | | |
Collapse
|
12
|
Molinari P, Peralta A, Taboga O. Production of rotavirus-like particles in Spodoptera frugiperda larvae. J Virol Methods 2008; 147:364-7. [DOI: 10.1016/j.jviromet.2007.09.002] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2007] [Revised: 09/03/2007] [Accepted: 09/05/2007] [Indexed: 11/26/2022]
|
13
|
Peixoto C, Sousa MFQ, Silva AC, Carrondo MJT, Alves PM. Downstream processing of triple layered rotavirus like particles. J Biotechnol 2007; 127:452-61. [PMID: 16959354 DOI: 10.1016/j.jbiotec.2006.08.002] [Citation(s) in RCA: 80] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2006] [Revised: 07/25/2006] [Accepted: 08/01/2006] [Indexed: 11/27/2022]
Abstract
Rotavirus like particles (RLPs) constitute a potential vaccine for the prevention of rotavirus disease, responsible for the death of more than half a million children each year. Increasing demands for pre-clinical trials material require the development of reproducible, scaleable and cost-effective purification strategies as alternatives to the traditional laboratory scale CsCl density gradient ultracentrifugation methods commonly used for the purification of these complex particles. Self-assembled virus like particles (VLPs) composed by VP2, VP6 and VP7 rotavirus proteins (VLPs 2/6/7) were produced in 5l scale using the insect cells/baculovirus expression system. A purification process using depth filtration, ultrafiltration and size exclusion chromatography as stepwise unit operations was developed. Removal of non-assembled rotavirus proteins, concurrently formed particles (RLP 2/6), particle aggregates and products of particle degradation due to shear was achieved. Particle stability during storage was studied and assessed using size exclusion chromatography as an analytical tool. Formulations containing either glycerol (10% v/v) or trehalose (0.5 M) were able to maintain 75% of intact triple layered VLPs, at 4 degrees C, up to 4 months. The overall recovery yield was 37% with removal of 95% of host cell proteins and 99% of the host cell DNA, constituting a promising strategy for the downstream processing of other VLPs.
Collapse
Affiliation(s)
- C Peixoto
- IBET/ITQB, Apartado 12, P-2780-901 Oeiras, Portugal
| | | | | | | | | |
Collapse
|
14
|
Intracellular dynamics in rotavirus-like particles production: Evaluation of multigene and monocistronic infection strategies. Process Biochem 2006. [DOI: 10.1016/j.procbio.2006.06.019] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
15
|
Mena JA, Ramírez OT, Palomares LA. Intracellular distribution of rotavirus structural proteins and virus-like particles expressed in the insect cell-baculovirus system. J Biotechnol 2006; 122:443-52. [PMID: 16290307 DOI: 10.1016/j.jbiotec.2005.10.005] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2005] [Revised: 09/15/2005] [Accepted: 10/06/2005] [Indexed: 11/24/2022]
Abstract
The production of virus-like particles (VLP) is of interest to several fields. However, little is known about their assembly when they are expressed in insect cells, as it occurs in conditions different to those of native virus. Knowledge of the localization of recombinant proteins and of the site of accumulation of VLP can increase the understanding of VLP assembly and be useful for proposing production strategies. In this work, the rotavirus proteins VP6 and the fusion protein GFPVP2 were expressed in High Five insect cells. Recombinant proteins and rotavirus-like particles (RLP) were located and visualized by confocal, epifluorescence and electron microscopy. Single-layered (sl) RLP (conformed by GFPVP2) accumulated in the cytoplasm as highly ordered aggregates. In contrast, VP6 formed fibrillar structures composed of various tubes of VP6 that were not associated to microtubules. Coexpression of GFPVP2 and VP6 altered the distribution of both proteins. VP6 formed aggregates, even when all other conditions of individual protein expression remained unchanged. Double-layered (dl) RLP were observed in dense zones of the cytoplasm, but were not in ordered aggregates. It was determined that the assembly of both slRLP and dlRLP occurs intracellularly. Accordingly, strategies for the optimum assembly of dlRLP should guarantee that each cell produces both recombinant proteins.
Collapse
Affiliation(s)
- Jimmy A Mena
- Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Apdo. Postal 510-3, Cuernavaca, Morelos CP 62250, Mexico
| | | | | |
Collapse
|
16
|
Matsuda K, Ohtsuka H, Ichijho T, Kawamura S. Effect of Dietary Administration of Bananas on Immunocytes in F1 Hybrid Calves. J Vet Med Sci 2006; 68:75-7. [PMID: 16462122 DOI: 10.1292/jvms.68.75] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The effect of dietary administration of bananas on immunocytes in calves was investigated. Twenty Fl hybrid calves were used in this study (treated group n=10, control group n=10). Banana (2 g/kg BW) was administered to the calves for 5 days. Leukocyte subsets were examined on days 0, 5, 10, and 15. The numbers CD3+, (CD3+)CD45R-, and (CD3+)TcR+ cells significantly increased between day 0 and day 5 in the treated group (P<0.01), and were significantly higher on day 5 in the treated group relative to the control group (P<0.05). These data showed that feeding banana to calves increased T-lymphocytes, suggesting it might be possible to enhance protective functions against infections.
Collapse
Affiliation(s)
- Keiichi Matsuda
- Chuou Veterinary Clinical Center, Miyagi Prefecture Federation of Agricultural Mutual Aid Associations, Furukawa, Miyagi 989-6251, Japan
| | | | | | | |
Collapse
|
17
|
Abstract
The expression of antigens in transgenic plants has been increasingly used in the development of experimental vaccines, particularly oriented to the development of edible vaccines. Hence, this technology becomes highly suitable to express immunogenic proteins from pathogens. Foot and mouth disease virus, bovine rotavirus and bovine viral diarrhoea virus are considered to be the most important causative agents of economic loss of cattle production in Argentina, and they are thus optimal candidates for alternative means of immunization. Here, we present a review of our results corresponding to the expression of immunogenic proteins from these three viruses in alfalfa transgenic plants, and we discuss the possibility of using them for the development of plant-based vaccines.
Collapse
MESH Headings
- Animals
- Antigens, Viral/genetics
- Antigens, Viral/immunology
- Arabidopsis/genetics
- Arabidopsis/metabolism
- Cattle
- Cattle Diseases/immunology
- Cattle Diseases/prevention & control
- Cattle Diseases/virology
- Diarrhea Viruses, Bovine Viral/genetics
- Diarrhea Viruses, Bovine Viral/immunology
- Foot-and-Mouth Disease Virus/genetics
- Foot-and-Mouth Disease Virus/immunology
- Medicago sativa/genetics
- Medicago sativa/metabolism
- Plants, Genetically Modified/genetics
- Plants, Genetically Modified/metabolism
- Rotavirus/genetics
- Rotavirus/immunology
- Solanum tuberosum/genetics
- Solanum tuberosum/metabolism
- Vaccines, Edible/administration & dosage
- Vaccines, Edible/biosynthesis
- Vaccines, Edible/genetics
- Vaccines, Synthetic/administration & dosage
- Vaccines, Synthetic/biosynthesis
- Vaccines, Synthetic/genetics
- Veterinary Medicine/methods
- Viral Proteins/genetics
- Viral Proteins/immunology
- Viral Vaccines/administration & dosage
- Viral Vaccines/biosynthesis
- Viral Vaccines/genetics
Collapse
|
18
|
Dong JL, Liang BG, Jin YS, Zhang WJ, Wang T. Oral immunization with pBsVP6-transgenic alfalfa protects mice against rotavirus infection. Virology 2005; 339:153-63. [PMID: 15992851 DOI: 10.1016/j.virol.2005.06.004] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2004] [Revised: 03/11/2005] [Accepted: 06/01/2005] [Indexed: 10/25/2022]
Abstract
A critical factor in edible plant-derived vaccine development is adequate expression of the exogenous antigens in transgenic plants. We synthesized a codon-optimized gene (sVP6) encoding the VP6 protein of human group A rotavirus and inserted it into the alfalfa genome using agrobacterium-mediated transformation. As much as 0.28% of the total soluble protein of the pBsVP6-transgenic alfalfa was sVP6. Female BALB/c mice were gavaged weekly with 10 mg of transgenic alfalfa extract containing 24 microg of sVP6 protein and 10 microg of CpG-rich oligodeoxynucleotides as mucosal adjuvant. Immunized mice developed high titers of anti-VP6 serum IgG and mucosal IgA. Offspring of immunized dams developed less severe diarrhea after challenge with simian rotavirus SA-11, indicating that antibodies generated in the dams provided passive heterotypic protection to the pups. These results suggest that oral immunization with pBsVP6-transgenic alfalfa provides a potential means of protecting children and young animals from severe acute rotavirus-induced diarrhea.
Collapse
Affiliation(s)
- Jiang-Li Dong
- State Key Laboratory of Agrobiotechnology, China Agricultural University, 2 Yuanmingyuan West Road, Haidian District, Beijing 100094, China.
| | | | | | | | | |
Collapse
|
19
|
Han MG, Wang Q, Smiley JR, Chang KO, Saif LJ. Self-assembly of the recombinant capsid protein of a bovine norovirus (BoNV) into virus-like particles and evaluation of cross-reactivity of BoNV with human noroviruses. J Clin Microbiol 2005; 43:778-85. [PMID: 15695679 PMCID: PMC548067 DOI: 10.1128/jcm.43.2.778-785.2005] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
None of the enteric caliciviruses except Po/Sapo/GIII/Cowden/80/US replicates in cell culture, which complicates efforts to develop control strategies or to study viral replication. To develop serological assays for bovine noroviruses (BoNVs) and to determine the cross-reactivity of BoNV with human noroviruses, we generated two recombinant baculoviruses, rCV186-OH and rJNCV, to express the capsid genes of Bo/CV186-OH/00/US (Norovirus genogroup III [GIII], genotype 2 [GIII/2]). rCV186-OH expressed the expected 57-kDa capsid protein, but rJNCV expressed a truncated capsid protein of 35 kDa. Sequence analysis of rJNCV identified a single nucleotide deletion in the P domain of the capsid gene, which introduced a stop codon at amino acid 323. The recombinant capsid protein produced by rCV186-OH but not that produced by rJNCV self-assembled into virus-like particles (VLPs) similar to native BoNV. An antibody-capture enzyme-linked immunosorbent assay (ELISA) and antigen-capture ELISA (Ag-ELISA) detected serum antibody and antigen, respectively, from calves infected with Bo/CV186-OH/00/US but not antibodies or antigens to other enteric viruses. In other tests of the GIII/2 BoNV Ag-ELISA, no cross-reactivity was observed with VLPs from one GI and four GII human noroviruses and porcine sapovirus Cowden strain. Because, like human noroviruses, BoNVs do not grow in cell culture, the BoNV VLPs will be useful in the serological assays described for the detection of BoNV antibody and antigen. Consistent with the phylogenetic analysis of the capsid genes of bovine and human noroviruses (M. G. Han, J. R. Smiley, C. Thomas, and L. J. Saif, J. Clin. Microbiol. 42:5214-5224, 2004), the results suggest that GIII/2 BoNV does not share significant antigenic relationships with the five characterized human noroviruses tested.
Collapse
Affiliation(s)
- M G Han
- Food Animal Health Research Program, Ohio Agricultural Research and Development Center, The Ohio State University, 1680 Madison Ave., Wooster, OH 44691, USA
| | | | | | | | | |
Collapse
|
20
|
|
21
|
Parreño V, Béjar C, Vagnozzi A, Barrandeguy M, Costantini V, Craig MI, Yuan L, Hodgins D, Saif L, Fernández F. Modulation by colostrum-acquired maternal antibodies of systemic and mucosal antibody responses to rotavirus in calves experimentally challenged with bovine rotavirus. Vet Immunol Immunopathol 2004; 100:7-24. [PMID: 15182992 PMCID: PMC7127479 DOI: 10.1016/j.vetimm.2004.02.007] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2003] [Revised: 02/20/2004] [Accepted: 02/20/2004] [Indexed: 02/08/2023]
Abstract
The effect of colostral maternal antibodies (Abs), acquired via colostrum, on passive protection and development of systemic and mucosal immune responses against rotavirus was evaluated in neonatal calves. Colostrum-deprived (CD) calves, or calves receiving one dose of pooled control colostrum (CC) or immune colostrum (IC), containing an IgG1 titer to bovine rotavirus (BRV) of 1:16,384 or 1:262,144, respectively, were orally inoculated with 105.5 FFU of IND (P[5]G6) BRV at 2 days of age. Calves were monitored daily for diarrhea, virus shedding and anti-BRV Abs in feces by ELISA. Anti-rotavirus Ab titers in serum were evaluated weekly by isotype-specific ELISA and virus neutralization (VN). At 21 days post-inoculation (dpi), all animals were euthanized and the number of anti-BRV antibody secreting cells (ASC) in intestinal and systemic lymphoid tissues were evaluated by ELISPOT. After colostrum intake, IC calves had significantly higher IgG1 serum titers (GMT=28,526) than CC (GMT=1195) or CD calves (GMT<4). After BRV inoculation, all animals became infected with a mean duration of virus shedding between 6 and 10 days. However, IC calves had significantly fewer days of diarrhea (0.8 days) compared to CD and CC calves (11 and 7 days, respectively). In both groups receiving colostrum there was a delay in the onset of diarrhea and virus shedding associated with IgG1 in feces. In serum and feces, CD and CC calves had peak anti-BRV IgM titers at 7 dpi, but IgA and IgG1 responses were significantly lower in CC calves. Antibody titers detected in serum and feces were associated with circulation of ASC of the same isotype in blood. The IC calves had only an IgM response in feces. At 21 dpi, anti-BRV ASC responses were observed in all analyzed tissues of the three groups, except bone marrow. The intestine was the main site of ASC response against BRV and highest IgA ASC numbers. There was an inverse relationship between passive IgG1 titers and magnitude of ASC responses, with fewer IgG1 ASC in CC calves and significantly lower ASC numbers of all isotypes in IC calves. Thus, passive anti-BRV IgG1 negatively affects active immune responses in a dose-dependent manner. In ileal Peyer’s patches, IgM ASC predominated in calves receiving colostrum; IgG1 ASC predominated in CD calves. The presence in IC calves of IgG1 in feces in the absence of an IgG1 ASC response is consistent with the transfer of serum IgG1 back into the gut contributing to the protection of the intestinal mucosa.
Collapse
Affiliation(s)
- V Parreño
- Instituto de Virologia, CICV y A, INTA, Castelar, Bs. As., Argentina.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Wigdorovitz A, Mozgovoj M, Santos MJD, Parreño V, Gómez C, Pérez-Filgueira DM, Trono KG, Ríos RD, Franzone PM, Fernández F, Carrillo C, Babiuk LA, Escribano JM, Borca MV. Protective lactogenic immunity conferred by an edible peptide vaccine to bovine rotavirus produced in transgenic plants. J Gen Virol 2004; 85:1825-1832. [PMID: 15218166 DOI: 10.1099/vir.0.19659-0] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Vaccines produced in transgenic plants constitute a promising alternative to conventional immunogens, presenting the possibility of stimulating secretory and systemic immunity against enteric pathogens when administered orally. Protection against enteric pathogens affecting newborn animals requires, in most cases, the stimulation of lactogenic immunity. Here, the group presents the development of an experimental immunogen based on expression of an immunorelevant peptide, eBRV4, of the VP4 protein of bovine rotavirus (BRV), which has been described as harbouring at least one neutralizing epitope as well as being responsible for the adsorption of the virus to epithelial cells. The eBRV4 epitope was efficiently expressed in transgenic alfalfa as a translational fusion protein with the highly stable reporter enzyme β-glucuronidase (βGUS), which served as a carrier, stabilized the synthesized peptide and facilitated screening for the higher expression levels in plants. Correlation of expression of the eBRV4 epitope in plants with those presenting the highest βGUS activities was confirmed by a Western blot assay specific for the BRV peptide. The eBRV4 epitope expressed in plants was effective in inducing an anti-rotavirus antibody response in adult female mice when administered either intraperitoneally or orally and, more importantly, suckling mice born from immunized female mice were protected against oral challenge with virulent rotavirus. These results demonstrate the feasibility of inducing lactogenic immunity against an enteric pathogen using an edible vaccine produced in transgenic plants.
Collapse
Affiliation(s)
- Andrés Wigdorovitz
- Consejo Nacional e Investigaciones Científicas y Técnicas (CONICET), Argentina
- Instituto de Virología, CICV, INTA-Castelar, CC77, Morón 1708, Buenos Aires, Argentina
| | - Marina Mozgovoj
- Instituto de Virología, CICV, INTA-Castelar, CC77, Morón 1708, Buenos Aires, Argentina
| | - María J Dus Santos
- Instituto de Virología, CICV, INTA-Castelar, CC77, Morón 1708, Buenos Aires, Argentina
| | - Viviana Parreño
- Instituto de Virología, CICV, INTA-Castelar, CC77, Morón 1708, Buenos Aires, Argentina
| | - Cristina Gómez
- Instituto de Genética 'E. A. Favret', CICA, INTA-Castelar, Buenos Aires, Argentina
| | - Daniel M Pérez-Filgueira
- Departamento de Biotecnología and Centro de Investigación en Sanidad Animal, INIA, Valdeolmos, 28140 Madrid, Spain
- Consejo Nacional e Investigaciones Científicas y Técnicas (CONICET), Argentina
| | - Karina G Trono
- Instituto de Virología, CICV, INTA-Castelar, CC77, Morón 1708, Buenos Aires, Argentina
| | - Raúl D Ríos
- Instituto de Genética 'E. A. Favret', CICA, INTA-Castelar, Buenos Aires, Argentina
| | - Pascual M Franzone
- Instituto de Genética 'E. A. Favret', CICA, INTA-Castelar, Buenos Aires, Argentina
| | - Fernando Fernández
- Instituto de Virología, CICV, INTA-Castelar, CC77, Morón 1708, Buenos Aires, Argentina
| | - Consuelo Carrillo
- Instituto de Virología, CICV, INTA-Castelar, CC77, Morón 1708, Buenos Aires, Argentina
| | - Lorne A Babiuk
- University of Saskatchewan, VIDO, Saskatoon, SK, Canada, S7N 5E3
| | - José M Escribano
- Departamento de Biotecnología and Centro de Investigación en Sanidad Animal, INIA, Valdeolmos, 28140 Madrid, Spain
| | - Manuel V Borca
- Consejo Nacional e Investigaciones Científicas y Técnicas (CONICET), Argentina
- Instituto de Virología, CICV, INTA-Castelar, CC77, Morón 1708, Buenos Aires, Argentina
| |
Collapse
|
23
|
Bertolotti-Ciarlet A, Ciarlet M, Crawford SE, Conner ME, Estes MK. Immunogenicity and protective efficacy of rotavirus 2/6-virus-like particles produced by a dual baculovirus expression vector and administered intramuscularly, intranasally, or orally to mice. Vaccine 2003; 21:3885-900. [PMID: 12922123 DOI: 10.1016/s0264-410x(03)00308-6] [Citation(s) in RCA: 103] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Virus-like particles (VLPs) are being evaluated as a candidate rotavirus vaccine. Rotavirus VLPs composed of simian SA11 strain VP2 and VP6 proteins (homologous 2/6-VLPs) were produced by cloning the rotavirus simian SA11 genes 2 and 6 into a single baculovirus transfer vector (pAcAB4). The overall yield of homologous 2/6-VLPs produced with the dual recombinant baculovirus was at least 30-fold higher than that of VLPs composed of bovine RF strain VP2 and simian SA11 strain VP6 (heterologous 2/6-VLPs), produced with single recombinant baculoviruses. Adult mice were immunized intramuscularly twice with various doses of homologous or heterologous 2/6-VLPs in QS-21, orally with or without cholera toxin (CT), or intranasally with mutant Escherichia coli heat-labile enterotoxin (LT-R192G). Both homologous and heterologous 2/6-VLPs were immunogenic and induced protection from challenge, with those administered parenterally or intranasally affording the highest mean protection from challenge. The 2/6-VLPs did not induce serum neutralizing antibody (N-Ab) responses, but these VLPs primed for a broad heterotypic N-Ab response, which was elicited after rotavirus challenge. Heterotypic N-Ab responses were not observed in 2/6-VLP vaccinated mice that were > or =94% protected from challenge. After challenge, control mice immunized with adjuvant alone developed only homotypic serum N-Ab responses. Similar results were obtained after challenge of rabbits immunized parenterally or intranasally with heterologous 2/6-VLPs. These results suggest that 2/6-VLPs prime the immune system to enhance the production of heterotypic N-Ab responses, but the induction of heterotypic N-Abs requires that virus replication occurs after challenge. The use of 2/6-VLPs expressed from a single recombinant baculovirus simplifies production and would reduce the cost of a VLP-based vaccine.
Collapse
MESH Headings
- Adjuvants, Immunologic/pharmacology
- Administration, Intranasal
- Administration, Oral
- Animals
- Antibodies, Viral/analysis
- Antibodies, Viral/biosynthesis
- Baculoviridae/genetics
- Cholera Toxin/pharmacology
- Cloning, Molecular
- Electrophoresis, Polyacrylamide Gel
- Enzyme-Linked Immunosorbent Assay
- Feces/virology
- Female
- Genetic Vectors/genetics
- Injections, Intramuscular
- Mice
- Neutralization Tests
- Rabbits
- Rotavirus/genetics
- Rotavirus/immunology
- Rotavirus/isolation & purification
- Rotavirus Infections/prevention & control
- Rotavirus Vaccines/administration & dosage
- Rotavirus Vaccines/genetics
- Rotavirus Vaccines/immunology
- Vaccines, Attenuated/administration & dosage
- Vaccines, Attenuated/genetics
- Vaccines, Attenuated/immunology
Collapse
Affiliation(s)
- Andrea Bertolotti-Ciarlet
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, One Baylor Plaza, BCM-385, Houston, TX 77030, USA
| | | | | | | | | |
Collapse
|
24
|
Iosef C, Chang KO, Azevedo MSP, Saif LJ. Systemic and intestinal antibody responses to NSP4 enterotoxin of Wa human rotavirus in a gnotobiotic pig model of human rotavirus disease. J Med Virol 2002; 68:119-28. [PMID: 12210439 DOI: 10.1002/jmv.10178] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Antibody responses to the Wa human rotavirus (HRV) nonstructural protein NSP4, a viral enterotoxin, were evaluated in neonatal gnotobiotic (Gn) pigs. Gn pigs were inoculated orally with one dose of 10(5) fluorescent focus units (FFU) of virulent Wa HRV (HRV-V), to mimic natural infection, or with three doses of 5 x 10(7) FFU attenuated Wa HRV (HRV-A) at 10-day intervals, to mimic oral attenuated rotavirus vaccines, or they were mock inoculated (mock). Subsets of pigs were challenged with 10(6) FFU of virulent Wa HRV at post-inoculation day 28 (PID 28). Post-challenge, the HRV-V pigs were completely protected against diarrhea and virus shedding, whereas the HRV-A pigs had a 50% protection rate against diarrhea and a 67% protection rate against virus shedding. All mock-inoculated pigs shed virus and had diarrhea post-challenge. Isotype antibody titers to NSP4 were compared in serum and intestinal contents, at post-inoculation day (PID) 28 and at post-challenge day 7 (PCD 7/PID 35) by indirect ELISA, using purified recombinant NH2-6xHis-tagged NSP4 of virulent Wa HRV. Pre-challenge, both the HRV-V and HRV-A-inoculated pigs had similar moderate titers of serum IgG antibodies to NSP4. However, only the HRV-V-inoculated pigs developed detectable serum and intestinal IgA antibody titers to NSP4 pre-challenge, compared with the HRV-A-inoculated pigs. The mock-inoculated pigs had no IgM, IgA, or IgG antibodies to NSP4 pre-challenge. All Wa HRV-inoculated pigs developed low to moderate titers of serum IgM, IgG, and IgA antibodies to NSP4 post-challenge, but the mock-inoculated pigs had only IgM antibodies post-challenge. Both Wa HRV-inoculated groups developed low titers of IgA antibody to NSP4 in the small intestinal contents post-challenge, but titers were 5.8-fold higher in the HRV-V pigs. Our results concur with findings that both rotavirus vaccinated and naturally infected children seroconvert with modest IgG antibodies to NSP4 [Johansen et al. (1999) J Med Virol 59:369-367]. These data suggest that Gn pigs could be a useful model to evaluate serum and intestinal IgA antibodies to NSP4 and their role in protection against HRV infection. Further experiments may clarify whether (1) the NSP4 antibodies detected pre-challenge in the HRV-V pigs contribute to the higher protection rates observed, or (2) the reduced or delayed NSP4 antibody responses of the HRV-A pigs are associated with the lower protection rates in these pigs.
Collapse
Affiliation(s)
- Cristiana Iosef
- Department of Veterinary Preventive Medicine, Food Animal Health Research Program, Ohio Agricultural Research and Development Center, The Ohio State University, Wooster, Ohio, 44691-4096, USA
| | | | | | | |
Collapse
|