1
|
Xiran L, Hongyan S, Guixiang Q, Ying S, Xiang L, Xin T, Mengying H, Ji W, Shangwei J. Preliminary investigation and analysis of nucleotide site variability of nine glycoproteins on varicella-zoster virus envelope, Jilin Province, China, 2010-March 2024. Sci Rep 2024; 14:22758. [PMID: 39353981 PMCID: PMC11445264 DOI: 10.1038/s41598-024-73072-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Accepted: 09/13/2024] [Indexed: 10/03/2024] Open
Abstract
Varicella is endemic worldwide. In China, varicella has not yet been included in the list of legal infectious diseases, nor has a unified national surveillance program been established. And the live attenuated varicella vaccine has not been included in routine immunization. In this study, we analyzed for the first time the varicella epidemiology in Jilin Province in the past 20 years, and the nucleotide site, amino acid site and N-glycosylation site variation of glycoprotein in varicella-zoster virus (VZV) surface 9 in the past 15 years. The results showed that the reported incidence of varicella in Jilin Province in the last 20 years was fluctuating above and below 20/100,000, especially after the epidemic of the COVID-19, and fatal cases appeared in individual years. The genotypic branching of VZV was monitored as Clade 2 in the last 15 years. 9 glycogen nucleotide sites of VZV had different degrees of variability, and the variability had specificity. Therefore, it gives us the idea that in order to reduce the incidence of varicella and herpes zoster, a provincial or even national surveillance program should be introduced as early as possible, and the dynamic monitoring of the variability of the nucleotide sites of VZV should be strengthened at the same time as the vaccine immunization strategy is introduced.
Collapse
Affiliation(s)
- Li Xiran
- China-Japan Union Hospital of Jilin University, Changchun, 130033, Jilin, China
| | - Sun Hongyan
- Department of Biobank, China-Japan Union Hospital of Jilin University, Changchun, 130033, Jilin, China
| | - Qin Guixiang
- Department of Tuberculosis Meningitis Diagnosis and Treatment Center, Changchun Infectious Disease Hospital, Changchun, 130123, Jilin, China
| | - Sun Ying
- Department of Dermatology, The Affiliated Hospital to Changchun University of Chinese Medicine, Changchun, 130021, Jilin, China
| | - Li Xiang
- Department of Viral Disease, Jilin Provincial Center for Disease Control and Prevention, Changchun, 130062, Jilin, China
| | - Tian Xin
- Department of EMO, Jilin Provincial Center for Disease Control and Prevention, Changchun, 130062, Jilin, China
| | - Han Mengying
- Department of Infectious Diseases, China-Japan Union Hospital of Jilin University, Changchun, 130033, Jilin, China
| | - Wang Ji
- Department of Pediatrics, The Second Hospital of Jilin University, Changchun, 130022, Jilin, China.
| | - Ji Shangwei
- Department of Infectious Diseases, China-Japan Union Hospital of Jilin University, Changchun, 130033, Jilin, China.
| |
Collapse
|
2
|
Palmer WH, Telford M, Navarro A, Santpere G, Norman PJ. Human herpesvirus diversity is altered in HLA class I binding peptides. Proc Natl Acad Sci U S A 2022; 119:e2123248119. [PMID: 35486690 PMCID: PMC9170163 DOI: 10.1073/pnas.2123248119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Accepted: 03/30/2022] [Indexed: 11/18/2022] Open
Abstract
Herpesviruses are ubiquitous, genetically diverse DNA viruses, with long-term presence in humans associated with infrequent but significant pathology. Human leukocyte antigen (HLA) class I presents intracellularly derived peptide fragments from infected tissue cells to CD8+ T and natural killer cells, thereby directing antiviral immunity. Allotypes of highly polymorphic HLA class I are distinguished by their peptide binding repertoires. Because this HLA class I variation is a major determinant of herpesvirus disease, we examined if sequence diversity of virus proteins reflects evasion of HLA presentation. Using population genomic data from Epstein–Barr virus (EBV), human cytomegalovirus (HCMV), and Varicella–Zoster virus, we tested whether diversity differed between the regions of herpesvirus proteins that can be recognized, or not, by HLA class I. Herpesviruses exhibit lytic and latent infection stages, with the latter better enabling immune evasion. Whereas HLA binding peptides of lytic proteins are conserved, we found that EBV and HCMV proteins expressed during latency have increased peptide sequence diversity. Similarly, latent, but not lytic, herpesvirus proteins have greater population structure in HLA binding than nonbinding peptides. Finally, we found patterns consistent with EBV adaption to the local HLA environment, with less efficient recognition of EBV isolates by high-frequency HLA class I allotypes. Here, the frequency of CD8+ T cell epitopes inversely correlated with the frequency of HLA class I recognition. Previous analyses have shown that pathogen-mediated natural selection maintains exceptional polymorphism in HLA residues that determine peptide recognition. Here, we show that HLA class I peptide recognition impacts diversity of globally widespread pathogens.
Collapse
Affiliation(s)
- William H. Palmer
- Division of Biomedical Informatics and Personalized Medicine, University of Colorado, Aurora, CO 80045
- Department of Immunology and Microbiology, University of Colorado, Aurora, CO 80045
| | - Marco Telford
- Neurogenomics Group, Research Programme on Biomedical Informatics (GRIB), Hospital del Mar Medical Research Institute (IMIM), Department of Medicine and Life Sciences (MELIS), Universitat Pompeu Fabra, 08003 Barcelona, Catalonia, Spain
- Department of Neuroscience, Yale University School of Medicine, New Haven, CT 06510
| | - Arcadi Navarro
- Institut de Biologia Evolutiva (Universitat Pompeu Fabra - Consejo Superior de Investigaciones Científicas), Department of Medicine and Life Sciences (MELIS), Barcelona Biomedical Research Park, Universitat Pompeu Fabra, 08003 Barcelona, Spain
- Institució Catalana de Recerca i Estudis Avançats and Universitat Pompeu Fabra, 08010 Barcelona, Spain
- Centre for Genomic Regulation, The Barcelona Institute of Science and Technology, 08003 Barcelona, Spain
- Barcelona Beta Brain Research Center, Pasqual Maragall Foundation, 08005 Barcelona, Spain
| | - Gabriel Santpere
- Neurogenomics Group, Research Programme on Biomedical Informatics (GRIB), Hospital del Mar Medical Research Institute (IMIM), Department of Medicine and Life Sciences (MELIS), Universitat Pompeu Fabra, 08003 Barcelona, Catalonia, Spain
- Department of Neuroscience, Yale University School of Medicine, New Haven, CT 06510
| | - Paul J. Norman
- Division of Biomedical Informatics and Personalized Medicine, University of Colorado, Aurora, CO 80045
- Department of Immunology and Microbiology, University of Colorado, Aurora, CO 80045
| |
Collapse
|
3
|
Depledge DP, Breuer J. Varicella-Zoster Virus-Genetics, Molecular Evolution and Recombination. Curr Top Microbiol Immunol 2021; 438:1-23. [PMID: 34374828 DOI: 10.1007/82_2021_238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
This chapter first details the structure, organization and coding content of the VZV genome to provide a foundation on which the molecular evolution of the virus can be projected. We subsequently describe the evolution of molecular profiling approaches from restriction fragment length polymorphisms to single nucleotide polymorphism profiling to modern day high-throughput sequencing approaches. We describe how the application of these methodologies led to our current model of VZV phylogeograpy including the number and structure of geographic clades and the role of recombination in reshaping these.
Collapse
Affiliation(s)
- Daniel P Depledge
- Institute of Virology, Hannover Medical School (MHH), Hannover, Germany. .,Department of Microbiology, NYU School of Medicine, New York, USA.
| | - Judith Breuer
- Department of Infection & Immunology, University College London, London, UK
| |
Collapse
|
4
|
Pontremoli C, Forni D, Clerici M, Cagliani R, Sironi M. Possible European Origin of Circulating Varicella Zoster Virus Strains. J Infect Dis 2021; 221:1286-1294. [PMID: 31051029 DOI: 10.1093/infdis/jiz227] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Accepted: 05/02/2019] [Indexed: 11/13/2022] Open
Abstract
Varicella zoster virus (VZV) is the causative agent of chickenpox and shingles. The geographic distribution of VZV clades was taken as evidence that VZV migrated out of Africa with human populations. We show that extant VZV strains most likely originated in Europe and not in Africa. Europe was also identified as the ancestral location for most internal nodes of the VZV phylogeny, including the ancestor of clade 5 strains. We also show that strains from clades 1, 2, 3, and 5 derived a major proportion of their ancestry from each of 4 ancestral populations. Conversely, viruses from other clades displayed variable levels of admixture. Some low-level admixture was also observed for clade 5 genomes, but only for non-African viruses. This pattern indicates that the clade 5 VZV strains do not represent recent introductions from Africa due to migratory fluxes. These data have also relevance for the definition and classification of VZV clades.
Collapse
Affiliation(s)
- Chiara Pontremoli
- Istituto di ricovero e cura a carattere scientifico (IRCCS) E. Medea, Bioinformatics, Bosisio Parini, Milan, Italy
| | - Diego Forni
- Istituto di ricovero e cura a carattere scientifico (IRCCS) E. Medea, Bioinformatics, Bosisio Parini, Milan, Italy
| | - Mario Clerici
- Department of Physiopathology and Transplantation, University of Milan, Milan, Italy.,IRCCS Fondazione Don Carlo Gnocchi, Milan, Italy
| | - Rachele Cagliani
- Istituto di ricovero e cura a carattere scientifico (IRCCS) E. Medea, Bioinformatics, Bosisio Parini, Milan, Italy
| | - Manuela Sironi
- Istituto di ricovero e cura a carattere scientifico (IRCCS) E. Medea, Bioinformatics, Bosisio Parini, Milan, Italy
| |
Collapse
|
5
|
Zhang B, Xu J, Song X, Wang T, Quan Z, Qian M, Liu W, Song N. Characterization and Comparison of Genetic Variation in Clinical Varicella-Zoster Virus Isolates Collected from Shanghai and Urumqi, China. Jpn J Infect Dis 2020; 73:226-230. [PMID: 32009054 DOI: 10.7883/yoken.jjid.2019.280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Varicella-zoster virus (VZV) is a ubiquitous human herpesvirus that causes chickenpox and zoster. Considering that VZV is a relatively and genetically stable virus, its global surveillance clades provide essential information for VZV evolution, immigration, and importation of different viral strains and recombination events. Eighty-eight VZV isolates from China (Shanghai and Urumqi) were genotyped using a scattered single-nucleotide polymorphism method in this prospective study. Our results were based on sequencing the open reading frames 1, 6, 12, 16, 17, 21, 22, 35, 37, 38, 50, 54, 55, 56, 60, and 66. We found that the majority of these 88 strains (81.8%) belonged to Clade 2 with significantly high homogeneity from Shanghai. However, in the Urumqi area, some strains were grouped to Clade 5, and some could not be attributed to any of the established VZV clades, although the majority of Urumqi strains belonged to Clade 2. Our results illustrated that due to geographical location, VZV could undergo genetic recombination, suggesting that VZV diversity is more complicated in certain areas and geographical separation contributes to VZV complexity.
Collapse
Affiliation(s)
- Beibei Zhang
- Department of Dermatology, Tongren Hospital, Shanghai Jiao Tong University School of Medicine
| | - Jin Xu
- Department of Dermatology, Tongren Hospital, Shanghai Jiao Tong University School of Medicine
| | - Xu Song
- Department of Dermatology, Karamay People's Hospital
| | - Tingting Wang
- Department of Dermatology, Tongren Hospital, Shanghai Jiao Tong University School of Medicine
| | - Zhe Quan
- Department of Dermatology, Tongren Hospital, Shanghai Jiao Tong University School of Medicine
| | - Miao Qian
- Department of Dermatology, Tongren Hospital, Shanghai Jiao Tong University School of Medicine
| | - Wei Liu
- Department of Dermatology, Tongren Hospital, Shanghai Jiao Tong University School of Medicine
| | - Ningjing Song
- Department of Dermatology, Tongren Hospital, Shanghai Jiao Tong University School of Medicine
| |
Collapse
|
6
|
Breuer J. Molecular Genetic Insights Into Varicella Zoster Virus (VZV), the vOka Vaccine Strain, and the Pathogenesis of Latency and Reactivation. J Infect Dis 2019; 218:S75-S80. [PMID: 30247591 DOI: 10.1093/infdis/jiy279] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Genetic tools for molecular typing of varicella zoster virus (VZV) have been used to understand the spread of virus, to differentiate wild-type and vaccine strains, and to understand the natural history of VZV infection in its cognate host. Molecular genetics has identified 7 clades of VZV (1-6 and 9), with 2 more mooted. Differences between the vOka vaccine strain and wild-type VZVs have been used to distinguish the cause of postimmunization events and to provide insight into the natural history of VZV infections. Importantly molecular genetics has shown that reinfection with establishment of latency by the reinfecting strain is common, that dual infections with different viruses can occur, and that reactivation of the superinfecting genotype can both occur. Whole-genome sequencing of the vOka vaccine has been used to show that vesicles form from a single virion, that latency is established within a few days of inoculation, and that all vaccine strains are capable of establishing latency and reactivating. Novel molecular tools have characterized the transcripts expressed during latent infection in vitro.
Collapse
Affiliation(s)
- Judith Breuer
- Division of Infection and Immunity, University College London, United Kingdom
| |
Collapse
|
7
|
Breuer J. The Origin and Migration of Varicella Zoster Virus Strains. J Infect Dis 2019; 221:1213-1215. [DOI: 10.1093/infdis/jiz232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Accepted: 05/02/2019] [Indexed: 11/13/2022] Open
Affiliation(s)
- Judith Breuer
- Division of Infection and Immunity, University College London, United Kingdom
| |
Collapse
|
8
|
González I, Molina-Ortega A, Pérez-Romero P, Echevarría JE, He L, Tarragó D. Varicella-zoster virus clades circulating in Spain over two decades. J Clin Virol 2018; 110:17-21. [PMID: 30517902 DOI: 10.1016/j.jcv.2018.11.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Revised: 08/30/2018] [Accepted: 11/26/2018] [Indexed: 11/28/2022]
Abstract
BACKGROUND Despite childhood universal VZV immunization was introduced in 2015, there are no data on VZV clade distribution in Spain. OBJECTIVES To characterize the varicella-zoster virus strains circulating in Spain between 1997 and 2016. STUDY DESIGN In this retrospective study, we determined the VZV clades in 294 patients with different pathologies (mainly encephalitis, zoster and varicella) by sequencing three fragments within ORF 22, ORF 21 and ORF 50 and, subsequently analyzing 7 relevant SNPs. RESULTS Among these 294 patients, 132(44.9%) patients were infected by clade 1, 42(14.3%) patients by clade 3, 19(6.5%) by clade 5, 29(9.9%) by clade VI and 3(1%) by clade 4. Four patients (1.4%) were infected by clade 2 vOKA strains, who received one dose of live-attenuated varicella vaccine. Putative recombinant clade 1/3 was identified in 6 cases (2.0%). Results obtained from partial sequences were assigned to clade 1 or 3 in 56(19%) patients and clade 5 or VI in 3(1.0%) patients. In the multivariate analysis, encephalitis was independently associated with clades 1 and 3 and age >14y.o. (P = 0.035 and P = 0.021, respectively). Additionally, Madrid had significant fewer cases of encephalitis compared with the rest of regions analyzed (P = 0.001). CONCLUSIONS Higher prevalence of clades 1 and 3 and their relation with encephalitis and age >14y.o. suggest earlier introduction of this clades in Spain. Putative interclade 1 and 3 recombinants are circulating in patients with encephalitis, herpes zoster and varicella. Several cases were related to vOKA vaccination but vaccine strains do not seem to circulate in the general population.
Collapse
Affiliation(s)
- Irene González
- Centro Nacional de Microbiología (CNM), Instituto de Salud Carlos III, Majadahonda, Spain
| | - Alejandro Molina-Ortega
- Instituto de Biomedicina de Sevilla (IBIS)/CSIC/University of Sevilla, University Hospital Virgen del Rocío. Sevilla, Spain
| | - Pilar Pérez-Romero
- Centro Nacional de Microbiología (CNM), Instituto de Salud Carlos III, Majadahonda, Spain
| | - Juan E Echevarría
- Centro Nacional de Microbiología (CNM), Instituto de Salud Carlos III, Majadahonda, Spain; CIBER de Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
| | - Lante He
- Centro Nacional de Microbiología (CNM), Instituto de Salud Carlos III, Majadahonda, Spain
| | - David Tarragó
- Centro Nacional de Microbiología (CNM), Instituto de Salud Carlos III, Majadahonda, Spain.
| |
Collapse
|
9
|
Sahay RR, Yadav PD, Majumdar T, Patil S, Sarkale P, Shete AM, Chaubal G, Dange VR, Patil S, Nyayanit DA, Shastri J, Mourya DT. Clinico-epidemiological investigation on Varicella Zoster Virus indicates multiple clade circulation in Maharashtra state, India. Heliyon 2018; 4:e00757. [PMID: 30175265 PMCID: PMC6118100 DOI: 10.1016/j.heliyon.2018.e00757] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Revised: 06/18/2018] [Accepted: 08/23/2018] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Varicella Zoster Virus (VZV) is consistently in circulation and shows an increase in disease burden during the spring season. Due to a wide range of clinical presentation from a vesicular rash to bleeding or neurological complications, it makes the clinical diagnosis difficult. The present study aims to understand whether the same strain of virus is responsible for the increase in the seasonal outbreaks occurring in different parts of the country with reference to the samples from Maharashtra, Rajasthan and Gujarat states of India. MATERIALS AND METHODS This study reports the clinico-epidemiological and laboratory findings of suspected Varicella cases. To understand the circulating clade few representative real-time Polymerase Chain Reaction (PCR) positive were analyzed by conventional PCR and partial Open Reading Frame (ORF) 22, partial ORF 38 and partial ORF 54 were sequenced to identify single nucleotide polymorphisms responsible for clade determination. Further partial glycoprotein B gene was sequenced, and a phylogenetic tree was generated. RESULTS A total of 50 cases from Maharashtra (Mumbai district) and referred clinical samples of Rajasthan (Barmer district; n = 12) and Gujarat States (Gandhi Nagar, Surat districts; n = 17) were tested for the presence of VZV. Vesicular rash with fever was a common clinical presentation with 82% cases having contact history with VZV positive cases, suggesting higher secondary attack rate. The vesicular fluid of all 50 cases from Mumbai revealed the presence of VZV by real-time PCR. Urine, serum and throat swab samples showed positivity by real-time PCR. Healthcare provider's samples from Rajasthan showed 36.4% [4/11] positivity. Clinical samples from Gujarat had positivity of 41.2% [7/17]. CONCLUSIONS This study analyses the clade based circulation of VZV in three states in India and suggests different clades circulating in Maharashtra state. Health education amongst the general population is suggested to reduce the secondary cases by early diagnosis, effective isolation policies and vaccination to reduce the burden of disease.
Collapse
Affiliation(s)
- Rima R. Sahay
- Microbial Containment Complex, ICMR- National Institute of Virology, Sus Road, Pashan, Pune 410021, India
| | - Pragya D. Yadav
- Microbial Containment Complex, ICMR- National Institute of Virology, Sus Road, Pashan, Pune 410021, India
| | - Triparna Majumdar
- Microbial Containment Complex, ICMR- National Institute of Virology, Sus Road, Pashan, Pune 410021, India
| | - Swapnil Patil
- Microbial Containment Complex, ICMR- National Institute of Virology, Sus Road, Pashan, Pune 410021, India
| | - Prasad Sarkale
- Microbial Containment Complex, ICMR- National Institute of Virology, Sus Road, Pashan, Pune 410021, India
| | - Anita M. Shete
- Microbial Containment Complex, ICMR- National Institute of Virology, Sus Road, Pashan, Pune 410021, India
| | - Gouri Chaubal
- Microbial Containment Complex, ICMR- National Institute of Virology, Sus Road, Pashan, Pune 410021, India
| | - Vinay R. Dange
- Kasturba Infectious Disease Hospital, Saat Rasta, Arthur Road, Chinchpokli, Mumbai 400011, India
| | - Savita Patil
- Microbial Containment Complex, ICMR- National Institute of Virology, Sus Road, Pashan, Pune 410021, India
| | - Dimpal A. Nyayanit
- Microbial Containment Complex, ICMR- National Institute of Virology, Sus Road, Pashan, Pune 410021, India
| | - Jayanthi Shastri
- Kasturba Infectious Disease Hospital, Saat Rasta, Arthur Road, Chinchpokli, Mumbai 400011, India
| | - Devendra T. Mourya
- Microbial Containment Complex, ICMR- National Institute of Virology, Sus Road, Pashan, Pune 410021, India
- Corresponding author.
| |
Collapse
|
10
|
Characterization and phylogenetic analysis of Varicella-zoster virus strains isolated from Korean patients. J Microbiol 2017; 55:665-672. [PMID: 28752294 DOI: 10.1007/s12275-017-7171-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Revised: 06/15/2017] [Accepted: 06/22/2017] [Indexed: 12/24/2022]
Abstract
Varicella-zoster virus (VZV) is a causative agent of chickenpox in primary infection and shingles after its reactivation from latency. Complete or almost-complete genomic DNA sequences for various VZV strains have been reported. Recently, clinical VZV strains were isolated from Korean patients whose genome was sequenced using high-throughput sequencing technology. In this study, we analyzed single nucleotide polymorphism (SNP) of VZV strains to genetically characterize Korean clinical isolates. Phylogenetic analyses revealed that three Korean strains, YC01, YC02, and YC03, were linked to clade 2. Comprehensive SNP analysis identified 86 sites specific for the 5 VZV clades. VZV strains isolated from Korea did not form a phylogenetic cluster. Rather, YC02 and YC03 clustered strongly with Chinese strain 84-7 within clade 2, more specifically cluster 2a. Signature sequences for the cluster 2a were identified and found to play an important role in the separation of cluster 2a strains from other clade 2 strains, as shown in substitution studies. Further genetic analysis with additional strains isolated from Japan, China, and other Asian countries would provide a novel insight into the significance of two distinct subclades within clade 2.
Collapse
|
11
|
Natural recombination in alphaherpesviruses: Insights into viral evolution through full genome sequencing and sequence analysis. INFECTION GENETICS AND EVOLUTION 2017; 49:174-185. [DOI: 10.1016/j.meegid.2016.12.022] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2016] [Revised: 12/20/2016] [Accepted: 12/21/2016] [Indexed: 01/05/2023]
|
12
|
Chernakova GM, Kleshcheva EA, Semenova TB. [Clinical presentations of Herpes Zoster Ophthalmicus (diagnosis and therapy)]. Vestn Oftalmol 2016; 132:75-80. [PMID: 27911430 DOI: 10.17116/oftalma2016132575-80] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Approximately a quarter of the world's population at some point in life is at risk of developing shingles (Herpes Zoster). In 10-20% of cases the first branch of the trigeminal nerve gets involved (Herpes Zoster Ophthalmicus, HZO). Ophthalmic complications of HZO are able to cause a significant reduction in visual function. AIM To study and summarize clinical features of HZO (including the rate of complications and their nature) and to determine the relationship between clinical and laboratory data from these patients. MATERIAL AND METHODS The study included 133 patients with ophthalmic and neurological complications of HZO (group 1 (n=28) - retrospective analysis of outpatient records for the period 1995-2005; group 2 (n=95) - a prospective study for the period 2005-2015), who received a course of conservative treatment in either the Botkin City Hospital, branch № 1, or in the ophthalmic department of the Moscow herpes centre (Gerpeticheskiy Tsentr Ltd.). Laboratory tests were performed only in patients from group 2 and included: examination of biological fluids for six types of herpes viruses by polymerase chain reaction, examination of tears and urine for DNA of Chlamydia, Mycoplasma, and Ureaplasma, and serological blood testing for markers of herpes virus infection. Patients from group 1 were prescribed topical antiviral, antibacterial, and anti-inflammatory therapy, in rare cases - acyclovir per os. In group 2, the treatment included systemic antiviral medications and immune correction therapy. Anti-inflammatory therapy consisted of local and systemic non-steroidal agents (NSAIDs). RESULTS The most common ophthalmic complications of HZO in both groups were stromal keratitis and keratoiridocyclitis, neurological - III and VI cranial nerves palsies. The duration of the disease in the first group ranged from 2 months to 3 years; in the second group, patients were divided into two subgroups: subgroup A with the disease duration of no more than one month (n=81) and subgroup B with the disease duration from 1.5 to 9 months (n=14). Varicella-zoster virus (VZV) DNA was present in tears and/or other biological fluids of patients from group 2 in more than 70% of cases (n=67). Particularly, in 27.4% of cases the virus was isolated in two fluids and in 7.4% of cases - in three fluids. The duration of virus production in tears and other biological fluids (saliva, blood, and urine) ranged from 10 days to 4 months. CONCLUSION Topical non-steroidal anti-inflammatory drugs and systemic etiological treatment in case of intraocular inflammation in HZO patients may reduce the risk of severe consequences of VZV reactivation and help avoid recurrences later in life.
Collapse
Affiliation(s)
- G M Chernakova
- Russian Medical Academy of Postgraduate Education, Ministry of Health of the Russian Federation, 2/1 Barrikadnaya St., Moscow, Russian Federation, 123995; Gerpeticheskiy Tsentr Ltd., 21B Michurinskiy Prospekt, Moscow, Russian Federation, 119192
| | - E A Kleshcheva
- Russian Medical Academy of Postgraduate Education, Ministry of Health of the Russian Federation, 2/1 Barrikadnaya St., Moscow, Russian Federation, 123995; Gerpeticheskiy Tsentr Ltd., 21B Michurinskiy Prospekt, Moscow, Russian Federation, 119192
| | - T B Semenova
- Gerpeticheskiy Tsentr Ltd., 21B Michurinskiy Prospekt, Moscow, Russian Federation, 119192
| |
Collapse
|
13
|
Halling G, Giannini C, Britton JW, Lee RW, Watson RE, Terrell CL, Parney IF, Buckingham EM, Carpenter JE, Grose C. Focal encephalitis following varicella-zoster virus reactivation without rash in a healthy immunized young adult. J Infect Dis 2014; 210:713-6. [PMID: 24604820 DOI: 10.1093/infdis/jiu137] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Herein we describe an episode of focal varicella-zoster virus (VZV) encephalitis in a healthy young man with neither rash nor radicular pain. The symptoms began with headaches and seizures, after which magnetic resonance imaging detected a single hyperintense lesion in the left temporal lobe. Because of the provisional diagnosis of a brain tumor, the lesion was excised and submitted for pathological examination. No tumor was found. But the tissue immunostained positively for VZV antigens, and wild-type VZV sequences were detected. In short, this case represents VZV reactivation, most likely in the trigeminal ganglion, in the absence of clinical herpes zoster.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Ian F Parney
- Department of Neurological Surgery, Mayo Clinic, Rochester, Minnesota
| | - Erin M Buckingham
- Division of Infectious Diseases/Virology, University of Iowa Children's Hospital, Iowa City
| | - John E Carpenter
- Division of Infectious Diseases/Virology, University of Iowa Children's Hospital, Iowa City
| | - Charles Grose
- Division of Infectious Diseases/Virology, University of Iowa Children's Hospital, Iowa City
| |
Collapse
|
14
|
Yamada M, Kamberos N, Grose C. Breakthrough varicella in a cancer patient with persistent varicella antibody after one varicella vaccination. J Pediatr 2013; 163:1511-3. [PMID: 23932212 PMCID: PMC3812326 DOI: 10.1016/j.jpeds.2013.06.043] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/10/2013] [Revised: 05/31/2013] [Accepted: 06/20/2013] [Indexed: 11/19/2022]
Abstract
A boy with Hodgkin disease contracted breakthrough varicella from his father, who had chickenpox. The boy had received a single varicella vaccination and was seropositive by enzyme-linked immunosorbent assay before being diagnosed with breakthrough varicella. Seropositivity after a single varicella vaccination does not guarantee complete protection in an immunocompromised child.
Collapse
Affiliation(s)
- Masaki Yamada
- Divisions of Infectious Diseases/Virology and Hematology/Oncology, Children's Hospital, University of Iowa, Iowa City, IA
| | | | | |
Collapse
|
15
|
Gershon AA, Gershon MD. Pathogenesis and current approaches to control of varicella-zoster virus infections. Clin Microbiol Rev 2013; 26:728-43. [PMID: 24092852 PMCID: PMC3811230 DOI: 10.1128/cmr.00052-13] [Citation(s) in RCA: 127] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Varicella-zoster virus (VZV) was once thought to be a fairly innocuous pathogen. That view is no longer tenable. The morbidity and mortality due to the primary and secondary diseases that VZV causes, varicella and herpes zoster (HZ), are significant. Fortunately, modern advances, including an available vaccine to prevent varicella, a therapeutic vaccine to diminish the incidence and ameliorate sequelae of HZ, effective antiviral drugs, a better understanding of VZV pathogenesis, and advances in diagnostic virology have made it possible to control VZV in the United States. Occult forms of VZV-induced disease have been recognized, including zoster sine herpete and enteric zoster, which have expanded the field. Future progress should include development of more effective vaccines to prevent HZ and a more complete understanding of the consequences of VZV latency in the enteric nervous system.
Collapse
|
16
|
Genetic analysis of clinical VZV isolates collected in China reveals a more homologous profile. BIOMED RESEARCH INTERNATIONAL 2013; 2013:681234. [PMID: 23781507 PMCID: PMC3678451 DOI: 10.1155/2013/681234] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2013] [Revised: 04/23/2013] [Accepted: 04/23/2013] [Indexed: 12/21/2022]
Abstract
Forty-four varicella-zoster virus (VZV) isolates from China were genotyped by using a scattered single nucleotide polymorphism (SNP) method, including open reading frames (ORFs) 1, 22, 31, 37, 60, 62, 67, and 68. Based on the analysis of the polymorphic markers in the 8 ORFs, all of the 44 isolates can be placed in genotype J defined by the SNP profiles in ORF22 or clade B defined by the SNP profiles in ORFs 31, 37, 60, 62, 67, and 68. The three consecutive nucleotide (CGG) in-frame insertions in ORF 1 were found in 8 (18.2%) isolates, which has not been described in VZV strains from any other part of the world. A novel synonymous A>G substitution in ORF60 was revealed in 4 (9.1%) of the isolates. In addition, a previously described three consecutive nucleotide (ATC) insertion in ORF 60 was found in all the Chinese isolates but not in the US isolate MLS. The results showed all the 44 strains that belong to genotype J/clade B with significantly high homogeneity, and phylogenetic analysis suggested that the 44 Chinese isolates consist of 4 clusters, but interstrain variations also exist. Overall, VZV isolates obtained in China showed significantly higher genetic homogeneity than isolates reported from other countries.
Collapse
|
17
|
Roycroft E, Rose L, Scallan MF, Crowley B. Molecular characterization of varicella-zoster virus clinical isolates from 2006 to 2008 in a tertiary care hospital, Dublin, Ireland, using different genotyping methods. J Med Virol 2013; 84:1672-9. [PMID: 22930517 DOI: 10.1002/jmv.23344] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Varicella-zoster virus (VZV), a herpesvirus, is a ubiquitous organism that causes considerable morbidity worldwide and can cause severe complications on reactivation. Phylogenetic analysis was performed on 19 clinical VZV isolates (16 zoster and 3 varicella) found in Ireland, between December 2006 and November 2008, in order to determine whether previously reported viral heterogeneity was still present and whether viral recombination was evident. Open reading-frames (ORFs) from genes 1, 21, 50, and 54, were sequenced. Clades 1, 2, 3, and 5 were identified. Four putative recombinant isolates were detected (three clade 3/1 and one clade 5/3/1). Further sequencing and examination of ORF 22 and 21/50, did not elucidate the putative recombinant genotypes further. These two previously published genotyping schemes were examined in light of the new consensus genotyping scheme proposed in 2010. Remarkable VZV heterogeneity remains prevalent in Ireland. This is the first evidence of putative VZV recombination found in Ireland.
Collapse
Affiliation(s)
- Emma Roycroft
- Central Pathology Laboratory, Clinical Microbiology Department, St James' Hospital, Dublin, Ireland
| | | | | | | |
Collapse
|
18
|
|
19
|
Chow VT, Tipples GA, Grose C. Bioinformatics of varicella-zoster virus: single nucleotide polymorphisms define clades and attenuated vaccine genotypes. INFECTION GENETICS AND EVOLUTION 2012. [PMID: 23183312 DOI: 10.1016/j.meegid.2012.11.008] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Varicella zoster virus (VZV) is one of the human herpesviruses. To date, over 40 complete VZV genomes have been sequenced and analyzed. The VZV genome contains around 125,000 base pairs including 70 open reading frames (ORFs). Enumeration of single nucleotide polymorphisms (SNPs) has determined that the following ORFs are the most variable (in descending order): 62, 22, 29, 28, 37, 21, 54, 31, 1 and 55. ORF 62 is the major immediate early regulatory VZV gene. Further SNP analysis across the entire genome has led to the observation that VZV strains can be broadly grouped into clades within a phylogenetic tree. VZV strains collected in Singapore provided important sequence data for construction of the phylogenetic tree. Currently five VZV clades are recognized; they have been designated clades 1 through 5. Clades 1 and 3 include European/North American strains; clade 2 includes Asian strains, especially from Japan; and clade 5 includes strains from India. Clade 4 includes some strains from Europe, but its geographic origins need further documentation. Within clade 1, five variant viruses have been isolated with a missense mutation in the gE (ORF 68) glycoprotein; these strains have an altered increased cell spread phenotype. Bioinformatics analyses of the attenuated vaccine strains have also been performed, with a subsequent discovery of a stop-codon SNP in ORFO as a likely attenuation determinant. Taken together, these VZV bioinformatics analyses have provided enormous insights into VZV phylogenetics as well as VZV SNPs associated with attenuation.
Collapse
Affiliation(s)
- Vincent T Chow
- Department of Microbiology, National University of Singapore, Singapore
| | | | | |
Collapse
|
20
|
Pangaea and the Out-of-Africa Model of Varicella-Zoster Virus Evolution and Phylogeography. J Virol 2012; 86:9558-65. [PMID: 22761371 DOI: 10.1128/jvi.00357-12] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The goal of this minireview is to provide an overview of varicella-zoster virus (VZV) phylogenetics and phylogeography when placed in the broad context of geologic time. Planet Earth was formed over 4 billion years ago, and the supercontinent Pangaea coalesced around 400 million years ago (mya). Based on detailed tree-building models, the base of the phylogenetic tree of the Herpesviridae family has been estimated at 400 mya. Subsequently, Pangaea split into Laurasia and Gondwanaland; in turn, Africa rifted from Gondwanaland. Based on available data, the hypothesis of this minireview is that the ancestral alphaherpesvirus VZV coevolved in simians, apes, and hominins in Africa. When anatomically modern humans first crossed over the Red Sea 60,000 years ago, VZV was carried along in their dorsal root ganglia. Currently, there are five VZV clades, distinguishable by single nucleotide polymorphisms. These clades likely represent continued VZV coevolution, as humans with latent VZV infection left Arabia and dispersed into Asia (clades 2 and 5) and Europe (clades 1, 3, and 4). The prototype VZV sequence contains nearly 125,000 bp, divided into 70 open reading frames. Generally, isolates within a clade display >99.9% identity to one another, while members of one clade compared to a second clade show 99.8% identity to one another. Recently, four different VZV genotypes that do not segregate into the previously defined five clades have been identified, a result indicating a wider than anticipated diversity among newly collected VZV strains around the world.
Collapse
|
21
|
Fonseca AA, Camargos MF, Sales ML, Heinemann MB, Leite RC, Reis JKP. Pseudorabies virus can be classified into five genotypes using partial sequences of UL44. Braz J Microbiol 2012; 43:1632-40. [PMID: 24031995 PMCID: PMC3769038 DOI: 10.1590/s1517-838220120004000048] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2011] [Revised: 08/22/2011] [Accepted: 06/07/2012] [Indexed: 11/25/2022] Open
Abstract
Suid herpesvirus 1 (SuHV-1) is the causative agent of pseudorabies (PR), a disease of great importance due to the huge losses it causes in the swine industry. The aim of this study was to determine a method for genotyping SuHV-1 based on partial sequences of the gene coding for glycoprotein C (gC) and to elucidate the possible reasons for the variability of this region. A total of 109 gCsequences collected from GenBank were divided into five major groups after reconstruction of a phylogenetic tree by Bayesian inference. The analysis showed that a portion of gC (approximately 671 bp) is under selective pressure at various points that coincide with regions of protein disorder. It was also possible to divide SuHV-1 into five genotypes that evolved under different selective pressures. These genotypes are not specific to countries or continents, perhaps due to multiple introduction events related to the importation of swine.
Collapse
Affiliation(s)
- A A Fonseca
- Laboratório Nacional Agropecuário, Ministério da Agricultura, Pecuária e Abastecimento , Pedro Leopoldo, MG , Brasil
| | | | | | | | | | | |
Collapse
|
22
|
Jiang Z, Xia H, Basso B, Lu BR. Introgression from cultivated rice influences genetic differentiation of weedy rice populations at a local spatial scale. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2012; 124:309-322. [PMID: 21947325 DOI: 10.1007/s00122-011-1706-5] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2011] [Accepted: 09/07/2011] [Indexed: 05/31/2023]
Abstract
Hybridization and introgression can play an important role in genetic differentiation and adaptive evolution of plant species. For example, a conspecific feral species may frequently acquire new alleles from its coexisting crops via introgression. However, little is known about this process. We analyzed 24 weedy rice (Oryza sativa f. spontanea) populations and their coexisting rice cultivars from northern Italy to study their genetic differentiation, outcrossing, and introgression based on microsatellite polymorphisms. A total of 576 maternal plants representing 24 weedy populations were used to estimate their genetic differentiation, and 5,395 progeny (seedlings) derived from 299 families of 15 selected populations were included to measure outcrossing rates. Considerable genetic differentiation (F (st) = 0.26) was detected among weedy rice populations, although the differentiation was not associated with the spatial pattern of the populations. Private alleles (28%) were identified in most populations that exhibited a multiple cluster assignments, indicating stronger genetic affinities of some weedy populations. Outcrossing rates were greatly variable and positively correlated (R (2) = 0.34, P = 0.02) with the private alleles of the corresponding populations. Paternity analysis suggested that ~15% of paternal specific alleles, a considerable portion of which was found to be crop-specific, were acquired from the introgression of the coexisting rice cultivars. Frequent allelic introgression into weedy populations resulting from outcrossing with nearby cultivars determines the private alleles of local feral populations, possibly leading to their genetic differentiation. Introgression from a crop may play an important role in the adaptive evolution of feral populations.
Collapse
Affiliation(s)
- Zhuxi Jiang
- Ministry of Education Key Laboratory for Biodiversity and Ecological Engineering, Institute of Biodiversity Science, Fudan University, Handan Road 220, Shanghai, 200433, China
| | | | | | | |
Collapse
|
23
|
Kim JI, Jung GS, Kim YY, Ji GY, Kim HS, Wang WD, Park HS, Park SY, Kim GH, Kwon SN, Lee KM, Ahn JH, Yoon Y, Lee CH. Sequencing and characterization of Varicella-zoster virus vaccine strain SuduVax. Virol J 2011; 8:547. [PMID: 22176950 DOI: 10.1186/1743-422x-8-547] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2011] [Accepted: 12/16/2011] [Indexed: 01/31/2023] Open
Abstract
BACKGROUND Varicella-zoster virus (VZV) causes chickenpox in children and shingles in older people. Currently, live attenuated vaccines based on the Oka strain are available worldwide. In Korea, an attenuated VZV vaccine has been developed from a Korean isolate and has been commercially available since 1994. Despite this long history of use, the mechanism for the attenuation of the vaccine strain is still elusive. We attempted to understand the molecular basis of attenuation mechanism by full genome sequencing and comparative genomic analyses of the Korean vaccine strain SuduVax. RESULTS SuduVax was found to contain a genome that was 124,759 bp and possessed 74 open reading frames (ORFs). SuduVax was genetically most close to Oka strains and these Korean-Japanese strains formed a strong clade in phylogenetic trees. SuduVax, similar to the Oka vaccine strains, underwent T- > C substitution at the stop codon of ORF0, resulting in a read-through mutation to code for an extended form of ORF0 protein. SuduVax also shared certain deletion and insertion mutations in ORFs 17, 29, 56 and 60 with Oka vaccine strains and some clinical strains. CONCLUSIONS The Korean VZV vaccine strain SuduVax is genetically similar to the Oka vaccine strains. Further comparative genomic and bioinformatics analyses will help to elucidate the molecular basis of the attenuation of the VZV vaccine strains.
Collapse
Affiliation(s)
- Jong Ik Kim
- Department of Microbiology, Chungbuk National University, Cheongju, South Korea
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Sequencing of 21 varicella-zoster virus genomes reveals two novel genotypes and evidence of recombination. J Virol 2011; 86:1608-22. [PMID: 22130537 DOI: 10.1128/jvi.06233-11] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Genotyping of 21 varicella-zoster virus (VZV) strains using a scattered single nucleotide polymorphism (SNP) method revealed ambiguous SNPs and two nontypeable isolates. For a further genetic characterization, the genomes of all strains were sequenced using the 454 technology. Almost-complete genome sequences were assembled, and most remaining gaps were closed with Sanger sequencing. Phylogenetic analysis of 42 genomes revealed five established and two novel VZV genotypes, provisionally termed VIII and IX. Genotypes VIII and IX are distinct from the previously reported provisional genotypes VI and VII as judged from the SNP pattern. The alignments showed evidence of ancient recombination events in the phylogeny of clade 4 and recent recombinations within single strains: 3/2005 (clade 1), 11 and 405/2007 (clade 3), 8 and DR (clade 4), CA123 and 413/2000 (clade 5), and strains of the novel genotypes VIII and IX. Bayesian tree inference of the thymidine kinase and the polymerase genes of the VZV clades and other varicelloviruses revealed that VZV radiation began some 110,000 years ago, which correlates with the out-of-Africa dispersal of modern humans. The split of ancestral clades 2/4 and 1/3/5/VIII/IX shows the greatest node height.
Collapse
|
25
|
Abstract
Varicella zoster virus (VZV) is one of eight members of the Herpesviridae family for which humans are the primary host; it causes two distinct diseases, varicella (chickenpox) and zoster (shingles). Varicella results from primary infection, during which the virus establishes latency in sensory neurons, a characteristic of all members of the Alphaherpesvirinae subfamily. Zoster is caused by reactivation of latent virus, which typically occurs when cellular immunity is impaired. VZV is the first human herpesvirus for which a vaccine has been licensed. The vaccine preparation, v-Oka, is a live-attenuated virus stock produced by the classic method of tissue culture passage in animal and human cell lines. Over 90 million doses of the vaccine have been administered in countries worldwide, including the USA, where varicella morbidity and mortality has declined dramatically. Over the last decade, several laboratories have been committed to investigating the mechanism by which the Oka vaccine is attenuated. Mutations have accumulated across the genome of the vaccine during the attenuation process; however, studies of the contribution of these changes to vaccine attenuation have been hampered by the lack of a suitable animal model of VZV disease and by the heterogeneity that exists among the viral population within the vaccine preparation. Notwithstanding, a wealth of data has been generated using various laboratory methodologies. Studies of the vaccine virus in human xenografts implanted in severe combined immunodeficiency-hu mice, have enabled analyses of the replication dynamics of the vaccine in dorsal root ganglia, T lymphocytes and skin. In vitro assays have been used to investigate the effect of vaccine mutations on viral gene expression and sequence analysis of vaccine rash viruses has permitted investigations into spread of the vaccine virus in a human host. We present here a review of what has been learned thus far about the molecular and phenotypic characteristics of the Oka vaccine.
Collapse
MESH Headings
- Animals
- Chickenpox/immunology
- Chickenpox/prevention & control
- Chickenpox/virology
- Chickenpox Vaccine/administration & dosage
- Chickenpox Vaccine/genetics
- Chickenpox Vaccine/immunology
- Ganglia, Spinal/drug effects
- Ganglia, Spinal/immunology
- Ganglia, Spinal/pathology
- Ganglia, Spinal/virology
- Herpes Zoster/immunology
- Herpes Zoster/prevention & control
- Herpes Zoster/virology
- Herpesvirus 3, Human/drug effects
- Herpesvirus 3, Human/genetics
- Herpesvirus 3, Human/immunology
- Humans
- Immunity, Cellular
- Mice
- Mice, SCID
- Polymorphism, Single Nucleotide
- Sensory Receptor Cells/drug effects
- Sensory Receptor Cells/immunology
- Sensory Receptor Cells/pathology
- Sensory Receptor Cells/virology
- Skin/drug effects
- Skin/immunology
- Skin/pathology
- Skin/virology
- Transplantation, Heterologous/immunology
- Vaccines, Attenuated/administration & dosage
- Vaccines, Attenuated/genetics
- Vaccines, Attenuated/immunology
- Virus Activation/drug effects
Collapse
Affiliation(s)
- Mark Quinlivan
- Herpesvirus Team and National VZV Laboratory, MMRHLB, Centers for Disease Control and Prevention, Atlanta, GA 30333, USA
| | | | | |
Collapse
|
26
|
Vaughan G, Rodríguez-Castillo A, Cruz-Rivera MY, Ruiz-Tovar K, Ramírez-González JE, Rivera-Osorio P, Fonseca-Coronado S, Carpio-Pedroza JC, Cazares F, Vazquez-Pichardo M, Anaya L, Escobar-Gutiérrez A. Is ultra-violet radiation the main force shaping molecular evolution of varicella-zoster virus? Virol J 2011; 8:370. [PMID: 21794170 PMCID: PMC3162543 DOI: 10.1186/1743-422x-8-370] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2011] [Accepted: 07/27/2011] [Indexed: 11/10/2022] Open
Abstract
Background Varicella (chickenpox) exhibits a characteristic epidemiological pattern which is associated with climate. In general, primary infections in tropical regions are comparatively less frequent among children than in temperate regions. This peculiarity regarding varicella-zoster virus (VZV) infection among certain age groups in tropical regions results in increased susceptibility during adulthood in these regions. Moreover, this disease shows a cyclic behavior in which the number of cases increases significantly during winter and spring. This observation further supports the participation of environmental factors in global epidemiology of chickenpox. However, the underlying mechanisms responsible for this distinctive disease behavior are not understood completely. In a recent publication, Philip S. Rice has put forward an interesting hypothesis suggesting that ultra-violet (UV) radiation is the major environmental factor driving the molecular evolution of VZV. Discussion While we welcomed the attempt to explain the mechanisms controlling VZV transmission and distribution, we argue that Rice's hypothesis takes lightly the circulation of the so called "temperate VZV genotypes" in tropical regions and, to certain degree, overlooks the predominance of such lineages in certain non-temperate areas. Here, we further discuss and present new information about the overwhelming dominance of temperate VZV genotypes in Mexico regardless of geographical location and climate. Summary UV radiation does not satisfactorily explain the distribution of VZV genotypes in different tropical and temperate regions of Mexico. Additionally, the cyclic behavior of varicella does not shown significant differences between regions with different climates in the country. More studies should be conducted to identify the factors directly involved in viral spreading. A better understanding of the modes of transmissions exploited by VZV and their effect on viral fitness is likely to facilitate the implementation of preventive measures for disease control.
Collapse
Affiliation(s)
- Gilberto Vaughan
- Departamento de Investigaciones Inmunológicas, Instituto de Diagnóstico y Referencia Epidemiológicos, Secretaría de Salud, México City, México
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Sauerbrei A, Stefanski J, Gruhn B, Wutzler P. Immune response of varicella vaccinees to different varicella-zoster virus genotypes. Vaccine 2011; 29:3873-7. [DOI: 10.1016/j.vaccine.2011.03.054] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2010] [Revised: 03/15/2011] [Accepted: 03/17/2011] [Indexed: 02/01/2023]
|
28
|
Bleymehl K, Cinatl J, Schmidt-Chanasit J. Phenotypic and genetic characterization of varicella-zoster virus mutants resistant to acyclovir, brivudine and/or foscarnet. Med Microbiol Immunol 2011; 200:193-202. [DOI: 10.1007/s00430-011-0191-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2010] [Indexed: 10/18/2022]
|
29
|
Sauerbrei A, Wiesener N, Zell R, Wutzler P. Sequence analysis of the glycoprotein E gene of varicella-zoster virus strains of clades 1, 3 and 5. Arch Virol 2010; 156:505-9. [PMID: 21116830 DOI: 10.1007/s00705-010-0864-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2010] [Accepted: 11/13/2010] [Indexed: 11/26/2022]
Abstract
Eighty-six varicella-zoster virus (VZV) strains of clades 1, 3 and 5, isolated from varicella and zoster patients in Germany, were analyzed by sequencing the glycoprotein E gene. Four novel non-synonymous and 10 novel synonymous mutations were detected. Of these, two synonymous (C513T, C885T) and two non-synonymous mutations (T485G, C524T) were located within the coding regions of e1 and c1. The profile of single-nucleotide polymorphisms was found to be significantly associated with the VZV clades 1, 3 and 5.
Collapse
Affiliation(s)
- Andreas Sauerbrei
- Reference Laboratory for HSV and VZV, Institute of Virology and Antiviral Therapy, Jena University Hospital, Hans-Knoell-Strasse 2, 07745 Jena, Germany.
| | | | | | | |
Collapse
|
30
|
Abstract
Autophagy is a well-known survival mechanism of the cell. Autophagosomes remove excessive proteins and thereby maintain homeostasis within the cell. Autophagy is now recognized as a component of both innate and adaptive immune responses to bacterial and viral pathogens common to children. These pathogens include Streptococcus, tuberculosis, as well as hepatitis and herpes viruses. Varicella-zoster virus infection provides an excellent example of autophagy in humans, because abundant autophagosomes are easily detected in the skin vesicles of both varicella and zoster. Engineered herpes viruses, which elicit autophagy responses, are being used currently in clinical therapeutic trials against brain cancer. Furthermore, defective autophagy of bacteria may explain in part the pathogenesis of Crohn disease. However, at present, there is no single screening diagnostic assay by which to measure autophagy, as a means to investigate an etiologic role in children with an as yet undefined immunodeficiency. Instead, translational researchers are measuring individual components of the cellular autophagy pathway in both humans and animal models, to correlate autophagy responses with severity of infection. Autophagy certainly will remain a subject of immunology investigations in children in the coming decade.
Collapse
|
31
|
Sauerbrei A, Stefanski J, Philipps A, Krumbholz A, Zell R, Wutzler P. Monitoring prevalence of varicella-zoster virus clades in Germany. Med Microbiol Immunol 2010; 200:99-107. [PMID: 21072536 DOI: 10.1007/s00430-010-0178-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2010] [Indexed: 11/29/2022]
Abstract
The global surveillance of varicella-zoster virus (VZV) clades is an important tool for investigation into viral evolution, host-virus interactions, role of immigration and travel for importation of viral strains as well as possible recombination events between wild- and vaccine-type VZV strains. In this prospective study, comprehensive data on the current distribution of VZV clades in Germany were collected. VZV strains from 213 patients with varicella and 109 with zoster were genotyped using the scattered single-nucleotide polymorphism method on the basis of sequencing open reading frames 1, 21, 22, 37, 50, 54 and 60. In varicella, clade 3 was detected in 45.5%, clade 1 in 30.0%, clade 5 in 21.1% and clade 2 in 0.9% of the cases. The analysis of zoster strains revealed clade 3 in 50.5%, clade 1 in 46.8%, clade 2 and clade 4 in 0.9% of the cases each. Five strains from varicella and one strain from zoster could not be attributed to any of the major and provisional VZV clades. Statistical analysis verified significantly lower frequency of clade 1 and significantly higher frequency of clade 5 in patients with varicella compared to zoster. In addition, varicella patients with clade 5 strains were significantly younger than the patients with clade 3. In conclusion, almost one half of VZV infections in Germany were caused currently by VZV clade 3. In primary VZV infection, nearly 20% of clade 1 has been replaced by clade 5 that might spread more effectively in the population than the European VZV clades.
Collapse
Affiliation(s)
- A Sauerbrei
- Institute of Virology and Antiviral Therapy, Jena University Hospital, Hans-Knoell- Strasse 2, 07745, Jena, Germany.
| | | | | | | | | | | |
Collapse
|
32
|
Firth C, Kitchen A, Shapiro B, Suchard MA, Holmes EC, Rambaut A. Using time-structured data to estimate evolutionary rates of double-stranded DNA viruses. Mol Biol Evol 2010; 27:2038-51. [PMID: 20363828 PMCID: PMC3107591 DOI: 10.1093/molbev/msq088] [Citation(s) in RCA: 231] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Double-stranded (ds) DNA viruses are often described as evolving through long-term codivergent associations with their hosts, a pattern that is expected to be associated with low rates of nucleotide substitution. However, the hypothesis of codivergence between dsDNA viruses and their hosts has rarely been rigorously tested, even though the vast majority of nucleotide substitution rate estimates for dsDNA viruses are based upon this assumption. It is therefore important to estimate the evolutionary rates of dsDNA viruses independent of the assumption of host-virus codivergence. Here, we explore the use of temporally structured sequence data within a Bayesian framework to estimate the evolutionary rates for seven human dsDNA viruses, including variola virus (VARV) (the causative agent of smallpox) and herpes simplex virus-1. Our analyses reveal that although the VARV genome is likely to evolve at a rate of approximately 1 x 10(-5) substitutions/site/year and hence approaching that of many RNA viruses, the evolutionary rates of many other dsDNA viruses remain problematic to estimate. Synthetic data sets were constructed to inform our interpretation of the substitution rates estimated for these dsDNA viruses and the analysis of these demonstrated that given a sequence data set of appropriate length and sampling depth, it is possible to use time-structured analyses to estimate the substitution rates of many dsDNA viruses independently from the assumption of host-virus codivergence. Finally, the discovery that some dsDNA viruses may evolve at rates approaching those of RNA viruses has important implications for our understanding of the long-term evolutionary history and emergence potential of this major group of viruses.
Collapse
Affiliation(s)
- Cadhla Firth
- Department of Biology, The Pennsylvania State University, USA.
| | | | | | | | | | | |
Collapse
|
33
|
Goulleret N, Mauvisseau E, Essevaz-Roulet M, Quinlivan M, Breuer J. Safety profile of live varicella virus vaccine (Oka/Merck): five-year results of the European Varicella Zoster Virus Identification Program (EU VZVIP). Vaccine 2010; 28:5878-82. [PMID: 20600487 DOI: 10.1016/j.vaccine.2010.06.056] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2010] [Revised: 06/15/2010] [Accepted: 06/16/2010] [Indexed: 10/19/2022]
Abstract
BACKGROUND VARIVAX (Oka/Merck) is a live varicella vaccine, licensed in Europe since 2003. In addition to routine safety surveillance, the Varicella Zoster Virus Identification Program (VZVIP) analyzes clinical samples to establish whether adverse events (AEs) are associated with wild-type (wt) or vaccine varicella zoster virus (vVZV) strain. The European VZVIP provides data on VZV clade distribution. METHODS Samples were collected from patients with selected AEs; the VZV strain was determined using polymerase chain reaction. RESULTS From October 2003 to September 2008, 1006 spontaneous AE reports were analyzed (88% non-serious). Samples from 76/585 cases with selected AEs were collected. Of 55 VZV-positive/typable samples, wtVZV was detected in 40 and vVZV in 15 samples. Most rashes (32/44) <or=42 days postvaccination were associated with wtVZV. For breakthrough varicella, 6/9 cases were wtVZV-positive; none were vVZV-positive. For herpes zoster 9/17 cases were VZV-positive: eight vVZV, one wtVZV. One case of mild encephalitis was associated with vVZV. One of three cases of suspected secondary vVZV transmission was confirmed. Most wtVZV was clade 3 and clade 1. CONCLUSIONS European experience confirms that Oka/Merck vaccine is generally well tolerated. wtVZV genotypes were consistent with the molecular epidemiology of VZV in Europe.
Collapse
|
34
|
Simultaneous cocirculation of both European varicella-zoster virus genotypes (E1 and E2) in Mexico city. J Clin Microbiol 2010; 48:1712-5. [PMID: 20220168 DOI: 10.1128/jcm.00112-10] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Full-length genome analysis of varicella-zoster virus (VZV) has shown that viral strains can be classified into seven different genotypes: European (E), Mosaic (M), and Japanese (J), and the E and M genotypes can be further subclassified into E1, E2, and M1 through 4, respectively. The distribution of the main VZV genotypes in Mexico was described earlier, demonstrating the predominance of E genotype, although other genotypes (M1 and M4) were also identified. However, no information regarding the circulation of either E genotype in the country is available. In the present study, we confirm the presence of both E1 and E2 genotypes in the country and explore the possibility of coinfection as the triggering factor for increased virulence among severe cases. A total of 61 different European VZV isolates collected in the Mexico City metropolitan area from 2005 to 2006 were typed by using a PCR method based on genotype-specific primer amplification. Fifty isolates belonged to the E1 genotype, and the eleven remaining samples were classified as E2 genotypes. No coinfection with both E genotypes was identified among these specimens. We provide here new information on the distribution of VZV genotypes circulating in Mexico City.
Collapse
|
35
|
Breuer J, Grose C, Norberg P, Tipples G, Schmid DS. A proposal for a common nomenclature for viral clades that form the species varicella-zoster virus: summary of VZV Nomenclature Meeting 2008, Barts and the London School of Medicine and Dentistry, 24-25 July 2008. J Gen Virol 2010; 91:821-8. [PMID: 20071486 PMCID: PMC2888159 DOI: 10.1099/vir.0.017814-0] [Citation(s) in RCA: 79] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Varicella-zoster virus (VZV), the cause of chickenpox and zoster, was the first human herpesvirus to be sequenced fully and the first for which vaccines have been licensed and widely used. Three groups have published genotyping schemes based on single nucleotide polymorphisms (SNPs) and, between them, have identified five distinct phylogenetic clades, with an additional two putative clades. Sequencing of over 23 whole VZV genomes from around the world further refined the phylogenetic distinctions between SNP genotypes. Widespread surveillance in countries in which the varicella vaccine is now in use and the difficulties posed by three unique genotyping approaches prompted an international meeting, at which a common nomenclature based on phylogenetic clades was agreed upon. In this paper, we review the original genotyping schemes and discuss the basis for a novel common nomenclature for VZV strains. We propose a minimum set of SNPs that we recommend should be used to genotype these viruses. Finally, we suggest criteria by which novel clades can be recognized.
Collapse
Affiliation(s)
- Judith Breuer
- Division of Infection and Immunity, University College London, Windeyer Institute, 46 Cleveland Street, London WC1 4JF, UK.
| | | | | | | | | |
Collapse
|
36
|
Abstract
The genetic differences that potentially account for the attenuation of the Oka vaccine VZV preparation are more clearly defined than for perhaps any other vaccine in current use. This is due in large part to the small number of differences between the vaccine and the parental strain from which it was derived, and to the high level of genomic conservation that characterizes VZV. This information has been used with great success to develop methods that discriminate vaccine from wild-type strains, to begin determining which specific vaccine markers contribute to the attenuated phenotype, to improve evaluations of vaccine efficacy and safety, and to observe the behavior of the live, attenuated preparation as it becomes more prevalent through widespread immunization.
Collapse
Affiliation(s)
- D Scott Schmid
- Herpesvirus Team and National VZV Laboratory, MMRHLB, Centers for Disease Control and Prevention, Atlanta, GA 30333, USA.
| |
Collapse
|
37
|
Abstract
The molecular epidemiology of varicella zoster virus (VZV) has led to an understanding of virus evolution, spread, and pathogenesis. The availability of over 20 full length genomes has confirmed the existence of at least five virus clades and generated estimates of VZV evolution, with evidence of recombination both past and ongoing. Genotyping by restriction enzyme analysis (REA) and single nucleotide polymorphisms (SNP) has proven that the virus causing varicella is identical to that which later reactivates as zoster in an individual. Moreover, these methods have shown that reinfection, which is mostly asymptomatic, may also occur and the second virus may establish latency and reactivate. VZV is the only human herpesvirus that is spread by the respiratory route. Genotyping methods, together with epidemiological data and modeling, have provided insights into global differences in the transmission patterns of this ubiquitous virus.
Collapse
|
38
|
Schmid DS, Jumaan AO. Impact of varicella vaccine on varicella-zoster virus dynamics. Clin Microbiol Rev 2010; 23:202-17. [PMID: 20065330 PMCID: PMC2806663 DOI: 10.1128/cmr.00031-09] [Citation(s) in RCA: 87] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
The licensure and recommendation of varicella vaccine in the mid-1990s in the United States have led to dramatic declines in varicella incidence and varicella-related deaths and hospitalizations. Varicella outbreaks remain common and occur increasingly in highly vaccinated populations. Breakthrough varicella in vaccinated individuals is characteristically mild, typically with fewer lesions that frequently do not progress to a vesicular stage. As such, the laboratory diagnosis of varicella has grown increasingly important, particularly in outbreak settings. In this review the impact of varicella vaccine on varicella-zoster virus (VZV) disease, arising complications in the effective diagnosis and monitoring of VZV transmission, and the relative strengths and limitations of currently available laboratory diagnostic techniques are all addressed. Since disease symptoms often resolve in outbreak settings before suitable test specimens can be obtained, the need to develop new diagnostic approaches that rely on alternative patient samples is also discussed.
Collapse
Affiliation(s)
- D Scott Schmid
- Herpesvirus Team and National VZV Laboratory, Measles, Mumps, Rubella, and Herpesvirus Laboratory Branch, Centers for Disease Control and Prevention, National Center for Immunizations and Respiratory Diseases, Division of Viral Diseases, Atlanta, Georgia 30333, USA.
| | | |
Collapse
|
39
|
Abstract
ORF47, a serine protein kinase of varicella-zoster virus (VZV) and homolog of herpes simplex virus UL13, is an interesting modulator of VZV pathogenesis. This chapter summarizes research showing that ORF47 protein kinase activity, by virtue of phosphorylation of or binding to various viral substrates, regulates VZV proteins during all phases of viral infection and has a pronounced effect on the trafficking of gE, the predominant VZV glycoprotein, which in turn is critical for cell-to-cell spread of the virus. Casein kinase II, an ubiquitous cellular protein kinase, recognizes a similar but less stringent phosphorylation consensus sequence and can partially compensate for lack of ORF47 activity in VZV-infected cells. Differences between the phosphorylation consensus sites of the viral and cellular kinases are outlined in detail.
Collapse
|
40
|
Rodríguez-Castillo A, Vaughan G, Ramírez-González JE, González-Durán E, Gudiño-Rosales JC, Escobar-Gutiérrez A. Genetic variation of Varicella-Zoster Virus strains circulating in Mexico City. J Clin Virol 2009; 46:349-53. [PMID: 19828367 DOI: 10.1016/j.jcv.2009.09.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2009] [Revised: 09/01/2009] [Accepted: 09/04/2009] [Indexed: 11/26/2022]
Abstract
BACKGROUND Different studies regarding VZV genotype distribution worldwide have demonstrated that genetic diversity and epidemiology of infection significantly vary from region to region. In Mexico, VZV genotype distribution is largely unknown mostly due to the lack of a surveillance system that monitors accurately the presence of viral strains circulating in the country. OBJECTIVE To identify the main VZV genotypes circulating in the metropolitan area of Mexico City. STUDY DESIGN In this study, 127 different VZV isolates, obtained from residents of the Mexico City Metropolitan area from 2005 to 2008, were identified and genotyped. Viral detection and preliminary genotyping was performed by amplification of the VZV ORF-38 and -54 and RFLP analysis using PstI and BglI endonuclease restriction patterns, respectively. Genotype was confirmed by nucleotide sequence variation along the ORF-22. RESULTS RFLP analysis classified 121 viral strains as European and 6 as mosaic genotype. Genotyping scheme based on the ORF-22 sequence variation identified 120 viral strains belonging to the E genotype, 6 M1 and 1 M4 genotype strains. CONCLUSIONS VZV European genotype appears to predominate in Mexico City. This is the first study addressing VZV genotype distribution in Mexico. The information reported in this paper may be useful for future epidemiological studies conducted in the country and also contributes to understand better the molecular epidemiology of VZV in the Americas.
Collapse
Affiliation(s)
- Araceli Rodríguez-Castillo
- Departamento de Genoma de Patógenos, Instituto de Diagnóstico y Referencia Epidemiológicos, Secretaría de Salud, Mexico City, Mexico.
| | | | | | | | | | | |
Collapse
|
41
|
Norberg P. Divergence and genotyping of human alpha-herpesviruses: an overview. INFECTION GENETICS AND EVOLUTION 2009; 10:14-25. [PMID: 19772930 DOI: 10.1016/j.meegid.2009.09.004] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2009] [Revised: 09/08/2009] [Accepted: 09/14/2009] [Indexed: 11/30/2022]
Abstract
Herpesviruses are large DNA viruses that are highly disseminated among animals. Of the eight herpesviruses identified in humans, three are classified into the alpha-herpesvirus subfamily: herpes simplex virus types 1 (HSV-1) and 2 (HSV-2), which are typically associated with mucocutaneous lesions, and varicella-zoster virus (VZV), which is the cause of chicken pox and herpes zoster. All three viruses establish lifelong infections and may also induce more severe symptoms, such as neurological manifestations and fatal neonatal infections. Despite thorough investigation of the genetic variability among circulating strains of each virus in recent decades, little is known about possible associations between the genetic setups of the viruses and clinical manifestations in human hosts. This review focuses mainly on evolutionary studies of and genotyping strategies for these three human alpha-herpesviruses, emphasizing the ambiguities induced by a high frequency of circulating recombinant strains. It also aims to shed light on the challenges of establishing a uniform genotyping strategy for all three viruses.
Collapse
Affiliation(s)
- Peter Norberg
- Dept. of Cell and Molecular Biology, Microbiology, University of Gothenburg, Box 462, 405 30 Gothenburg, Sweden.
| |
Collapse
|
42
|
Schmidt-Chanasit J, Olschläger S, Bialonski A, Heinemann P, Bleymehl K, Gross G, Günther S, Ulrich RG, Doerr HW. Novel approach to differentiate subclades of varicella-zoster virus genotypes E1 and E2 in Germany. Virus Res 2009; 145:347-9. [PMID: 19712712 DOI: 10.1016/j.virusres.2009.08.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2009] [Revised: 08/17/2009] [Accepted: 08/18/2009] [Indexed: 11/16/2022]
Abstract
Varicella-zoster virus (VZV) is the causative agent of chicken pox (varicella) in children and reactivation of VZV in elderly or immunocompromised persons can cause shingles (zoster). A subclade differentiation of the most prevalent VZV genotypes E1 and E2 in Germany was not possible with the current genotyping methods in use, but is highly important to understand the VZV molecular evolution in more detail and especially to follow up the routes of infection. Therefore the objective of this study was to develop a simple PCR-based method for differentiation of E1 and E2 subclades. Viral DNA was isolated from vesicle fluid samples of six selected German zoster patients and used to amplify nine complete open reading frames (ORFs) of the VZV genome by different PCR assays. Phylogenetic analysis was performed by a Bayesian approach. Based on the analysis of a total of nine ORFs, a 7482 bp stretch consisting of ORFs 5, 37 and 62 contained informative sites for identification of novel subclades E1a, E2a and E2b for VZV genotypes E1 and E2. Specific single nucleotide polymorphisms (SNPs) were demonstrated for subclades E2a and E2b within the ORFs 5, 37 and 62, whereas a subclade E1a-specific SNP was found in ORF 56. The classification of E1 and E2 subclades may facilitate a more exact and in-depth monitoring of the molecular evolution of VZV in Germany in the future.
Collapse
Affiliation(s)
- Jonas Schmidt-Chanasit
- Bernhard-Nocht-Institute for Tropical Medicine, Department of Virology, D-20359 Hamburg, Germany.
| | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Abstract
OBJECTIVES The history behind the current understanding of the varicella-zoster virus and its relationship to the pain conditions caused by shingles and postherpetic neuralgia are reviewed. The framework for the current conceptualization is Hope-Simpson's latency hypothesis. Data from recent work in virology, neuroanatomy and epidemiology are reviewed, as is work using varicella-zoster virus-infected animals. The recent data largely confirm Hope-Simpson's hypothesis and extend it significantly.
Collapse
Affiliation(s)
- Gary J Bennett
- Department of Anesthesia, Faculty of Dentistry, and The Alan Edwards Centre for Research on Pain, McGill University, Montreal, Quebec, Canada.
| | | |
Collapse
|
44
|
Genotyping of clinical varicella-zoster virus isolates collected in China. J Clin Microbiol 2009; 47:1418-23. [PMID: 19244468 DOI: 10.1128/jcm.01806-08] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Varicella-zoster virus (VZV) is genetically stable; and various schemes for the genotyping of VZV based on restriction fragment length polymorphisms (RFLPs), PCR, and sequencing have been developed. At least three major genotypes have been recognized among VZV isolates or clinical samples from different locations around the world; however, few data were available for viral isolates from China. In the current study, a collection of 19 VZV isolates from patients with zoster or varicella in the middle eastern region of China was examined for genetic variations. RFLP analysis of DNA fragments of open reading frames (ORFs) 38, 54, and 62 showed that all 19 isolates were PstI and BglI positive and SmaI negative, and this may represent the major restriction pattern of wild-type VZV strains in China. Further analysis of the R5 variable-repeat region in those strains revealed that 9 (47.4%) were type R5A, while the remaining 10 strains (52.6%) were type R5B. On the basis of the sequencing data for ORFs 1, 21, 22, and 54, all 19 Chinese strains could be grouped into genotype J or J1. A novel in-frame 3-nucleotide insertion (CGG) in ORF1 was found in 4 (21%) of the 19 isolates. Additionally three new nucleotide substitutions were detected in two of the isolates. A varicella isolate from the United States, strain MLS, was included in this study as a control for American wild-type VZV, and was found to be type M1, which represents one of the minor genotypes in North America.
Collapse
|
45
|
Distribution of varicella-zoster virus (VZV) wild-type genotypes in northern and southern Europe: evidence for high conservation of circulating genotypes. Virology 2008; 383:216-25. [PMID: 19019403 DOI: 10.1016/j.virol.2008.10.026] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2008] [Revised: 08/13/2008] [Accepted: 10/15/2008] [Indexed: 11/23/2022]
Abstract
Phylogenetic analysis of 19 complete VZV genomic sequences resolves wild-type strains into 5 genotypes (E1, E2, J, M1, and M2). Complete sequences for M3 and M4 strains are unavailable, but targeted analyses of representative strains suggest they are stable, circulating VZV genotypes. Sequence analysis of VZV isolates identified both shared and specific markers for every genotype and validated a unified VZV genotyping strategy. Despite high genotype diversity no evidence for intra-genotypic recombination was observed. Five of seven VZV genotypes were reliably discriminated using only four single nucleotide polymorphisms (SNP) present in ORF22, and the E1 and E2 genotypes were resolved using SNP located in ORF21, ORF22 or ORF50. Sequence analysis of 342 clinical varicella and zoster specimens from 18 European countries identified the following distribution of VZV genotypes: E1, 221 (65%); E2, 87 (25%); M1, 20 (6%); M2, 3 (1%); M4, 11 (3%). No M3 or J strains were observed.
Collapse
|
46
|
Molecular analysis of varicella-zoster virus strains circulating in Tanzania demonstrating the presence of genotype M1. J Clin Microbiol 2008; 46:3530-3. [PMID: 18701658 DOI: 10.1128/jcm.01057-08] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Based on analysis of 16,392 bp encompassing the complete open reading frames (ORFs) 1, 5, 31, 36, 37, 47, 60, 62, 67, and 68 of the genome of genotype M1 varicella-zoster virus (VZV) was found in swab samples originating from eight Tanzanian zoster patients. Moreover, sequence analysis suggests recombination events between different VZV genotypes within ORFs 1, 31, 60, and 67.
Collapse
|
47
|
Storlie J, Maresova L, Jackson W, Grose C. Comparative analyses of the 9 glycoprotein genes found in wild-type and vaccine strains of varicella-zoster virus. J Infect Dis 2008; 197 Suppl 2:S49-53. [PMID: 18419408 DOI: 10.1086/522127] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The complete DNA sequences of wild-type and vaccine strains of varicella-zoster virus have been published and listed in GenBank. In this comparative genomic analysis, the sequences of the 9 glycoprotein open reading frames (ORFs) were compared. They included gE (ORF68), gI (ORF 67), gC (ORF14), gH (ORF37), gL (ORF60), gB (ORF31), gK (ORF5), gM (ORF50), and gN (ORF8 or ORF9A). After realignment on the basis of newer data, the corrected gB sequence was lengthened to include 931 residues. The data showed that there were glycoprotein polymorphisms that differentiated North American/European strains from Japanese strains-for example, an additional ATG codon in the gL of all Oka strains. Also, there were a small number of coding single-nucleotide polymorphisms present only in glycoproteins of vaccine strains. Because these changes were highly conserved, the structure of the glycoprotein was unlikely to be altered.
Collapse
Affiliation(s)
- Johnathan Storlie
- Departments of Pediatrics and Microbiology, University of Iowa, Iowa City, IA, USA
| | | | | | | |
Collapse
|
48
|
Toi CS, Dwyer DE. Differentiation between vaccine and wild-type varicella-zoster virus genotypes by high-resolution melt analysis of single nucleotide polymorphisms. J Clin Virol 2008; 43:18-24. [PMID: 18479962 DOI: 10.1016/j.jcv.2008.03.027] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2007] [Revised: 03/21/2008] [Accepted: 03/27/2008] [Indexed: 11/19/2022]
Abstract
BACKGROUND The analysis of single nucleotide polymorphisms (SNPs) of varicella-zoster virus (VZV) has enabled differentiation between wild-type genotypes from the Oka vaccine strain (V-Oka). OBJECTIVES To genotype VZV strains in Australia using high-resolution melt (HRM) analysis of SNPs in five gene targets. STUDY DESIGN Extracted DNA from 78 samples obtained from patients with chickenpox and zoster were genotyped by HRM analysis of SNPs in five open reading frames (ORFs): 1 (685 G>A), 21 (33725 C>T), 37 (66288 G>A), 60 (101464 C>A) and 62 (106262 T>C) using a double-stranded (ds) DNA saturating dye, LC Green Plus. RESULTS For each genotype, melt curve temperature (Tm) shifts differentiated the nucleotide present at that locus (P<0.0001) with melting curve shifts between alleles ranging from 0.56 degrees C (ORF 37) to 3.34 degrees C (ORF 62). The most common genotypes detected were the European Type C (59%) and B (18%) strains. This was followed by the African/Asian Type A (14%) and Japanese J1 (9%), strains, both prevalent in the Northern Territory and Western Australia. CONCLUSIONS HRM analysis of SNPs showed that the European B and C genotypes were most prevalent in Australia, with genotypes A and J strains also present. HRM analysis using a dsDNA dye provides a useful tool in classifying varicella-zoster viruses.
Collapse
Affiliation(s)
- Cheryl S Toi
- Clinical Virology, Centre for Infectious Diseases and Microbiology-Public Health, Institute of Clinical Pathology and Medical Research, Westmead Hospital, Westmead, NSW 2145, Australia.
| | | |
Collapse
|
49
|
Sauerbrei A, Zell R, Philipps A, Wutzler P. Genotypes of varicella-zoster virus wild-type strains in Germany. J Med Virol 2008; 80:1123-30. [DOI: 10.1002/jmv.21178] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
50
|
|