1
|
Cheong DHJ, Yi B, Wong YH, Chu JJH. The Current Progress in the Quest for Vaccines Against the Semliki Forest Virus Complex. Med Res Rev 2025; 45:947-967. [PMID: 39757142 DOI: 10.1002/med.22097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 10/10/2024] [Accepted: 12/12/2024] [Indexed: 01/07/2025]
Abstract
The Semliki Forest virus (SFV) complex comprises of arboviruses that are transmitted by arthropod vectors and cause acute febrile illness in humans. In the last seven decades, re-emergence of these viruses has resulted in numerous outbreaks globally, affecting regions including Africa, Americas, Asia, Europe and the Caribbean. These viruses are transmitted to humans by the bite of infected mosquitoes. Symptoms of infection include high fever, severe joint pain, skin rash, muscle pain and headache. Fatal cases were reported, and mortality rate increased during the epidemic of these viruses. There is therefore a need to control the spread of these emerging arboviruses. Given that vaccination is one of the most effective ways to protect populations against viral outbreaks, efforts have been made to develop and test potential vaccine candidates. However, there are still no licensed vaccines available against the medically important viruses in the SFV complex. This review first summarizes the current knowledge of the SFV complex disease pathogenesis. Next, seven strategies that have been applied in vaccine development against these viruses are reviewed, indicating the immune response and efficacies of these vaccine candidates in in vivo models of infection. Finally, the more promising candidates that have entered clinical trials are discussed and insights into the future development of vaccines for viruses of the SFV complex are given.
Collapse
Affiliation(s)
- Dorothy Hui Juan Cheong
- Department of Microbiology and Immunology, Infectious Disease Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore City, Singapore
| | - Bowen Yi
- Biosafety Level 3 Core Facility, Yong Loo Lin School of Medicine, National University of Singapore, Singapore City, Singapore
| | - Yi Hao Wong
- Biosafety Level 3 Core Facility, Yong Loo Lin School of Medicine, National University of Singapore, Singapore City, Singapore
| | - Justin Jang Hann Chu
- Department of Microbiology and Immunology, Infectious Disease Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore City, Singapore
- Biosafety Level 3 Core Facility, Yong Loo Lin School of Medicine, National University of Singapore, Singapore City, Singapore
- Collaborative and Translation Unit for Hand, Foot and Mouth Disease (HFMD), Institute of Molecular and Cell Biology, Agency for Science, Technology and Research, Singapore CIty, Singapore
| |
Collapse
|
2
|
Mamun TI, Ali MA, Hosen MN, Rahman J, Islam MA, Akib MG, Zaman K, Rahman MM, Hossain FMA, Ibenmoussa S, Bourhia M, Dawoud TM. Designing a multi-epitope vaccine candidate against human rhinovirus C utilizing immunoinformatics approach. Front Immunol 2025; 15:1364129. [PMID: 39840071 PMCID: PMC11747413 DOI: 10.3389/fimmu.2024.1364129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 12/04/2024] [Indexed: 01/30/2025] Open
Abstract
Human rhinovirus C (HRV-C) is a significant contributor to respiratory tract infections in children and is implicated in asthma exacerbations across all age groups. Despite its impact, there is currently no licensed vaccine available for HRV-C. Here, we present a novel approach to address this gap by employing immunoinformatics techniques for the design of a multi-epitope-based vaccine against HRV-C. The sequences of the chosen structural proteins VP1 and VP2, along with the non-structural protein 2C of HRV-C, were downloaded in FASTA format from the NCBI server for further analysis. Through an exhaustive analysis of HRV-C genomic sequences, we identified highly conserved immunogenic regions capable of eliciting a protective immune response. Leveraging advanced immunoinformatics tools, we predicted epitopes for B-cells, Cytotoxic T lymphocytes, and Helper T lymphocytes, ensuring broad coverage across different HRV-C strains. The vaccine candidate was constructed by integrating selected antigens with immunogenic epitopes and adjuvants, employing optimal linkers. Three vaccine constructs were developed, with V2 being the most promising, consisting of 480 amino acids residues. V2 exhibited strong antigenicity, non-allergenicity, and solubility, with a solubility score greater than 0.550, and demonstrated excellent structural stability, with 91.9% of residues in the most favorable regions of the Ramachandran plot. Molecular dynamics and simulation studies revealed a stable Vaccine-TLR8 complex, with a binding energy of -296.15 and consistent RMSD values. Furthermore, in silico cloning and sequence optimization ensured efficient expression in E. coli, with a Codon Adaptation Index of 0.99 and GC content of 54.58%. The minimum free energy of the RNA secondary structure was -494.90 kcal/mol. While our findings suggest the potential effectiveness of the designed vaccine candidate against HRV-C, further in vitro and in vivo investigations are warranted to validate its safety and efficacy.
Collapse
Affiliation(s)
- Tajul Islam Mamun
- Department of Epidemiology and Public Health, Sylhet Agricultural University, Sylhet, Bangladesh
- Faculty of Veterinary, Animal and Biomedical Sciences, Sylhet Agricultural University, Sylhet, Bangladesh
| | - Md. Ahad Ali
- Department Of Chemistry, University of Rajshahi, Rajshahi, Bangladesh
| | - Md. Nazmul Hosen
- Department of Pharmacology and Toxicology, Sylhet Agricultural University, Sylhet, Bangladesh
| | - Jillur Rahman
- Faculty of Veterinary, Animal and Biomedical Sciences, Sylhet Agricultural University, Sylhet, Bangladesh
| | - Md. Anwarul Islam
- Faculty of Veterinary, Animal and Biomedical Sciences, Sylhet Agricultural University, Sylhet, Bangladesh
| | - Md. Golam Akib
- Faculty of Veterinary, Animal and Biomedical Sciences, Sylhet Agricultural University, Sylhet, Bangladesh
| | - Kamruz Zaman
- Faculty of Veterinary, Animal and Biomedical Sciences, Sylhet Agricultural University, Sylhet, Bangladesh
| | - Md. Masudur Rahman
- Faculty of Veterinary, Animal and Biomedical Sciences, Sylhet Agricultural University, Sylhet, Bangladesh
- Department of Pathology, Sylhet Agricultural University, Sylhet, Bangladesh
| | - Ferdaus Mohd Altaf Hossain
- Faculty of Veterinary, Animal and Biomedical Sciences, Sylhet Agricultural University, Sylhet, Bangladesh
- Department of Dairy Science, Sylhet Agricultural University, Sylhet, Bangladesh
| | - Samir Ibenmoussa
- Laboratory of Therapeutic and Organic Chemistry, Faculty of Pharmacy, University of Montpellier, Montpellier, France
| | - Mohammed Bourhia
- Department of Chemistry and Biochemistry, Faculty of Medicine and Pharmacy, Ibn Zohr University, Laayoune, Morocco
| | - Turki M. Dawoud
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
3
|
Ullah A, Rehman B, Khan S, Almanaa TN, Waheed Y, Hassan M, Naz T, Ul Haq M, Muhammad R, Sanami S, Irfan M, Ahmad S. An In Silico Multi-epitopes Vaccine Ensemble and Characterization Against Nosocomial Proteus penneri. Mol Biotechnol 2024; 66:3498-3513. [PMID: 37934390 DOI: 10.1007/s12033-023-00949-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Accepted: 10/12/2023] [Indexed: 11/08/2023]
Abstract
Proteus penneri (P. penneri) is a bacillus-shaped, gram-negative, facultative anaerobe bacterium that is primarily an invasive pathogen and the etiological agent of several hospital-associated infections. P. penneri strains are naturally resistant to macrolides, amoxicillin, oxacillin, penicillin G, and cephalosporins; in addition, no vaccines are available against these strains. This warrants efforts to propose a theoretical based multi-epitope vaccine construct to prevent pathogen infections. In this research, reverse vaccinology bioinformatics and immunoinformatics approaches were adopted for vaccine target identification and construction of a multi-epitope vaccine. In the first phase, a core proteome dataset of the targeted pathogen was obtained using the NCBI database and subjected to bacterial pan-genome analysis using bacterial pan-genome analysis (BPGA) to predict core protein sequences which were then used to find good vaccine target candidates. This identified two proteins, Hcp family type VI secretion system effector and superoxide dismutase family protein, as promising vaccine targets. Afterward using the IEDB database, different B-cell and T-cell epitopes were predicted. A set of four epitopes "KGSVNVQDRE, NTGKLTGTR, IIHSDSWNER, and KDGKPVPALK" were chosen for the development of a multi-epitope vaccine construct. A 183 amino acid long vaccine design was built along with "EAAAK" and "GPGPG" linkers and a cholera toxin B-subunit adjuvant. The designed vaccine model comprised immunodominant, non-toxic, non-allergenic, and physicochemical stable epitopes. The model vaccine was docked with MHC-I, MHC-II, and TLR-4 immune cell receptors using the Cluspro2.0 web server. The binding energy score of the vaccine was - 654.7 kcal/mol for MHC-I, - 738.4 kcal/mol for MHC-II, and - 695.0 kcal/mol for TLR-4. A molecular dynamic simulation was done using AMBER v20 package for dynamic behavior in nanoseconds. Additionally, MM-PBSA binding free energy analysis was done to test intermolecular binding interactions between docked molecules. The MM-GBSA net binding energy score was - 148.00 kcal/mol, - 118.00 kcal/mol, and - 127.00 kcal/mol for vaccine with TLR-4, MHC-I, and MHC-II, respectively. Overall, these in silico-based predictions indicated that the vaccine is highly promising in terms of developing protective immunity against P. penneri. However, additional experimental validation is required to unveil the real immune response to the designed vaccine.
Collapse
Affiliation(s)
- Asad Ullah
- Department of Health and Biological Sciences, Abasyn University, Peshawar, 2500, Pakistan
- Centre of Biotechnology and Microbiology, University of Peshawar, Peshawar, Pakistan
| | - Bushra Rehman
- Institute of Biotechnology and Microbiology, Bacha Khan University, Charsadda, Pakistan
| | - Saifullah Khan
- Institute of Biotechnology and Microbiology, Bacha Khan University, Charsadda, Pakistan
| | - Taghreed N Almanaa
- Department of Botany and Microbiology, College of Science, King Saud University, 11451, Riyadh, Saudi Arabia
| | - Yasir Waheed
- Office of Research, Innovation and Commercialization, Shaheed Zulfiqar Ali Bhutto Medical University (SZABMU), Islamabad, 44000, Pakistan
- Gilbert and Rose-Marie Chagoury School of Medicine, Lebanese American University, Byblos, 1401, Lebanon
| | - Muhammad Hassan
- Department of Pharmacy, Bacha Khan University, Charsadda, 24461, Pakistan
| | - Tahira Naz
- Department of Chemical and Life Sciences, Qurtuba University of Science and Technology, Peshawar, Pakistan
| | - Mehboob Ul Haq
- Department of Pharmacy, Abasyn University, Peshawar, 25000, Pakistan
| | - Riaz Muhammad
- Department of Health and Biological Sciences, Abasyn University, Peshawar, 2500, Pakistan
| | - Samira Sanami
- Nervous System Stem Cells Research Center, Semnan University of Medical Sciences, Semnan, Iran
| | - Muhammad Irfan
- Department of Oral Biology, College of Dentistry, University of Florida, Gainesville, FL, 32611, USA
| | - Sajjad Ahmad
- Department of Health and Biological Sciences, Abasyn University, Peshawar, 2500, Pakistan.
- Department of Natural Sciences, Lebanese American University, P.O. Box 36, Beirut, Lebanon.
| |
Collapse
|
4
|
Hakimian M, Doosti A, Sharifzadeh A. A novel chimeric vaccine containing multiple epitopes for simulating robust immune activation against Klebsiella pneumoniae. BMC Immunol 2024; 25:27. [PMID: 38706005 PMCID: PMC11070107 DOI: 10.1186/s12865-024-00617-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 04/15/2024] [Indexed: 05/07/2024] Open
Abstract
BACKGROUND Due to antibiotic resistance, the Klebsiella genus is linked to morbidity and death, necessitating the development of a universally protective vaccine against Klebsiella pathogens. METHODS Core sequence analysis prioritized non-redundant host molecules and expected lipid bilayer peptides from fully sequenced Klebsiella genomes. These proteins were refined to identify epitopes, examining their immunogenicity, toxicity, solubility, and interaction with MHC alleles. Epitopes were linked to CPG ODN C274 via EAAAK, HEYGAEALERAG, and GGGS linkers to enhance immunological responses. The vaccine's tertiary structure was modelled and docked with MHC-I and MHC-II. RESULTS Fifty-five proteins were recognized in the Vaxign collection as having remarkable features. Twenty-three proteins with potential pathogenicity were then identified. Eight options for vaccines emerged after the immunogenicity of proteins was examined. The best antigens were three proteins: MrkD, Iron-regulated lipid membrane polypeptides, and RmpA. These compounds were selected for their sensitivity. The structural protein sequences of K. pneumoniae were utilized to identify seven CTL epitopes, seven HTL epitopes, and seven LBL epitopes, respectively. The produced immunization displayed a stable contact with the receptors, based on molecular dynamic simulations lasting 250 nanoseconds. Intermolecular binding free energies also indicated the dominance of the van der Waals and electrostatic energies. CONCLUSION In summary, the results of this study might help scientists develop a novel vaccine to prevent K. pneumoniae infections.
Collapse
Affiliation(s)
- Morteza Hakimian
- Department of Biology, Faculty of Basic Sciences, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran
| | - Abbas Doosti
- Biotechnology Research Center, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran.
| | - Ali Sharifzadeh
- Biotechnology Research Center, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran
- Department of Microbiology, Faculty of Veterinary Medicine, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran
| |
Collapse
|
5
|
Ahmad S, Demneh FM, Rehman B, Almanaa TN, Akhtar N, Pazoki-Toroudi H, Shojaeian A, Ghatrehsamani M, Sanami S. In silico design of a novel multi-epitope vaccine against HCV infection through immunoinformatics approaches. Int J Biol Macromol 2024; 267:131517. [PMID: 38621559 DOI: 10.1016/j.ijbiomac.2024.131517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Revised: 04/08/2024] [Accepted: 04/09/2024] [Indexed: 04/17/2024]
Abstract
Infection with the hepatitis C virus (HCV) is one of the causes of liver cancer, which is the world's sixth most prevalent and third most lethal cancer. The current treatments do not prevent reinfection; because they are expensive, their usage is limited to developed nations. Therefore, a prophylactic vaccine is essential to control this virus. Hence, in this study, an immunoinformatics method was applied to design a multi-epitope vaccine against HCV. The best B- and T-cell epitopes from conserved regions of the E2 protein of seven HCV genotypes were joined with the appropriate linkers to design a multi-epitope vaccine. In addition, cholera enterotoxin subunit B (CtxB) was included as an adjuvant in the vaccine construct. This study is the first to present this epitopes-adjuvant combination. The vaccine had acceptable physicochemical characteristics. The vaccine's 3D structure was predicted and validated. The vaccine's binding stability with Toll-like receptor 2 (TLR2) and TLR4 was confirmed using molecular docking and molecular dynamics (MD) simulation. The immune simulation revealed the vaccine's efficacy by increasing the population of B and T cells in response to vaccination. In silico expression in Escherichia coli (E. coli) was also successful.
Collapse
Affiliation(s)
- Sajjad Ahmad
- Department of Health and Biological Sciences, Abasyn University, Peshawar 25000, Pakistan; Gilbert and Rose-Marie Chagoury School of Medicine, Lebanese American University, Beirut, P.O. Box 36, Lebanon; Department of Natural Sciences, Lebanese American University, Beirut, P.O. Box 36, Lebanon
| | - Fatemeh Mobini Demneh
- Cellular and Molecular Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Bushra Rehman
- Institute of Biotechnology and Microbiology, Bacha khan University, Charsadda, Pakistan
| | - Taghreed N Almanaa
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Nahid Akhtar
- School of Bioengineering and Biosciences, Lovely Professional University, Phagwara 144411, India
| | - Hamidreza Pazoki-Toroudi
- Department of Physiology & Physiology Research Center, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Ali Shojaeian
- Research Center for Molecular Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Mahdi Ghatrehsamani
- Cellular and Molecular Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran.
| | - Samira Sanami
- Abnormal Uterine Bleeding Research Center, Semnan University of Medical Sciences, Semnan, Iran.
| |
Collapse
|
6
|
Jyotisha, Qureshi R, Qureshi IA. Development of a multi-epitope vaccine candidate for leishmanial parasites applying immunoinformatics and in vitro approaches. Front Immunol 2023; 14:1269774. [PMID: 38035118 PMCID: PMC10684680 DOI: 10.3389/fimmu.2023.1269774] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Accepted: 10/23/2023] [Indexed: 12/02/2023] Open
Abstract
Leishmaniasis is a neglected tropical disease, and its severity necessitates the development of a potent and efficient vaccine for the disease; however, no human vaccine has yet been approved for clinical use. This study aims to design and evaluate a multi-epitope vaccine against the leishmanial parasite by utilizing helper T-lymphocyte (HTL), cytotoxic T-lymphocyte (CTL), and linear B-lymphocyte (LBL) epitopes from membrane-bound acid phosphatase of Leishmania donovani (LdMAcP). The designed multi-epitope vaccine (LdMAPV) was highly antigenic, non-allergenic, and non-toxic, with suitable physicochemical properties. The three-dimensional structure of LdMAPV was modeled and validated, succeeded by molecular docking and molecular dynamics simulation (MDS) studies that confirmed the high binding affinity and stable interactions between human toll-like receptors and LdMAPV. In silico disulfide engineering provided improved stability to LdMAPV, whereas immune simulation displayed the induction of both immune responses, i.e., antibody and cell-mediated immune responses, with a rise in cytokines. Furthermore, LdMAPV sequence was codon optimized and cloned into the pET-28a vector, followed by its expression in a bacterial host. The recombinant protein was purified using affinity chromatography and subjected to determine its effect on cytotoxicity, cytokines, and nitric oxide generation by mammalian macrophages. Altogether, this report provides a multi-epitope vaccine candidate from a leishmanial protein participating in parasitic virulence that has shown its potency to be a promising vaccine candidate against leishmanial parasites.
Collapse
Affiliation(s)
- Jyotisha
- Department of Biotechnology & Bioinformatics, School of Life Sciences, University of Hyderabad, Hyderabad, India
| | - Rahila Qureshi
- Centre for DNA Fingerprinting and Diagnostics, Hyderabad, India
| | - Insaf Ahmed Qureshi
- Department of Biotechnology & Bioinformatics, School of Life Sciences, University of Hyderabad, Hyderabad, India
| |
Collapse
|
7
|
Kushwaha V, Capalash N. Evaluation of immunomodulatory potential of recombinant histidyl-tRNA synthetase (rLdHisRS) protein of Leishmania donovani as a vaccine candidate against visceral leishmaniasis. Acta Trop 2023; 241:106867. [PMID: 36878386 DOI: 10.1016/j.actatropica.2023.106867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 02/12/2023] [Accepted: 02/15/2023] [Indexed: 03/07/2023]
Abstract
Visceral leishmaniasis is neglected tropical protozoan disease caused by Leishmania donovani and are associated with high fatality rate in developing countries since prophylactic vaccines are not available. In the present study, we evaluated the immunomodulatory potential of L. donovani histidyl-tRNA synthetase (LdHisRS) and predicted the epitopes using immunoinformatic tools. Histidyl-tRNA synthetase (HisRS) is a class IIa aminoacyl t-RNA synthetase enzyme (aaRS) required for histidine incorporation into proteins during protein synthesis. The recombinant LdHisRS protein (rLdHisRS) was expressed in E coli BL-21cells, and its immunomodulatory role was assessed in J774A.1 murine macrophage and in BALB/c mice, respectively. LdHisRS specifically stimulated and triggered enhance cell proliferation, nitric oxide release and IFN-γ (70%; P < 0.001), and IL-12 (55.37%; P < 0.05) cytokine release in vitro, whereas BALB/c mice immunized with rLdHisRS show higher NO release (80.95%; P<0.001), higher levels of Th1 cytokines IFN-γ (14%; P < 0.05), TNF-α (34.93%; P < 0.001), and IL-12 (28.49%; P < 0.001) and robust IgG (p<0.001) and IgG2a (p<0.001) production. We also identified 20 Helper T-lymphocytes (HTLs), 30 cytotoxic T lymphocytes (CTLs), and 18 B-cell epitopes from HisRS protein of L. donovani. All these epitopes can be further used to make a multiepitope vaccine against L. donovani.
Collapse
Affiliation(s)
- Vikas Kushwaha
- Department of Biotechnology, Panjab University, Sector-25, South Campus, Chandigarh 160025, India
| | - Neena Capalash
- Department of Biotechnology, Panjab University, Sector-25, South Campus, Chandigarh 160025, India.
| |
Collapse
|
8
|
Robinson NA, Robledo D, Sveen L, Daniels RR, Krasnov A, Coates A, Jin YH, Barrett LT, Lillehammer M, Kettunen AH, Phillips BL, Dempster T, Doeschl‐Wilson A, Samsing F, Difford G, Salisbury S, Gjerde B, Haugen J, Burgerhout E, Dagnachew BS, Kurian D, Fast MD, Rye M, Salazar M, Bron JE, Monaghan SJ, Jacq C, Birkett M, Browman HI, Skiftesvik AB, Fields DM, Selander E, Bui S, Sonesson A, Skugor S, Østbye TK, Houston RD. Applying genetic technologies to combat infectious diseases in aquaculture. REVIEWS IN AQUACULTURE 2023; 15:491-535. [PMID: 38504717 PMCID: PMC10946606 DOI: 10.1111/raq.12733] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 07/24/2022] [Accepted: 08/16/2022] [Indexed: 03/21/2024]
Abstract
Disease and parasitism cause major welfare, environmental and economic concerns for global aquaculture. In this review, we examine the status and potential of technologies that exploit genetic variation in host resistance to tackle this problem. We argue that there is an urgent need to improve understanding of the genetic mechanisms involved, leading to the development of tools that can be applied to boost host resistance and reduce the disease burden. We draw on two pressing global disease problems as case studies-sea lice infestations in salmonids and white spot syndrome in shrimp. We review how the latest genetic technologies can be capitalised upon to determine the mechanisms underlying inter- and intra-species variation in pathogen/parasite resistance, and how the derived knowledge could be applied to boost disease resistance using selective breeding, gene editing and/or with targeted feed treatments and vaccines. Gene editing brings novel opportunities, but also implementation and dissemination challenges, and necessitates new protocols to integrate the technology into aquaculture breeding programmes. There is also an ongoing need to minimise risks of disease agents evolving to overcome genetic improvements to host resistance, and insights from epidemiological and evolutionary models of pathogen infestation in wild and cultured host populations are explored. Ethical issues around the different approaches for achieving genetic resistance are discussed. Application of genetic technologies and approaches has potential to improve fundamental knowledge of mechanisms affecting genetic resistance and provide effective pathways for implementation that could lead to more resistant aquaculture stocks, transforming global aquaculture.
Collapse
Affiliation(s)
- Nicholas A. Robinson
- Nofima ASTromsøNorway
- Sustainable Aquaculture Laboratory—Temperate and Tropical (SALTT)School of BioSciences, The University of MelbourneMelbourneVictoriaAustralia
| | - Diego Robledo
- The Roslin Institute and Royal (Dick) School of Veterinary StudiesThe University of EdinburghEdinburghUK
| | | | - Rose Ruiz Daniels
- The Roslin Institute and Royal (Dick) School of Veterinary StudiesThe University of EdinburghEdinburghUK
| | | | - Andrew Coates
- Sustainable Aquaculture Laboratory—Temperate and Tropical (SALTT)School of BioSciences, The University of MelbourneMelbourneVictoriaAustralia
| | - Ye Hwa Jin
- The Roslin Institute and Royal (Dick) School of Veterinary StudiesThe University of EdinburghEdinburghUK
| | - Luke T. Barrett
- Sustainable Aquaculture Laboratory—Temperate and Tropical (SALTT)School of BioSciences, The University of MelbourneMelbourneVictoriaAustralia
- Institute of Marine Research, Matre Research StationMatredalNorway
| | | | | | - Ben L. Phillips
- Sustainable Aquaculture Laboratory—Temperate and Tropical (SALTT)School of BioSciences, The University of MelbourneMelbourneVictoriaAustralia
| | - Tim Dempster
- Sustainable Aquaculture Laboratory—Temperate and Tropical (SALTT)School of BioSciences, The University of MelbourneMelbourneVictoriaAustralia
| | - Andrea Doeschl‐Wilson
- The Roslin Institute and Royal (Dick) School of Veterinary StudiesThe University of EdinburghEdinburghUK
| | - Francisca Samsing
- Sydney School of Veterinary ScienceThe University of SydneyCamdenAustralia
| | | | - Sarah Salisbury
- The Roslin Institute and Royal (Dick) School of Veterinary StudiesThe University of EdinburghEdinburghUK
| | | | | | | | | | - Dominic Kurian
- The Roslin Institute and Royal (Dick) School of Veterinary StudiesThe University of EdinburghEdinburghUK
| | - Mark D. Fast
- Atlantic Veterinary CollegeThe University of Prince Edward IslandCharlottetownPrince Edward IslandCanada
| | | | | | - James E. Bron
- Institute of AquacultureUniversity of StirlingStirlingScotlandUK
| | - Sean J. Monaghan
- Institute of AquacultureUniversity of StirlingStirlingScotlandUK
| | - Celeste Jacq
- Blue Analytics, Kong Christian Frederiks Plass 3BergenNorway
| | | | - Howard I. Browman
- Institute of Marine Research, Austevoll Research Station, Ecosystem Acoustics GroupTromsøNorway
| | - Anne Berit Skiftesvik
- Institute of Marine Research, Austevoll Research Station, Ecosystem Acoustics GroupTromsøNorway
| | | | - Erik Selander
- Department of Marine SciencesUniversity of GothenburgGothenburgSweden
| | - Samantha Bui
- Institute of Marine Research, Matre Research StationMatredalNorway
| | | | | | | | | |
Collapse
|
9
|
Margaroni M, Agallou M, Tsanaktsidou E, Kammona O, Kiparissides C, Karagouni E. Immunoinformatics Approach to Design a Multi-Epitope Nanovaccine against Leishmania Parasite: Elicitation of Cellular Immune Responses. Vaccines (Basel) 2023; 11:304. [PMID: 36851182 PMCID: PMC9960668 DOI: 10.3390/vaccines11020304] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 01/26/2023] [Accepted: 01/27/2023] [Indexed: 01/31/2023] Open
Abstract
Leishmaniasis is a vector-borne disease caused by an intracellular parasite of the genus Leishmania with different clinical manifestations that affect millions of people worldwide, while the visceral form may be fatal if left untreated. Since the available chemotherapeutic agents are not satisfactory, vaccination emerges as the most promising strategy for confronting leishmaniasis. In the present study, a reverse vaccinology approach was adopted to design a pipeline starting from proteome analysis of three different Leishmania species and ending with the selection of a pool of MHCI- and MHCII-binding epitopes. Epitopes from five parasite proteins were retrieved and fused to construct a multi-epitope chimeric protein, named LeishChim. Immunoinformatics analyses indicated that LeishChim was a stable, non-allergenic and immunogenic protein that could bind strongly onto MHCI and MHCII molecules, suggesting it as a potentially safe and effective vaccine candidate. Preclinical evaluation validated the in silico prediction, since the LeishChim protein, encapsulated simultaneously with monophosphoryl lipid A (MPLA) into poly(D,L-lactide-co-glycolide) (PLGA) nanoparticles, elicited specific cellular immune responses when administered to BALB/c mice. These were characterized by the development of memory CD4+ T cells, as well as IFNγ- and TNFα-producing CD4+ and CD8+ T cells, supporting the potential of LeishChim as a vaccine candidate.
Collapse
Affiliation(s)
- Maritsa Margaroni
- Immunology of Infection Laboratory, Hellenic Pasteur Institute, 125 21 Athens, Greece
| | - Maria Agallou
- Immunology of Infection Laboratory, Hellenic Pasteur Institute, 125 21 Athens, Greece
| | - Evgenia Tsanaktsidou
- Chemical Process & Energy Resources Institute, Centre for Research and Technology Hellas, 57 001 Thessaloniki, Greece
| | - Olga Kammona
- Chemical Process & Energy Resources Institute, Centre for Research and Technology Hellas, 57 001 Thessaloniki, Greece
| | - Costas Kiparissides
- Chemical Process & Energy Resources Institute, Centre for Research and Technology Hellas, 57 001 Thessaloniki, Greece
- Department of Chemical Engineering, Aristotle University of Thessaloniki, 54 124 Thessaloniki, Greece
| | - Evdokia Karagouni
- Immunology of Infection Laboratory, Hellenic Pasteur Institute, 125 21 Athens, Greece
| |
Collapse
|
10
|
Malik M, Khan S, Ullah A, Hassan M, Haq MU, Ahmad S, Al-Harbi AI, Sanami S, Abideen SA, Irfan M, Khurram M. Proteome-Wide Screening of Potential Vaccine Targets against Brucella melitensis. Vaccines (Basel) 2023; 11:263. [PMID: 36851141 PMCID: PMC9966016 DOI: 10.3390/vaccines11020263] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 01/16/2023] [Accepted: 01/23/2023] [Indexed: 01/27/2023] Open
Abstract
The ongoing antibiotic-resistance crisis is becoming a global problem affecting public health. Urgent efforts are required to design novel therapeutics against pathogenic bacterial species. Brucella melitensis is an etiological agent of brucellosis, which mostly affects sheep and goats but several cases have also been reported in cattle, water buffalo, yaks and dogs. Infected animals also represent the major source of infection for humans. Development of safer and effective vaccines for brucellosis remains a priority to support disease control and eradication in animals and to prevent infection to humans. In this research study, we designed an in-silico multi-epitopes vaccine for B. melitensis using computational approaches. The pathogen core proteome was screened for good vaccine candidates using subtractive proteomics, reverse vaccinology and immunoinformatic tools. In total, 10 proteins: catalase; siderophore ABC transporter substrate-binding protein; pyridoxamine 5'-phosphate oxidase; superoxide dismutase; peptidylprolyl isomerase; superoxide dismutase family protein; septation protein A; hypothetical protein; binding-protein-dependent transport systems inner membrane component; and 4-hydroxy-2-oxoheptanedioate aldolase were selected for epitopes prediction. To induce cellular and antibody base immune responses, the vaccine must comprise both B and T-cells epitopes. The epitopes were next screened for antigenicity, allergic nature and water solubility and the probable antigenic, non-allergic, water-soluble and non-toxic nine epitopes were shortlisted for multi-epitopes vaccine construction. The designed vaccine construct comprises 274 amino acid long sequences having a molecular weight of 28.14 kDa and instability index of 27.62. The vaccine construct was further assessed for binding efficacy with immune cell receptors. Docking results revealed that the designed vaccine had good binding potency with selected immune cell receptors. Furthermore, vaccine-MHC-I, vaccine-MHC-II and vaccine-TLR-4 complexes were opted based on a least-binding energy score of -5.48 kcal/mol, 0.64 kcal/mol and -2.69 kcal/mol. Those selected were then energy refined and subjected to simulation studies to understand dynamic movements of the docked complexes. The docking results were further validated through MMPBSA and MMGBSA analyses. The MMPBSA calculated -235.18 kcal/mol, -206.79 kcal/mol, and -215.73 kcal/mol net binding free energy, while MMGBSA estimated -259.48 kcal/mol, -206.79 kcal/mol and -215.73 kcal/mol for TLR-4, MHC-I and MHC-II complexes, respectively. These findings were validated by water-swap and entropy calculations. Overall, the designed vaccine construct can evoke proper immune responses and the construct could be helpful for experimental researchers in formulation of a protective vaccine against the targeted pathogen for both animal and human use.
Collapse
Affiliation(s)
- Mahnoor Malik
- Department of Health and Biological Sciences, Abasyn University, Peshawar 25000, Pakistan
| | - Saifullah Khan
- Institute of Biotechnology and Microbiology, Bacha Khan University, Charsadda 24550, Pakistan
| | - Asad Ullah
- Department of Health and Biological Sciences, Abasyn University, Peshawar 25000, Pakistan
| | - Muhammad Hassan
- Department of Pharmacy, Bacha Khan University, Charsadda 24461, Pakistan
| | - Mahboob ul Haq
- Department of Pharmacy, Abasyn University, Peshawar 25000, Pakistan
| | - Sajjad Ahmad
- Department of Health and Biological Sciences, Abasyn University, Peshawar 25000, Pakistan
| | - Alhanouf I. Al-Harbi
- Department of Medical Laboratory, College of Applied Medical Sciences, Taibah University, Yanbu 42353, Saudi Arabia
| | - Samira Sanami
- Medical Plants Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord 8815713471, Iran
| | - Syed Ainul Abideen
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Muhammad Irfan
- Department of Oral Biology, College of Dentistry, University of Florida, Gainesville, FL 32611, USA
| | - Muhammad Khurram
- Department of Pharmacy, Abasyn University, Peshawar 25000, Pakistan
| |
Collapse
|
11
|
Di Salvatore V, Russo G, Pappalardo F. Reverse Vaccinology for Influenza A Virus: From Genome Sequencing to Vaccine Design. Methods Mol Biol 2023; 2673:401-410. [PMID: 37258929 DOI: 10.1007/978-1-0716-3239-0_27] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Reverse vaccinology (RV) consists in the identification of potentially protective antigens expressed by any organism starting from genomic information and derived from in silico analysis, with the aim of promoting the discovery of new candidate vaccines against different types of pathogens. This approach makes use of bioinformatics techniques to screen the whole genomic sequence of a specific pathogen for the identification of the epitopes that could elicit the best immune response. The use of in silico techniques allows to reduce dramatically both the time and cost required for the identification of a potential vaccine, also facilitating the laborious process of selection of those antigens that, with a traditional approach, would be completely impossible to detect or culture. RV methodologies have been successfully applied for the identification of new vaccines against serogroup B meningococcus (MenB), Bacillus anthracis, Streptococcus pneumonia, Staphylococcus aureus, Chlamydia pneumoniae, Porphyromonas gingivalis, Edwardsiella tarda, and Mycobacterium tuberculosis. As a case of study, we will go in depth into the application of RV techniques on Influenza A virus.
Collapse
Affiliation(s)
- Valentina Di Salvatore
- Department of Health and Drug Sciences, Università degli Studi di Catania (IT), Catania, Italy
| | - Giulia Russo
- Department of Health and Drug Sciences, Università degli Studi di Catania (IT), Catania, Italy
| | - Francesco Pappalardo
- Department of Health and Drug Sciences, Università degli Studi di Catania (IT), Catania, Italy.
| |
Collapse
|
12
|
Jalal K, Khan K, Uddin R. Immunoinformatic-guided designing of multi-epitope vaccine construct against Brucella Suis 1300. Immunol Res 2022; 71:247-266. [PMID: 36459272 PMCID: PMC9716126 DOI: 10.1007/s12026-022-09346-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 11/20/2022] [Indexed: 12/05/2022]
Abstract
Brucella suis mediates the transmission of brucellosis in humans and animals and a significant facultative zoonotic pathogen found in livestock. It has the capacity to survive and multiply in a phagocytic environment and to acquire resistance under hostile conditions thus becoming a threat globally. Antibiotic resistance is posing a substantial public health threat, hence there is an unmet and urgent clinical need for immune-based non-antibiotic methods to treat brucellosis. Hence, we aimed to explore the whole proteome of Brucella suis to predict antigenic proteins as a vaccine target and designed a novel chimeric vaccine (multi-epitope vaccine) through subtractive genomics-based reverse vaccinology approaches. The applied subsequent hierarchical shortlisting resulted in the identification of Multidrug efflux Resistance-nodulation-division (RND) transporter outer membrane subunit (gene BepC) that may act as a potential vaccine target. T-cell and B-cell epitopes have been predicted from target proteins using a number of immunoinformatic methods. Six MHC I, ten MHC II, and four B-cell epitopes were used to create a 324-amino-acid MEV construct, which was coupled with appropriate linkers and adjuvant. To boost the immunological response to the vaccine, the vaccine was combined with the TLR4 agonist HBHA protein. The MEV structure predicted was found to be highly antigenic, non-toxic, non-allergenic, flexible, stable, and soluble. To confirm the interactions with the receptors, a molecular docking simulation of the MEV was done using the human TLR4 (toll-like receptor 4) and HLAs. The stability and binding of the MEV-docked complexes with TLR4 were assessed using molecular dynamics (MD) simulation. Finally, MEV was reverse translated, its cDNA structure was evaluated, and then, in silico cloning into an E. coli expression host was conducted to promote maximum vaccine protein production with appropriate post-translational modifications. These comprehensive computer calculations backed up the efficacy of the suggested MEV in protecting against B. suis infections. However, more experimental validations are needed to adequately assess the vaccine candidate's potential. HIGHLIGHTS: • Subtractive genomic analysis and reverse vaccinology for the prioritization of novel vaccine target • Examination of chimeric vaccine in terms of allergenicity, antigenicity, MHC I, II binding efficacy, and structural-based studies • Molecular docking simulation method to rank based vaccine candidate and understand their binding modes.
Collapse
Affiliation(s)
- Khurshid Jalal
- HEJ Research Institute of Chemistry International Center for Chemical and Biological Sciences, University of Karachi, Karachi, Pakistan
| | - Kanwal Khan
- Lab 103 PCMD Ext. Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, 75270, Pakistan
| | - Reaz Uddin
- Lab 103 PCMD Ext. Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, 75270, Pakistan.
| |
Collapse
|
13
|
Bhattacharya K, Shamkh IM, Khan MS, Lotfy MM, Nzeyimana JB, Abutayeh RF, Hamdy NM, Hamza D, Chanu NR, Khanal P, Bhattacharjee A, Basalious EB. Multi-Epitope Vaccine Design against Monkeypox Virus via Reverse Vaccinology Method Exploiting Immunoinformatic and Bioinformatic Approaches. Vaccines (Basel) 2022; 10:2010. [PMID: 36560421 PMCID: PMC9786588 DOI: 10.3390/vaccines10122010] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Revised: 11/18/2022] [Accepted: 11/22/2022] [Indexed: 11/29/2022] Open
Abstract
(1) Background: The monkeypox virus is a zoonotic orthopox DNA virus that is closely linked to the virus. In light of the growing concern about this virus, the current research set out to use bioinformatics and immunoinformatics to develop a potential vaccine against the virus. (2) Methods: A multiepitope vaccine was constructed from the B-cell and T-cell epitopes of the MPXVgp181 strain using adjuvant and different linkers. The constructed vaccine was predicted for antigenicity, allergenicity, toxicity, and population coverage. In silico immune simulation studies were also carried out. Expression analysis and cloning of the constructed vaccine was carried out in the pET-28a(+) vector using snapgene. (3) Results: The constructed vaccine was predicted to be antigenic, non-allergenic, and non-toxic. It was predicted to have excellent global population coverage and produced satisfactory immune response. The in silico expression and cloning studies were successful in E. coli, which makes the vaccine construct suitable for mass production in the pharmaceutical industry. (4) Conclusion: The constructed vaccine is based on the B-cell and T-cell epitopes obtained from the MPXVgp181 strain. This research can be useful in developing a vaccine to combat the monkeypox virus globally after performing in-depth in vitro and in vivo studies.
Collapse
Affiliation(s)
- Kunal Bhattacharya
- Pratiksha Institute of Pharmaceutical Sciences, Guwahati 781026, Assam, India
- Royal School of Pharmacy, The Assam Royal Global University, Guwahati 781035, Assam, India
| | - Israa M. Shamkh
- Botany and Microbiology Department, Faculty of Science, Cairo University, Giza 12613, Egypt
- Chemo and Bioinformatics Lab, Bio Search Research Institution, BSRI, Giza 12613, Egypt
| | | | - Marwa M. Lotfy
- Faculty of Pharmacy, Zagazig University, Zagazig 44511, Egypt
| | - Jean Bosco Nzeyimana
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China
| | - Reem Fawaz Abutayeh
- Department of Pharmaceutical Chemistry and Pharmacognosy, Applied Science Private University, Amman 11931, Jordan
| | - Nadia M. Hamdy
- Biochemistry Department, Faculty of Pharmacy, Ain Shams University, Abassia, Cairo 11566, Egypt
| | - Dalia Hamza
- Zoonoses Department, Faculty of Veterinary Medicine, Cairo University, Giza 12211, Egypt
| | | | - Pukar Khanal
- Department of Pharmacology, NGSM Institute of Pharmaceutical Sciences, NITTE Deemed-to-be University, Mangalore 575018, Karnataka, India
| | - Atanu Bhattacharjee
- Royal School of Pharmacy, The Assam Royal Global University, Guwahati 781035, Assam, India
| | - Emad B. Basalious
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University, Al Kasr El-Aini, Cairo 11562, Egypt
| |
Collapse
|
14
|
Alshammari A, Alasmari AF, Alharbi M, Ali N, Muhseen ZT, Ashfaq UA, Ud-din M, Ullah A, Arshad M, Ahmad S. Novel Chimeric Vaccine Candidate Development against Leptotrichia buccalis. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:10742. [PMID: 36078462 PMCID: PMC9518150 DOI: 10.3390/ijerph191710742] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 07/23/2022] [Accepted: 07/27/2022] [Indexed: 06/15/2023]
Abstract
The misuse of antibiotics in our daily lives has led to the emergence of antimicrobial resistance. As a result, many antibiotics are becoming ineffective. This phenomenon is linked with high rates of mortality and morbidity. Therefore, new approaches are required to address this major health issue. Leptotrichia buccalis is a Gram-negative, rod-shaped bacterium which normally resides in the oral and vaginal cavities. It is an emerging bacterial pathogen which is developing new antibiotic-resistance mechanisms. No approved vaccine is available against this pathogen, which is a cause for growing concern. In this study, an in silico-based, multi-epitopes vaccine against this pathogen was designed by applying reverse vaccinology and immunoinformatic approaches. Of a total of 2193 predicted proteins, 294 were found to be redundant while 1899 were non-redundant. Among the non-redundant proteins, 6 were predicted to be present in the extracellular region, 12 in the periplasmic region and 23 in the outer-membrane region. Three proteins (trypsin-like peptidase domain-containing protein, sel1 repeat family protein and TrbI/VirB10 family protein) were predicted to be virulent and potential subunit vaccine targets. In the epitopes prediction phase, the three proteins were subjected to B- and T-cell epitope mapping; 19 epitopes were used for vaccine design. The vaccine construct was docked with MHC-I, MHC-II and TLR-4 immune receptors and only the top-ranked complex (based on global energy value) was selected in each case. The selected docked complexes were examined in a molecular dynamic simulation and binding free energies analysis in order to assess their intermolecular stability. It was observed that the vaccine binding mode with receptors was stable and that the system presented stable dynamics. The net binding free energy of complexes was in the range of -300 to -500 kcal/mol, indicating the formation of stable complexes. In conclusion, the data reported herein might help vaccinologists to formulate a chimeric vaccine against the aforementioned target pathogen.
Collapse
Affiliation(s)
- Abdulrahman Alshammari
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Abdullah F. Alasmari
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Metab Alharbi
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Nemat Ali
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Ziyad Tariq Muhseen
- Department of Pharmacy, Al-Mustaqbal University College, Hillah, Babylon 51001, Iraq
| | - Usman Ali Ashfaq
- Department of Bioinformatics and Biotechnology, Government College, University Faisalabad, Faisalabad 38000, Pakistan
| | - Miraj Ud-din
- Department of Health and Biological Sciences, Abasyn University, Peshawar 25000, Pakistan
| | - Asad Ullah
- Department of Health and Biological Sciences, Abasyn University, Peshawar 25000, Pakistan
| | - Muhammad Arshad
- Centre of Biotechnology and Microbiology, University of Peshawar, Peshawar 25000, Pakistan
| | - Sajjad Ahmad
- Department of Health and Biological Sciences, Abasyn University, Peshawar 25000, Pakistan
- Department of Computer Science, Virginia Tech, Blacksburg, VA 24061, USA
| |
Collapse
|
15
|
Alzarea SI. Identification and construction of a multi-epitopes vaccine design against Klebsiella aerogenes: molecular modeling study. Sci Rep 2022; 12:14402. [PMID: 36002561 PMCID: PMC9399595 DOI: 10.1038/s41598-022-18610-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 08/16/2022] [Indexed: 02/03/2023] Open
Abstract
A rapid rise in antibiotic resistance by bacterial pathogens is due to these pathogens adaptation to the changing environmental conditions. Antibiotic resistance infections can be reduced by a number of ways such as development of safe and effective vaccine. Klebsiella aerogene is a gram-negative, rod-shaped bacterium resistant to a variety of antibiotics and no commercial vaccine is available against the pathogen. Identifying antigens that can be easily evaluated experimentally would be crucial to successfully vaccine development. Reverse vaccinology (RV) was used to identify vaccine candidates based on complete pathogen proteomic information. The fully sequenced proteomes include 44,115 total proteins of which 43,316 are redundant and 799 are non-redundant. Subcellular localization showed that only 1 protein in extracellular matrix, 7 were found in outer-membrane proteins, and 27 in the periplasm space. A total of 3 proteins were found virulent. Next in the B-cell-derived T-cell epitopes mapping phase, the 3 proteins (Fe2+- enterobactin, ABC transporter substrate-binding protein, and fimbriae biogenesis outer membrane usher protein) were tested positive for antigenicity, toxicity, and solubility. GPGPG linkers were used to prepare a vaccine construct composed of 7 epitopes and an adjuvant of toxin B subunit (CTBS). Molecular docking of vaccine construct with major histocompatibility-I (MHC-I), major histocompatibility-II (MHC-II), and Toll-like receptor 4 (TLR4) revealed vaccine robust interactions and stable binding pose to the receptors. By using molecular dynamics simulations, the vaccine-receptors complexes unveiled stable dynamics and uniform root mean square deviation (rmsd). Further, binding energies of complex were computed that again depicted strong intermolecular bindings and formation of stable conformation.
Collapse
Affiliation(s)
- Sami I Alzarea
- Department of Pharmacology, College of Pharmacy, Jouf University, Sakaka, Aljouf, 72341, Saudi Arabia.
| |
Collapse
|
16
|
Saha S, Vashishtha S, Kundu B, Ghosh M. In-silico design of an immunoinformatics based multi-epitope vaccine against Leishmania donovani. BMC Bioinformatics 2022; 23:319. [PMID: 35931960 PMCID: PMC9354309 DOI: 10.1186/s12859-022-04816-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Accepted: 06/22/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Visceral Leishmaniasis (VL) is a fatal vector-borne parasitic disorder occurring mainly in tropical and subtropical regions. VL falls under the category of neglected tropical diseases with growing drug resistance and lacking a licensed vaccine. Conventional vaccine synthesis techniques are often very laborious and challenging. With the advancement of bioinformatics and its application in immunology, it is now more convenient to design multi-epitope vaccines comprising predicted immuno-dominant epitopes of multiple antigenic proteins. We have chosen four antigenic proteins of Leishmania donovani and identified their T-cell and B-cell epitopes, utilizing those for in-silico chimeric vaccine designing. The various physicochemical characteristics of the vaccine have been explored and the tertiary structure of the chimeric construct is predicted to perform docking studies and molecular dynamics simulations. RESULTS The vaccine construct is generated by joining the epitopes with specific linkers. The predicted tertiary structure of the vaccine has been found to be valid and docking studies reveal the construct shows a high affinity towards the TLR-4 receptor. Population coverage analysis shows the vaccine can be effective on the majority of the world population. In-silico immune simulation studies confirms the vaccine to raise a pro-inflammatory response with the proliferation of activated T and B cells. In-silico codon optimization and cloning of the vaccine nucleic acid sequence have also been achieved in the pET28a vector. CONCLUSION The above bioinformatics data support that the construct may act as a potential vaccine. Further wet lab synthesis of the vaccine and in vivo works has to be undertaken in animal model to confirm vaccine potency.
Collapse
Affiliation(s)
- Subhadip Saha
- Department of Biotechnology, National Institute of Technology Durgapur, Durgapur, 713209, India
| | - Shubham Vashishtha
- Kusuma School of Biological Sciences, Indian Institute of Technology Delhi, Hauz Khas, New Delhi, 110016, India
| | - Bishwajit Kundu
- Kusuma School of Biological Sciences, Indian Institute of Technology Delhi, Hauz Khas, New Delhi, 110016, India
| | - Monidipa Ghosh
- Department of Biotechnology, National Institute of Technology Durgapur, Durgapur, 713209, India.
| |
Collapse
|
17
|
Alshabrmi FM, Alrumaihi F, Alrasheedi SF, Al-Megrin WAI, Almatroudi A, Allemailem KS. An In-Silico Investigation to Design a Multi-Epitopes Vaccine against Multi-Drug Resistant Hafnia alvei. Vaccines (Basel) 2022; 10:1127. [PMID: 35891291 PMCID: PMC9316606 DOI: 10.3390/vaccines10071127] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 06/19/2022] [Accepted: 07/12/2022] [Indexed: 11/16/2022] Open
Abstract
Antimicrobial resistance has become a significant health issue because of the misuse of antibiotics in our daily lives, resulting in high rates of morbidity and mortality. Hafnia alvei is a rod-shaped, Gram-negative and facultative anaerobic bacteria. The medical community has emphasized H. alvei's possible association with gastroenteritis. As of now, there is no licensed vaccine for H. alvei, and as such, computer aided vaccine design approaches could be an ideal approach to highlight the potential vaccine epitopes against this bacteria. By using bacterial pan-genome analysis (BPGA), we were able to study the entire proteomes of H. alvei with the aim of developing a vaccine. Based on the analysis, 20,370 proteins were identified as core proteins, which were further used in identifying potential vaccine targets based on several vaccine candidacy parameters. The prioritized vaccine targets against the bacteria are; type 1 fimbrial protein, flagellar hook length control protein (FliK), flagellar hook associated protein (FlgK), curli production assembly/transport protein (CsgF), fimbria/pilus outer membrane usher protein, fimbria/pilus outer membrane usher protein, molecular chaperone, flagellar filament capping protein (FliD), TonB-dependent hemoglobin /transferrin/lactoferrin family receptor, Porin (OmpA), flagellar basal body rod protein (FlgF) and flagellar hook-basal body complex protein (FliE). During the epitope prediction phase, different antigenic, immunogenic, non-Allergenic, and non-Toxic epitopes were predicted for the above-mentioned proteins. The selected epitopes were combined to generate a multi-epitope vaccine construct and a cholera toxin B subunit (adjuvant) was added to enhance the vaccine's antigenicity. Downward analyses of vaccines were performed using a vaccine three-dimensional model. Docking studies have confirmed that the vaccine strongly binds with MHC-I, MHC-II, and TLR-4 immune cell receptors. Additionally, molecular dynamics simulations confirmed that the vaccine epitopes were exposed to nature and to the host immune system and interpreted strong intermolecular binding between the vaccine and receptors. Based on the results of the study, the model vaccine construct seems to have the capacity to produce protective immune responses in the host, making it an attractive candidate for further in vitro and in vivo studies.
Collapse
Affiliation(s)
- Fahad M. Alshabrmi
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah 51452, Saudi Arabia; (F.M.A.); (F.A.); (S.F.A.); (A.A.)
| | - Faris Alrumaihi
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah 51452, Saudi Arabia; (F.M.A.); (F.A.); (S.F.A.); (A.A.)
| | - Sahar Falah Alrasheedi
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah 51452, Saudi Arabia; (F.M.A.); (F.A.); (S.F.A.); (A.A.)
- Department of Laboratory and Blood Bank, King Saud Hospital, Unaizah 56437, Saudi Arabia
| | - Wafa Abdullah I. Al-Megrin
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia
| | - Ahmad Almatroudi
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah 51452, Saudi Arabia; (F.M.A.); (F.A.); (S.F.A.); (A.A.)
| | - Khaled S. Allemailem
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah 51452, Saudi Arabia; (F.M.A.); (F.A.); (S.F.A.); (A.A.)
| |
Collapse
|
18
|
Combing Immunoinformatics with Pangenome Analysis To Design a Multiepitope Subunit Vaccine against Klebsiella pneumoniae K1, K2, K47, and K64. Microbiol Spectr 2022; 10:e0114822. [PMID: 35863000 PMCID: PMC9431259 DOI: 10.1128/spectrum.01148-22] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Klebsiella pneumoniae is an opportunistic Gram-negative bacterium that has become a leading causative agent of nosocomial infections, mainly infecting patients with immunosuppressive diseases. Capsular (K) serotypes K1, K2, K47, and K64 are commonly associated with higher virulence (hypervirulent Klebsiella pneumoniae), and more threateningly, isolates belonging to the last two K serotypes are also frequently associated with resistance to carbapenem (hypervirulent carbapenem-resistant Klebsiella pneumoniae). The prevalence of these isolates has posed significant threats to human health, and there are no appropriate therapies available against them. Therefore, in this study, a method combining immunoinformatics and pangenome analysis was applied for contriving a multiepitope subunit vaccine against these four threatening serotypes. To obtain cross-protection, 12 predicted conserved antigens were screened from the core genome of 274 complete Klebsiella pneumoniae genomes (KL1, KL2, KL47, and KL64), from which the epitopes of T and B cells were extracted for vaccine construction. In addition, the immunological properties, the interaction with Toll-like receptors, and the stability in a simulative humoral environment were evaluated by immunoinformatics methods, molecular docking, and molecular dynamics simulation. All of these evaluations indicated the potency of this constructed vaccine to be an effective therapeutic agent. Lastly, the cDNA of the designed vaccine was optimized and ligated to pET-28a(+) for expression vector construction. Overall, our research provides a newly cross-protective control strategy against these troublesome pathogens and paves the way for the development of a safe and effective vaccine. IMPORTANCEKlebsiella pneumoniae is an opportunistic Gram-negative bacterium that has become a leading causative agent of nosocomial infections. Among the numerous capsular serotypes, K1, K2, K47, and K64 are commonly associated with higher virulence (hypervirulent K. pneumoniae). More threateningly, the last two serotypes are frequently associated with resistance to carbapenem (hypervirulent carbapenem-resistant K. pneumoniae). However, there is currently no therapeutic agent or vaccine specifically against these isolates. Therefore, development of a vaccine against these pathogens is very essential. In this study, for the first time, a method combining pangenome analysis, reverse vaccinology, and immunoinformatics was applied for contriving a multiepitope subunit vaccine against K. pneumoniae isolates of K1, K2, K47, and K64. Also, the immunological properties of the constructed vaccine were evaluated and its high potency was revealed. Overall, our research will pave the way for the vaccine development against these four threatening capsular serotypes of K. pneumoniae.
Collapse
|
19
|
Almansour NM. Immunoinformatics- and Bioinformatics-Assisted Computational Designing of a Novel Multiepitopes Vaccine Against Cancer-Causing Merkel Cell Polyomavirus. Front Microbiol 2022; 13:929669. [PMID: 35836414 PMCID: PMC9273964 DOI: 10.3389/fmicb.2022.929669] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Accepted: 06/01/2022] [Indexed: 12/22/2022] Open
Abstract
Merkel cell polyomavirus (MCV) contains double-stranded DNA as its genome and is the fifth polyomavirus that infects humans. The virus causes Merkel cell carcinoma (aggressive skin cancer). Till present, no proper drug or vaccines are available to treat/prevent the virus infection and stop the emergence of Merkel cell carcinoma. In this study, computational vaccine design strategies were applied to design a chimeric-epitopes vaccine against the virus. The complete proteome comprised of four proteins was filtered through various vaccine candidacy parameters and as such two proteins, namely, capsid protein VP1 and capsid protein VP2, were considered as good vaccine targets. Furthermore, they harbor safe and potential B and T cell epitopes, which can be used in a chimeric multiepitopes-based vaccine design. The epitopes of the vaccine have maximum world population coverage of 95.04%. The designed vaccine structure was modeled in 3D that reported maximum residues in favored regions (95.7%) of the Ramachandran plot. The interactions analysis with different human immune receptors like TLR3, MHC-I, and MHC-II illustrated vaccine's good binding affinity and stable dynamics. The structural deviations of the vaccine receptor(s) complexes are within 5 Å, where majority of the receptors residues remain in good equilibrium in the simulation time. Also, the vaccine was found to form between 60 and 100 hydrogen bonds to receptors. The vaccine stimulated strong immune responses in addition to interferon and cytokines. The strength of vaccine-receptor(s) binding was further affirmed by binding energies estimation that concluded <-150.32 kcal/mol of net binding energy. All these findings suggest the vaccine as a promising candidate that needs further experimental testing to disclose its real immune protective efficacy. Furthermore, the designed vaccine might accelerate vaccine development against the MCV and could save time and expenses.
Collapse
|
20
|
Zhang J, Li J, Hu K, Zhou Q, Chen X, He J, Yin S, Chi Y, Liao X, Xiao Y, Qin H, Zheng Z, Chen J. Screening Novel Vaccine Candidates for Leishmania Donovani by Combining Differential Proteomics and Immunoinformatics Analysis. Front Immunol 2022; 13:902066. [PMID: 35812381 PMCID: PMC9260594 DOI: 10.3389/fimmu.2022.902066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 05/25/2022] [Indexed: 11/18/2022] Open
Abstract
Visceral leishmaniasis (VL), also known as kala-azar, is the most dangerous form of leishmaniasis. Currently no effective vaccine is available for clinical use. Since the pathogenicity of different Leishmania strains is inconsistent, the differentially expressed proteins in Leishmania strains may play an important role as virulence factors in pathogenesis. Therefore, effective vaccine candidate targets may exist in the differentially expressed proteins. In this study, we used differential proteomics analysis to find the differentially expressed proteins in two Leishmania donovani strains, and combined with immunoinformatics analysis to find new vaccine candidates. The differentially expressed proteins from L. DD8 (low virulent) and L. 9044 (virulent) strains were analyzed by LC-MS/MS, and preliminarily screened by antigenicity, allergenicity and homology evaluation. The binding peptides of MHC II, IFN-γ and MHC I from differentially expressed proteins were then predicted and calculated for the second screening. IFN-γ/IL-10 ratios and conserved domain prediction were performed to choose more desirable differentially expressed proteins. Finally, the 3D structures of three vaccine candidate proteins were produced and submitted for molecular dynamics simulation and molecular docking interaction with TLR4/MD2. The results showed that 396 differentially expressed proteins were identified by LC-MS/MS, and 155 differentially expressed proteins were selected through antigenicity, allergenicity and homology evaluation. Finally, 16 proteins whose percentages of MHC II, IFN-γ and MHC I binding peptides were greater than those of control groups (TSA, LmSTI1, LeIF, Leish-111f) were considered to be suitable vaccine candidates. Among the 16 candidates, amino acid permease, amastin-like protein and the hypothetical protein (XP_003865405.1) simultaneously had the large ratios of IFN-γ/IL-10 and high percentages of MHC II, IFN-γ and MHC I, which should be focused on. In conclusion, our comprehensive work provided a methodological basis to screen new vaccine candidates for a better intervention against VL and associated diseases.
Collapse
Affiliation(s)
- Jianhui Zhang
- Department of Pathogenic Biology, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, China
| | - Jiao Li
- Department of Pathogenic Biology, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, China
| | - Kaifeng Hu
- Department of Clinical Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Qi Zhou
- Department of Pathogenic Biology, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, China
| | - Xiaoxiao Chen
- Department of Pathogenic Biology, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, China
| | - Jinlei He
- Department of Pathogenic Biology, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, China
| | - Shuangshuang Yin
- Department of Pathogenic Biology, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, China
| | - Yangjian Chi
- Department of Urinary Surgery, Jianou Municipal Hospital of Fujian Province, Jianou, China
| | - Xuechun Liao
- Department of Pathogenic Biology, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, China
| | - Yuying Xiao
- Department of Pathogenic Biology, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, China
| | - Hanxiao Qin
- Department of Pathogenic Biology, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, China
| | - Zhiwan Zheng
- Department of Pathogenic Biology, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, China
- *Correspondence: Zhiwan Zheng, ; Jianping Chen,
| | - Jianping Chen
- Department of Pathogenic Biology, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, China
- Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, Sichuan University, Chengdu, China
- *Correspondence: Zhiwan Zheng, ; Jianping Chen,
| |
Collapse
|
21
|
ud-din M, Albutti A, Ullah A, Ismail S, Ahmad S, Naz A, Khurram M, Haq MU, Afsheen Z, Bakri YE, Salman M, Shaker B, Tahir ul Qamar M. Vaccinomics to Design a Multi-Epitopes Vaccine for Acinetobacter baumannii. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:5568. [PMID: 35564967 PMCID: PMC9104312 DOI: 10.3390/ijerph19095568] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Revised: 04/23/2022] [Accepted: 04/28/2022] [Indexed: 12/13/2022]
Abstract
Antibiotic resistance (AR) is the result of microbes' natural evolution to withstand the action of antibiotics used against them. AR is rising to a high level across the globe, and novel resistant strains are emerging and spreading very fast. Acinetobacter baumannii is a multidrug resistant Gram-negative bacteria, responsible for causing severe nosocomial infections that are treated with several broad spectrum antibiotics: carbapenems, β-lactam, aminoglycosides, tetracycline, gentamicin, impanel, piperacillin, and amikacin. The A. baumannii genome is superplastic to acquire new resistant mechanisms and, as there is no vaccine in the development process for this pathogen, the situation is more worrisome. This study was conducted to identify protective antigens from the core genome of the pathogen. Genomic data of fully sequenced strains of A. baumannii were retrieved from the national center for biotechnological information (NCBI) database and subjected to various genomics, immunoinformatics, proteomics, and biophysical analyses to identify potential vaccine antigens against A. baumannii. By doing so, four outer membrane proteins were prioritized: TonB-dependent siderphore receptor, OmpA family protein, type IV pilus biogenesis stability protein, and OprD family outer membrane porin. Immuoinformatics predicted B-cell and T-cell epitopes from all four proteins. The antigenic epitopes were linked to design a multi-epitopes vaccine construct using GPGPG linkers and adjuvant cholera toxin B subunit to boost the immune responses. A 3D model of the vaccine construct was built, loop refined, and considered for extensive error examination. Disulfide engineering was performed for the stability of the vaccine construct. Blind docking of the vaccine was conducted with host MHC-I, MHC-II, and toll-like receptors 4 (TLR-4) molecules. Molecular dynamic simulation was carried out to understand the vaccine-receptors dynamics and binding stability, as well as to evaluate the presentation of epitopes to the host immune system. Binding energies estimation was achieved to understand intermolecular interaction energies and validate docking and simulation studies. The results suggested that the designed vaccine construct has high potential to induce protective host immune responses and can be a good vaccine candidate for experimental in vivo and in vitro studies.
Collapse
Affiliation(s)
- Miraj ud-din
- Department of Health and Biological Sciences, Abasyn University, Peshawar 25000, Pakistan; (M.u.-d.); (A.U.); (Z.A.); (M.S.)
| | - Aqel Albutti
- Department of Medical Biotechnology, College of Applied Medical Sciences, Qassim University, Buraydah 52571, Saudi Arabia
| | - Asad Ullah
- Department of Health and Biological Sciences, Abasyn University, Peshawar 25000, Pakistan; (M.u.-d.); (A.U.); (Z.A.); (M.S.)
| | - Saba Ismail
- Department of Biological Sciences, National University of Medical Sciences, Rawalpindi 46000, Pakistan;
| | - Sajjad Ahmad
- Department of Health and Biological Sciences, Abasyn University, Peshawar 25000, Pakistan; (M.u.-d.); (A.U.); (Z.A.); (M.S.)
| | - Anam Naz
- Institute of Molecular Biology and Biotechnology (IMBB), The University of Lahore, Lahore 54590, Pakistan;
| | - Muhammad Khurram
- Department of Pharmacy, Abasyn University, Peshawar 25000, Pakistan; (M.K.); (M.u.H.)
| | - Mahboob ul Haq
- Department of Pharmacy, Abasyn University, Peshawar 25000, Pakistan; (M.K.); (M.u.H.)
| | - Zobia Afsheen
- Department of Health and Biological Sciences, Abasyn University, Peshawar 25000, Pakistan; (M.u.-d.); (A.U.); (Z.A.); (M.S.)
| | - Youness El Bakri
- Department of Theoretical and Applied Chemistry, South Ural State University, Lenin Prospect 76, 454080 Chelyabinsk, Russia;
| | - Muhammad Salman
- Department of Health and Biological Sciences, Abasyn University, Peshawar 25000, Pakistan; (M.u.-d.); (A.U.); (Z.A.); (M.S.)
| | - Bilal Shaker
- Department of Biomedical Engineering, Chung-Ang University, Seoul 06974, Korea;
| | - Muhammad Tahir ul Qamar
- Department of Bioinformatics and Biotechnology, Government College University Faisalabad, Faisalabad 38000, Pakistan;
| |
Collapse
|
22
|
Probing the Immune System Dynamics of the COVID-19 Disease for Vaccine Designing and Drug Repurposing Using Bioinformatics Tools. IMMUNO 2022. [DOI: 10.3390/immuno2020022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
The pathogenesis of COVID-19 is complicated by immune dysfunction. The impact of immune-based therapy in COVID-19 patients has been well documented, with some notable studies on the use of anti-cytokine medicines. However, the complexity of disease phenotypes, patient heterogeneity and the varying quality of evidence from immunotherapy studies provide problems in clinical decision-making. This review seeks to aid therapeutic decision-making by giving an overview of the immunological responses against COVID-19 disease that may contribute to the severity of the disease. We have extensively discussed theranostic methods for COVID-19 detection. With advancements in technology, bioinformatics has taken studies to a higher level. The paper also discusses the application of bioinformatics and machine learning tools for the diagnosis, vaccine design and drug repurposing against SARS-CoV-2.
Collapse
|
23
|
Attar R, Alatawi EA, Aba Alkhayl FF, Alharbi KN, Allemailem KS, Almatroudi A. Immunoinformatics and Biophysics Approaches to Design a Novel Multi-Epitopes Vaccine Design against Staphylococcus auricularis. Vaccines (Basel) 2022; 10:637. [PMID: 35632394 PMCID: PMC9146471 DOI: 10.3390/vaccines10050637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Revised: 04/06/2022] [Accepted: 04/14/2022] [Indexed: 02/01/2023] Open
Abstract
Due to the misuse of antibiotics in our daily lives, antimicrobial resistance (AMR) has become a major health problem. Penicillin, the first antibiotic, was used in the 1930s and led to the emergence of AMR. Due to alterations in the microbe's genome and the evolution of new resistance mechanisms, antibiotics are losing efficacy against microbes. There are high rates of mortality and morbidity due to antibiotic resistance, so addressing this major health issue requires new approaches. Staphylococcus auricularis is a Gram-positive cocci and is capable of causing opportunistic infections and sepsis. S. auricularis is resistant to several antibiotics and does not currently have a licensed vaccine. In this study, we used bacterial pan-genome analysis (BPGA) to study S. auricularis pan-genome and applied a reverse immunology approach to prioritize vaccine targets against S. auricularis. A total of 15,444 core proteins were identified by BPGA analysis, which were then used to identify good vaccine candidates considering potential vaccine filters. Two vaccine candidates were evaluated for epitope prediction including the superoxide dismutase and gamma-glutamyl transferase protein. The epitope prediction phase involved the prediction of a variety of B-Cell and T-cell epitopes, and the epitopes that met certain criteria, such as antigenicity, immunogenicity, non-allergenicity, and non-toxicity were chosen. A multi-epitopes vaccine construct was then constructed from all the predicted epitopes, and a cholera toxin B-subunit adjuvant was also added to increase vaccine antigenicity. Three-dimensional models of the vaccine were used for downward analyses. Using the best-modeled structure, binding potency was tested with MHC-I, MHC-II and TLR-4 immune cells receptors, proving that the vaccine binds strongly with the receptors. Further, molecular dynamics simulations interpreted strong intermolecular binding between the vaccine and receptors and confirmed the vaccine epitopes exposed to the host immune system. The results support that the vaccine candidate may be capable of eliciting a protective immune response against S. auricularis and may be a promising candidate for experimental in vitro and in vivo studies.
Collapse
Affiliation(s)
- Roba Attar
- Department of Biology, Faculty of Science, University of Jeddah, Jeddah 21959, Saudi Arabia;
| | - Eid A. Alatawi
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, University of Tabuk, Tabuk 71491, Saudi Arabia;
| | - Faris F. Aba Alkhayl
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah 51452, Saudi Arabia; (F.F.A.A.); (K.N.A.); (K.S.A.)
- Department of Pharmaceutical Chemistry and Pharmacognosy, College of Dentistry and Pharmacy, Buraydah Colleges, Buraydah 51418, Saudi Arabia
| | - Khloud Nawaf Alharbi
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah 51452, Saudi Arabia; (F.F.A.A.); (K.N.A.); (K.S.A.)
| | - Khaled S. Allemailem
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah 51452, Saudi Arabia; (F.F.A.A.); (K.N.A.); (K.S.A.)
| | - Ahmad Almatroudi
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah 51452, Saudi Arabia; (F.F.A.A.); (K.N.A.); (K.S.A.)
| |
Collapse
|
24
|
Khan K, Jalal K, Uddin R. An integrated in silico based subtractive genomics and reverse vaccinology approach for the identification of novel vaccine candidate and chimeric vaccine against XDR Salmonella typhi H58. Genomics 2022; 114:110301. [PMID: 35149170 DOI: 10.1016/j.ygeno.2022.110301] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 12/25/2021] [Accepted: 02/01/2022] [Indexed: 12/14/2022]
Abstract
Salmonella typhi is notorious for causing enteric fever which is also known as typhoid fever. It emerged as an extreme drug resistant strain that requires urgent attention to prevent its global spread. Statistically, about 11-17 million typhoid illnesses are reported worldwide annually. The only alternative approach for the control of this illness is proper vaccination. However, available typhoid vaccine has certain limitations such as poor long-term efficacy, and non-recommendation for below 6 years children, which opens the avenues for designing new vaccines to overcome such limitations. Computational-based reverse vaccinology along with subtractive genomics analysis is one of the robust approaches used for the prioritization of vaccine candidates through direct screening of genome sequence assemblies. In the current study, we have successfully designed a peptide-based novel antigen chimeric vaccine candidate against the XDR strain of S. typhi H58. The pipeline revealed four peptides from WP_001176621.1 i.e., peptidoglycan-associated lipoprotein Pal and two peptides from WP_000747548.1 i.e., OmpA family lipoprotein as promising target for the induction of immune response against S. typhi. The six epitopes from both proteins were found as immunogenic, antigenic, virulent, highly conserved, nontoxic, and non-allergenic among whole Salmonella H58 proteome. Furthermore, the binding interaction between a chimeric vaccine and human population alleles was unveiled through structure-based studies. So far, these proteins have never been characterized as vaccine targets against S. typhi. The current study proposed that construct V2 could be a significant vaccine candidate against S. typhi H58. However, to ascertain this, future experimental holistic studies are recommended as follow-up.
Collapse
Affiliation(s)
- Kanwal Khan
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Pakistan
| | - Khurshid Jalal
- HEJ Research Institute of Chemistry International Center for Chemical and Biological Sciences, University of Karachi, Pakistan
| | - Reaz Uddin
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Pakistan.
| |
Collapse
|
25
|
Barazzone GC, Teixeira AF, Azevedo BOP, Damiano DK, Oliveira MP, Nascimento ALTO, Lopes APY. Revisiting the Development of Vaccines Against Pathogenic Leptospira: Innovative Approaches, Present Challenges, and Future Perspectives. Front Immunol 2022; 12:760291. [PMID: 35046936 PMCID: PMC8761801 DOI: 10.3389/fimmu.2021.760291] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Accepted: 11/16/2021] [Indexed: 12/12/2022] Open
Abstract
Human vaccination against leptospirosis has been relatively unsuccessful in clinical applications despite an expressive amount of vaccine candidates has been tested over years of research. Pathogenic Leptospira encompass a great number of serovars, most of which do not cross-react, and there has been a lack of genetic tools for many years. These obstacles have hampered the understanding of the bacteria's biology and, consequently, the identification of an effective antigen. Thus far, many approaches have been used in an attempt to find a cost-effective and broad-spectrum protective antigen(s) against the disease. In this extensive review, we discuss several strategies that have been used to develop an effective vaccine against leptospirosis, starting with Leptospira-inactivated bacterin, proteins identified in the genome sequences of pathogenic Leptospira, including reverse vaccinology, plasmid DNA, live vaccines, chimeric multi-epitope, and toll- and nod-like receptors agonists. This overview should be able to guide scientists working in the field to select potential antigens and to choose the appropriate formulation to administer the candidates.
Collapse
Affiliation(s)
- Giovana C. Barazzone
- Laboratório de Desenvolvimento de Vacinas, Instituto Butantan, São Paulo, Brazil
- Programa de Pós-Graduação Interunidades em Biotecnologia, Instituto de Ciências Biomédicas, Universidade de São Paulo (USP), São Paulo, Brazil
| | - Aline F. Teixeira
- Laboratório de Desenvolvimento de Vacinas, Instituto Butantan, São Paulo, Brazil
| | - Bruna O. P. Azevedo
- Laboratório de Desenvolvimento de Vacinas, Instituto Butantan, São Paulo, Brazil
- Programa de Pós-Graduação Interunidades em Biotecnologia, Instituto de Ciências Biomédicas, Universidade de São Paulo (USP), São Paulo, Brazil
| | - Deborah K. Damiano
- Laboratório de Desenvolvimento de Vacinas, Instituto Butantan, São Paulo, Brazil
- Programa de Pós-Graduação Interunidades em Biotecnologia, Instituto de Ciências Biomédicas, Universidade de São Paulo (USP), São Paulo, Brazil
| | - Marcos P. Oliveira
- Laboratório de Desenvolvimento de Vacinas, Instituto Butantan, São Paulo, Brazil
- Programa de Pós-Graduação Interunidades em Biotecnologia, Instituto de Ciências Biomédicas, Universidade de São Paulo (USP), São Paulo, Brazil
| | - Ana L. T. O. Nascimento
- Laboratório de Desenvolvimento de Vacinas, Instituto Butantan, São Paulo, Brazil
- Programa de Pós-Graduação Interunidades em Biotecnologia, Instituto de Ciências Biomédicas, Universidade de São Paulo (USP), São Paulo, Brazil
| | - Alexandre P. Y. Lopes
- Laboratório de Desenvolvimento de Vacinas, Instituto Butantan, São Paulo, Brazil
- Programa de Pós-Graduação Interunidades em Biotecnologia, Instituto de Ciências Biomédicas, Universidade de São Paulo (USP), São Paulo, Brazil
| |
Collapse
|
26
|
Albutti A. An integrated computational framework to design a multi-epitopes vaccine against Mycobacterium tuberculosis. Sci Rep 2021; 11:21929. [PMID: 34753983 PMCID: PMC8578660 DOI: 10.1038/s41598-021-01283-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Accepted: 10/25/2021] [Indexed: 12/17/2022] Open
Abstract
Tuberculosis (TB) is a highly contagious disease that mostly affects the lungs and is caused by a bacterial pathogen, Mycobacterium tuberculosis. The associated mortality rate of TB is much higher compared to any other disease and the situation is more worrisome by the rapid emergence of drug resistant strains. Bacillus Calmette-Guerin (BCG) is the only licensed attenuated vaccine available for use in humans however, many countries have stopped its use as it fails to confer protective immunity. Therefore, urgent efforts are required to identify new and safe vaccine candidates that are not only provide high immune protection but also have broad spectrum applicability. Considering this, herein, I performed an extensive computational vaccine analysis to investigate 200 complete sequenced genomes of M. tuberculosis to identify core vaccine candidates that harbor safe, antigenic, non-toxic, and non-allergic epitopes. To overcome literature reported limitations of epitope-based vaccines, I carried out additional analysis by designing a multi-epitopes vaccine to achieve maximum protective immunity as well as to make experimental follow up studies easy by selecting a vaccine that can be easily analyzed because of its favorable physiochemical profile. Based on these analyses, I identified two potential vaccine proteins that fulfill all required vaccine properties. These two vaccine proteins are diacylglycerol acyltransferase and ESAT-6-like protein. Epitopes: DSGGYNANS from diacylglycerol acyltransferase and AGVQYSRAD, ADEEQQQAL, and VSRADEEQQ from ESAT-6-like protein were found to cover all necessary parameters and thus used in a multi-epitope vaccine construct. The designed vaccine is depicting a high binding affinity for different immune receptors and shows stable dynamics and rigorous van der Waals and electrostatic binding energies. The vaccine also simulates profound primary, secondary, tertiary immunoglobulin production as well as high interleukins and interferons count. In summary, the designed vaccine is ideal to be evaluated experimentally to decipher its real biological efficacy in controlling drug resistant infections of M. tuberculosis.
Collapse
Affiliation(s)
- Aqel Albutti
- Department of Medical Biotechnology, College of Applied Medical Sciences, Qassim University, Buraydah, Saudi Arabia.
| |
Collapse
|
27
|
Ullah A, Ahmad S, Ismail S, Afsheen Z, Khurram M, Tahir ul Qamar M, AlSuhaymi N, Alsugoor MH, Allemailem KS. Towards A Novel Multi-Epitopes Chimeric Vaccine for Simulating Strong Immune Responses and Protection against Morganella morganii. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:10961. [PMID: 34682706 PMCID: PMC8535705 DOI: 10.3390/ijerph182010961] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 10/11/2021] [Accepted: 10/13/2021] [Indexed: 12/16/2022]
Abstract
Morganella morganii is one of the main etiological agents of hospital-acquired infections and no licensed vaccine is available against the pathogen. Herein, we designed a multi-epitope-based vaccine against M. morganii. Predicted proteins from fully sequenced genomes of the pathogen were subjected to a core sequences analysis, followed by the prioritization of non-redundant, host non-homologous and extracellular, outer membrane and periplasmic membrane virulent proteins as vaccine targets. Five proteins (TonB-dependent siderophore receptor, serralysin family metalloprotease, type 1 fimbrial protein, flagellar hook protein (FlgE), and pilus periplasmic chaperone) were shortlisted for the epitope prediction. The predicted epitopes were checked for antigenicity, toxicity, solubility, and binding affinity with the DRB*0101 allele. The selected epitopes were linked with each other through GPGPG linkers and were joined with the cholera toxin B subunit (CTBS) to boost immune responses. The tertiary structure of the vaccine was modeled and blindly docked with MHC-I, MHC-II, and Toll-like receptors 4 (TLR4). Molecular dynamic simulations of 250 nanoseconds affirmed that the designed vaccine showed stable conformation with the receptors. Further, intermolecular binding free energies demonstrated the domination of both the van der Waals and electrostatic energies. Overall, the results of the current study might help experimentalists to develop a novel vaccine against M. morganii.
Collapse
Affiliation(s)
- Asad Ullah
- Department of Health and Biological Sciences, Abasyn University, Peshawar 25000, Pakistan; (A.U.); (Z.A.); (M.K.)
| | - Sajjad Ahmad
- Department of Health and Biological Sciences, Abasyn University, Peshawar 25000, Pakistan; (A.U.); (Z.A.); (M.K.)
| | - Saba Ismail
- Department of Biological Sciences, National University of Medical Sciences, Rawalpindi 46000, Pakistan;
| | - Zobia Afsheen
- Department of Health and Biological Sciences, Abasyn University, Peshawar 25000, Pakistan; (A.U.); (Z.A.); (M.K.)
| | - Muhammad Khurram
- Department of Health and Biological Sciences, Abasyn University, Peshawar 25000, Pakistan; (A.U.); (Z.A.); (M.K.)
- Department of Pharmacy, Abasyn University, Peshawar 25000, Pakistan
| | | | - Naif AlSuhaymi
- Department of Emergency Medical Services, Faculty of Health Sciences, AlQunfudah, Umm Al-Qura University, Makkah 21912, Saudi Arabia; (N.A.); (M.H.A.)
| | - Mahdi H. Alsugoor
- Department of Emergency Medical Services, Faculty of Health Sciences, AlQunfudah, Umm Al-Qura University, Makkah 21912, Saudi Arabia; (N.A.); (M.H.A.)
| | - Khaled S. Allemailem
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah 51452, Saudi Arabia
| |
Collapse
|
28
|
Immunoinformatics and molecular docking studies reveal a novel Multi-Epitope peptide vaccine against pneumonia infection. Vaccine 2021; 39:6221-6237. [PMID: 34556364 DOI: 10.1016/j.vaccine.2021.09.025] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 09/07/2021] [Accepted: 09/08/2021] [Indexed: 01/03/2023]
Abstract
Pneumonia is a major endemic disease around the world, and an effective vaccine is the need of the hour to fight against the disease. When there are no appropriate antiviral and associated therapies available, vaccine development becomes even more essential. Therefore, in the present study, a variety of immunoinformatics techniques was utilized to develop a novel multi-epitope vaccine that targets the highly immunodominant type 3 fimbrial protein of Klebsiella pneumoniae, the causal organism for pneumonia. The putative B and T cell epitopes were predicted from the protein and screened for antigenicity, toxicity, allergenicity, and cross-reactivity with human proteomes. Subsequently, the selected epitopes were joined with the help of linkers to form a robust vaccine construct. In addition, an adjuvant was applied to the N-terminal of the construct to improve the immunogenicity of the vaccine. The physicochemical properties, solubility, the secondary and tertiary structure of the final vaccine were also established. MD simulations for 100 ns were employed to assess the stability of the vaccine-TLR-2 docked complex. The final vaccine was optimized and cloned in pET28a (+) vector with His-tag to achieve maximum vaccine protein expression for ease of purification. Immune simulation results indicated the potency of this vaccine candidate as a probable therapeutic agent. In conclusion, the overall results of various immunoinformatics tools and methods employed revealed that the constructed multi-epitope vaccine exhibits a high potential for stimulating both B and T-cells immune responses against pneumonia infection. However, experimental immunological studies are required to corroborate the viability of the novel multi-epitope construct as a commercial vaccine.
Collapse
|
29
|
Ong E, Cooke MF, Huffman A, Xiang Z, Wong MU, Wang H, Seetharaman M, Valdez N, He Y. Vaxign2: the second generation of the first Web-based vaccine design program using reverse vaccinology and machine learning. Nucleic Acids Res 2021; 49:W671-W678. [PMID: 34009334 PMCID: PMC8218197 DOI: 10.1093/nar/gkab279] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Revised: 03/29/2021] [Accepted: 04/15/2021] [Indexed: 01/12/2023] Open
Abstract
Vaccination is one of the most significant inventions in medicine. Reverse vaccinology (RV) is a state-of-the-art technique to predict vaccine candidates from pathogen's genome(s). To promote vaccine development, we updated Vaxign2, the first web-based vaccine design program using reverse vaccinology with machine learning. Vaxign2 is a comprehensive web server for rational vaccine design, consisting of predictive and computational workflow components. The predictive part includes the original Vaxign filtering-based method and a new machine learning-based method, Vaxign-ML. The benchmarking results using a validation dataset showed that Vaxign-ML had superior prediction performance compared to other RV tools. Besides the prediction component, Vaxign2 implemented various post-prediction analyses to significantly enhance users' capability to refine the prediction results based on different vaccine design rationales and considerably reduce user time to analyze the Vaxign/Vaxign-ML prediction results. Users provide proteome sequences as input data, select candidates based on Vaxign outputs and Vaxign-ML scores, and perform post-prediction analysis. Vaxign2 also includes precomputed results from approximately 1 million proteins in 398 proteomes of 36 pathogens. As a demonstration, Vaxign2 was used to effectively analyse SARS-CoV-2, the coronavirus causing COVID-19. The comprehensive framework of Vaxign2 can support better and more rational vaccine design. Vaxign2 is publicly accessible at http://www.violinet.org/vaxign2.
Collapse
Affiliation(s)
- Edison Ong
- Department of Computational Medicine and Bioinformatics, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Michael F Cooke
- School of Information, University of Michigan, Ann Arbor, MI 48109, USA
- Undergraduate Research Opportunity Program, College of Literature, Science, and the Arts, University of Michigan, Ann Arbor, MI 48109, USA
| | - Anthony Huffman
- Department of Computational Medicine and Bioinformatics, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Zuoshuang Xiang
- Unit for Laboratory Animal Medicine, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Mei U Wong
- Unit for Laboratory Animal Medicine, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Haihe Wang
- Department of Pathogenobiology, Daqing Branch of Harbin Medical University, Daqing, Helongjiang, China
| | - Meenakshi Seetharaman
- Undergraduate Research Opportunity Program, College of Literature, Science, and the Arts, University of Michigan, Ann Arbor, MI 48109, USA
| | - Ninotchka Valdez
- Undergraduate Research Opportunity Program, College of Literature, Science, and the Arts, University of Michigan, Ann Arbor, MI 48109, USA
| | - Yongqun He
- Department of Computational Medicine and Bioinformatics, University of Michigan Medical School, Ann Arbor, MI 48109, USA
- Unit for Laboratory Animal Medicine, University of Michigan Medical School, Ann Arbor, MI 48109, USA
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| |
Collapse
|
30
|
Khan MT, Islam MJ, Parihar A, Islam R, Jerin TJ, Dhote R, Ali MA, Laura FK, Halim MA. Immunoinformatics and molecular modeling approach to design universal multi-epitope vaccine for SARS-CoV-2. INFORMATICS IN MEDICINE UNLOCKED 2021; 24:100578. [PMID: 33898733 PMCID: PMC8057924 DOI: 10.1016/j.imu.2021.100578] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2020] [Revised: 04/12/2021] [Accepted: 04/13/2021] [Indexed: 02/08/2023] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a highly transmittable and pathogenic human coronavirus that caused a pandemic situation of acute respiratory syndrome, called COVID-19, which has posed a significant threat to global health security. The aim of the present study is to computationally design an effective peptide-based multi-epitope vaccine (MEV) against SARS-CoV-2. The overall model quality of the vaccine candidate, immunogenicity, allergenicity, and physiochemical analysis have been conducted and validated. Molecular dynamics studies confirmed the stability of the candidate vaccine. The docked complexes during the simulation revealed a strong and stable binding interactions of MEV with human and mice toll-like receptors (TLR), TLR3 and TLR4. Finally, candidate vaccine codons have been optimized for their in silico cloning in E. coli expression system, to confirm increased expression. The proposed MEV can be a potential candidate against SARS-CoV-2, but experimental validation is needed to ensure its safety and immunogenicity status.
Collapse
Affiliation(s)
- Md Tahsin Khan
- Division of Infectious Diseases, The Red-Green Research Centre, BICCB, 16 Tejkunipara, Tejgaon, Dhaka, 1215, Bangladesh
- Department of Genetic Engineering and Biotechnology, Shahjalal University of Science and Technology, Sylhet, 3114, Bangladesh
| | - Md Jahirul Islam
- Division of Infectious Diseases, The Red-Green Research Centre, BICCB, 16 Tejkunipara, Tejgaon, Dhaka, 1215, Bangladesh
| | - Arpana Parihar
- Department of Genetics, Barkatullah University, Bhopal, Madhya Pradesh, 462026, India
| | - Rahatul Islam
- Department of Genetic Engineering and Biotechnology, Shahjalal University of Science and Technology, Sylhet, 3114, Bangladesh
| | - Tarhima Jahan Jerin
- Department of Biotechnology and Genetic Engineering, Mawlana Bhashani Science and Technology University, Tangail, 1902, Bangladesh
| | - Rupali Dhote
- Department of Genetics, Barkatullah University, Bhopal, Madhya Pradesh, 462026, India
| | - Md Ackas Ali
- Division of Infectious Diseases, The Red-Green Research Centre, BICCB, 16 Tejkunipara, Tejgaon, Dhaka, 1215, Bangladesh
| | - Fariha Khan Laura
- Division of Infectious Diseases, The Red-Green Research Centre, BICCB, 16 Tejkunipara, Tejgaon, Dhaka, 1215, Bangladesh
| | - Mohammad A Halim
- Division of Infectious Diseases, The Red-Green Research Centre, BICCB, 16 Tejkunipara, Tejgaon, Dhaka, 1215, Bangladesh
- Department of Physical Sciences, University of Arkansas-Fort Smith, Fort Smith, AR, USA
| |
Collapse
|
31
|
Chukwudozie OS, Duru VC, Ndiribe CC, Aborode AT, Oyebanji VO, Emikpe BO. The Relevance of Bioinformatics Applications in the Discovery of Vaccine Candidates and Potential Drugs for COVID-19 Treatment. Bioinform Biol Insights 2021; 15:11779322211002168. [PMID: 33795932 PMCID: PMC7968009 DOI: 10.1177/11779322211002168] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2020] [Accepted: 02/14/2021] [Indexed: 12/16/2022] Open
Abstract
The application of bioinformatics to vaccine research and drug discovery has never been so essential in the fight against infectious diseases. The greatest combat of the 21st century against a debilitating disease agent SARS-CoV-2 (severe acute respiratory syndrome coronavirus 2) virus discovered in Wuhan, China, December 2019, has piqued an unprecedented usage of bioinformatics tools in deciphering the molecular characterizations of infectious pathogens. With the viral genome data of SARS-COV-2 been made available barely weeks after the reported outbreak, bioinformatics platforms have become an all-time critical tool to gain time in the fight against the disease pandemic. Before the outbreak, different platforms have been developed to explore antigenic epitopes, predict peptide-protein docking and antibody structures, and simulate antigen-antibody reactions and lots more. However, the advent of the pandemic witnessed an upsurge in the application of these pipelines with the development of newer ones such as the Coronavirus Explorer in the development of efficacious vaccines, drug repurposing, and/or discovery. In this review, we have explored the various pipelines available for use, their relevance, and limitations in the timely development of useful therapeutic candidates from genomic data knowledge to clinical therapy.
Collapse
Affiliation(s)
| | - Vincent C Duru
- Molecular Genetics Unit, Institute of Child Health, College of Medicine, University of Ibadan, Ibadan, Nigeria
| | - Charlotte C Ndiribe
- Department of Cell Biology and Genetics, University of Lagos, Lagos, Nigeria
| | | | - Victor O Oyebanji
- Department of Veterinary Pathology, University of Ibadan, Ibadan, Nigeria
| | - Benjamin O Emikpe
- Department of Veterinary Pathology, University of Ibadan, Ibadan, Nigeria
- School of Veterinary Medicine, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| |
Collapse
|
32
|
Kumar S, Gupta S, Mohmad A, Fular A, Parthasarathi BC, Chaubey AK. Molecular tools-advances, opportunities and prospects for the control of parasites of veterinary importance. INTERNATIONAL JOURNAL OF TROPICAL INSECT SCIENCE 2021; 41:33-42. [PMID: 32837530 PMCID: PMC7387080 DOI: 10.1007/s42690-020-00213-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2020] [Accepted: 07/17/2020] [Indexed: 05/02/2023]
Abstract
The recent advancement in genome sequencing facilities, proteomics, transcriptomics, and metabolomics of eukaryotes have opened door for employment of molecular diagnostic techniques for early detection of parasites and determining target molecules for formulating control strategies. It further leads to the introduction of several purified vaccines in the field of veterinary parasitology. Earlier, the conventional diagnostic methods was entirely based upon morphological taxonomy for diagnosis of parasites but nowadays improved molecular techniques help in phylogenetic study and open an another area of molecular taxonomy of parasites with high precision. Control measures based upon targeting endosymbionts in parasites like Dirofilaria immitis is also under exploration in veterinary parasitology. Metagenomics have added an inside story of parasites bionomics which have created havoc in human and animals population since centuries. Omics era is playing a key role in opening the new approaches on parasite biology. Various newer generations of safer vaccines like edible vaccines and subunit vaccines and diagnostic techniques based upon purified immunologically active epitopes have become commercially available against the parasites (helminths, protozoa and arthropod borne diseases). Nowadays, a transgenic and gene knock out studies using RNA interference and CRISPR are also helping in understanding the functions of genes and screening of target genes, which are not available before the advent of molecular tools. Molecular techniques had paramount impact on increasing the sensitivity of diagnostic tools, epidemiological studies and more importantly in controlling these diseases. This review is about the advancements in veterinary parasitology and their impact on the control of these pathogens.
Collapse
Affiliation(s)
- Sachin Kumar
- Division of Parasitology, ICAR-Indian Veterinary Research Institute, Izatnagar, Uttar Pradesh 243122 India
- Department of Zoology, Choudhary Charan Singh University, Meerut, Uttar Pradesh 250001 India
| | - Snehil Gupta
- Department of Veterinary Parasitology, Lala Lajpat Rai University of Veterinary and Animal Sciences, Hisar, Haryana 125001 India
| | - Aquil Mohmad
- Division of Parasitology, ICAR-Indian Veterinary Research Institute, Izatnagar, Uttar Pradesh 243122 India
| | - Ashutosh Fular
- Division of Parasitology, ICAR-Indian Veterinary Research Institute, Izatnagar, Uttar Pradesh 243122 India
| | - B. C. Parthasarathi
- Division of Parasitology, ICAR-Indian Veterinary Research Institute, Izatnagar, Uttar Pradesh 243122 India
| | - Ashok Kumar Chaubey
- Department of Zoology, Choudhary Charan Singh University, Meerut, Uttar Pradesh 250001 India
| |
Collapse
|
33
|
Motamedpour L, Dalimi A, Pirestani M, Ghaffarifar F. In silico analysis and expression of a new chimeric antigen as a vaccine candidate against cutaneous leishmaniasis. IRANIAN JOURNAL OF BASIC MEDICAL SCIENCES 2020; 23:1409-1418. [PMID: 33235698 PMCID: PMC7671421 DOI: 10.22038/ijbms.2020.45394.10561] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Abstract
Objective(s): Since leishmaniasis is one of the health problems in many countries, the development of preventive vaccines against it is a top priority. Peptide vaccines may be a new way to fight the Leishmania infection. In this study, a silicon method was used to predict and analyze B and T cells to produce a vaccine against cutaneous leishmaniasis. Materials and Methods: Immunodominant epitope of Leishmania were selected from four TSA, LPG3, GP63, and Lmsti1 antigens and linked together using a flexible linker (SAPGTP). The antigenic and allergenic features, 2D and 3D structures, and physicochemical features of a chimeric protein were predicted. Finally, through bioinformatics methods, the mRNA structure was predicted and was produced chemically and cloned into the pLEXY-neo2 vector. Results: Results indicated, polytope had no allergenic properties, but its antigenicity was estimated to be 0.92%. The amino acids numbers, molecular weight as well as negative and positive charge residuals were estimated 390, ~41KDa, 41, and 30, respectively. The results showed that the designed polytope has 50 post-translationally modified sites. Also, the secondary structure of the protein is composed of 25.38% alpha-helix, 12.31% extended strand, and 62.31% random coil. The results of SDS-PAGE and Western blotting revealed the recombinant protein with ~ 41 kDa. The results of Ramachandran plot showed that 96%, 2.7%, and 1.3% of amino acid residues were located in the preferred, permitted, and outlier areas, respectively. Conclusion: It is expected that the TLGL polytope will produce a cellular immune response. Therefore, the polytope could be a good candidate for an anti-leishmanial vaccine.
Collapse
Affiliation(s)
- Leila Motamedpour
- Parasitology Department, Medical Sciences Faculty, Tarbiat Modares University, Tehran, Iran
| | - Abdolhossein Dalimi
- Parasitology Department, Medical Sciences Faculty, Tarbiat Modares University, Tehran, Iran
| | - Majid Pirestani
- Parasitology Department, Medical Sciences Faculty, Tarbiat Modares University, Tehran, Iran
| | - Fatemeh Ghaffarifar
- Parasitology Department, Medical Sciences Faculty, Tarbiat Modares University, Tehran, Iran
| |
Collapse
|
34
|
Yadav S, Prakash J, Shukla H, Das KC, Tripathi T, Dubey VK. Design of a multi-epitope subunit vaccine for immune-protection against Leishmania parasite. Pathog Glob Health 2020; 114:471-481. [PMID: 33161887 DOI: 10.1080/20477724.2020.1842976] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Visceral Leishmaniasis (VL) is an insect-borne neglected disease caused by the protozoan parasite Leishmania donovani. In the absence of a commercial vaccine against VL, chemotherapy is currently the only option used for the treatment of VL. Vaccination has been considered as the most effective and powerful tool for complete eradication and control of infectious diseases. In this study, we aimed to design a peptide-based vaccine against L. donovani using immuno-bioinformatic tools. We identified 6 HTL, 18 CTL, and 25 B-cell epitopes from three hypothetical membrane proteins of L. donovani. All these epitopes were used to make a vaccine construct along with linkers. An adjuvant was also added at the N-terminal to enhance its immunogenicity. After that, we checked the quality of this vaccine construct and found that it is nontoxic, nonallergic, and thermally stable. A 3D structure of the vaccine construct was also generated by homology modeling to evaluate its interaction with innate immune receptors (TLR). Molecular docking was performed, which confirmed its binding with a toll-like receptor-2 (TLR-2). The stability of vaccine-TLR-2 complex and underlying interactions were evaluated using molecular dynamic simulation. Lastly, we carried out in silico cloning to check the expression of the final designed vaccine. The designed vaccine construct needs further experimental and clinical investigations to develop it as a safe and effective vaccine against VL infection.
Collapse
Affiliation(s)
- Sunita Yadav
- School of Biochemical Engineering, Indian Institute of Technology (BHU) Varanasi , Varanasi, India
| | - Jay Prakash
- School of Biochemical Engineering, Indian Institute of Technology (BHU) Varanasi , Varanasi, India
| | - Harish Shukla
- Molecular and Structural Biophysics Laboratory, Department of Biochemistry, North-EasternHill University , Shillong, India
| | - Kanhu Charan Das
- Molecular and Structural Biophysics Laboratory, Department of Biochemistry, North-EasternHill University , Shillong, India
| | - Timir Tripathi
- Molecular and Structural Biophysics Laboratory, Department of Biochemistry, North-EasternHill University , Shillong, India
| | - Vikash Kumar Dubey
- School of Biochemical Engineering, Indian Institute of Technology (BHU) Varanasi , Varanasi, India
| |
Collapse
|
35
|
Majidiani H, Dalimi A, Ghaffarifar F, Pirestani M, Ghaffari AD. Computational probing of Toxoplasma gondii major surface antigen 1 (SAG1) for enhanced vaccine design against toxoplasmosis. Microb Pathog 2020; 147:104386. [DOI: 10.1016/j.micpath.2020.104386] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 05/18/2020] [Accepted: 07/06/2020] [Indexed: 01/14/2023]
|
36
|
Majidiani H, Soltani S, Ghaffari AD, Sabaghan M, Taghipour A, Foroutan M. In-depth computational analysis of calcium-dependent protein kinase 3 of Toxoplasma gondii provides promising targets for vaccination. Clin Exp Vaccine Res 2020; 9:146-158. [PMID: 32864371 PMCID: PMC7445322 DOI: 10.7774/cevr.2020.9.2.146] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Revised: 06/23/2020] [Accepted: 07/28/2020] [Indexed: 01/26/2023] Open
Abstract
Purpose The Toxoplasma gondii calcium-dependent protein kinase-3 (CDPK3) is a key enzyme for parasite egress, control of calcium-dependent permeabilization in parasitophorous vacuole membrane and tissue cyst formation. In this study, we comprehensively explored the bioinformatics features of this protein to improve vaccine design against T. gondii. Materials and Methods Various web servers were employed for the analysis of physico-chemical properties, post-translational modifications, localization in the subcellular milieu, secondary and tertiary structures, as well as B-cell, major histocompatibility complex (MHC)-binding and cytotoxic T-lymphocyte (CTL) epitopes. Results This protein was a 537 amino acid antigenic and non-allergenic molecule with a molecular weight of 60.42 kDa, a grand average of hydropathicity score of −0.508, and aliphatic index of 79.50. There exists 46.74% alpha helix, 12.48% extended strand, and 40.78% random coil in the secondary structure. Ramachandran plot of the refined model demonstrated 99.3%, 0.7%, and 0.0% of residues in the favored, allowed and outlier areas, respectively. Besides, various potential B-cell (continuous and conformational), MHC-binding and CTL epitopes were predicted for Toxoplasma CDPK3 protein. Conclusion This article provides a foundation for further investigations, and laid a theoretical basis for the development of an appropriate vaccine against T. gondii infection.
Collapse
Affiliation(s)
- Hamidreza Majidiani
- Zoonotic Diseases Research Center, Ilam University of Medical Sciences, Ilam, Iran
| | | | - Ali Dalir Ghaffari
- Department of Parasitology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | | | - Ali Taghipour
- Department of Parasitology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | | |
Collapse
|
37
|
Opriessnig T, Forde T, Shimoji Y. Erysipelothrix Spp.: Past, Present, and Future Directions in Vaccine Research. Front Vet Sci 2020; 7:174. [PMID: 32351978 PMCID: PMC7174600 DOI: 10.3389/fvets.2020.00174] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2020] [Accepted: 03/16/2020] [Indexed: 12/20/2022] Open
Abstract
Erysipelothrix spp. comprise a group of small Gram-positive bacteria that can infect a variety of hosts including mammals, fish, birds, reptiles and insects. Among the eight Erysipelothrix species that have been described to date, only Erysipelothrix rhusiopathiae plays a major role in farmed livestock where it is the causative agent of erysipelas. E. rhusiopathiae also has zoonotic potential and can cause erysipeloid in humans with a clear occupational link to meat and fish industries. While there are 28 known Erysipelothrix serovars, over 80% of identified isolates belong to serovars 1 or 2. Vaccines to protect pigs against E. rhusiopathiae first became available in 1883 as a response to an epizootic of swine erysipelas in southern France. The overall vaccine repertoire was notably enlarged between the 1940s and 1960s following major outbreaks of swine erysipelas in the Midwest USA and has changed little since. Traditionally, E. rhusiopathiae serovar 1a or 2 isolates were inactivated (bacterins) or attenuated and these types of vaccines are still used today on a global basis. E. rhusiopathiae vaccines are most commonly used in pigs, poultry, and sheep where the bacterium can cause considerable economic losses. In addition, erysipelas vaccination is also utilized in selected vulnerable susceptible populations, such as marine mammals in aquariums, which are commonly vaccinated at regular intervals. While commercially produced erysipelas vaccines appear to provide good protection against clinical disease, in recent years there has been an increase in perceived vaccine failures in farmed animals, especially in organic outdoor operations. Moreover, clinical erysipelas outbreaks have been reported in animal populations not previously considered at risk. This has raised concerns over a possible lack of vaccine protection across various production species. This review focuses on summarizing the history and the present status of E. rhusiopathiae vaccines, the current knowledge on protection including surface antigens, and also provides an outlook into future directions for vaccine development.
Collapse
Affiliation(s)
- Tanja Opriessnig
- The Roslin Institute and The Royal (Dick) School of Veterinary Studies, University of Edinburgh, Midlothian, United Kingdom.,Department of Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA, United States
| | - Taya Forde
- Institute of Biodiversity, Animal Health & Comparative Medicine, University of Glasgow, Glasgow, United Kingdom
| | - Yoshihiro Shimoji
- National Institute of Animal Health, National Agriculture and Food Research Organization, Tsukuba, Japan.,Research Institute for Biomedical Sciences, Tokyo University of Science, Chiba, Japan
| |
Collapse
|
38
|
Ismail S, Ahmad S, Azam SS. Vaccinomics to design a novel single chimeric subunit vaccine for broad-spectrum immunological applications targeting nosocomial Enterobacteriaceae pathogens. Eur J Pharm Sci 2020; 146:105258. [PMID: 32035109 DOI: 10.1016/j.ejps.2020.105258] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 01/09/2020] [Accepted: 02/04/2020] [Indexed: 12/21/2022]
Abstract
Healthcare associated infections (HAIs) are major cause of elevated mortality, morbidity, and high healthcare costs. Development of a vaccine targeting these pathogens could benefit in reducing HAIs count and excessive use of antibiotics. This work aimed to design a multi-epitope based prophylactic/ therapeutic vaccine directing against carbapenem resistant Enterobacter cloacae and other leading nosocomial members of Enterobacteriaceae group. Based on subtractive proteomics and immunoinformatics in-depth investigation of E. cloacae reference proteome, we prioritize four targets: outer membrane usher protein-lpfC, putative outer membrane protein A-OmpA, putative outer membrane protein-FimD, and arginine transporter fulfilling criteria of vaccine candidacy. A multi-epitope peptide vaccine construct is then formulated comprising predicted epitopes with potential to evoke both innate and adaptive immunity and B-subunit of cholera toxin as an adjuvant. The construct is modelled, loop refined, improved for stability via disulfide engineering and optimized for codon usage as per Escherichia coli expression system to ensure its maximum expression. Cross-conservation analysis carried out to evaluate broad-spectrum applicability by providing cross protection against nosocomial pathogens. A blind docking method is applied further to predict predominant binding mode of the construct with TLR4 innate immune receptor, followed by molecular dynamics simulation protocol to probe complex dynamics and exposed topology of the construct epitopes for recognition and immune processing by the host. Towards the end, binding free energies of the vaccine construct-TLR4 receptor were estimated to test docking predictions and affirm complex stability. We believe these findings to be highly useful for vaccinologists in making a highly effective vaccine for E. cloacae specifically, and other notorious Enterobacteriaceae nosocomial pathogens in general.
Collapse
Affiliation(s)
- Saba Ismail
- Computational Biology Lab, National Center for Bioinformatics (NCB), Quaid-i-Azam University, Islamabad, 45320, Pakistan
| | - Sajjad Ahmad
- Computational Biology Lab, National Center for Bioinformatics (NCB), Quaid-i-Azam University, Islamabad, 45320, Pakistan
| | - Syed Sikander Azam
- Computational Biology Lab, National Center for Bioinformatics (NCB), Quaid-i-Azam University, Islamabad, 45320, Pakistan.
| |
Collapse
|
39
|
Delineating blueprint of an epitope-based peptide vaccine against the multiple serovars of dengue virus: A hierarchical reverse vaccinology approach. INFORMATICS IN MEDICINE UNLOCKED 2020. [DOI: 10.1016/j.imu.2020.100430] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
40
|
Rahmani A, Baee M, Rostamtabar M, Karkhah A, Alizadeh S, Tourani M, Nouri HR. Development of a conserved chimeric vaccine based on helper T-cell and CTL epitopes for induction of strong immune response against Schistosoma mansoni using immunoinformatics approaches. Int J Biol Macromol 2019; 141:125-136. [PMID: 31479669 DOI: 10.1016/j.ijbiomac.2019.08.259] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2019] [Revised: 08/15/2019] [Accepted: 08/30/2019] [Indexed: 01/05/2023]
Abstract
Currently, three recombinant antigens based vaccines are under clinical trials against Schistosomiasis, but there is no vaccine available for prophylaxis or therapeutic. This study was conducted to construct a multi-epitope based vaccine against Schistosoma mansoni via utilizing Sm14, Sm21.7, Sm23, Sm29, Smp80, Sm-CB and SM-TSP-2 antigens. Helper T lymphocyte (HTL), cytotoxic T lymphocyte (CTL) and IFN-γ epitopes were predicted. Furthermore, Pan HLA DR-binding epitope was added to the vaccine. Moreover, 50S ribosomal protein L7/L12 of Mycobacterium tuberculosis as a novel TLR4 agonist was applied. The TAT peptide was added to the vaccine to augment intracellular delivery. The selected epitopes were linked together through appropriate linkers and chimeric vaccine was constructed with 617 amino acids with molecular weight of 65.43 kDa. Physico-chemical properties revealed a soluble protein with antigenic and non-allergic properties. Further analyses validated the stability of the construct that was able to interact with TLR4. Immunoinformatics analysis demonstrated the strong potential of constructed vaccine to stimulate T and B-cell mediated immune responses. In summary, obtained data indicated that the proposed vaccine can properly induce both T and B cells immune responses and could possibly be utilized for prophylactic or therapeutic aims in response to infection caused by S. mansoni.
Collapse
Affiliation(s)
- Abolfazl Rahmani
- Student Research Committee, Babol University of Medical Sciences, Babol, Iran
| | - Masoud Baee
- Student Research Committee, Babol University of Medical Sciences, Babol, Iran
| | - Maryam Rostamtabar
- Cellular and Molecular Biology Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran
| | - Ahmad Karkhah
- Cellular and Molecular Biology Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran
| | - Solmaz Alizadeh
- Student Research Committee, Babol University of Medical Sciences, Babol, Iran
| | - Mehdi Tourani
- Immunoregulation Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran
| | - Hamid Reza Nouri
- Cellular and Molecular Biology Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran; Immunoregulation Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran.
| |
Collapse
|
41
|
Rostamtabar M, Rahmani A, Baee M, Karkhah A, Prajapati VK, Ebrahimpour S, Nouri HR. Development a multi-epitope driven subunit vaccine for immune response reinforcement against Serogroup B of Neisseria meningitidis using comprehensive immunoinformatics approaches. INFECTION GENETICS AND EVOLUTION 2019; 75:103992. [PMID: 31394292 DOI: 10.1016/j.meegid.2019.103992] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2019] [Revised: 06/22/2019] [Accepted: 08/02/2019] [Indexed: 11/28/2022]
Abstract
Serogroup B of Neisseria meningitidis is the main cause of mortality due to meningococcal meningitis. Despite of many investigations, there is still no effective vaccine to prevent this serious infection. Therefore, this study was conducted to design a multi-epitope based vaccine through immunoinformatics approaches. The T CD4+ and TCD8+ cells along with IFN-γ inducing epitopes were selected from TspA, FHbp, NspA, TbpB, PilQ and NspA antigens form serogroup B of Neisseria meningitidis. Furthermore, to induce strong helper T lymphocytes (HTLs) responses, Pan HLA DR-binding epitope (PADRE) was used. In addition, loop 5 and 7 of the PorB as a TLR2 agonist were added to the vaccine construct. Physico-chemical properties, secondary and tertiary structures of the proposed construct were assessed. Finally, homology modeling, refinement and molecular docking were carried out to evaluated the construct tertiary structure and protein-protein interaction, respectively. By fusing the CTL, HTL and IFN-γ predicted epitopes along with suitable adjuvant and linkers, a multi-epitope vaccine was constructed with a TAT sequence of HIV at the N-terminal. Immunoinformatics analyses confirmed a soluble and non-allergic protein with a molecular weight of 62.5 kDa and high antigenicity. Furthermore, the stability of the multi-epitope construct was established and showed strong potential to generate humoral and cell-mediated immune responses. In addition, through molecular docking and dynamic simulation, the microscopic interaction between the vaccine construct and TLR-2 were verified. In summary, immunoinformatics analysis demonstrated that the constructed multi-epitope vaccine had a strong potential of T and B-cell stimulation and it could possibly be used for prophylactic or therapeutic aims to protect against serogroup B of N. meningitidis.
Collapse
Affiliation(s)
- Maryam Rostamtabar
- Student Research Committee, Babol University of Medical Sciences, Babol, Iran
| | - Abolfazl Rahmani
- Student Research Committee, Babol University of Medical Sciences, Babol, Iran
| | - Masoud Baee
- Student Research Committee, Babol University of Medical Sciences, Babol, Iran; Cellular and Molecular Biology Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran
| | - Ahmad Karkhah
- Student Research Committee, Babol University of Medical Sciences, Babol, Iran; Cellular and Molecular Biology Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran
| | - Vijay Kumar Prajapati
- Department of Biochemistry, School of Life Sciences, Central University of Rajasthan, Bandarsindri, Kishangarh, Ajmer, Rajasthan, India
| | - Soheil Ebrahimpour
- Infectious Diseases and Tropical Medicine Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran
| | - Hamid Reza Nouri
- Cellular and Molecular Biology Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran; Immunoregulation Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran.
| |
Collapse
|
42
|
Nosrati M, Behbahani M, Mohabatkar H. Towards the first multi-epitope recombinant vaccine against Crimean-Congo hemorrhagic fever virus: A computer-aided vaccine design approach. J Biomed Inform 2019; 93:103160. [PMID: 30928513 PMCID: PMC7106074 DOI: 10.1016/j.jbi.2019.103160] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Revised: 03/17/2019] [Accepted: 03/27/2019] [Indexed: 11/25/2022]
Abstract
Crimean-Congo hemorrhagic fever (CCHF) is considered one of the major public health concerns with case fatality rates of up to 80%. Currently, there is no effective approved vaccine for CCHF. In this study, we used a computer-aided vaccine design approach to develop the first multi-epitope recombinant vaccine for CCHF. For this purpose, linear B-cell and T-cell binding epitopes from two structural glycoproteins of CCHF virus including Gc and Gn were predicted. The epitopes were further studied regarding their antigenicity, allergenicity, hydrophobicity, stability, toxicity and population coverage. A total number of seven epitopes including five T-cell and two B-cell epitopes were screened for the final vaccine construct. Final vaccine construct composed of 382 amino acid residues which were organized in four domains including linear B-cell, T-cell epitopes and cholera toxin B-subunit (CTxB) along with heat labile enterotoxin IIc B subunit (LT-IIc) as adjuvants. All the segments were joined using appropriate linkers. The physicochemical properties as well as the presence of IFN-γ inducing epitopes in the proposed vaccine, was also checked to determining the vaccine stability, solubility and its ability to induce cell-mediated immune responses. The 3D structure of proposed vaccine was subjected to the prediction of computational B-cell epitopes and molecular docking studies with MHC-I and II molecules. Furthermore, molecular dynamics stimulations were performed to study the vaccine-MHCs complexes stability during stimulation time. The results suggest that our proposed vaccine was stable, well soluble in water and potentially antigenic. Results also demonstrated that the vaccine can induce both humoral and cell-mediated immune responses and could serve as a promising anti-CCHF vaccine candidate.
Collapse
Affiliation(s)
- Mokhtar Nosrati
- Department of Biotechnology, Faculty of Advanced Sciences and Technologies, University of Isfahan, Isfahan, Iran
| | - Mandana Behbahani
- Department of Biotechnology, Faculty of Advanced Sciences and Technologies, University of Isfahan, Isfahan, Iran
| | - Hassan Mohabatkar
- Department of Biotechnology, Faculty of Advanced Sciences and Technologies, University of Isfahan, Isfahan, Iran.
| |
Collapse
|
43
|
Vakili B, Eslami M, Hatam GR, Zare B, Erfani N, Nezafat N, Ghasemi Y. Immunoinformatics-aided design of a potential multi-epitope peptide vaccine against Leishmania infantum. Int J Biol Macromol 2018; 120:1127-1139. [PMID: 30172806 DOI: 10.1016/j.ijbiomac.2018.08.125] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2018] [Revised: 08/16/2018] [Accepted: 08/25/2018] [Indexed: 12/29/2022]
Abstract
Visceral leishmaniasis (VL) or kala-azar, the most severe form of the disease, is endemic in more than eighty countries across the world. To date, there is no approved vaccine against VL in the market. Recent advances in reverse vaccinology could be promising approach in designing the efficient vaccine for VL treatment. In this study, an efficient multi-epitope vaccine against Leishmania infantum, the causative agent of VL, was designed using various computational vaccinology methods. Potential immunodominant epitopes were selected from four antigenic proteins, including histone H1, sterol 24-c-methyltransferase (SMT), Leishmania-specific hypothetical protein (LiHy), and Leishmania-specific antigenic protein (LSAP). To enhance vaccine immunogenicity, two resuscitation-promoting factor of Mycobacterium tuberculosis, RpfE and RpfB, were employed as adjuvants. All the aforesaid segments were joined using proper linkers. Homology modeling, followed by refinement and validation was performed to obtain a high-quality 3D structure of designed vaccine. Docking analyses and molecular dynamics (MD) studies indicated vaccine/TLR4 complex was in the stable form during simulation time. In sum, we expect our designed vaccine is able to induce humoral and cellular immune responses against L. infantum, and may be promising medication for VL, after in vitro and in vivo immunological assays.
Collapse
Affiliation(s)
- Bahareh Vakili
- Department of Medical Biotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran; Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mahboobeh Eslami
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Gholam Reza Hatam
- Basic Sciences in Infectious Diseases Research Center, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Bijan Zare
- Department of Medical Biotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Nasrollah Erfani
- Institute for Cancer Research (ICR), School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Navid Nezafat
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran; Department of Pharmaceutical Biotechnology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Younes Ghasemi
- Department of Medical Biotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran; Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran; Department of Pharmaceutical Biotechnology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
44
|
de Sarom A, Kumar Jaiswal A, Tiwari S, de Castro Oliveira L, Barh D, Azevedo V, Jose Oliveira C, de Castro Soares S. Putative vaccine candidates and drug targets identified by reverse vaccinology and subtractive genomics approaches to control Haemophilus ducreyi, the causative agent of chancroid. J R Soc Interface 2018; 15:20180032. [PMID: 29792307 PMCID: PMC6000166 DOI: 10.1098/rsif.2018.0032] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Accepted: 04/30/2018] [Indexed: 12/13/2022] Open
Abstract
Chancroid is a sexually transmitted infection (STI) caused by the Gram-negative bacterium Haemophilus ducreyi The control of chancroid is difficult and the only current available treatment is antibiotic therapy; however, antibiotic resistance has been reported in endemic areas. Owing to recent outbreaks of STIs worldwide, it is important to keep searching for new treatment strategies and preventive measures. Here, we applied reverse vaccinology and subtractive genomic approaches for the in silico prediction of potential vaccine and drug targets against 28 strains of H. ducreyi We identified 847 non-host homologous proteins, being 332 exposed/secreted/membrane and 515 cytoplasmic proteins. We also checked their essentiality, functionality and virulence. Altogether, we predicted 13 candidate vaccine targets and three drug targets, where two vaccines (A01_1275, ABC transporter substrate-binding protein; and A01_0690, Probable transmembrane protein) and three drug targets (A01_0698, Purine nucleoside phosphorylase; A01_0702, Transcription termination factor; and A01_0677, Fructose-bisphosphate aldolase class II) are harboured by pathogenicity islands. Finally, we applied a molecular docking approach to analyse each drug target and selected ZINC77257029, ZINC43552589 and ZINC67912117 as promising molecules with favourable interactions with the target active site residues. Altogether, the targets identified here may be used in future strategies to control chancroid worldwide.
Collapse
Affiliation(s)
- Alissa de Sarom
- Institute of Biological Sciences and Natural Sciences, Federal University of Triângulo Mineiro, Uberaba, Minas Gerais, Brazil
| | - Arun Kumar Jaiswal
- Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Sandeep Tiwari
- Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Letícia de Castro Oliveira
- Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Debmalya Barh
- Centre for Genomics and Applied Gene Technology, Institute of Integrative Omics and Applied Biotechnology, Nonakuri, Purba Medinipur, West Bengal, India
| | - Vasco Azevedo
- Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Carlo Jose Oliveira
- Institute of Biological Sciences and Natural Sciences, Federal University of Triângulo Mineiro, Uberaba, Minas Gerais, Brazil
| | - Siomar de Castro Soares
- Institute of Biological Sciences and Natural Sciences, Federal University of Triângulo Mineiro, Uberaba, Minas Gerais, Brazil
- Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| |
Collapse
|
45
|
Excavating chikungunya genome to design B and T cell multi-epitope subunit vaccine using comprehensive immunoinformatics approach to control chikungunya infection. INFECTION GENETICS AND EVOLUTION 2018. [PMID: 29535024 DOI: 10.1016/j.meegid.2018.03.007] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Chikungunya infection has been a cause of countless deaths worldwide. Due to lack of permanent treatment and prevention of this disease, the mortality rate remains very high. Therefore, we followed an immunoinformatics approach for the development of multi-epitope subunit vaccine which is able to elucidate humoral, cell-mediated and innate immune responses inside the host body. Both structural and non-structural proteins of chikungunya virus were utilized for prediction of B-cell and T-cell binding epitopes along with interferon-γ (IFN-γ) inducing epitopes. The vaccine construct is composed of β-defensin as an adjuvant at the N-terminal followed by Cytotoxic T-Lymphocytes (CTL) and Helper T-Lymphocyte (HTL) epitopes. The same vaccine construct was also utilized for the prediction of B-cell binding epitopes and IFN-γ inducing epitopes. This was followed by the 3D model generation, refinement and validation of the vaccine construct. Later on, the interaction of modeled vaccine with the innate immune receptor (TLR-3) was explored by performing molecular docking and molecular dynamics simulation studies. Also to check the efficiency of expression of this vaccine construct in an expression vector, in silico cloning was performed at the final stage of vaccine development. Further, designed multi-epitope subunit vaccine necessitates experimental and clinical investigation to develop as an immunogenic vaccine candidate.
Collapse
|
46
|
Ong E, Wong MU, He Y. Identification of New Features from Known Bacterial Protective Vaccine Antigens Enhances Rational Vaccine Design. Front Immunol 2017; 8:1382. [PMID: 29123525 PMCID: PMC5662880 DOI: 10.3389/fimmu.2017.01382] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Accepted: 10/06/2017] [Indexed: 11/13/2022] Open
Abstract
With many protective vaccine antigens reported in the literature and verified experimentally, how to use the knowledge mined from these antigens to support rational vaccine design and study underlying design mechanism remains unclear. In order to address the problem, a systematic bioinformatics analysis was performed on 291 Gram-positive and Gram-negative bacterial protective antigens with experimental evidence manually curated in the Protegen database. The bioinformatics analyses evaluated included subcellular localization, adhesin probability, peptide signaling, transmembrane α-helix and β-barrel, conserved domain, Clusters of Orthologous Groups, and Gene Ontology functional annotations. Here we showed the critical role of adhesins, along with subcellular localization, peptide signaling, in predicting secreted extracellular or surface-exposed protective antigens, with mechanistic explanations supported by functional analysis. We also found a significant negative correlation of transmembrane α-helix to antigen protectiveness in Gram-positive and Gram-negative pathogens, while a positive correlation of transmembrane β-barrel was observed in Gram-negative pathogens. The commonly less-focused cytoplasmic and cytoplasmic membrane proteins could be potentially predicted with the help of other selection criteria such as adhesin probability and functional analysis. The significant findings in this study can support rational vaccine design and enhance our understanding of vaccine design mechanisms.
Collapse
Affiliation(s)
- Edison Ong
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, United States
| | - Mei U Wong
- Unit for Laboratory Animal Medicine, Department of Microbiology and Immunology, University of Michigan, Ann Arbor, MI, United States
| | - Yongqun He
- Unit for Laboratory Animal Medicine, Department of Microbiology and Immunology, University of Michigan, Ann Arbor, MI, United States.,Center of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, United States
| |
Collapse
|
47
|
Nezafat N, Eslami M, Negahdaripour M, Rahbar MR, Ghasemi Y. Designing an efficient multi-epitope oral vaccine against Helicobacter pylori using immunoinformatics and structural vaccinology approaches. MOLECULAR BIOSYSTEMS 2017; 13:699-713. [PMID: 28194462 DOI: 10.1039/c6mb00772d] [Citation(s) in RCA: 81] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Helicobacter pylori is the cunning bacterium that can live in the stomachs of many people without any symptoms, but gradually can lead to gastric cancer. Due to various obstacles, which are related to anti-H. pylori antibiotic therapy, recently developing an anti-H. pylori vaccine has attracted more attention. In this study, different immunoinformatics and computational vaccinology approaches were employed to design an efficient multi-epitope oral vaccine against H. pylori. Our multi-epitope vaccine is composed of heat labile enterotoxin IIc B (LT-IIc) that is used as a mucosal adjuvant to enhance vaccine immunogenicity for oral immunization, cartilage oligomeric matrix protein (COMP) to increase vaccine stability in acidic pH of gut, one experimentally protective antigen, OipA, and two hypothetical protective antigens, HP0487 and HP0906, and "CTGKSC" peptide motif that target epithelial microfold cells (M cells) to enhance vaccine uptake from the gut barrier. All the aforesaid segments were joined to each other by proper linkers. The vaccine construct was modeled, validated, and refined by different programs to achieve a high-quality 3D structure. The resulting high-quality model was applied for conformational B-cell epitopes selection and docking analyses with a toll-like receptor 2 (TLR2). Moreover, molecular dynamics studies demonstrated that the protein-TLR2 docked model was stable during simulation time. We believe that our vaccine candidate can induce mucosal sIgA and IgG antibodies, and Th1/Th2/Th17-mediated protective immunity that are crucial for eradicating H. pylori infection. In sum, the computational results suggest that our newly designed vaccine could serve as a promising anti-H. pylori vaccine candidate.
Collapse
Affiliation(s)
- Navid Nezafat
- Pharmaceutical Science Research Center, Shiraz University of Medical Science, Shiraz, Iran
| | - Mahboobeh Eslami
- Pharmaceutical Science Research Center, Shiraz University of Medical Science, Shiraz, Iran
| | - Manica Negahdaripour
- Pharmaceutical Science Research Center, Shiraz University of Medical Science, Shiraz, Iran and Department of Pharmaceutical Biotechnology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Mohammad Reza Rahbar
- Pharmaceutical Science Research Center, Shiraz University of Medical Science, Shiraz, Iran and Department of Pharmaceutical Biotechnology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Younes Ghasemi
- Pharmaceutical Science Research Center, Shiraz University of Medical Science, Shiraz, Iran and Department of Pharmaceutical Biotechnology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran. and Department of Medical Biotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
48
|
Lopes MD, Oliveira FM, Coelho IEV, Passos MJF, Alves CC, Taranto AG, Júnior MC, Santos LL, Fonseca CT, Villar JAFP, Lopes DO. Epitopes rationally selected through computational analyses induce T‐cell proliferation in mice and are recognized by serum from individuals infected with
Schistosoma mansoni. Biotechnol Prog 2017; 33:804-814. [DOI: 10.1002/btpr.2463] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2016] [Revised: 03/03/2017] [Indexed: 01/04/2023]
Affiliation(s)
- Marcelo D. Lopes
- Laboratório de Biologia Molecular, Universidade Federal de São João del‐Rei, Rua Sebastião Gonçalves CoelhoDivinópolis MG Brasil
| | - Flávio M. Oliveira
- Laboratório de Biologia Molecular, Universidade Federal de São João del‐Rei, Rua Sebastião Gonçalves CoelhoDivinópolis MG Brasil
| | - Ivan E. V. Coelho
- Laboratório de Química Farmacêutica, Universidade Federal de São João del‐ReiDivinópolis MGBrasil
| | - Maria J. F. Passos
- Laboratório de Síntese Orgânica e Nanoestruturas, Universidade Federal de São João del‐ReiDivinópolis MG Brasil
| | - Clarice C. Alves
- Grupo de Pesquisa em Biologia Parasitária e Imunologia, Centro de Pesquisas René Rachou, Fundação Oswaldo CruzBelo Horizonte MG30190‐002 Brasil
| | - Alex G. Taranto
- Laboratório de Química Farmacêutica, Universidade Federal de São João del‐ReiDivinópolis MGBrasil
| | - Moacyr C. Júnior
- Laboratório de Química Farmacêutica, Universidade Federal de São João del‐ReiDivinópolis MGBrasil
| | - Luciana L. Santos
- Laboratório de Biologia Molecular, Universidade Federal de São João del‐Rei, Rua Sebastião Gonçalves CoelhoDivinópolis MG Brasil
| | - Cristina T. Fonseca
- Grupo de Pesquisa em Biologia Parasitária e Imunologia, Centro de Pesquisas René Rachou, Fundação Oswaldo CruzBelo Horizonte MG30190‐002 Brasil
| | - José A. F. P. Villar
- Laboratório de Síntese Orgânica e Nanoestruturas, Universidade Federal de São João del‐ReiDivinópolis MG Brasil
| | - Débora O. Lopes
- Laboratório de Biologia Molecular, Universidade Federal de São João del‐Rei, Rua Sebastião Gonçalves CoelhoDivinópolis MG Brasil
| |
Collapse
|
49
|
Toneatto D, Pizza M, Masignani V, Rappuoli R. Emerging experience with meningococcal serogroup B protein vaccines. Expert Rev Vaccines 2017; 16:433-451. [PMID: 28375029 DOI: 10.1080/14760584.2017.1308828] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
INTRODUCTION The successful development of two broadly protective vaccines targeting Neisseria meningitidis serogroup B (MenB); 4CMenB and rLP2086, is the most significant recent advance in meningococcal disease prevention. Areas covered: Here we review the principles underlying the development of each vaccine and the novel methods used to estimate vaccine coverage. We update clinical and post-licensure experience with 4CMenB and rLP2086. Expert commentary: The immunogenicity and acceptable safety profile of 4CMenB and rLP2086 has been demonstrated in clinical trials. Continuing uncertainties exist around the appropriate age groups to be immunized, the degree and duration of efficacy, and the impact on nasopharyngeal carriage which has implications for strategies to interrupt transmission and maximize herd protection effects. Universal vaccination programs such as those undertaken in Quebec and the United Kingdom are providing important information on these issues. The potential for MenB vaccines to prevent infection by other serogroups appears promising, and the impact of MenB vaccines on other pathogenic neisserial species with similar surface proteins warrants further investigation.
Collapse
|
50
|
Aguirre ADAR, Lobo FP, Cunha RC, Garcia MV, Andreotti R. Design of the ATAQ peptide and its evaluation as an immunogen to develop a Rhipicephalus vaccine. Vet Parasitol 2016; 221:30-8. [PMID: 27084468 DOI: 10.1016/j.vetpar.2016.02.032] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2015] [Revised: 02/21/2016] [Accepted: 02/27/2016] [Indexed: 11/26/2022]
Abstract
Tick infestation may cause several problems including affecting domestic animal health and reducing the production of meat and milk, among others. Resistance to several classes of acaricides have been reported, forcing researchers to search for alternative measures, such as vaccines against ticks, to ensure tick control while having no or at least low negative impacts on the environment and public health. However, the current commercially available vaccines in different strains of Rhipicephalus microplus are reported to be of low efficacy. Fortunately, reverse vaccinology approaches have shown positive results in the new generation of vaccines. On this basis, a synthetic peptide from the ATAQ protein, which is present in the gut and Malpighi tubes of R. microplus, was synthesized. The ATAQ proteins were isolated, characterized and sequenced from several species of the genus Rhipicephalus. The alignment showed 93.3% identity among DNA sequences of ATAQs from these species. Because of this, immunization trials with this peptide were conducted on mice, rabbits and cattle to evaluate the humoral immune response and the efficacy against Rhipicephalus sanguineus in addition to R. microplus. Based on recent results, we conclude that reverse vaccinology is a promising approach because it is more accurate and faster than conventional methods in the detection of potential antigens to use in anti-tick vaccines. It is not only applicable against R. microplus but also against tick species that play important roles in spreading other diseases. ATAQ proteins should be considered as the antigen in new trials to develop a multi-antigenic vaccine. Although these peptides behave as hapten and are not able to be recognized by the immune system on its own, using carriers and adjuvants helps its presentation and induces strong immune responses. Furthermore, an efficiency of 35% reduction in overall life cycle parameters was reported for R. microplus (98% for ELISA responder animals) and 47% for R. sanguineus. Although not yet enough to prevent the environment to infestation of ticks, this still constitutes a promising strategy that could be applied to integrated measures on tick control and in new research that develops anti-tick vaccines.
Collapse
Affiliation(s)
- André de Abreu Rangel Aguirre
- Programa de Pós-graduação em Ciência Animal, FAMEZ, Universidade Federal de Mato Grosso do Sul, Av. Felinto Müller, No. 2443, Vila Ipiranga, CEP 79074-460 Campo Grande, MS, Brazil; Fundação Oswaldo Cruz, Fiocruz Rondônia, Rua da Beira, No. 7671, Bairro Lagoa, CEP 76812-245 Porto Velho, RO, Brazil.
| | - Francisco Pereira Lobo
- Embrapa Informática Agropecuária, Av. André Tosello, No. 209 Campus Unicamp, Barão Geraldo, CEP 13083-886 Campinas, SP, Brazil
| | - Rodrigo Casquero Cunha
- Programa de Pós-graduação em Ciência Animal, FAMEZ, Universidade Federal de Mato Grosso do Sul, Av. Felinto Müller, No. 2443, Vila Ipiranga, CEP 79074-460 Campo Grande, MS, Brazil; Embrapa Gado de Corte, Av. Rádio Maia, No. 830, Zona Rural, CEP 79106-550 Campo Grande, MS, Brazil
| | - Marcos Valério Garcia
- Embrapa Gado de Corte, Av. Rádio Maia, No. 830, Zona Rural, CEP 79106-550 Campo Grande, MS, Brazil; Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), Brazil()
| | - Renato Andreotti
- Embrapa Gado de Corte, Av. Rádio Maia, No. 830, Zona Rural, CEP 79106-550 Campo Grande, MS, Brazil
| |
Collapse
|