1
|
Laws TR, Kuchuloria T, Chitadze N, Little SF, Webster WM, Debes AK, Saginadze S, Tsertsvadze N, Chubinidze M, Rivard RG, Tsanava S, Dyson EH, Simpson AJH, Hepburn MJ, Trapaidze N. A Comparison of the Adaptive Immune Response between Recovered Anthrax Patients and Individuals Receiving Three Different Anthrax Vaccines. PLoS One 2016; 11:e0148713. [PMID: 27007118 PMCID: PMC4805272 DOI: 10.1371/journal.pone.0148713] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2015] [Accepted: 01/20/2016] [Indexed: 11/18/2022] Open
Abstract
Several different human vaccines are available to protect against anthrax. We compared the human adaptive immune responses generated by three different anthrax vaccines or by previous exposure to cutaneous anthrax. Adaptive immunity was measured by ELISPOT to count cells that produce interferon (IFN)-γ in response to restimulation ex vivo with the anthrax toxin components PA, LF and EF and by measuring circulating IgG specific to these antigens. Neutralising activity of antisera against anthrax toxin was also assayed. We found that the different exposures to anthrax antigens promoted varying immune responses. Cutaneous anthrax promoted strong IFN-γ responses to all three antigens and antibody responses to PA and LF. The American AVA and Russian LAAV vaccines induced antibody responses to PA only. The British AVP vaccine produced IFN-γ responses to EF and antibody responses to all three antigens. Anti-PA (in AVA and LAAV vaccinees) or anti-LF (in AVP vaccinees) antibody titres correlated with toxin neutralisation activities. Our study is the first to compare all three vaccines in humans and show the diversity of responses against anthrax antigens.
Collapse
Affiliation(s)
- Thomas R. Laws
- Defence Science and Technology Laboratory, DSTL Porton Down, Salisbury, United Kingdom
- * E-mail:
| | - Tinatin Kuchuloria
- Department of Public Health, Tbilisi State University, Tbilisi, Georgia
- Clinical Research Unit (CRU), Technology Management Company (TMC), Tbilisi, Georgia
| | - Nazibriola Chitadze
- National Center for Disease Control and Public Health (NCDC), Tbilisi, Georgia
| | - Stephen F. Little
- U. S. Army Medical Research Institute of Infectious Diseases (USAMRIID), Fort Detrick, MD, United States of America
| | - Wendy M. Webster
- U. S. Army Medical Research Institute of Infectious Diseases (USAMRIID), Fort Detrick, MD, United States of America
| | - Amanda K. Debes
- U. S. Army Medical Research Institute of Infectious Diseases (USAMRIID), Fort Detrick, MD, United States of America
| | - Salome Saginadze
- National Center for Disease Control and Public Health (NCDC), Tbilisi, Georgia
| | - Nikoloz Tsertsvadze
- National Center for Disease Control and Public Health (NCDC), Tbilisi, Georgia
| | - Mariam Chubinidze
- National Center for Disease Control and Public Health (NCDC), Tbilisi, Georgia
| | - Robert G. Rivard
- U. S. Army Medical Research Institute of Infectious Diseases (USAMRIID), Fort Detrick, MD, United States of America
| | - Shota Tsanava
- Department of Public Health, Tbilisi State University, Tbilisi, Georgia
- National Center for Disease Control and Public Health (NCDC), Tbilisi, Georgia
| | - Edward H. Dyson
- Defence Science and Technology Laboratory, DSTL Porton Down, Salisbury, United Kingdom
| | - Andrew J. H. Simpson
- Defence Science and Technology Laboratory, DSTL Porton Down, Salisbury, United Kingdom
| | - Matthew J. Hepburn
- U. S. Army Medical Research Institute of Infectious Diseases (USAMRIID), Fort Detrick, MD, United States of America
| | - Nino Trapaidze
- Clinical Research Unit (CRU), Technology Management Company (TMC), Tbilisi, Georgia
- National Center for Disease Control and Public Health (NCDC), Tbilisi, Georgia
| |
Collapse
|
2
|
Quantitative Determination of Lethal Toxin Proteins in Culture Supernatant of Human Live Anthrax Vaccine Bacillus anthracis A16R. Toxins (Basel) 2016; 8:toxins8030056. [PMID: 26927174 PMCID: PMC4810201 DOI: 10.3390/toxins8030056] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2015] [Revised: 02/04/2016] [Accepted: 02/05/2016] [Indexed: 12/26/2022] Open
Abstract
Bacillus anthracis (B. anthracis) is the etiological agent of anthrax affecting both humans and animals. Anthrax toxin (AT) plays a major role in pathogenesis. It includes lethal toxin (LT) and edema toxin (ET), which are formed by the combination of protective antigen (PA) and lethal factor (LF) or edema factor (EF), respectively. The currently used human anthrax vaccine in China utilizes live-attenuated B. anthracis spores (A16R; pXO1+, pXO2−) that produce anthrax toxin but cannot produce the capsule. Anthrax toxins, especially LT, have key effects on both the immunogenicity and toxicity of human anthrax vaccines. Thus, determining quantities and biological activities of LT proteins expressed by the A16R strain is meaningful. Here, we explored LT expression patterns of the A16R strain in culture conditions using another vaccine strain Sterne as a control. We developed a sandwich ELISA and cytotoxicity-based method for quantitative detection of PA and LF. Expression and degradation of LT proteins were observed in culture supernatants over time. Additionally, LT proteins expressed by the A16R and Sterne strains were found to be monomeric and showed cytotoxic activity, which may be the main reason for side effects of live anthrax vaccines. Our work facilitates the characterization of anthrax vaccines components and establishment of a quality control standard for vaccine production which may ultimately help to ensure the efficacy and safety of the human anthrax vaccine A16R.
Collapse
|
3
|
Abstract
This review will discuss developments in the field of pulmonary vaccine delivery. The possibilities of adopting aerosol-generation technology and specific pharmaceutical formulations for the purpose of pulmonary immunization are described. Aerosol-generation systems might offer advantages with respect to vaccine stability and antigenicity. Adjuvants and their inclusion in vaccine-delivery systems are described. Other formulation components, such as surfactants, particulate systems and dispersion of the aerosols are detailed in this paper. The noninvasive, relatively safe and low-cost nature of pulmonary delivery may provide great benefits to the public health vaccination campaign.
Collapse
Affiliation(s)
- Dongmei Lu
- Division of Molecular Pharmaceutics, School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
| | | |
Collapse
|
4
|
Friedlander AM, Grabenstein JD, Brachman PS. Anthrax vaccines. Vaccines (Basel) 2013. [DOI: 10.1016/b978-1-4557-0090-5.00022-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022] Open
|
5
|
Anthrax lethal toxin and the induction of CD4 T cell immunity. Toxins (Basel) 2012; 4:878-99. [PMID: 23162703 PMCID: PMC3496994 DOI: 10.3390/toxins4100878] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2012] [Revised: 10/08/2012] [Accepted: 10/10/2012] [Indexed: 12/27/2022] Open
Abstract
Bacillus anthracis secretes exotoxins which act through several mechanisms including those that can subvert adaptive immunity with respect both to antigen presenting cell and T cell function. The combination of Protective Antigen (PA) and Lethal Factor (LF) forming Lethal Toxin (LT), acts within host cells to down-regulate the mitogen activated protein kinase (MAPK) signaling cascade. Until recently the MAPK kinases were the only known substrate for LT; over the past few years it has become evident that LT also cleaves Nlrp1, leading to inflammasome activation and macrophage death. The predicted downstream consequences of subverting these important cellular pathways are impaired antigen presentation and adaptive immunity. In contrast to this, recent work has indicated that robust memory T cell responses to B. anthracis antigens can be identified following natural anthrax infection. We discuss how LT affects the adaptive immune response and specifically the identification of B. anthracis epitopes that are both immunogenic and protective with the potential for inclusion in protein sub-unit based vaccines.
Collapse
|
6
|
Ingram RJ, Metan G, Maillere B, Doganay M, Ozkul Y, Kim LU, Baillie L, Dyson H, Williamson ED, Chu KK, Ascough S, Moore S, Huwar TB, Robinson JH, Sriskandan S, Altmann DM. Natural exposure to cutaneous anthrax gives long-lasting T cell immunity encompassing infection-specific epitopes. THE JOURNAL OF IMMUNOLOGY 2010; 184:3814-21. [PMID: 20208010 DOI: 10.4049/jimmunol.0901581] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
There has been a long history of defining T cell epitopes to track viral immunity and to design rational vaccines, yet few data of this type exist for bacterial infections. Bacillus anthracis, the causative agent of anthrax, is both an endemic pathogen in many regions and a potential biological warfare threat. T cell immunity in naturally infected anthrax patients has not previously been characterized, which is surprising given concern about the ability of anthrax toxins to subvert or ablate adaptive immunity. We investigated CD4 T cell responses in patients from the Kayseri region of Turkey who were previously infected with cutaneous anthrax. Responses to B. anthracis protective Ag and lethal factor (LF) were investigated at the protein, domain, and epitope level. Several years after antibiotic-treated anthrax infection, strong T cell memory was detectable, with no evidence of the expected impairment in specific immunity. Although serological responses to existing anthrax vaccines focus primarily on protective Ag, the major target of T cell immunity in infected individuals and anthrax-vaccinated donors was LF, notably domain IV. Some of these anthrax epitopes showed broad binding to several HLA class alleles, but others were more constrained in their HLA binding patterns. Of specific CD4 T cell epitopes targeted within LF domain IV, one is preferentially seen in the context of bacterial infection, as opposed to vaccination, suggesting that studies of this type will be important in understanding how the human immune system confronts serious bacterial infection.
Collapse
Affiliation(s)
- Rebecca J Ingram
- Department of Infectious Diseases and Immunity, Imperial College London, London, United Kingdom
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Anthrax vaccine. Vaccines (Basel) 2008. [DOI: 10.1016/b978-1-4160-3611-1.50012-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2023] Open
|
8
|
Hepburn MJ, Hugh Dyson E, Simpson AJH, Brenneman KE, Bailey N, Wilkinson L, Hornby R, Mateczun AJ, Bell MG, Baillie LWJ. Immune response to two different dosing schedules of the anthrax vaccine precipitated (AVP) vaccine. Vaccine 2007; 25:6089-97. [PMID: 17604880 DOI: 10.1016/j.vaccine.2007.05.018] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2007] [Revised: 05/09/2007] [Accepted: 05/12/2007] [Indexed: 11/18/2022]
Abstract
A pilot study compared the immune response of regular (0, 3, 6, 32 weeks) and extended (0, 10, 13, 32 weeks) schedules of the UK anthrax vaccine (anthrax vaccine precipitated, AVP). Concentrations of antibodies to protective antigen (PA) were higher (p<0.05) among recipients of the extended (n=7) versus regular schedule (n=6) at week 32, and 2 weeks after the second and third vaccinations. Toxin neutralisation assay levels and anti-lethal factor antibodies followed patterns similar to anti-PA antibodies. Extending the interval between the first two AVP vaccinations may produce a stronger immune response, but persistence of this effect needs further study.
Collapse
Affiliation(s)
- Matthew J Hepburn
- Department of Biomedical Sciences, Defence Science and Technology Laboratory, Porton Down, Wiltshire, United Kingdom.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Grunow R, Porsch-Ozcürümez M, Splettstoesser W, Buckendahl A, Hahn U, Beyer W, Böhm R, Huber M, vd Esche U, Bessler W, Frangoulidis D, Finke EJ. Monitoring of ELISA-reactive antibodies against anthrax protective antigen (PA), lethal factor (LF), and toxin-neutralising antibodies in serum of individuals vaccinated against anthrax with the PA-based UK anthrax vaccine. Vaccine 2007; 25:3679-83. [PMID: 17287051 DOI: 10.1016/j.vaccine.2007.01.056] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2005] [Revised: 12/07/2006] [Accepted: 01/11/2007] [Indexed: 11/20/2022]
Abstract
The human anthrax vaccines currently licensed contain the protective antigen (PA) of Bacillus anthracis as main antigen together with traces of some other bacillus components, e.g. lethal factor (LF). The present study aimed at monitoring the course of specific antibody titres against PA and LF by enzyme linked immunosorbent assays (ELISA), as well as the levels of toxin-neutralising antibodies, in 11 volunteers vaccinated with the human anthrax vaccine UK. After an initial seroconversion in all vaccinees, a significant reduction of both antibody titres against PA and LF, and of neutralising antibodies, was detected just prior to a vaccine boost 6 months after completion of the basic immunisation. Following the booster injection, titres increased again to levels comparable to those after the fourth immunisation. ELISA titres against PA correlated significantly with neutralising antibodies (r=0.816, p<0.001). Therefore, the less work- and time-consuming ELISA should be favoured to monitor the efficacy of an anthrax vaccination.
Collapse
Affiliation(s)
- Roland Grunow
- Institut fuer Mikrobiologie der Bundeswehr, D-80937 Munich, Germany.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Glomski IJ, Corre JP, Mock M, Goossens PL. Cutting Edge: IFN-gamma-producing CD4 T lymphocytes mediate spore-induced immunity to capsulated Bacillus anthracis. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2007; 178:2646-50. [PMID: 17312104 DOI: 10.4049/jimmunol.178.5.2646] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Virulent strains of Bacillus anthracis produce immunomodulating toxins and an antiphagocytic capsule. The toxin component-protective Ag is a key target of the antianthrax immune response that induces production of toxin-neutralizing Abs. Coimmunization with spores enhances the antitoxin vaccine, and inactivated spores alone confer measurable protection. We aimed to identify the mechanisms of protection induced in inactivated-spore immunized mice that function independently of the toxin/antitoxin vaccine system. This goal was addressed with humoral and CD4 T lymphocyte transfer, in vivo depletion of CD4 T lymphocytes and IFN-gamma, and Ab-deficient (muMT(-/-)) or IFN-gamma-insensitive (IFN-gammaR(-/-)) mice. We found that humoral immunity did not protect from nontoxinogenic capsulated bacteria, whereas a cellular immune response by IFN-gamma-producing CD4 T lymphocytes protected mice. These results are the first evidence of protective cellular immunity against capsulated B. anthracis and suggest that future antianthrax vaccines should strive to augment cellular adaptive immunity.
Collapse
Affiliation(s)
- Ian Justin Glomski
- Unité des Toxines et Pathogénie Bactérienne, Institut Pasteur, 28 rue du Dr. Roux, 75724 Paris Cedex 15, France
| | | | | | | |
Collapse
|
11
|
Lee JS, Groebner JL, Hadjipanayis AG, Negley DL, Schmaljohn AL, Welkos SL, Smith LA, Smith JF. Multiagent vaccines vectored by Venezuelan equine encephalitis virus replicon elicits immune responses to Marburg virus and protection against anthrax and botulinum neurotoxin in mice. Vaccine 2006; 24:6886-92. [PMID: 16828936 DOI: 10.1016/j.vaccine.2006.06.004] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2006] [Revised: 06/05/2006] [Accepted: 06/07/2006] [Indexed: 11/16/2022]
Abstract
The development of multiagent vaccines offers the advantage of eliciting protection against multiple diseases with minimal inoculations over a shorter time span. We report here the results of using formulations of individual Venezuelan equine encephalitis (VEE) virus replicon-vectored vaccines against a bacterial disease, anthrax; a viral disease, Marburg fever; and against a toxin-mediated disease, botulism. The individual VEE replicon particles (VRP) expressed mature 83-kDa protective antigen (MAT-PA) from Bacillus anthracis, the glycoprotein (GP) from Marburg virus (MBGV), or the H(C) fragment from botulinum neurotoxin (BoNT H(C)). CBA/J mice inoculated with a mixture of VRP expressing BoNT H(C) serotype C (BoNT/C H(C)) and MAT-PA were 80% protected from a B. anthracis (Sterne strain) challenge and then 100% protected from a sequential BoNT/C challenge. Swiss mice inoculated with individual VRP or with mixtures of VRP vaccines expressing BoNT H(C) serotype A (BoNT/A H(C)), MAT-PA, and MBGV-GP produced antibody responses specific to the corresponding replicon-expressed protein. Combination of the different VRP vaccines did not diminish the antibody responses measured for Swiss mice inoculated with formulations of two or three VRP vaccines as compared to mice that received only one VRP vaccine. Swiss mice inoculated with VRP expressing BoNT/A H(C) alone or in combination with VRP expressing MAT-PA and MBGV GP, were completely protected from a BoNT/A challenge. These studies demonstrate the utility of combining individual VRP vaccines into multiagent formulations for eliciting protective immune responses to various types of diseases.
Collapse
Affiliation(s)
- John S Lee
- Virology Division, United States Army Medical Research Institute of Infectious Diseases, Fort Detrick, Frederick, MD 21702, USA.
| | | | | | | | | | | | | | | |
Collapse
|
12
|
Abstract
We previously reported that antibodies to squalene, an experimental vaccine adjuvant, are present in persons with symptoms consistent with Gulf War Syndrome (GWS) (P. B. Asa et al., Exp. Mol. Pathol 68, 196-197, 2000). The United States Department of Defense initiated the Anthrax Vaccine Immunization Program (AVIP) in 1997 to immunize 2.4 million military personnel. Because adverse reactions in vaccinated personnel were similar to symptoms of GWS, we tested AVIP participants for anti-squalene antibodies (ASA). In a pilot study, 6 of 6 vaccine recipients with GWS-like symptoms were positive for ASA. In a larger blinded study, only 32% (8/25) of AVIP personnel compared to 15.7% (3/19) of controls were positive (P > 0.05). Further analysis revealed that ASA were associated with specific lots of vaccine. The incidence of ASA in personnel in the blinded study receiving these lots was 47% (8/17) compared to an incidence of 0% (0/8; P < 0.025) of the AVIP participants receiving other lots of vaccine. Analysis of additional personnel revealed that in all but one case (19/20; 95%), ASA were restricted to personnel immunized with lots of vaccine known to contain squalene. Except for one symptomatic individual, positive clinical findings in 17 ASA-negative personnel were restricted to 4 individuals receiving vaccine from lots containing squalene. ASA were not present prior to vaccination in preimmunization sera available from 4 AVIP personnel. Three of these individuals became ASA positive after vaccination. These results suggest that the production of ASA in GWS patients is linked to the presence of squalene in certain lots of anthrax vaccine.
Collapse
Affiliation(s)
- Pamela B Asa
- Department of Microbiology, Tulane University Medical School, New Orleans, Louisiana 70112, USA
| | | | | |
Collapse
|
13
|
Binkley CE, Cinti S, Simeone DM, Colletti LM. Bacillus anthracis as an agent of bioterrorism: a review emphasizing surgical treatment. Ann Surg 2002; 236:9-16. [PMID: 12131080 PMCID: PMC1422543 DOI: 10.1097/00000658-200207000-00004] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVE To familiarize surgeons with the specific complications of cutaneous, gastrointestinal, inhalation, and systemic infection with Bacillus Anthracis, which may require surgical treatment. SUMMARY BACKGROUND DATA The recent cases of intentional exposure to Bacillus Anthracis in the United States make familiarity with the basic microbiology, clinical manifestations, diagnosis, treatment, and control of this disease essential if mortality and morbidity is to be minimized, particularly following mass exposure. Although the treatment of Bacillus Anthracis infection is primarily medical, there are specific surgical complications with which the surgeon should be familiar. METHODS A review of the literature was undertaken, utilizing electronic databases on infection with Bacillus Anthracis, as well as consultation with experts in this field. Emphasis was placed on the diagnosis and treatment of complications of infection that might require surgical intervention. RESULTS Cutaneous anthrax infection results in eschar formation and massive soft tissue edema. When involving the extremities, increased compartment pressure requiring fasciotomy may result. Primary infection of the gastrointestinal tract may result in oropharyngeal edema and respiratory compromise requiring a surgical airway. Direct involvement of the lower gastrointestinal tract can result in intestinal ulceration, necrosis, bleeding, and perforation, which would require surgical exploration and resection of affected segments. Systemic sepsis, most often associated with inhalation anthrax, can cause massive ascites, electrolyte derangements, and profound shock requiring aggressive fluid resuscitation and careful hemodynamic monitoring and respiratory support. Systemic anthrax infection can also lead to gastrointestinal involvement by hematogenous dissemination, resulting in complications and requiring surgical management similar to direct gastrointestinal infection. CONCLUSIONS Cutaneous, gastrointestinal, inhalation and systemic infection with Bacillus Anthracis can result in complications which would require familiarity with the pathogenesis and manifestations of this disease in order to recognize and treat promptly and successfully by surgical intervention.
Collapse
Affiliation(s)
- Charles E Binkley
- Department of Surgery, Section of General Surgery, University of Michigan Health System, Ann Arbor, Michigan, USA
| | | | | | | |
Collapse
|
14
|
Abstract
Until recently, inhalational anthrax was a medical curiosity in both the Western medical literature and clinical practice. The post-September 11, 2001 outbreak of this disease in the eastern United States that spread through the mail, however, instantly changed the appreciation of this disease and the appreciation of biological terrorism/warfare in general. The microbiology, epidemiology, clinical, and therapeutic/preventative aspects of this entity, classically known as "wool sorter's disease" are highlighted in this review.
Collapse
Affiliation(s)
- Erwin Kurt Cullamar
- Infectious Diseases (IIIE), VA New York Harbor Health Care System, 800 Poly Place, Brooklyn, NY 11209, USA.
| | | |
Collapse
|
15
|
Affiliation(s)
- T C Dixon
- Department of Microbiology, Duke University Medical Center, Durham, NC, USA
| | | | | | | |
Collapse
|
16
|
Ibrahim KH, Brown G, Wright DH, Rotschafer JC. Bacillus anthracis: medical issues of biologic warfare. Pharmacotherapy 1999; 19:690-701. [PMID: 10391414 DOI: 10.1592/phco.19.9.690.31543] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Recent world events refocused attention on the possibility of nations engaging in biologic warfare, including an attack with Bacillus anthracis. The single available anthrax vaccine in the United States for human use, formerly known as MDPH-PA, has decreased ability to protect laboratory animals against virulent B. anthracis strains, especially compared with new vaccines being developed. Studies with these vaccines, however, have several shortcomings. The pathogenesis, diagnosis, treatment, and prophylaxis of anthrax are discussed, as well as the implications that an attack with B. anthracis would place on the health care system.
Collapse
Affiliation(s)
- K H Ibrahim
- College of Pharmacy, University of Minnesota, Minneapolis, USA
| | | | | | | |
Collapse
|
17
|
Abstract
Anthrax vaccine is being administered to all 2.4 million active duty, reserve, and National Guard troops, as prophylaxis against biologic warfare. The vaccine's effectiveness in this setting may be limited. This article discusses unresolved issues of safety, with an emphasis on the need for careful surveillance of vaccines used by the military, which has sidestepped the commercial process. Also considered are ethical issues related to the development and use of military biologics, as the United States Army advances its Joint Vaccine Acquisition Program, a plan to produce more than ten vaccines specifically for biologic warfare threat, and to administer them to all military servicemembers.
Collapse
Affiliation(s)
- M Nass
- Department of Internal Medicine, Parkview Hospital, Brunswick, Maine, USA
| |
Collapse
|