1
|
Equine Arteritis Virus Elicits a Mucosal Antibody Response in the Reproductive Tract of Persistently Infected Stallions. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2017; 24:CVI.00215-17. [PMID: 28814389 DOI: 10.1128/cvi.00215-17] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Accepted: 08/12/2017] [Indexed: 01/26/2023]
Abstract
Equine arteritis virus (EAV) has the ability to establish persistent infection in the reproductive tract of the stallion (carrier) and is continuously shed in its semen. We have recently demonstrated that EAV persists within stromal cells and a subset of lymphocytes in the stallion accessory sex glands in the presence of a significant local inflammatory response. In the present study, we demonstrated that EAV elicits a mucosal antibody response in the reproductive tract during persistent infection with homing of plasma cells into accessory sex glands. The EAV-specific immunoglobulin isotypes in seminal plasma included IgA, IgG1, IgG3/5, and IgG4/7. Interestingly, seminal plasma IgG1 and IgG4/7 possessed virus-neutralizing activity, while seminal plasma IgA and IgG3/5 did not. However, virus-neutralizing IgG1 and IgG4/7 in seminal plasma were not effective in preventing viral infectivity. In addition, the serological response was primarily mediated by virus-specific IgM and IgG1, while virus-specific serum IgA, IgG3/5, IgG4/7, and IgG6 isotype responses were not detected. This is the first report characterizing the immunoglobulin isotypes in equine serum and seminal plasma in response to EAV infection. The findings presented herein suggest that while a broader immunoglobulin isotype diversity is elicited in seminal plasma, EAV has the ability to persist in the reproductive tract, in spite of local mucosal antibody and inflammatory responses. This study provides further evidence that EAV employs complex immune evasion mechanisms during persistence in the reproductive tract that warrant further investigation.
Collapse
|
2
|
Sarkar S, Bailey E, Go YY, Cook RF, Kalbfleisch T, Eberth J, Chelvarajan RL, Shuck KM, Artiushin S, Timoney PJ, Balasuriya UBR. Allelic Variation in CXCL16 Determines CD3+ T Lymphocyte Susceptibility to Equine Arteritis Virus Infection and Establishment of Long-Term Carrier State in the Stallion. PLoS Genet 2016; 12:e1006467. [PMID: 27930647 PMCID: PMC5145142 DOI: 10.1371/journal.pgen.1006467] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2016] [Accepted: 11/05/2016] [Indexed: 12/25/2022] Open
Abstract
Equine arteritis virus (EAV) is the causative agent of equine viral arteritis (EVA), a respiratory, systemic, and reproductive disease of horses and other equid species. Following natural infection, 10-70% of the infected stallions can become persistently infected and continue to shed EAV in their semen for periods ranging from several months to life. Recently, we reported that some stallions possess a subpopulation(s) of CD3+ T lymphocytes that are susceptible to in vitro EAV infection and that this phenotypic trait is associated with long-term carrier status following exposure to the virus. In contrast, stallions not possessing the CD3+ T lymphocyte susceptible phenotype are at less risk of becoming long-term virus carriers. A genome wide association study (GWAS) using the Illumina Equine SNP50 chip revealed that the ability of EAV to infect CD3+ T lymphocytes and establish long-term carrier status in stallions correlated with a region within equine chromosome 11. Here we identified the gene and mutations responsible for these phenotypes. Specifically, the work implicated three allelic variants of the equine orthologue of CXCL16 (EqCXCL16) that differ by four non-synonymous nucleotide substitutions (XM_00154756; c.715 A → T, c.801 G → C, c.804 T → A/G, c.810 G → A) within exon 1. This resulted in four amino acid changes with EqCXCL16S (XP_001504806.1) having Phe, His, Ile and Lys as compared to EqCXL16R having Tyr, Asp, Phe, and Glu at 40, 49, 50, and 52, respectively. Two alleles (EqCXCL16Sa, EqCXCL16Sb) encoded identical protein products that correlated strongly with long-term EAV persistence in stallions (P<0.000001) and are required for in vitro CD3+ T lymphocyte susceptibility to EAV infection. The third (EqCXCL16R) was associated with in vitro CD3+ T lymphocyte resistance to EAV infection and a significantly lower probability for establishment of the long-term carrier state (viral persistence) in the male reproductive tract. EqCXCL16Sa and EqCXCL16Sb exert a dominant mode of inheritance. Most importantly, the protein isoform EqCXCL16S but not EqCXCL16R can function as an EAV cellular receptor. Although both molecules have equal chemoattractant potential, EqCXCL16S has significantly higher scavenger receptor and adhesion properties compared to EqCXCL16R.
Collapse
Affiliation(s)
- Sanjay Sarkar
- Maxwell H. Gluck Equine Research Center, Department of Veterinary Science, University of Kentucky, Lexington, Kentucky, United States of America
| | - Ernest Bailey
- Maxwell H. Gluck Equine Research Center, Department of Veterinary Science, University of Kentucky, Lexington, Kentucky, United States of America
- * E-mail: (UBRB); (EB)
| | - Yun Young Go
- Maxwell H. Gluck Equine Research Center, Department of Veterinary Science, University of Kentucky, Lexington, Kentucky, United States of America
| | - R. Frank Cook
- Maxwell H. Gluck Equine Research Center, Department of Veterinary Science, University of Kentucky, Lexington, Kentucky, United States of America
| | - Ted Kalbfleisch
- Department of Biochemistry and Molecular Genetics, School of Medicine, University of Louisville, Louisville, Kentucky, United States of America
| | - John Eberth
- Maxwell H. Gluck Equine Research Center, Department of Veterinary Science, University of Kentucky, Lexington, Kentucky, United States of America
| | - R. Lakshman Chelvarajan
- Maxwell H. Gluck Equine Research Center, Department of Veterinary Science, University of Kentucky, Lexington, Kentucky, United States of America
| | - Kathleen M. Shuck
- Maxwell H. Gluck Equine Research Center, Department of Veterinary Science, University of Kentucky, Lexington, Kentucky, United States of America
| | - Sergey Artiushin
- Maxwell H. Gluck Equine Research Center, Department of Veterinary Science, University of Kentucky, Lexington, Kentucky, United States of America
| | - Peter J. Timoney
- Maxwell H. Gluck Equine Research Center, Department of Veterinary Science, University of Kentucky, Lexington, Kentucky, United States of America
| | - Udeni B. R. Balasuriya
- Maxwell H. Gluck Equine Research Center, Department of Veterinary Science, University of Kentucky, Lexington, Kentucky, United States of America
- * E-mail: (UBRB); (EB)
| |
Collapse
|
3
|
Abstract
Vaccination is essential in livestock farming and in companion animal ownership. Nucleic acid vaccines based on DNA or RNA provide an elegant alternative to those classical veterinary vaccines that have performed suboptimally. Recent advances in terms of rational design, safety, and efficacy have strengthened the position of nucleic acid vaccines in veterinary vaccinology. The present review focuses on replicon vaccines designed for veterinary use. Replicon vaccines are self-amplifying viral RNA sequences that, in addition to the sequence encoding the antigen of interest, contain all elements necessary for RNA replication. Vaccination results in high levels of in situ antigen expression and induction of potent immune responses. Both positive- and negative-stranded viruses have been used to construct replicons, and they can be delivered as RNA, DNA, or viral replicon particles. An introduction to the biology and the construction of different viral replicon vectors is given, and examples of veterinary replicon vaccine applications are discussed.
Collapse
Affiliation(s)
- Mia C Hikke
- Laboratory of Virology, Wageningen University, 6708 PB Wageningen, The Netherlands;
| | - Gorben P Pijlman
- Laboratory of Virology, Wageningen University, 6708 PB Wageningen, The Netherlands;
| |
Collapse
|
4
|
Balasuriya UBR, Carossino M, Timoney PJ. Equine viral arteritis: A respiratory and reproductive disease of significant economic importance to the equine industry. EQUINE VET EDUC 2016. [DOI: 10.1111/eve.12672] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- U. B. R. Balasuriya
- Department of Veterinary Science; Maxwell H. Gluck Equine Research Center; College of Agriculture, Food and Environment; University of Kentucky; Lexington USA
| | - M. Carossino
- Department of Veterinary Science; Maxwell H. Gluck Equine Research Center; College of Agriculture, Food and Environment; University of Kentucky; Lexington USA
| | - P. J. Timoney
- Department of Veterinary Science; Maxwell H. Gluck Equine Research Center; College of Agriculture, Food and Environment; University of Kentucky; Lexington USA
| |
Collapse
|
5
|
Mondal SP, Cook RF, Chelvarajan RL, Henney PJ, Timoney PJ, Balasuriya UBR. Development and characterization of a synthetic infectious cDNA clone of the virulent Bucyrus strain of equine arteritis virus expressing mCherry (red fluorescent protein). Arch Virol 2016; 161:821-32. [PMID: 26711457 DOI: 10.1007/s00705-015-2633-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2015] [Accepted: 09/28/2015] [Indexed: 10/22/2022]
Abstract
Strains of equine arteritis virus (EAV) differ in their virulence phenotypes, causing anywhere from subclinical infections to severe disease in horses. Here, we describe the in silico design and de novo synthesis of a full-length infectious cDNA clone of the horse-adapted virulent Bucyrus strain (VBS) of EAV encoding mCherry along with in vitro characterization of the progeny virions (EAV sVBSmCherry) in terms of host-cell tropism, replicative capacity and stability of the mCherry coding sequences following sequential passage in cell culture. The relative stability of the mCherry sequence during sequential cell culture passage coupled with a comparable host-cell range phenotype (equine endothelial cells, CD3(+) T cells and CD14(+) monocytes) to parental EAV VBS suggest that EAV-sVBSmCherry-derived virus could become a valuable research tool for identification of host-cell tropism determinants and for characterization of the viral proteins involved in virus attachment and entry into different subpopulations of peripheral blood mononuclear cells. Furthermore, this study demonstrates that advances in nucleic acid synthesis technology permit synthesis of complex viral genomes with overlapping genes like those of arteriviruses, thereby circumventing the need for complicated molecular cloning techniques. In summary, de novo nucleic acid synthesis technology facilitates innovative viral vector design without the tedium and risks posed by more-conventional laboratory techniques.
Collapse
Affiliation(s)
- Shankar P Mondal
- 108 Maxwell H. Gluck Equine Research Center, Department of Veterinary Science, College of Agriculture, Food and Environment, University of Kentucky, Lexington, KY, 40546-0099, USA
| | - R Frank Cook
- 108 Maxwell H. Gluck Equine Research Center, Department of Veterinary Science, College of Agriculture, Food and Environment, University of Kentucky, Lexington, KY, 40546-0099, USA
| | - R Lakshman Chelvarajan
- 108 Maxwell H. Gluck Equine Research Center, Department of Veterinary Science, College of Agriculture, Food and Environment, University of Kentucky, Lexington, KY, 40546-0099, USA
| | - Pamela J Henney
- 108 Maxwell H. Gluck Equine Research Center, Department of Veterinary Science, College of Agriculture, Food and Environment, University of Kentucky, Lexington, KY, 40546-0099, USA
| | - Peter J Timoney
- 108 Maxwell H. Gluck Equine Research Center, Department of Veterinary Science, College of Agriculture, Food and Environment, University of Kentucky, Lexington, KY, 40546-0099, USA
| | - Udeni B R Balasuriya
- 108 Maxwell H. Gluck Equine Research Center, Department of Veterinary Science, College of Agriculture, Food and Environment, University of Kentucky, Lexington, KY, 40546-0099, USA.
| |
Collapse
|
6
|
Pfahl K, Chung C, Singleton MD, Shuck KM, Go YY, Zhang J, Campos J, Adams E, Adams DS, Timoney PJ, Balasuriya UBR. Further evaluation and validation of a commercially available competitive ELISA (cELISA) for the detection of antibodies specific to equine arteritis virus (EAV). Vet Rec 2016; 178:95. [DOI: 10.1136/vr.103362] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/30/2015] [Indexed: 11/03/2022]
Affiliation(s)
- K. Pfahl
- Maxwell H. Gluck Equine Research; Department of Veterinary Science; University of Kentucky; Lexington KY 40512 USA
- University of Kentucky Veterinary Diagnostic Laboratory; Lexington KY 40512 USA
| | - C. Chung
- VMRD (Veterinary Medical Research and Development) Inc.; Pullman WA 99163 USA
| | - M. D. Singleton
- Department of Biostatistics; University of Kentucky; Lexington KY 40512 USA
| | - K. M. Shuck
- Maxwell H. Gluck Equine Research; Department of Veterinary Science; University of Kentucky; Lexington KY 40512 USA
| | - Y. Y. Go
- Maxwell H. Gluck Equine Research; Department of Veterinary Science; University of Kentucky; Lexington KY 40512 USA
- Virus Research and Testing Group; Division of Drug Discovery Research; Korea Research Institute of Chemical Technology; Daejeon Korea
| | - J. Zhang
- Maxwell H. Gluck Equine Research; Department of Veterinary Science; University of Kentucky; Lexington KY 40512 USA
- Department of Veterinary Diagnostic and Production Animal Medicine; College of Veterinary Medicine, Iowa State University; 1600 South 16th St Ames IA 50011 USA
| | - J. Campos
- Maxwell H. Gluck Equine Research; Department of Veterinary Science; University of Kentucky; Lexington KY 40512 USA
| | - E. Adams
- VMRD (Veterinary Medical Research and Development) Inc.; Pullman WA 99163 USA
| | - D. S. Adams
- VMRD (Veterinary Medical Research and Development) Inc.; Pullman WA 99163 USA
| | - P. J. Timoney
- Maxwell H. Gluck Equine Research; Department of Veterinary Science; University of Kentucky; Lexington KY 40512 USA
| | - U. B. R. Balasuriya
- Maxwell H. Gluck Equine Research; Department of Veterinary Science; University of Kentucky; Lexington KY 40512 USA
| |
Collapse
|
7
|
Equine Arteritis Virus Uses Equine CXCL16 as an Entry Receptor. J Virol 2016; 90:3366-84. [PMID: 26764004 DOI: 10.1128/jvi.02455-15] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2015] [Accepted: 01/05/2016] [Indexed: 12/14/2022] Open
Abstract
UNLABELLED Previous studies in our laboratory have identified equine CXCL16 (EqCXCL16) to be a candidate molecule and possible cell entry receptor for equine arteritis virus (EAV). In horses, the CXCL16 gene is located on equine chromosome 11 (ECA11) and encodes a glycosylated, type I transmembrane protein with 247 amino acids. Stable transfection of HEK-293T cells with plasmid DNA carrying EqCXCL16 (HEK-EqCXCL16 cells) increased the proportion of the cell population permissive to EAV infection from <3% to almost 100%. The increase in permissiveness was blocked either by transfection of HEK-EqCXCL16 cells with small interfering RNAs (siRNAs) directed against EqCXCL16 or by pretreatment with guinea pig polyclonal antibody against EqCXCL16 protein (Gp anti-EqCXCL16 pAb). Furthermore, using a virus overlay protein-binding assay (VOPBA) in combination with far-Western blotting, gradient-purified EAV particles were shown to bind directly to the EqCXCL16 protein in vitro. The binding of biotinylated virulent EAV strain Bucyrus at 4°C was significantly higher in HEK-EqCXCL16 cells than nontransfected HEK-293T cells. Finally, the results demonstrated that EAV preferentially infects subpopulations of horse CD14(+) monocytes expressing EqCXCL16 and that infection of these cells is significantly reduced by pretreatment with Gp anti-EqCXCL16 pAb. The collective data from this study provide confirmatory evidence that the transmembrane form of EqCXCL16 likely plays a major role in EAV host cell entry processes, possibly acting as a primary receptor molecule for this virus. IMPORTANCE Outbreaks of EVA can be a source of significant economic loss for the equine industry from high rates of abortion in pregnant mares, death in young foals, establishment of the carrier state in stallions, and trade restrictions imposed by various countries. Similar to other arteriviruses, EAV primarily targets cells of the monocyte/macrophage lineage, which, when infected, are believed to play a critical role in EVA pathogenesis. To this point, however, the host-specified molecules involved in EAV binding and entry into monocytes/macrophages have not been identified. Identification of the cellular receptors for EAV may provide insights to design antivirals and better prophylactic reagents. In this study, we have demonstrated that EqCXCL16 acts as an EAV entry receptor in EAV-susceptible cells, equine monocytes. These findings represent a significant advance in our understanding of the fundamental mechanisms associated with the entry of EAV into susceptible cells.
Collapse
|
8
|
|
9
|
Abstract
Recombinant nucleic acids are considered as promising next-generation vaccines. These vaccines express the native antigen upon delivery into tissue, thus mimicking live attenuated vaccines without having the risk of reversion to pathogenicity. They also stimulate the innate immune system, thus potentiating responses. Nucleic acid vaccines are easy to produce at reasonable cost and are stable. During the past years, focus has been on the use of plasmid DNA for vaccination. Now mRNA and replicon vaccines have come into focus as promising technology platforms for vaccine development. This review discusses self-replicating RNA vaccines developed from alphavirus expression vectors. These replicon vaccines can be delivered as RNA, DNA or as recombinant virus particles. All three platforms have been pre-clinically evaluated as vaccines against a number of infectious diseases and cancer. Results have been very encouraging and propelled the first human clinical trials, the results of which have been promising.
Collapse
Affiliation(s)
- Karl Ljungberg
- Department of Microbiology, Tumor and Cell Biology Karolinska Institutet, Stockholm, Sweden
| | | |
Collapse
|
10
|
Balasuriya UBR, Zhang J, Go YY, MacLachlan NJ. Experiences with infectious cDNA clones of equine arteritis virus: lessons learned and insights gained. Virology 2014; 462-463:388-403. [PMID: 24913633 PMCID: PMC7172799 DOI: 10.1016/j.virol.2014.04.029] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2014] [Revised: 04/16/2014] [Accepted: 04/22/2014] [Indexed: 12/19/2022]
Abstract
The advent of recombinant DNA technology, development of infectious cDNA clones of RNA viruses, and reverse genetic technologies have revolutionized how viruses are studied. Genetic manipulation of full-length cDNA clones has become an especially important and widely used tool to study the biology, pathogenesis, and virulence determinants of both positive and negative stranded RNA viruses. The first full-length infectious cDNA clone of equine arteritis virus (EAV) was developed in 1996 and was also the first full-length infectious cDNA clone constructed from a member of the order Nidovirales. This clone was extensively used to characterize the molecular biology of EAV and other Nidoviruses. The objective of this review is to summarize the characterization of the virulence (or attenuation) phenotype of the recombinant viruses derived from several infectious cDNA clones of EAV in horses, as well as their application for characterization of the molecular basis of viral neutralization, persistence, and cellular tropism.
Collapse
Affiliation(s)
- Udeni B R Balasuriya
- 108 Maxwell H. Gluck Equine Research Center, Department of Veterinary Science, University of Kentucky, Lexington, KY 40546, USA.
| | - Jianqiang Zhang
- Department of Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA 50011, USA
| | - Yun Young Go
- Virus Research and Testing Group, Division of Drug Discovery Research, Korea Research Institute of Chemical Technology, Daejeon 305-343, South Korea
| | - N James MacLachlan
- Department of Pathology, Microbiology, and Immunology, School of Veterinary Medicine, University of California, Davis, CA 95616, USA
| |
Collapse
|
11
|
Balasuriya UBR, Go YY, MacLachlan NJ. Equine arteritis virus. Vet Microbiol 2013; 167:93-122. [PMID: 23891306 PMCID: PMC7126873 DOI: 10.1016/j.vetmic.2013.06.015] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2013] [Revised: 06/22/2013] [Accepted: 06/25/2013] [Indexed: 11/13/2022]
Abstract
Equine arteritis virus (EAV) is the causative agent of equine viral arteritis (EVA), a respiratory and reproductive disease of equids. There has been significant recent progress in understanding the molecular biology of EAV and the pathogenesis of its infection in horses. In particular, the use of contemporary genomic techniques, along with the development and reverse genetic manipulation of infectious cDNA clones of several strains of EAV, has generated significant novel information regarding the basic molecular biology of the virus. Therefore, the objective of this review is to summarize current understanding of EAV virion architecture, replication, evolution, molecular epidemiology and genetic variation, pathogenesis including the influence of host genetics on disease susceptibility, host immune response, and potential vaccination and treatment strategies.
Collapse
Affiliation(s)
- Udeni B R Balasuriya
- Maxwell H. Gluck Equine Research Center, Department of Veterinary Science, University of Kentucky, Lexington, KY 40546, USA.
| | | | | |
Collapse
|
12
|
Abstract
Arteriviruses are positive-stranded RNA viruses that infect mammals. They can cause persistent or asymptomatic infections, but also acute disease associated with a respiratory syndrome, abortion or lethal haemorrhagic fever. During the past two decades, porcine reproductive and respiratory syndrome virus (PRRSV) and, to a lesser extent, equine arteritis virus (EAV) have attracted attention as veterinary pathogens with significant economic impact. Particularly noteworthy were the 'porcine high fever disease' outbreaks in South-East Asia and the emergence of new virulent PRRSV strains in the USA. Recently, the family was expanded with several previously unknown arteriviruses isolated from different African monkey species. At the molecular level, arteriviruses share an intriguing but distant evolutionary relationship with coronaviruses and other members of the order Nidovirales. Nevertheless, several of their characteristics are unique, including virion composition and structure, and the conservation of only a subset of the replicase domains encountered in nidoviruses with larger genomes. During the past 15 years, the advent of reverse genetics systems for EAV and PRRSV has changed and accelerated the structure-function analysis of arterivirus RNA and protein sequences. These systems now also facilitate studies into host immune responses and arterivirus immune evasion and pathogenesis. In this review, we have summarized recent advances in the areas of arterivirus genome expression, RNA and protein functions, virion architecture, virus-host interactions, immunity, and pathogenesis. We have also briefly reviewed the impact of these advances on disease management, the engineering of novel candidate live vaccines and the diagnosis of arterivirus infection.
Collapse
Affiliation(s)
- Eric J Snijder
- Molecular Virology Department, Department of Medical Microbiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Marjolein Kikkert
- Molecular Virology Department, Department of Medical Microbiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Ying Fang
- Department of Diagnostic Medicine and Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, Kansas, USA.,Department of Veterinary and Biomedical Sciences, South Dakota State University, Brookings, South Dakota, USA
| |
Collapse
|
13
|
Lukashevich IS. The search for animal models for Lassa fever vaccine development. Expert Rev Vaccines 2013; 12:71-86. [PMID: 23256740 DOI: 10.1586/erv.12.139] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Lassa virus (LASV) is the most prevalent arenavirus in West Africa and is responsible for several hundred thousand infections and thousands of deaths annually. The sizeable disease burden, numerous imported cases of Lassa fever (LF) and the possibility that LASV can be used as an agent of biological warfare make a strong case for vaccine development. Currently there is no licensed LF vaccine and research and devlopment is hampered by the high cost of nonhuman primate animal models and by biocontainment requirements (BSL-4). In addition, a successful LF vaccine has to induce a strong cell-mediated cross-protective immunity against different LASV lineages. All of these challenges will be addressed in this review in the context of available and novel animal models recently described for evaluation of LF vaccine candidates.
Collapse
Affiliation(s)
- Igor S Lukashevich
- Department of Pharmacology and Toxicology, School of Medicine and the Center for Predictive Medicine for Biodefense and Emerging Infectious Diseases, University of Louisville, Louisville, KY 40202, USA.
| |
Collapse
|
14
|
White LJ, Sariol CA, Mattocks MD, Wahala M P B W, Yingsiwaphat V, Collier ML, Whitley J, Mikkelsen R, Rodriguez IV, Martinez MI, de Silva A, Johnston RE. An alphavirus vector-based tetravalent dengue vaccine induces a rapid and protective immune response in macaques that differs qualitatively from immunity induced by live virus infection. J Virol 2013; 87:3409-24. [PMID: 23302884 PMCID: PMC3592161 DOI: 10.1128/jvi.02298-12] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2012] [Accepted: 01/03/2013] [Indexed: 11/20/2022] Open
Abstract
Despite many years of research, a dengue vaccine is not available, and the more advanced live attenuated vaccine candidate in clinical trials requires multiple immunizations with long interdose periods and provides low protective efficacy. Here, we report important contributions to the development of a second-generation dengue vaccine. First, we demonstrate that a nonpropagating vaccine vector based on Venezuelan equine encephalitis virus replicon particles (VRP) expressing two configurations of dengue virus E antigen (subviral particles [prME] and soluble E dimers [E85]) successfully immunized and protected macaques against dengue virus, while antivector antibodies did not interfere with a booster immunization. Second, compared to prME-VRP, E85-VRP induced neutralizing antibodies faster, to higher titers, and with improved protective efficacy. Third, this study is the first to map antigenic domains and specificities targeted by vaccination versus natural infection, revealing that, unlike prME-VRP and live virus, E85-VRP induced only serotype-specific antibodies, which predominantly targeted EDIII, suggesting a protective mechanism different from that induced by live virus and possibly live attenuated vaccines. Fourth, a tetravalent E85-VRP dengue vaccine induced a simultaneous and protective response to all 4 serotypes after 2 doses given 6 weeks apart. Balanced responses and protection in macaques provided further support for exploring the immunogenicity and safety of this vaccine candidate in humans.
Collapse
Affiliation(s)
- Laura J White
- Global Vaccines Inc., Research Triangle Park, NC, USA.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Loy JD, Gander J, Mogler M, Vander Veen R, Ridpath J, Harris DH, Kamrud K. Development and evaluation of a replicon particle vaccine expressing the E2 glycoprotein of bovine viral diarrhea virus (BVDV) in cattle. Virol J 2013; 10:35. [PMID: 23356714 PMCID: PMC3565941 DOI: 10.1186/1743-422x-10-35] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2012] [Accepted: 01/22/2013] [Indexed: 11/17/2022] Open
Abstract
Background Bovine viral diarrhea virus is one of the most significant and costly viral pathogens of cattle worldwide. Alphavirus-derived replicon particles have been shown to be safe and highly effective vaccine vectors against a variety of human and veterinary pathogens. Replicon particles are non-propagating, DIVA compatible, and can induce both humoral and cell mediated immune responses. This is the first experiment to demonstrate that Alphavirus-based replicon particles can be utilized in a standard prime/boost vaccination strategy in calves against a commercially significant bovine pathogen. Findings Replicon particles that express bovine viral diarrhea virus sub-genotype 1b E2 glycoprotein were generated and expression was confirmed in vitro using polyclonal and monoclonal antibodies specific to E2. Vaccine made from particles was generated in Vero cells and administered to BVDV free calves in a prime/boost regimen at two dosage levels. Vaccination resulted in neutralizing antibody titers that cross-neutralized both type 1 and type 2 BVD genotypes following booster vaccination. Additionally, high dose vaccine administration demonstrated some protection from clinical disease and significantly reduced the degree of leukopenia caused by viral infection. Conclusions Replicon particle vaccines administered in a prime/boost regimen expressing BVDV E2 glycoprotein can induce cross-neutralizing titers, reduce leukopenia post challenge, and mitigate clinical disease in calves. This strategy holds promise for a safe and effective vaccine to BVDV.
Collapse
Affiliation(s)
- John Dustin Loy
- Harrisvaccines, Inc, 1102 Southern Hills Dr, Suite 101, Ames, IA 50010, USA.
| | | | | | | | | | | | | |
Collapse
|
16
|
Carrion R, Bredenbeek P, Jiang X, Tretyakova I, Pushko P, Lukashevich IS. Vaccine Platforms to Control Arenaviral Hemorrhagic Fevers. JOURNAL OF VACCINES & VACCINATION 2012; 3:1000160. [PMID: 23420494 PMCID: PMC3573532 DOI: 10.4172/2157-7560.1000160] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Arenaviruses are rodent-borne emerging human pathogens. Diseases caused by these viruses, e.g., Lassa fever (LF) in West Africa and South American hemorrhagic fevers (HFs), are serious public health problems in endemic areas. We have employed replication-competent and replication-deficient strategies to design vaccine candidates potentially targeting different groups "at risk". Our leader LF vaccine candidate, the live reassortant vaccine ML29, is safe and efficacious in all tested animal models including non-human primates. In this study we showed that treatment of fatally infected animals with ML29 two days after Lassa virus (LASV) challenge protected 80% of the treated animals. In endemic areas, where most of the target population is poor and many live far from health care facilities, a single-dose vaccination with ML29 would be ideal solution. Once there is an outbreak, a fast-acting vaccine or post-exposure prophylaxis would be best. The 2(nd) vaccine technology is based on Yellow Fever (YF) 17D vaccine. We designed YF17D-based recombinant viruses expressing LASV glycoproteins (GP) and showed protective efficacy of these recombinants. In the current study we developed a novel technology to clone LASV nucleocapsid within YF17D C gene. Low immunogenicity and stability of foreign inserts must be addressed to design successful LASV/YFV bivalent vaccines to control LF and YF in overlapping endemic areas of West Africa. The 3(rd) platform is based on the new generation of alphavirus replicon virus-like-particle vectors (VLPV). Using this technology we designed VLPV expressing LASV GP with enhanced immunogenicity and bivalent VLPV expressing cross-reactive GP of Junin virus (JUNV) and Machupo virus (MACV), causative agents of Argentinian and Bolivian HF, respectively. A prime-boost regimen required for VLPV immunization might be practical for medical providers, military, lab personnel, and visitors in endemic areas.
Collapse
Affiliation(s)
- Ricardo Carrion
- Department of Virology and Immunology, Texas Biomedical Research Institute, San Antonio, TX, USA
| | - Peter Bredenbeek
- Department of Medical Microbiology, Center for Infectious Diseases, Leiden University Medical Center, Leiden, The Netherlands
| | - Xiaohong Jiang
- Department of Medical Microbiology, Center for Infectious Diseases, Leiden University Medical Center, Leiden, The Netherlands
| | | | | | - Igor S. Lukashevich
- Department of Pharmacology and Toxicology, School of Medicine, Center for Predictive Medicine for Biodefense and Emerging Infectious Diseases, NIH Regional Bio-containment Laboratory, University of Louisville, KY, USA
| |
Collapse
|
17
|
Phase I safety and immunogenicity evaluations of an alphavirus replicon HIV-1 subtype C gag vaccine in healthy HIV-1-uninfected adults. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2012; 19:1651-60. [PMID: 22914365 DOI: 10.1128/cvi.00258-12] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
On the basis of positive preclinical data, we evaluated the safety and immunogenicity of an alphavirus replicon HIV-1 subtype C gag vaccine (AVX101), expressing a nonmyristoylated form of Gag, in two double-blind, randomized, placebo-controlled clinical trials in healthy HIV-1-uninfected adults. Escalating doses of AVX101 or placebo were administered subcutaneously to participants in the United States and Southern Africa. Because of vaccine stability issues, the first trial was halted prior to completion of all dose levels and a second trial was implemented. The second trial was also stopped prematurely due to documentation issues with the contract manufacturer. Safety and immunogenicity were evaluated through assessments of reactogenicity, reports of adverse events, and assessment of replication-competent and Venezuelan equine encephalitis (VEE) viremia. Immunogenicity was measured using the following assays: enzyme-linked immunosorbent assay (ELISA), chromium 51 ((51)Cr)-release cytotoxic T lymphocyte (CTL), gamma interferon (IFN-γ) ELISpot, intracellular cytokine staining (ICS), and lymphoproliferation assay (LPA). Anti-vector antibodies were also measured. AVX101 was well tolerated and exhibited only modest local reactogenicity. There were 5 serious adverse events reported during the trials; none were considered related to the study vaccine. In contrast to the preclinical data, immune responses in humans were limited. Only low levels of binding antibodies and T-cell responses were seen at the highest doses. This trial also highlighted the difficulties in developing a novel vector for HIV.
Collapse
|
18
|
Zhang J, Go YY, Huang CM, Meade BJ, Lu Z, Snijder EJ, Timoney PJ, Balasuriya UBR. Development and characterization of an infectious cDNA clone of the modified live virus vaccine strain of equine arteritis virus. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2012; 19:1312-21. [PMID: 22739697 PMCID: PMC3416077 DOI: 10.1128/cvi.00302-12] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2012] [Accepted: 06/20/2012] [Indexed: 11/20/2022]
Abstract
A stable full-length cDNA clone of the modified live virus (MLV) vaccine strain of equine arteritis virus (EAV) was developed. RNA transcripts generated from this plasmid (pEAVrMLV) were infectious upon transfection into mammalian cells, and the resultant recombinant virus (rMLV) had 100% nucleotide identity to the parental MLV vaccine strain of EAV. A single silent nucleotide substitution was introduced into the nucleocapsid gene (pEAVrMLVB), enabling the cloned vaccine virus (rMLVB) to be distinguished from parental MLV vaccine as well as other field and laboratory strains of EAV by using an allelic discrimination real-time reverse transcription (RT)-PCR assay. In vitro studies revealed that the cloned vaccine virus rMLVB and the parental MLV vaccine virus had identical growth kinetics and plaque morphologies in equine endothelial cells. In vivo studies confirmed that the cloned vaccine virus was very safe and induced high titers of neutralizing antibodies against EAV in experimentally immunized horses. When challenged with the heterologous EAV KY84 strain, the rMLVB vaccine virus protected immunized horses in regard to reducing the magnitude and duration of viremia and virus shedding but did not suppress the development of signs of EVA, although these were reduced in clinical severity. The vaccine clone pEAVrMLVB could be further manipulated to improve the vaccine efficacy as well as to develop a marker vaccine for serological differentiation of EAV naturally infected from vaccinated animals.
Collapse
MESH Headings
- Animals
- Antibodies, Neutralizing/blood
- Antibodies, Viral/blood
- Cells, Cultured
- DNA, Complementary/genetics
- Endothelial Cells/virology
- Equartevirus/classification
- Equartevirus/genetics
- Equartevirus/growth & development
- Genotype
- Horses
- Molecular Sequence Data
- Nucleocapsid/genetics
- Point Mutation
- RNA, Viral/genetics
- Real-Time Polymerase Chain Reaction
- Reverse Transcriptase Polymerase Chain Reaction
- Sequence Analysis, DNA
- Sequence Homology, Nucleic Acid
- Transcription, Genetic
- Vaccines, Attenuated/administration & dosage
- Vaccines, Attenuated/genetics
- Vaccines, Attenuated/immunology
- Viral Plaque Assay
- Viral Vaccines/administration & dosage
- Viral Vaccines/genetics
- Viral Vaccines/immunology
Collapse
Affiliation(s)
- Jianqiang Zhang
- Maxwell H. Gluck Equine Research Center, Department of Veterinary Science, University of Kentucky, Lexington, Kentucky, USA
| | - Yun Young Go
- Maxwell H. Gluck Equine Research Center, Department of Veterinary Science, University of Kentucky, Lexington, Kentucky, USA
| | - Chengjin M. Huang
- Fort Dodge Animal Health Inc., Fort Dodge, Iowa, USA (now Pfizer Animal Health Inc., VMRD, Kalamazoo, Michigan, USA)
| | - Barry J. Meade
- Maxwell H. Gluck Equine Research Center, Department of Veterinary Science, University of Kentucky, Lexington, Kentucky, USA
| | - Zhengchun Lu
- Maxwell H. Gluck Equine Research Center, Department of Veterinary Science, University of Kentucky, Lexington, Kentucky, USA
| | - Eric J. Snijder
- Molecular Virology Laboratory, Department of Medical Microbiology, Center of Infectious Diseases, Leiden University Medical Center, Leiden, The Netherlands
| | - Peter J. Timoney
- Maxwell H. Gluck Equine Research Center, Department of Veterinary Science, University of Kentucky, Lexington, Kentucky, USA
| | - Udeni B. R. Balasuriya
- Maxwell H. Gluck Equine Research Center, Department of Veterinary Science, University of Kentucky, Lexington, Kentucky, USA
| |
Collapse
|
19
|
Lu Z, Zhang J, Huang CM, Go YY, Faaberg KS, Rowland RRR, Timoney PJ, Balasuriya UBR. Chimeric viruses containing the N-terminal ectodomains of GP5 and M proteins of porcine reproductive and respiratory syndrome virus do not change the cellular tropism of equine arteritis virus. Virology 2012; 432:99-109. [PMID: 22739441 DOI: 10.1016/j.virol.2012.05.022] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2012] [Revised: 05/15/2012] [Accepted: 05/27/2012] [Indexed: 11/18/2022]
Abstract
Equine arteritis virus (EAV) and porcine reproductive and respiratory syndrome virus (PRRSV) are members of family Arteriviridae; they are highly species specific and differ significantly in cellular tropism in cultured cells. In this study we examined the role of the two major envelope proteins (GP5 and M) of EAV and PRRSV in determining their cellular tropism. We generated three viable EAV/PRRSV chimeric viruses by swapping the N-terminal ectodomains of these two proteins from PRRSV IA1107 strain into an infectious cDNA clone of EAV (rMLVB4/5 GP5ecto, rMLVB4/5/6 Mecto and rMLVB4/5/6 GP5&Mecto). The three chimeric viruses could only infect EAV susceptible cell lines but not PRRSV susceptible cells in culture. Therefore, these data unequivocally demonstrate that the ectodomains of GP5 and M are not the major determinants of cellular tropism, further supporting the recent findings that the minor envelope proteins are the critical proteins in mediating cellular tropism (Tian et al., 2012).
Collapse
Affiliation(s)
- Zhengchun Lu
- Maxwell H. Gluck Equine Research Center, Department of Veterinary Science, University of Kentucky, Lexington, KY 40546, United States
| | | | | | | | | | | | | | | |
Collapse
|
20
|
Abstract
The alphavirus replicon technology has been utilized for many years to develop vaccines for both veterinary and human applications. Many developments have been made to the replicon platform recently, resulting in improved safety and efficacy of replicon particle (RP) vaccines. This review provides a broad overview of the replicon technology and safety features of the system and discusses the current literature on RP and replicon-based vaccines.
Collapse
|
21
|
Defang GN, Khetawat D, Broder CC, Quinnan GV. Induction of neutralizing antibodies to Hendra and Nipah glycoproteins using a Venezuelan equine encephalitis virus in vivo expression system. Vaccine 2010; 29:212-20. [PMID: 21050901 DOI: 10.1016/j.vaccine.2010.10.053] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2010] [Revised: 10/13/2010] [Accepted: 10/20/2010] [Indexed: 10/18/2022]
Abstract
The emergence of Hendra Virus (HeV) and Nipah Virus (NiV) which can cause fatal infections in both animals and humans has triggered a search for an effective vaccine. Here, we have explored the potential for generating an effective humoral immune response to these zoonotic pathogens using an alphavirus-based vaccine platform. Groups of mice were immunized with Venezuelan equine encephalitis virus replicon particles (VRPs) encoding the attachment or fusion glycoproteins of either HeV or NiV. We demonstrate the induction of highly potent cross-reactive neutralizing antibodies to both viruses using this approach. Preliminary study suggested early enhancement in the antibody response with use of a modified version of VRP. Overall, these data suggest that the use of an alphavirus-derived vaccine platform might serve as a viable approach for the development of an effective vaccine against the henipaviruses.
Collapse
Affiliation(s)
- Gabriel N Defang
- Department of Preventive Medicine and Biometrics, Uniformed Services University of the Health Sciences, 4301 Jones Bridge Road, Bethesda, MD 20814, USA.
| | | | | | | |
Collapse
|
22
|
Bhardwaj N, Heise MT, Ross TM. Vaccination with DNA plasmids expressing Gn coupled to C3d or alphavirus replicons expressing gn protects mice against Rift Valley fever virus. PLoS Negl Trop Dis 2010; 4:e725. [PMID: 20582312 PMCID: PMC2889828 DOI: 10.1371/journal.pntd.0000725] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2009] [Accepted: 05/03/2010] [Indexed: 12/17/2022] Open
Abstract
Background Rift Valley fever (RVF) is an arthropod-borne viral zoonosis. Rift Valley fever virus (RVFV) is an important biological threat with the potential to spread to new susceptible areas. In addition, it is a potential biowarfare agent. Methodology/Principal Findings We developed two potential vaccines, DNA plasmids and alphavirus replicons, expressing the Gn glycoprotein of RVFV alone or fused to three copies of complement protein, C3d. Each vaccine was administered to mice in an all DNA, all replicon, or a DNA prime/replicon boost strategy and both the humoral and cellular responses were assessed. DNA plasmids expressing Gn-C3d and alphavirus replicons expressing Gn elicited high titer neutralizing antibodies that were similar to titers elicited by the live-attenuated MP12 virus. Mice vaccinated with an inactivated form of MP12 did elicit high titer antibodies, but these antibodies were unable to neutralize RVFV infection. However, only vaccine strategies incorporating alphavirus replicons elicited cellular responses to Gn. Both vaccines strategies completely prevented weight loss and morbidity and protected against lethal RVFV challenge. Passive transfer of antisera from vaccinated mice into naïve mice showed that both DNA plasmids expressing Gn-C3d and alphavirus replicons expressing Gn elicited antibodies that protected mice as well as sera from mice immunized with MP12. Conclusion/Significance These results show that both DNA plasmids expressing Gn-C3d and alphavirus replicons expressing Gn administered alone or in a DNA prime/replicon boost strategy are effective RVFV vaccines. These vaccine strategies provide safer alternatives to using live-attenuated RVFV vaccines for human use. Rift Valley fever virus (RVFV) is an arthropod-borne phlebovirus associated with abortion storms, neonatal mortality in livestock and hemorrhagic fever or fatal encephalitis in a proportion of infected humans. Requirement of multiple booster immunizations to maintain the level of protective immunity with the inactivated vaccines and the ability of live-attenuated vaccines to cause detrimental side-effects are major limitations preventing the widespread use of current vaccines. In this paper, we describe the use of DNA and alphavirus replicon based vaccination approaches to elicit a protective immune response against RVFV. While both vaccines elicited high titer antibodies, DNA vaccination elicited high titer neutralizing antibodies, whereas the replicon vaccine elicited cellular immune responses. Both strategies alone or in combination elicited immune response that completely protected against not only mortality, but also illness. Even though the delivery vectors elicited some protection on their own, they did not prevent severe morbidity. These promising vaccines provide an alternative RVFV vaccine for livestock and humans.
Collapse
Affiliation(s)
- Nitin Bhardwaj
- Department of Infectious Diseases and Microbiology, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
- Center for Vaccine Research, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Mark T. Heise
- Department of Microbiology and Immunology, The Carolina Vaccine Institute, University of North Carolina, Chapel Hill, North Carolina, United States of America
| | - Ted M. Ross
- Center for Vaccine Research, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
- Department of Microbiology and Molecular Genetics, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
- * E-mail:
| |
Collapse
|
23
|
Go YY, Zhang J, Timoney PJ, Cook RF, Horohov DW, Balasuriya UBR. Complex interactions between the major and minor envelope proteins of equine arteritis virus determine its tropism for equine CD3+ T lymphocytes and CD14+ monocytes. J Virol 2010; 84:4898-911. [PMID: 20219931 PMCID: PMC2863813 DOI: 10.1128/jvi.02743-09] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2009] [Accepted: 03/01/2010] [Indexed: 01/20/2023] Open
Abstract
Extensive cell culture passage of the virulent Bucyrus (VB) strain of equine arteritis virus (EAV) to produce the modified live virus (MLV) vaccine strain has altered its tropism for equine CD3(+) T lymphocytes and CD14(+) monocytes. The VB strain primarily infects CD14(+) monocytes and a small subpopulation of CD3(+) T lymphocytes (predominantly CD4(+) T lymphocytes), as determined by dual-color flow cytometry. In contrast, the MLV vaccine strain has a significantly reduced ability to infect CD14(+) monocytes and has lost its capability to infect CD3(+) T lymphocytes. Using a panel of five recombinant chimeric viruses, we demonstrated that interactions among the GP2, GP3, GP4, GP5, and M envelope proteins play a major role in determining the CD14(+) monocyte tropism while the tropism for CD3(+) T lymphocytes is determined by the GP2, GP4, GP5, and M envelope proteins but not the GP3 protein. The data clearly suggest that there are intricate interactions among these envelope proteins that affect the binding of EAV to different cell receptors on CD3(+) T lymphocytes and CD14(+) monocytes. This study shows, for the first time, that CD3(+) T lymphocytes may play an important role in the pathogenesis of equine viral arteritis when horses are infected with the virulent strains of EAV.
Collapse
Affiliation(s)
- Yun Young Go
- Maxwell H. Gluck Equine Research Center, Department of Veterinary Science, University of Kentucky, Lexington, Kentucky 40546-0099
| | - Jianqiang Zhang
- Maxwell H. Gluck Equine Research Center, Department of Veterinary Science, University of Kentucky, Lexington, Kentucky 40546-0099
| | - Peter J. Timoney
- Maxwell H. Gluck Equine Research Center, Department of Veterinary Science, University of Kentucky, Lexington, Kentucky 40546-0099
| | - R. Frank Cook
- Maxwell H. Gluck Equine Research Center, Department of Veterinary Science, University of Kentucky, Lexington, Kentucky 40546-0099
| | - David W. Horohov
- Maxwell H. Gluck Equine Research Center, Department of Veterinary Science, University of Kentucky, Lexington, Kentucky 40546-0099
| | - Udeni B. R. Balasuriya
- Maxwell H. Gluck Equine Research Center, Department of Veterinary Science, University of Kentucky, Lexington, Kentucky 40546-0099
| |
Collapse
|
24
|
Hooper JW, Ferro AM, Golden JW, Silvera P, Dudek J, Alterson K, Custer M, Rivers B, Morris J, Owens G, Smith JF, Kamrud KI. Molecular smallpox vaccine delivered by alphavirus replicons elicits protective immunity in mice and non-human primates. Vaccine 2009; 28:494-511. [PMID: 19833247 DOI: 10.1016/j.vaccine.2009.09.133] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2009] [Revised: 09/18/2009] [Accepted: 09/30/2009] [Indexed: 11/27/2022]
Abstract
Naturally occurring smallpox was eradicated as a result of successful vaccination campaigns during the 1960s and 1970s. Because of its highly contagious nature and high mortality rate, smallpox has significant potential as a biological weapon. Unfortunately, the current vaccine for orthopoxviruses is contraindicated for large portions of the population. Thus, there is a need for new, safe, and effective orthopoxvirus vaccines. Alphavirus replicon vectors, derived from strains of Venezuelan equine encephalitis virus, are being used to develop alternatives to the current smallpox vaccine. Here, we demonstrated that virus-like replicon particles (VRPs) expressing the vaccinia virus A33R, B5R, A27L, and L1R genes elicited protective immunity in mice comparable to vaccination with live-vaccinia virus. Furthermore, cynomolgus macaques vaccinated with a combination of the four poxvirus VRPs (4pox-VRP) developed antibody responses to each antigen. These antibody responses were able to neutralize and inhibit the spread of both vaccinia virus and monkeypox virus. Macaques vaccinated with 4pox-VRP, flu HA VRP (negative control), or live-vaccinia virus (positive control) were challenged intravenously with 5 x 10(6)pfu of monkeypox virus 1 month after the second VRP vaccination. Four of the six negative control animals succumbed to monkeypox and the remaining two animals demonstrated either severe or grave disease. Importantly, all 10 macaques vaccinated with the 4pox-VRP vaccine survived without developing severe disease. These findings revealed that a single-boost VRP smallpox vaccine shows promise as a safe alternative to the currently licensed live-vaccinia virus smallpox vaccine.
Collapse
Affiliation(s)
- Jay W Hooper
- US Army Medical Research Institute of Infectious Diseases, Virology Division, 1425 Porter Street, Fort Detrick, MD 21702, United States.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Kimman TG, Cornelissen LA, Moormann RJ, Rebel JMJ, Stockhofe-Zurwieden N. Challenges for porcine reproductive and respiratory syndrome virus (PRRSV) vaccinology. Vaccine 2009; 27:3704-18. [PMID: 19464553 DOI: 10.1016/j.vaccine.2009.04.022] [Citation(s) in RCA: 268] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2009] [Revised: 03/30/2009] [Accepted: 04/07/2009] [Indexed: 01/11/2023]
Abstract
Porcine reproductive and respiratory syndrome virus (PRRSV) continues to be a threat for the pig industry. Vaccines have been developed, but these failed to provide sustainable disease control, in particular against genetically unrelated strains. Here we give an overview of current knowledge and gaps in our knowledge that may be relevant for the development of a future generation of more effective vaccines. PRRSV replicates in cells of the monocyte/macrophage lineage, induces apoptosis and necrosis, interferes with the induction of a proinflammatory response, only slowly induces a specific antiviral response, and may cause persistent infections. The virus appears to use several evasion strategies to circumvent both innate and acquired immunity, including interference with antigen presentation, antibody-mediated enhancement, reduced cell surface expression of viral proteins, and shielding of neutralizing epitopes. In particular the downregulation of type I interferon-alpha production appears to interfere with the induction of acquired immunity. Current vaccines are ineffective because they suffer both from the immune evasion strategies of the virus and the antigenic heterogeneity of field strains. Future vaccines therefore must "uncouple" the immune evasion and apoptogenic/necrotic properties of the virus from its immunogenic properties, and they should induce a broad immune response covering the plasticity of its major antigenic sites. Alternatively, the composition of the vaccine should be changed regularly to reflect presently and locally circulating strains. Preferably new vaccines should also allow discriminating infected from vaccinated pigs to support a virus elimination strategy. Challenges in vaccine development are the incompletely known mechanisms of immune evasion and immunity, lack of knowledge of viral sequences that are responsible for the pathogenic and immunosuppressive properties of the virus, lack of knowledge of the forces that drive antigenic heterogeneity and its consequences for immunogenicity, and a viral genome that is relatively intolerant for subtle changes at functional sites.
Collapse
Affiliation(s)
- Tjeerd G Kimman
- Central Veterinary Institute of Wageningen UR (CVI), P.O. Box 65, 8200 AB Lelystad, The Netherlands.
| | | | | | | | | |
Collapse
|
26
|
Antigen delivery systems for veterinary vaccine development. Viral-vector based delivery systems. Vaccine 2009; 26:6508-28. [PMID: 18838097 PMCID: PMC7131726 DOI: 10.1016/j.vaccine.2008.09.044] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2008] [Revised: 08/21/2008] [Accepted: 09/16/2008] [Indexed: 11/30/2022]
Abstract
The recent advances in molecular genetics, pathogenesis and immunology have provided an optimal framework for developing novel approaches in the rational design of vaccines effective against viral epizootic diseases. This paper reviews most of the viral-vector based antigen delivery systems (ADSs) recently developed for vaccine testing in veterinary species, including attenuated virus and DNA and RNA viral vectors. Besides their usefulness in vaccinology, these ADSs constitute invaluable tools to researchers for understanding the nature of protective responses in different species, opening the possibility of modulating or potentiating relevant immune mechanisms involved in protection.
Collapse
|
27
|
An alphavirus replicon-derived candidate vaccine against Rift Valley fever virus. Epidemiol Infect 2009; 137:1309-18. [PMID: 19171081 DOI: 10.1017/s0950268808001696] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Rift Valley fever virus (RVFV) is a mosquito-transmitted bunyavirus (genus Phlebovirus) associated with severe disease in livestock and fatal encephalitis or haemorrhagic fever in a proportion of infected humans. Although live attenuated and inactivated vaccines have been used in livestock, and on a limited scale in humans, there is a need for improved anti-RVFV vaccines. Towards this goal, Sindbis virus replicon vectors expressing the RVFV Gn and Gc glycoproteins, as well as the non-structural nsM protein, were constructed and evaluated for their ability to induce protective immune responses against RVFV. These replicon vectors were shown to produce the RVFV glycoproteins to high levels in vitro and to induce systemic anti-RVFV antibody responses in immunized mice, as determined by RVFV-specific ELISA, fluorescent antibody tests, and demonstration of a neutralizing antibody response. Replicon vaccination also provided 100% protection against lethal RVFV challenge by either the intraperitoneal or intranasal route. Furthermore, preliminary results indicate that the replicon vectors elicit RVFV-specific neutralizing antibody responses in vaccinated sheep. These results suggest that alphavirus-based replicon vectors can induce protective immunity against RVFV, and that this approach merits further investigation into its potential utility as a RVFV vaccine.
Collapse
|
28
|
Abstract
Alphavirus vectors are high-level, transient expression vectors for therapeutic and prophylactic use. These positive-stranded RNA vectors, derived from Semliki Forest virus, Sindbis virus and Venezuelan equine encephalitis virus, multiply and are expressed in the cytoplasm of most vertebrate cells, including human cells. Part of the genome encoding the structural protein genes, which is amplified during a normal infection, is replaced by a transgene. Three types of vector have been developed: virus-like particles, layered DNA-RNA vectors and replication-competent vectors. Virus-like particles contain replicon RNA that is defective since it contains a cloned gene in place of the structural protein genes, and thus are able to undergo only one cycle of expression. They are produced by transfection of vector RNA, and helper RNAs encoding the structural proteins. Layered DNA-RNA vectors express the Semliki Forest virus replicon from a cDNA copy via a cytomegalovirus promoter. Replication-competent vectors contain a transgene in addition to the structural protein genes. Alphavirus vectors are used for three main applications: vaccine construction, therapy of central nervous system disease, and cancer therapy.
Collapse
|
29
|
Ólafsdóttir G, Svansson V, Ingvarsson S, Marti E, Torsteinsdóttir S. In vitro analysis of expression vectors for DNA vaccination of horses: the effect of a Kozak sequence. Acta Vet Scand 2008; 50:44. [PMID: 18983656 PMCID: PMC2600637 DOI: 10.1186/1751-0147-50-44] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2008] [Accepted: 11/04/2008] [Indexed: 11/10/2022] Open
Abstract
One of the prerequisite for developing DNA vaccines for horses are vectors that are efficiently expressed in horse cells. We have analysed the ectopic expression of the human serum albumin gene in primary horse cells from different tissues. The vectors used are of pcDNA and pUC origin and include the cytomegalovirus (CMV) promoter. The pUC vectors contain CMV intron A whereas the pcDNA vectors do not. Insertion of intron A diminished the expression from the pcDNA vectors whereas insertion of a Kozak sequence upstream of the gene in two types of pUC vectors increased significantly the in vitro expression in primary horse cells derived from skin, lung, duodenum and kidney. We report for the first time the significance of full consensus Kozak sequences for protein expression in horse cells in vitro.
Collapse
|
30
|
Zhang J, Timoney PJ, Maclachlan NJ, Balasuriya UBR. Identification of an additional neutralization determinant of equine arteritis virus. Virus Res 2008; 138:150-3. [PMID: 18851997 DOI: 10.1016/j.virusres.2008.09.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2008] [Revised: 09/08/2008] [Accepted: 09/15/2008] [Indexed: 12/27/2022]
Abstract
We recently established an in vitro model of equine arteritis virus (EAV) persistence in HeLa cells. The objective of this study was to determine whether viral variants with novel neutralization phenotypes emerged during persistent EAV infection of HeLa cells, as occurs during viral persistence in carrier stallions. Viruses recovered from persistently infected HeLa cells had different neutralization phenotypes than the virus in the original inoculum, as determined by neutralization assays using EAV-specific monoclonal antibodies and polyclonal equine antisera raised against different strains of EAV. Comparative sequence analyses of the entire structural protein genes (ORFs 2a, 2b, and 3-7) of these viruses, coupled with construction of chimeric viruses utilizing an infectious cDNA clone of EAV, confirmed that the alterations in neutralization phenotype were caused by amino acid changes in the GP5 protein encoded by ORF5. Site-directed mutagenesis studies unequivocally confirmed that amino acid 98 in the GP5 protein was responsible for the altered neutralization phenotype of these viruses. Amino acid 98 in the GP5 protein, which has not previously been identified as a neutralization determinant of EAV, should be included in an expanded neutralization site D (amino acids 98-106).
Collapse
Affiliation(s)
- Jianqiang Zhang
- Department of Veterinary Science, Gluck Equine Research Center, University of Kentucky, Lexington, KY 40546, USA
| | | | | | | |
Collapse
|
31
|
Kamrud KI, Alterson KD, Andrews C, Copp LO, Lewis WC, Hubby B, Patel D, Rayner JO, Talarico T, Smith JF. Analysis of Venezuelan equine encephalitis replicon particles packaged in different coats. PLoS One 2008; 3:e2709. [PMID: 18628938 PMCID: PMC2447172 DOI: 10.1371/journal.pone.0002709] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2008] [Accepted: 06/19/2008] [Indexed: 11/19/2022] Open
Abstract
Background The Venezuelan equine encephalitis (VEE) virus replicon system was used to produce virus-like replicon particles (VRP) packaged with a number of different VEE-derived glycoprotein (GP) coats. The GP coat is believed to be responsible for the cellular tropism noted for VRP and it is possible that different VEE GP coats may have different affinities for cells. We examined VRP packaged in four different VEE GP coats for their ability to infect cells in vitro and to induce both humoral and cellular immune responses in vivo. Methodology/Principal Findings The VRP preparations were characterized to determine both infectious units (IU) and genome equivalents (GE) prior to in vivo analysis. VRP packaged with different VEE GP coats demonstrated widely varying GE/IU ratios based on Vero cell infectivity. BALB/c mice were immunized with the different VRP based on equal GE titers and the humoral and cellular responses to the expressed HIV gag gene measured. The magnitude of the immune responses measured in mice revealed small but significant differences between different GP coats when immunization was based on GE titers. Conclusions/Significance We suggest that care should be taken when alternative coat proteins are used to package vector-based systems as the titers determined by cell culture infection may not represent accurate particle numbers and in turn may not accurately represent actual in vivo dose.
Collapse
Affiliation(s)
- Kurt I Kamrud
- AlphaVax, Inc., Research Triangle Park, North Carolina, United States of America.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Go YY, Wong SJ, Branscum AJ, Demarest VL, Shuck KM, Vickers ML, Zhang J, McCollum WH, Timoney PJ, Balasuriya UBR. Development of a fluorescent-microsphere immunoassay for detection of antibodies specific to equine arteritis virus and comparison with the virus neutralization test. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2008; 15:76-87. [PMID: 18032597 PMCID: PMC2223870 DOI: 10.1128/cvi.00388-07] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2007] [Revised: 10/23/2007] [Accepted: 11/05/2007] [Indexed: 11/20/2022]
Abstract
The development and validation of a microsphere immunoassay (MIA) to detect equine antibodies to the major structural proteins of equine arteritis virus (EAV) are described. The assay development process was based on the cloning and expression of genes for full-length individual major structural proteins (GP5 amino acids 1 to 255 [GP5(1-255)], M(1-162), and N(1-110)), as well as partial sequences of these structural proteins (GP5(1-116), GP5(75-112), GP5(55-98), M(88-162), and N(1-69)) that constituted putative antigenic regions. Purified recombinant viral proteins expressed in Escherichia coli were covalently bound to fluorescent polystyrene microspheres and analyzed with the Luminex xMap 100 instrument. Of the eight recombinant proteins, the highest concordance with the virus neutralization test (VNT) results was obtained with the partial GP5(55-98) protein. The MIA was validated by testing a total of 2,500 equine serum samples previously characterized by the VNT. With the use of an optimal median fluorescence intensity cutoff value of 992, the sensitivity and specificity of the assay were 92.6% and 92.9%, respectively. The GP5(55-98) MIA and VNT outcomes correlated significantly (r = 0.84; P < 0.0001). Although the GP5(55-98) MIA is less sensitive than the standard VNT, it has the potential to provide a rapid, convenient, and more economical test for screening equine sera for the presence of antibodies to EAV, with the VNT then being used as a confirmatory assay.
Collapse
Affiliation(s)
- Yun Young Go
- Maxwell H. Gluck Equine Research Center, Department of Veterinary Science, University of Kentucky, Lexington, Kentucky 40546, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Venezuelan equine encephalitis virus replicon particles encoding respiratory syncytial virus surface glycoproteins induce protective mucosal responses in mice and cotton rats. J Virol 2007; 81:13710-22. [PMID: 17928349 PMCID: PMC2168850 DOI: 10.1128/jvi.01351-07] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Respiratory syncytial virus (RSV) is an important viral pathogen that causes severe lower respiratory tract infection in infants, the elderly, and immunocompromised individuals. There are no licensed RSV vaccines to date. To prevent RSV infection, immune responses in both the upper and lower respiratory tracts are required. Previously, immunization with Venezuelan equine encephalitis virus replicon particles (VRPs) demonstrated effectiveness in inducing mucosal protection against various pathogens. In this study, we developed VRPs encoding RSV fusion (F) or attachment (G) glycoproteins and evaluated the immunogenicity and efficacy of these vaccine candidates in mice and cotton rats. VRPs, when administered intranasally, induced surface glycoprotein-specific virus neutralizing antibodies in serum and immunoglobulin A (IgA) antibodies in secretions at the respiratory mucosa. In addition, fusion protein-encoding VRPs induced gamma interferon (IFN-gamma)-secreting T cells in the lungs and spleen, as measured by reaction with an H-2K(d)-restricted CD8(+) T-cell epitope. In animals vaccinated with F protein VRPs, challenge virus replication was reduced below the level of detection in both the upper and lower respiratory tracts following intranasal RSV challenge, while in those vaccinated with G protein VRPs, challenge virus was detected in the upper but not the lower respiratory tract. Close examination of histopathology of the lungs of vaccinated animals following RSV challenge revealed no enhanced inflammation. Immunization with VRPs induced balanced Th1/Th2 immune responses, as measured by the cytokine profile in the lungs and antibody isotype of the humoral immune response. These results represent an important first step toward the use of VRPs encoding RSV proteins as a prophylactic vaccine for RSV.
Collapse
|
34
|
Ljungberg K, Whitmore AC, Fluet ME, Moran TP, Shabman RS, Collier ML, Kraus AA, Thompson JM, Montefiori DC, Beard C, Johnston RE. Increased immunogenicity of a DNA-launched Venezuelan equine encephalitis virus-based replicon DNA vaccine. J Virol 2007; 81:13412-23. [PMID: 17913817 PMCID: PMC2168848 DOI: 10.1128/jvi.01799-07] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A novel genetic vaccine that is based on a Venezuelan equine encephalitis virus (VEE) replicon launched from plasmid DNA is described. The plasmid encodes a VEE replicon under the transcriptional control of the cytomegalovirus immediate-early promoter (VEE DNA). The VEE DNA consistently expressed 3- to 15-fold more green fluorescent protein in vitro than did a conventional DNA vaccine. Furthermore, transfection with the DNA-launched VEE replicon induced apoptosis and type I interferon production. Inoculation of mice with VEE DNA encoding human immunodeficiency virus type 1 gp160 significantly increased humoral responses by several orders of magnitude compared to an equal dose of a conventional DNA vaccine. These increases were also observed at 10- and 100-fold-lower doses of the VEE DNA. Cellular immune responses measured by gamma interferon and interleukin 2 enzyme-linked immunospot assay were significantly higher in mice immunized with the VEE DNA at decreased doses. The immune responses induced by the VEE DNA-encoded antigen, however, were independent of an intact type I interferon signaling pathway. Moreover, the DNA-launched VEE replicon induced an efficient prime to a VEE replicon particle (VRP) boost, increasing humoral and cellular immunity by at least 1 order of magnitude compared to VEE DNA only. Importantly, immunization with VEE DNA, as opposed to VRP, did not induce any anti-VRP neutralizing antibodies. Increased potency of DNA vaccines and reduced vector immunity may ultimately have an impact on the design of vaccination strategies in humans.
Collapse
Affiliation(s)
- Karl Ljungberg
- Carolina Vaccine Institute, 9th Floor Burnett-Womack, West Drive, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-7292, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
White LJ, Parsons MM, Whitmore AC, Williams BM, de Silva A, Johnston RE. An immunogenic and protective alphavirus replicon particle-based dengue vaccine overcomes maternal antibody interference in weanling mice. J Virol 2007; 81:10329-39. [PMID: 17652394 PMCID: PMC2045445 DOI: 10.1128/jvi.00512-07] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A candidate pediatric dengue virus (DENV) vaccine based on nonpropagating Venezuelan equine encephalitis virus replicon particles (VRP) was tested for immunogenicity and protective efficacy in weanling mice in the presence and absence of potentially interfering maternal antibodies. A gene cassette encoding envelope proteins prM and E from mouse-adapted DENV type 2 (DENV2) strain NGC was cloned into a VEE replicon vector and packaged into VRP, which programmed proper in vitro expression and processing of DENV2 envelope proteins upon infection of Vero cells. Primary immunization of 3-week-old weanling BALB/c mice in the footpad with DENV2 VRP resulted in high levels of DENV-specific serum immunoglobulin G antibodies and significant titers of neutralizing antibodies in all vaccinates. A booster immunization 12 weeks after the prime immunization resulted in increased neutralizing antibodies that were sustained for at least 30 weeks. Immunization at a range of doses of DENV2 VRP protected mice from an otherwise-lethal intracranial DENV2 challenge. To model vaccination in the presence of maternal antibodies, weanling pups born to DENV2-immune or DENV2-naïve dams were immunized with either DENV2 VRP or live DENV2 given peripherally. The DENV2 VRP vaccine induced neutralizing-antibody responses in young mice regardless of the maternal immune status. In contrast, live-DENV2 vaccination performed poorly in the presence of preexisting anti-DENV2 antibodies. This study demonstrates the feasibility of a VRP vaccine approach as an early-life DENV vaccine in populations with high levels of circulating DENV antibodies and suggests the utility of VRP-based vaccines in other instances where maternal antibodies make early vaccination problematic.
Collapse
Affiliation(s)
- Laura J White
- Carolina Vaccine Institute, Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, CB 7292, 99 Manning Drive, 9029 Burnett-Womack, Chapel Hill, NC 27599-7292, USA.
| | | | | | | | | | | |
Collapse
|
36
|
Reap EA, Dryga SA, Morris J, Rivers B, Norberg PK, Olmsted RA, Chulay JD. Cellular and humoral immune responses to alphavirus replicon vaccines expressing cytomegalovirus pp65, IE1, and gB proteins. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2007; 14:748-55. [PMID: 17442845 PMCID: PMC1951075 DOI: 10.1128/cvi.00037-07] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Development of vaccines against cytomegalovirus (CMV) is an important public health priority. We used a propagation-defective, single-cycle RNA replicon vector system derived from an attenuated strain of an alphavirus, Venezuelan equine encephalitis virus, to produce virus-like replicon particles (VRP) expressing various combinations of pp65, IE1, or gB proteins of human CMV. Protein expression in VRP-infected cells was highest with single-promoter replicons expressing pp65, IE1, a pp65/IE1 fusion protein, or the extracellular domain of gB and with double-promoter replicons expressing pp65 and IE1. Protein expression was lower with double- and triple-promoter replicons expressing gB, especially the full-length form of gB. BALB/c mice immunized with VRP expressing gB developed high titers of neutralizing antibody to CMV, and mice immunized with VRP expressing pp65, IE1, or a pp65/IE1 fusion protein developed robust antigen-specific T-cell responses as measured by gamma interferon enzyme-linked immunospot assay. Three overlapping immunodominant pp65 peptides contained a nine-amino-acid sequence (LGPISGHVL) that matches the consensus binding motif for a major histocompatibility complex H2-D(d) T-cell epitope. These data provide the basis for further development and clinical evaluation of an alphavirus replicon vaccine for CMV expressing the pp65, IE1, and gB proteins.
Collapse
Affiliation(s)
- Elizabeth A Reap
- AlphaVax, Inc., 2 Triangle Drive, P.O. Box 110307, Research Triangle Park, NC 27709-0307, USA.
| | | | | | | | | | | | | |
Collapse
|
37
|
Kamrud KI, Custer M, Dudek JM, Owens G, Alterson KD, Lee JS, Groebner JL, Smith JF. Alphavirus replicon approach to promoterless analysis of IRES elements. Virology 2007; 360:376-87. [PMID: 17156813 PMCID: PMC1885372 DOI: 10.1016/j.virol.2006.10.049] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2006] [Revised: 08/30/2006] [Accepted: 10/30/2006] [Indexed: 02/05/2023]
Abstract
Here we describe a system for promoterless analysis of putative internal ribosome entry site (IRES) elements using an alphavirus (family Togaviridae) replicon vector. The system uses the alphavirus subgenomic promoter to produce transcripts that, when modified to contain a spacer region upstream of an IRES element, allow analysis of cap-independent translation of genes of interest (GOI). If the IRES element is removed, translation of the subgenomic transcript can be reduced >95% compared to the same transcript containing a functional IRES element. Alphavirus replicons, used in this manner, offer an alternative to standard dicistronic DNA vectors or in vitro translation systems currently used to analyze putative IRES elements. In addition, protein expression levels varied depending on the spacer element located upstream of each IRES. The ability to modulate the level of expression from alphavirus vectors should extend the utility of these vectors in vaccine development.
Collapse
Affiliation(s)
- K I Kamrud
- AlphaVax, Inc., 2 Triangle Drive, Research Triangle Park, NC 27709-0307, USA.
| | | | | | | | | | | | | | | |
Collapse
|
38
|
Balasuriya UBR, Snijder EJ, Heidner HW, Zhang J, Zevenhoven-Dobbe JC, Boone JD, McCollum WH, Timoney PJ, MacLachlan NJ. Development and characterization of an infectious cDNA clone of the virulent Bucyrus strain of Equine arteritis virus. J Gen Virol 2007; 88:918-924. [PMID: 17325365 DOI: 10.1099/vir.0.82415-0] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Strains of Equine arteritis virus (EAV) differ in the severity of the disease that they induce in horses. Infectious cDNA clones are potentially useful for identification of genetic determinants of EAV virulence; to date, two clones have been derived from a cell culture-adapted variant of the original (Bucyrus) isolate of EAV, and it has previously been shown that recombinant virus derived from one of these (rEAV030) is attenuated in horses. A complete cDNA copy of the genome of the virulent Bucyrus strain of EAV has now been assembled into a plasmid vector. In contrast to rEAV030, recombinant progeny virus derived from this clone caused severe disease in horses, characterized by pyrexia, oedema, leukopenia, high-titre viraemia and substantial nasal shedding of virus. The availability of infectious cDNA clones that produce recombinant viruses of different virulence to horses will facilitate characterization of the virulence determinants of EAV through reverse genetics.
Collapse
Affiliation(s)
- Udeni B R Balasuriya
- Department of Pathology, Microbiology and Immunology, School of Veterinary Medicine, University of California, Davis, CA 95616, USA
| | - Eric J Snijder
- Molecular Virology Laboratory, Department of Medical Microbiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Hans W Heidner
- Department of Biology, University of Texas at San Antonio, TX 78249, USA
| | - Jianqiang Zhang
- Department of Veterinary Science, Gluck Equine Research Center, University of Kentucky, Lexington, KY 40546, USA
| | - Jessika C Zevenhoven-Dobbe
- Molecular Virology Laboratory, Department of Medical Microbiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Josh D Boone
- Department of Pathology, Microbiology and Immunology, School of Veterinary Medicine, University of California, Davis, CA 95616, USA
| | - William H McCollum
- Department of Veterinary Science, Gluck Equine Research Center, University of Kentucky, Lexington, KY 40546, USA
| | - Peter J Timoney
- Department of Veterinary Science, Gluck Equine Research Center, University of Kentucky, Lexington, KY 40546, USA
| | - N James MacLachlan
- Department of Pathology, Microbiology and Immunology, School of Veterinary Medicine, University of California, Davis, CA 95616, USA
| |
Collapse
|
39
|
MacLachlan NJ, Balasuriya UB, Davis NL, Collier M, Johnston RE, Ferraro GL, Guthrie AJ. Experiences with new generation vaccines against equine viral arteritis, West Nile disease and African horse sickness. Vaccine 2007; 25:5577-82. [PMID: 17267078 DOI: 10.1016/j.vaccine.2006.12.058] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2006] [Revised: 12/13/2006] [Accepted: 12/28/2006] [Indexed: 11/23/2022]
Abstract
Viral diseases constitute an ever growing threat to the horse industry worldwide because of the rapid movement of large numbers of horses for competition and breeding. A number of different types of vaccines are available for protective immunization of horses against viral diseases. Traditional inactivated and live-attenuated (modified live virus, MLV) virus vaccines remain popular and efficacious but recombinant vaccines are increasingly being developed and used, in part because of the perceived deficiencies of some existing products. New generation vaccines include MLVs with deletions and/or mutations of critical genes, subunit vaccines that incorporate immunogenic proteins (or portions thereof) or expression vectors that produce these proteins as immunogens, and DNA vaccines. New generation vaccines have been developed for several viral diseases of horses. We recently have developed an alphavirus replicon-vectored equine arteritis virus (EAV) vaccine, and evaluated a commercial canary pox virus-vectored vaccine for West Nile disease. The success of these new-generation vaccines has catalyzed efforts to develop improved vaccines for the prevention of African horse sickness, a disease of emerging global significance.
Collapse
Affiliation(s)
- N James MacLachlan
- Equine Viral Disease Laboratory, Department of Pathology, Microbiology and Immunology, School of Veterinary Medicine, University of California, Davis, CA 95616, USA.
| | | | | | | | | | | | | |
Collapse
|
40
|
Jiang Y, Fang L, Xiao S, Zhang H, Pan Y, Luo R, Li B, Chen H. Immunogenicity and protective efficacy of recombinant pseudorabies virus expressing the two major membrane-associated proteins of porcine reproductive and respiratory syndrome virus. Vaccine 2006; 25:547-60. [PMID: 16920232 DOI: 10.1016/j.vaccine.2006.07.032] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2006] [Revised: 07/18/2006] [Accepted: 07/21/2006] [Indexed: 02/06/2023]
Abstract
Porcine reproductive and respiratory syndrome virus (PRRSV) infection still remains today as the most significant health threat to swine and poses a challenge to current vaccination strategies. To develop a new generation of vaccine against PRRSV, a live attenuated pseudorabies virus (PRV) was used as vaccine vector to express the two major membrane-associated proteins (GP5 or M) of PRRSV in various forms. Four PRV recombinants, rPRV-GP5 (expressing native GP5), rPRV-GP5m (expressing GP5m, a modified GP5), rPRV-GP5-M (co-expressing GP5 and M proteins), rPRV-GP5m-M (co-expressing GP5m and M proteins) were generated. Mouse immunized with all these recombinants developed comparable PRV-specific humoral immune responses and provided complete protection against a lethal PRV challenge. However, the highest level of PRRSV-specific neutralizing antibodies and lymphocyte proliferative responses was observed in mice immunized with rPRV-GP5m-M. The immunogenicity and protective efficiency of rPRV-GP5m-M were further evaluated in the piglets. Compared to commercial PRRSV killed vaccine, detectable PRRSV-specific neutralizing antibody and higher lymphocyte proliferative responses could be developed in piglets immunized with rPRV-GP5m-M before virus challenge. Furthermore, more efficient protection against a PRRSV challenge was obtained in piglets immunized with rPRV-GP5m-M, as showed by the balanced body-temperature fluctuation, shorter-term viremia, lower proportion of virus load in nasal and oropharyngeal scrapings and tissues, and milder lung lesions. These data indicate that the recombinant rPRV-GP5m-M is a promising candidate bivalent vaccine against both PRV and PRRSV infection.
Collapse
Affiliation(s)
- Yunbo Jiang
- Laboratory of Animal Virology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, Hubei, PR China
| | | | | | | | | | | | | | | |
Collapse
|
41
|
Thomas CE, Zhu W, Van Dam CN, Davis NL, Johnston RE, Sparling PF. Vaccination of mice with gonococcal TbpB expressed in vivo from Venezuelan equine encephalitis viral replicon particles. Infect Immun 2006; 74:1612-20. [PMID: 16495532 PMCID: PMC1418633 DOI: 10.1128/iai.74.3.1612-1620.2006] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We investigated the immunogenicity of gonococcal transferrin binding protein B (TbpB) expressed with and without a eukaryotic secretion signal from a nonpropagating Venezuelan equine encephalitis virus replicon particle (VRP) delivery system. TbpB was successfully expressed in baby hamster kidney (BHK) cells, and the presence of the eukaryotic secretion signal not only apparently increased the protein's expression but also allowed for extracellular localization and glycosylation. Mice immunized with VRPs produced significant amounts of serum antibody although less than the amounts produced by mice immunized with recombinant protein. The response of mice immunized with VRPs encoding TbpB was consistently more Th1 biased than the response of mice immunized with recombinant protein alone. Boosting with recombinant protein following immunization with TbpB VRPs resulted in higher specific-antibody levels without altering the Th1/Th2 bias. Most of the immunization groups produced significant specific antibody binding to the intact surface of the homologous Neisseria gonorrhoeae strain. Immunization with TbpB VRPs without a eukaryotic secretion signal generated no measurable specific antibodies on the genital mucosal surface, but inclusion of a eukaryotic secretion signal or boosting with recombinant protein resulted in specific immunoglobulin G (IgG) and IgA in mucosal secretions after TbpB VRP immunization. The TbpB VRP system has potential for an N. gonorrhoeae vaccine.
Collapse
Affiliation(s)
- Christopher E Thomas
- University of North Carolina at Chapel Hill, Dept. of Medicine, Div. of Infectious Disease Research, 8341 Medical Biomolecular Research Bldg., 103 Mason Farm Road, CB 7031, Chapel Hill, NC 27599, USA.
| | | | | | | | | | | |
Collapse
|
42
|
Gerdts V, Mutwiri GK, Tikoo SK, Babiuk LA. Mucosal delivery of vaccines in domestic animals. Vet Res 2006; 37:487-510. [PMID: 16611560 DOI: 10.1051/vetres:2006012] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2005] [Accepted: 10/11/2005] [Indexed: 12/29/2022] Open
Abstract
Mucosal vaccination is proving to be one of the greatest challenges in modern vaccine development. Although highly beneficial for achieving protective immunity, the induction of mucosal immunity, especially in the gastro-intestinal tract, still remains a difficult task. As a result, only very few mucosal vaccines are commercially available for domestic animals. Here, we critically review various strategies for mucosal delivery of vaccines in domestic animals. This includes live bacterial and viral vectors, particulate delivery-systems such as polymers, alginate, polyphosphazenes, immune stimulating complex and liposomes, and receptor mediated-targeting strategies to the mucosal tissues. The most commonly used routes of immunization, strategies for delivering the antigen to the mucosal surfaces, and future prospects in the development of mucosal vaccines are discussed.
Collapse
Affiliation(s)
- Volker Gerdts
- Vaccine and Infectious Disease Organization, VIDO, University of Saskatchewan, 120 Veterinary Rd., Saskatoon, S7N 5E3, Canada.
| | | | | | | |
Collapse
|
43
|
Thompson JM, Whitmore AC, Konopka JL, Collier ML, Richmond EMB, Davis NL, Staats HF, Johnston RE. Mucosal and systemic adjuvant activity of alphavirus replicon particles. Proc Natl Acad Sci U S A 2006; 103:3722-7. [PMID: 16505353 PMCID: PMC1383499 DOI: 10.1073/pnas.0600287103] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Vaccination represents the most effective control measure in the fight against infectious diseases. Local mucosal immune responses are critical for protection from, and resolution of, infection by numerous mucosal pathogens. Antigen processing across mucosal surfaces is the natural route by which mucosal immunity is generated, as peripheral antigen delivery typically fails to induce mucosal immune responses. However, we demonstrate in this article that mucosal immune responses are evident at multiple mucosal surfaces after parenteral delivery of Venezuelan equine encephalitis virus replicon particles (VRP). Moreover, coinoculation of null VRP (not expressing any transgene) with inactivated influenza virions, or ovalbumin, resulted in a significant increase in antigen-specific systemic IgG and fecal IgA antibodies, compared with antigen alone. Pretreatment of VRP with UV light largely abrogated this adjuvant effect. These results demonstrate that alphavirus replicon particles possess intrinsic systemic and mucosal adjuvant activity and suggest that VRP RNA replication is the trigger for this activity. We feel that these observations and the continued experimentation they stimulate will ultimately define the specific components of an alternative pathway for the induction of mucosal immunity, and if the activity is evident in humans, will enable new possibilities for safe and inexpensive subunit and inactivated vaccines.
Collapse
Affiliation(s)
- Joseph M. Thompson
- *Department of Microbiology and Immunology, and
- Carolina Vaccine Institute, University of North Carolina, Chapel Hill, NC 27599; and
| | - Alan C. Whitmore
- Carolina Vaccine Institute, University of North Carolina, Chapel Hill, NC 27599; and
| | - Jennifer L. Konopka
- *Department of Microbiology and Immunology, and
- Carolina Vaccine Institute, University of North Carolina, Chapel Hill, NC 27599; and
| | - Martha L. Collier
- *Department of Microbiology and Immunology, and
- Carolina Vaccine Institute, University of North Carolina, Chapel Hill, NC 27599; and
| | | | - Nancy L. Davis
- *Department of Microbiology and Immunology, and
- Carolina Vaccine Institute, University of North Carolina, Chapel Hill, NC 27599; and
| | - Herman F. Staats
- Department of Pathology, and
- Human Vaccine Institute, Duke University Medical Center, Durham, NC 27710
| | - Robert E. Johnston
- *Department of Microbiology and Immunology, and
- Carolina Vaccine Institute, University of North Carolina, Chapel Hill, NC 27599; and
- To whom correspondence should be addressed. E-mail:
| |
Collapse
|
44
|
Riezebos-Brilman A, de Mare A, Bungener L, Huckriede A, Wilschut J, Daemen T. Recombinant alphaviruses as vectors for anti-tumour and anti-microbial immunotherapy. J Clin Virol 2006; 35:233-43. [PMID: 16448844 DOI: 10.1016/j.jcv.2005.12.001] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2005] [Accepted: 12/07/2005] [Indexed: 11/15/2022]
Abstract
BACKGROUND Vectors derived from alphaviruses are gaining interest for their high transfection potency and strong immunogenicity. OBJECTIVES After a brief introduction on alphaviruses and their vectors, an overview is given on current preclinical immunotherapy studies using vector systems based on alphaviruses. The efficacy of alphavirus vectors in inducing immune responses will be illustrated by a more detailed description of immunization studies using recombinant Semliki Forest virus for the treatment of human papilloma virus-induced cervical cancer. RESULTS Immunization with recombinant alphavirus results in the induction of humoral and cellular immune responses against microbes, infected cells and cancer cells. Preclinical studies demonstrate that infectious diseases and cancer can be treated prophylactically as well as therapeutically. CONCLUSIONS Alphavirus-based genetic immunization strategies are highly effective in animal model systems, comparing quite favourably with any other approach. Therefore, we hope and expect to see an efficient induction of tumour-or microbial immunity and a positive outcome in future clinical efficacy studies.
Collapse
Affiliation(s)
- Annelies Riezebos-Brilman
- Department of Medical Microbiology, Molecular Virology Section, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | | | | | | | | | | |
Collapse
|
45
|
Johnston RE, Johnson PR, Connell MJ, Montefiori DC, West A, Collier ML, Cecil C, Swanstrom R, Frelinger JA, Davis NL. Vaccination of macaques with SIV immunogens delivered by Venezuelan equine encephalitis virus replicon particle vectors followed by a mucosal challenge with SIVsmE660. Vaccine 2005; 23:4969-79. [PMID: 16005121 DOI: 10.1016/j.vaccine.2005.05.034] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2005] [Revised: 05/25/2005] [Accepted: 05/27/2005] [Indexed: 11/18/2022]
Abstract
VEE replicon particles (VRP), non-propagating vaccine vectors derived from Venezuelan equine encephalitis virus (VEE), were engineered to express immunogens from the cloned isolate SIVsmH-4, combined in a vaccine cocktail and inoculated subcutaneously to immunize rhesus macaques. The virulent, uncloned challenge stock, SIVsmE660, represented a type of heterologous challenge and the intrarectal challenge modeled infection across a mucosal surface. Prechallenge neutralizing antibodies against SIVsmH-4 were induced in all vaccinates, and a prechallenge cellular immune response could be detected in one of six. Post-challenge, virus loads were reduced at the peak, at set point and at termination (41 weeks post-challenge), although these differences did not reach statistical significance. Significantly elevated levels of CD4+ T cells were observed post-challenge. A strong correlation was noted between a net increase in CD4+ T cell count and lowered virus load at set point.
Collapse
Affiliation(s)
- Robert E Johnston
- Carolina Vaccine Institute, School of Medicine, University of North Carolina, CB#7292, Chapel Hill, NC 27599, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Kheyar A, Jabrane A, Zhu C, Cléroux P, Massie B, Dea S, Gagnon CA. Alternative codon usage of PRRS virus ORF5 gene increases eucaryotic expression of GP5 glycoprotein and improves immune response in challenged pigs. Vaccine 2005; 23:4016-22. [PMID: 15893859 DOI: 10.1016/j.vaccine.2005.03.012] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2005] [Accepted: 03/18/2005] [Indexed: 10/25/2022]
Abstract
Pigs exposed to GP(5) protein of PRRSV by means of DNA immunization develop specific neutralizing and protecting antibodies. Herein, we report on the consequences of codon bias, and on the favorable outcome of the systematic replacement of native codons of PRRSV ORF5 gene with codons chosen to reflect more closely the codon preference of highly expressed mammalian genes. Therefore, a synthetic PRRSV ORF5 gene (synORF5) was constructed in which 134 nucleotide substitutions were made in comparison to wild-type gene (wtORF5), such that 59% (119) of wild-type codons were replaced with known preferable codons in mammalian cells. In vitro expression in mammalian cells of synORF5 was considerably increased comparatively to wtORF5, following infection with tetracycline inducible replication-defective human adenoviral vectors (hAdVs). After challenge inoculation, SPF pigs vaccinated twice with recombinant hAdV/synORF5 developed earlier and higher antibody titers, including virus neutralizing antibodies to GP(5) than pigs vaccinated with hAdV/wtORF5. Data obtained from animal inoculation studies suggest direct correlation between expression levels of immunogenic structural viral proteins and immune response.
Collapse
Affiliation(s)
- Ali Kheyar
- INRS-Institut Armand-Frappier, 531 boul. des Prairies, Laval, P.Q., Canada H7V 1B7
| | | | | | | | | | | | | |
Collapse
|
47
|
Gehrke R, Heinz FX, Davis NL, Mandl CW. Heterologous gene expression by infectious and replicon vectors derived from tick-borne encephalitis virus and direct comparison of this flavivirus system with an alphavirus replicon. J Gen Virol 2005; 86:1045-1053. [PMID: 15784898 DOI: 10.1099/vir.0.80677-0] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
The flavivirus tick-borne encephaltis virus (TBEV) was established as a vector system for heterologous gene expression. The variable region of the genomic 3′ non-coding region was replaced by an expression cassette consisting of the reporter gene enhanced green fluorescent protein (EGFP) under the translational control of an internal ribosomal entry site element, both in the context of an infectious virus genome and of a replicon lacking the genes of the surface proteins prM/M and E. The expression level and the stability of expression were measured by fluorescence-activated cell-sorting analysis and compared to an established alphavirus replicon vector derived from Venezuelan equine encephaltis virus (VEEV), expressing EGFP under the control of its natural subgenomic promoter. On the first day, the alphavirus replicon exhibited an approximately 180-fold higher expression level than the flavivirus replicon, but this difference decreased to about 20- and 10-fold on days 2 and 3, respectively. Four to six days post-transfection, foreign gene expression by the VEEV replicon vanished almost completely, due to extensive cell killing. In contrast, in the case of the TBEV replicon, the percentage of positive cells and the amount of EGFP expression exhibited only a moderate decline over a time period of almost 4 weeks. The infectious TBEV vector expressed less EGFP than the TBEV replicon at all times. Significant expression from the infectious vector was maintained for four cell-culture passages. The results indicate that the VEEV vector is superior with respect to achieving high expression levels, but the TBEV system may be advantageous for applications that require a moderate, but more enduring, gene expression.
Collapse
Affiliation(s)
- Rainer Gehrke
- Institute of Virology, Medical University of Vienna, Kinderspitalgasse 15, A-1095 Vienna, Austria
| | - Franz X Heinz
- Institute of Virology, Medical University of Vienna, Kinderspitalgasse 15, A-1095 Vienna, Austria
| | - Nancy L Davis
- Department of Microbiology and Immunology, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Christian W Mandl
- Institute of Virology, Medical University of Vienna, Kinderspitalgasse 15, A-1095 Vienna, Austria
| |
Collapse
|
48
|
Vajdy M, Srivastava I, Polo J, Donnelly J, O'Hagan D, Singh M. Mucosal adjuvants and delivery systems for protein-, DNA- and RNA-based vaccines. Immunol Cell Biol 2005; 82:617-27. [PMID: 15550120 DOI: 10.1111/j.1440-1711.2004.01288.x] [Citation(s) in RCA: 84] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Almost all vaccinations today are delivered through parenteral routes. Mucosal vaccination offers several benefits over parenteral routes of vaccination, including ease of administration, the possibility of self-administration, elimination of the chance of injection with infected needles, and induction of mucosal as well as systemic immunity. However, mucosal vaccines have to overcome several formidable barriers in the form of significant dilution and dispersion; competition with a myriad of various live replicating bacteria, viruses, inert food and dust particles; enzymatic degradation; and low pH before reaching the target immune cells. It has long been known that vaccination through mucosal membranes requires potent adjuvants to enhance immunogenicity, as well as delivery systems to decrease the rate of dilution and degradation and to target the vaccine to the site of immune function. This review is a summary of current approaches to mucosal vaccination, and it primarily focuses on adjuvants as immunopotentiators and vaccine delivery systems for mucosal vaccines based on protein, DNA or RNA. In this context, we define adjuvants as protein or oligonucleotides with immunopotentiating properties co-administered with pathogen-derived antigens, and vaccine delivery systems as chemical formulations that are more inert and have less immunomodulatory effects than adjuvants, and that protect and deliver the vaccine through the site of administration. Although vaccines can be quite diverse in their composition, including inactivated virus, virus-like particles and inactivated bacteria (which are inert), protein-like vaccines, and non-replicating viral vectors such as poxvirus and adenovirus (which can serve as DNA delivery systems), this review will focus primarily on recombinant protein antigens, plasmid DNA, and alphavirus-based replicon RNA vaccines and delivery systems. This review is not an exhaustive list of all available protein, DNA and RNA vaccines, with related adjuvants and delivery systems, but rather is an attempt to highlight many of the currently available approaches in immunopotentiation of mucosal vaccines.
Collapse
|
49
|
Balasuriya UBR, MacLachlan NJ. The immune response to equine arteritis virus: potential lessons for other arteriviruses. Vet Immunol Immunopathol 2004; 102:107-29. [PMID: 15507299 DOI: 10.1016/j.vetimm.2004.09.003] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The members of the family Arteriviridae, genus Arterivirus, include equine arteritis virus (EAV), porcine reproductive and respiratory syndrome virus (PRRSV), lactate dehydrogenase-elevating virus (LDV) of mice, and simian hemorrhagic fever virus (SHFV). PRRSV is the newest member of the family (first isolated in North America and Europe in the early 1990s), whereas the other three viruses were recognized earlier (EAV in 1953, LDV in 1960, and SHFV in 1964). Although arterivirus infections are strictly species-specific, the causative agents share many biological and molecular properties, including their virion morphology, replication strategy, unique properties of their structural proteins, and their ability to establish distinctive persistent infections in their natural hosts. The arteriviruses are each antigenically distinct and cause different disease syndromes in their natural hosts. Similarly, the mechanism(s) responsible for the prolonged and/or persistent infections that characterize infections with each arterivirus in their natural hosts are remarkably different. The objective of this review is to compare and contrast the immune response to EAV with that to the other three arteriviruses, and emphasize the potential relevance of apparent similarities and differences in the neutralization characteristics of each virus.
Collapse
Affiliation(s)
- Udeni B R Balasuriya
- Equine Viral Disease Laboratory, Department of Pathology, Microbiology and Immunology, School of Veterinary Medicine, University of California, Davis, CA 95616, USA.
| | | |
Collapse
|
50
|
Tabrizi CA, Walcher P, Mayr UB, Stiedl T, Binder M, McGrath J, Lubitz W. Bacterial ghosts – biological particles as delivery systems for antigens, nucleic acids and drugs. Curr Opin Biotechnol 2004; 15:530-7. [PMID: 15560979 DOI: 10.1016/j.copbio.2004.10.004] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Despite the exponential rate of discovery of new antigens and DNA vaccines resulting from modern molecular biology and proteomics, the lack of effective delivery technology is a major limiting factor in their application. The bacterial ghost system represents a platform technology for antigen, nucleic acid and drug delivery. Bacterial ghosts have significant advantages over other engineered biological delivery particles, owing to their intrinsic cellular and tissue tropic abilities, ease of production and the fact that they can be stored and processed without the need for refrigeration. These particles have found both veterinary and medical applications for the vaccination and treatment of tumors and various infectious diseases.
Collapse
Affiliation(s)
- Chakameh Azimpour Tabrizi
- Institute of Microbiology and Genetics, Section Microbiology and Biotechnology, University of Vienna, Althanstrasse 14, UZAII, 2B 522, A-1090 Vienna, Austria
| | | | | | | | | | | | | |
Collapse
|