1
|
van der Put RM, Metz B, Pieters RJ. Carriers and Antigens: New Developments in Glycoconjugate Vaccines. Vaccines (Basel) 2023; 11:vaccines11020219. [PMID: 36851097 PMCID: PMC9962112 DOI: 10.3390/vaccines11020219] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 01/05/2023] [Accepted: 01/15/2023] [Indexed: 01/20/2023] Open
Abstract
Glycoconjugate vaccines have proven their worth in the protection and prevention of infectious diseases. The introduction of the Haemophilus influenzae type b vaccine is the prime example, followed by other glycoconjugate vaccines. Glycoconjugate vaccines consist of two components: the carrier protein and the carbohydrate antigen. Current carrier proteins are tetanus toxoid, diphtheria toxoid, CRM197, Haemophilus protein D and the outer membrane protein complex of serogroup B meningococcus. Carbohydrate antigens have been produced mainly by extraction and purification from the original host. However, current efforts show great advances in the development of synthetically produced oligosaccharides and bioconjugation. This review evaluates the advances of glycoconjugate vaccines in the last five years. We focus on developments regarding both new carriers and antigens. Innovative developments regarding carriers are outer membrane vesicles, glycoengineered proteins, new carrier proteins, virus-like particles, protein nanocages and peptides. With regard to conjugated antigens, we describe recent developments in the field of antimicrobial resistance (AMR) and ESKAPE pathogens.
Collapse
Affiliation(s)
- Robert M.F. van der Put
- Intravacc, P.O. Box 450, 3720 AL Bilthoven, The Netherlands
- Department of Chemical Biology & Drug Discovery, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, P.O. Box 80082, 3508 TB Utrecht, The Netherlands
- Correspondence:
| | - Bernard Metz
- Intravacc, P.O. Box 450, 3720 AL Bilthoven, The Netherlands
| | - Roland J. Pieters
- Department of Chemical Biology & Drug Discovery, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, P.O. Box 80082, 3508 TB Utrecht, The Netherlands
| |
Collapse
|
2
|
Portnyagina OY, Ivashkevich DN, Duizen IV, Shevchenko LS, Novikova OD. Effect of Non-Specific Porins from the Outer Membrane of Yersinia pseudotuberculosis on Mice Brain Cortex Tissues. BIOCHEMISTRY (MOSCOW) 2023; 88:142-151. [PMID: 37068878 DOI: 10.1134/s0006297923010121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/19/2023]
Abstract
It was found that a single-dose immunization of mice with Yersinia pseudotuberculosis porins OmpF and OmpC causes development of pathological changes in the deep layers of cerebral cortex characterized by dystrophic changes in the cells against the background of the increasing titer of specific antibodies. At the same time, the increased level of caspase-3 expression is observed in the neurons, which indicates induction of proapoptotic signaling pathways. The obtained results indicate potential ability of nonspecific pore-forming proteins of the outer membrane of Gram-negative bacteria to initiate development of degenerative changes in brain cells.
Collapse
Affiliation(s)
- Olga Yu Portnyagina
- G. B. Elyakov Pacific Institute of Bioorganic Chemistry, Far East Branch, Russian Academy of Sciences, Vladivostok, 690021, Russia.
| | - Darya N Ivashkevich
- A. V. Zhirmunsky National Scientific Center of Marine Biology, Far Eastern Branch, Russian Academy of Sciences, Vladivostok, 690041, Russia
| | - Inessa V Duizen
- A. V. Zhirmunsky National Scientific Center of Marine Biology, Far Eastern Branch, Russian Academy of Sciences, Vladivostok, 690041, Russia
| | - Ludmila S Shevchenko
- G. B. Elyakov Pacific Institute of Bioorganic Chemistry, Far East Branch, Russian Academy of Sciences, Vladivostok, 690021, Russia
| | - Olga D Novikova
- G. B. Elyakov Pacific Institute of Bioorganic Chemistry, Far East Branch, Russian Academy of Sciences, Vladivostok, 690021, Russia
| |
Collapse
|
3
|
Long Q, Zheng P, Zheng X, Li W, Hua L, Yang Z, Huang W, Ma Y. Engineered bacterial membrane vesicles are promising carriers for vaccine design and tumor immunotherapy. Adv Drug Deliv Rev 2022; 186:114321. [PMID: 35533789 DOI: 10.1016/j.addr.2022.114321] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 04/18/2022] [Accepted: 04/30/2022] [Indexed: 02/06/2023]
Abstract
Bacterial membrane vesicles (BMVs) have emerged as novel and promising platforms for the development of vaccines and immunotherapeutic strategies against infectious and noninfectious diseases. The rich microbe-associated molecular patterns (MAMPs) and nanoscale membrane vesicle structure of BMVs make them highly immunogenic. In addition, BMVs can be endowed with more functions via genetic and chemical modifications. This article reviews the immunological characteristics and effects of BMVs, techniques for BMV production and modification, and the applications of BMVs as vaccines or vaccine carriers. In summary, given their versatile characteristics and immunomodulatory properties, BMVs can be used for clinical vaccine or immunotherapy applications.
Collapse
|
4
|
van der Ley PA, Zariri A, van Riet E, Oosterhoff D, Kruiswijk CP. An Intranasal OMV-Based Vaccine Induces High Mucosal and Systemic Protecting Immunity Against a SARS-CoV-2 Infection. Front Immunol 2021; 12:781280. [PMID: 34987509 PMCID: PMC8721663 DOI: 10.3389/fimmu.2021.781280] [Citation(s) in RCA: 66] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Accepted: 11/23/2021] [Indexed: 12/20/2022] Open
Abstract
The development of more effective, accessible, and easy to administer COVID-19 vaccines next to the currently marketed mRNA, viral vector, and whole inactivated virus vaccines is essential to curtailing the SARS-CoV-2 pandemic. A major concern is reduced vaccine-induced immune protection to emerging variants, and therefore booster vaccinations to broaden and strengthen the immune response might be required. Currently, all registered COVID-19 vaccines and the majority of COVID-19 vaccines in development are intramuscularly administered, targeting the induction of systemic immunity. Intranasal vaccines have the capacity to induce local mucosal immunity as well, thereby targeting the primary route of viral entry of SARS-CoV-2 with the potential of blocking transmission. Furthermore, intranasal vaccines offer greater practicality in terms of cost and ease of administration. Currently, only eight out of 112 vaccines in clinical development are administered intranasally. We developed an intranasal COVID-19 subunit vaccine, based on a recombinant, six-proline-stabilized, D614G spike protein (mC-Spike) of SARS-CoV-2 linked via the LPS-binding peptide sequence mCramp (mC) to outer membrane vesicles (OMVs) from Neisseria meningitidis. The spike protein was produced in CHO cells, and after linking to the OMVs, the OMV-mC-Spike vaccine was administered to mice and Syrian hamsters via intranasal or intramuscular prime-boost vaccinations. In all animals that received OMV-mC-Spike, serum-neutralizing antibodies were induced upon vaccination. Importantly, high levels of spike-binding immunoglobulin G (IgG) and A (IgA) antibodies in the nose and lungs were only detected in intranasally vaccinated animals, whereas intramuscular vaccination only induced an IgG response in the serum. Two weeks after their second vaccination, hamsters challenged with SARS-CoV-2 were protected from weight loss and viral replication in the lungs compared to the control groups vaccinated with OMV or spike alone. Histopathology showed no lesions in lungs 7 days after challenge in OMV-mC-Spike-vaccinated hamsters, whereas the control groups did show pathological lesions in the lung. The OMV-mC-Spike candidate vaccine data are very promising and support further development of this novel non-replicating, needle-free, subunit vaccine concept for clinical testing.
Collapse
|
5
|
Afrough P, Asadi Karam MR, Vaziri F, Behrouzi A, Siadat SD. Construction and assessment of the immunogenicity and bactericidal activity of fusion protein porin A from Neisseria meningitidis serogroups A and B admixed with OMV adjuvant as a novel vaccine candidate. IRANIAN JOURNAL OF BASIC MEDICAL SCIENCES 2020; 23:737-743. [PMID: 32695289 PMCID: PMC7351441 DOI: 10.22038/ijbms.2020.40470.9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Objectives The porins A and B and also outer membrane vesicles (OMVs) of Neisseria meningitidis are used for vaccine purposes. In the present study, we aimed to design a new vaccine candidate based on a fusion of PorA of serogroups A and B of N. meningitidis admixed with OMV and evaluate it in an animal model. Materials and Methods After bioinformatic studies, a fusion protein composed of porin A from both serogroups A and B of N. meningitidis was constructed, expressed, and purified by nickel resins. Extraction of OMV of N. meningitidis was performed using a chemical method. The mice were vaccinated subcutaneously in different groups with mixtures of PorA proteins, OMV, and Freund's adjuvants. Then, the immune responses were measured using the ELISA method. Finally, serum bactericidal activity (SBA) procedure was applied to assay the activity of the immune responses in mice. Results Mice received the PorA protein plus Freund's adjuvant. Mice vaccinated with PorA fusion of serogroups A+B plus Freund's adjuvant produced more IgG, IgG1, and IgG2a than combinations admixed with OMV. Furthermore, the vaccinated mice tended to direct the IgG responses toward IgG1. Sera of the mice that received PorA+Freund's and those that received PorA+OMV produced higher bactericidal activity than the controls. Conclusion Fusion protein porin A could be a valuable target for developing vaccines against N. meningitidis. Although, Freund's adjuvant induced the strongest IgG responses, given that Freund's adjuvant has no human use, and OMV is a human adjuvant, OMV could be considered in vaccine design against N. meningitidis.
Collapse
Affiliation(s)
- Parviz Afrough
- Department of Mycobacteriology and Pulmonary Research, Pasteur Institute of Iran, Tehran, Iran.,Microbiology Research Center (MRC), Pasteur Institute of Iran, Tehran, Iran
| | | | - Farzam Vaziri
- Department of Mycobacteriology and Pulmonary Research, Pasteur Institute of Iran, Tehran, Iran.,Microbiology Research Center (MRC), Pasteur Institute of Iran, Tehran, Iran
| | - Ava Behrouzi
- Department of Mycobacteriology and Pulmonary Research, Pasteur Institute of Iran, Tehran, Iran.,Microbiology Research Center (MRC), Pasteur Institute of Iran, Tehran, Iran
| | - Seyed Davar Siadat
- Department of Mycobacteriology and Pulmonary Research, Pasteur Institute of Iran, Tehran, Iran.,Microbiology Research Center (MRC), Pasteur Institute of Iran, Tehran, Iran.,Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
6
|
Matthias KA, Reveille A, Connolly KL, Jerse AE, Gao YS, Bash MC. Deletion of major porins from meningococcal outer membrane vesicle vaccines enhances reactivity against heterologous serogroup B Neisseria meningitidis strains. Vaccine 2020; 38:2396-2405. [PMID: 32037226 PMCID: PMC11656520 DOI: 10.1016/j.vaccine.2020.01.038] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Revised: 12/17/2019] [Accepted: 01/11/2020] [Indexed: 11/29/2022]
Abstract
Detergent-extracted detoxified outer membrane vesicle (dOMV) vaccines are effective at preventing invasive serogroup B meningococcal (MenB) disease caused by the homologous Neisseria meningitidis strain from which they are produced, but offer limited protection from heterologous strains. Differences in vaccine efficacy are partially due to strain-specific variations in the antigenic sequence types and expression levels of outer membrane proteins (OMPs), including the immunodominant OMP PorA. In this study, dOMV vaccines deficient in major OMPs, including PorA, PorB, and RmpM were isolated and used to immunize rabbits and mice. Serum samples were obtained from each animal and tested for antibody responses against five MenB strains. Immunization with wild type dOMVs elicited antibodies to major antigens including PorA, PorB, RmpM, and lipooligosaccharide (LOS), and demonstrated limited bactericidal activity against heterologous strains. In contrast, OMP-deficient dOMV vaccines elicited broadly cross-reactive bactericidal antibodies, with PorA/PorB-dual deficient dOMVs inducing antibodies exhibiting the greatest cross-reactivity. Enhanced killing of heterologous strains correlated with binding to unique protein bands in immunoblots, suggestive of improved immunogenicity of antigens under-represented in the wild type vaccine.
Collapse
Affiliation(s)
- Kathryn A Matthias
- Laboratory of Bacterial Polysaccharides, Division of Bacterial, Parasitic, and Allergenic Products, Center for Biologics Evaluation and Research, U.S. Food and Drug Administration, 10903 New Hampshire Ave. Silver Spring, MD 20993, USA.
| | - Alexandra Reveille
- Laboratory of Bacterial Polysaccharides, Division of Bacterial, Parasitic, and Allergenic Products, Center for Biologics Evaluation and Research, U.S. Food and Drug Administration, 10903 New Hampshire Ave. Silver Spring, MD 20993, USA.
| | - Kristie L Connolly
- Department of Microbiology and Immunology, F. Edward Hebert School of Medicine, Uniformed Services University of the Health Sciences, 4301 Jones Bridge Rd., Bethesda, MD 20814, USA.
| | - Ann E Jerse
- Department of Microbiology and Immunology, F. Edward Hebert School of Medicine, Uniformed Services University of the Health Sciences, 4301 Jones Bridge Rd., Bethesda, MD 20814, USA.
| | - Yamei S Gao
- Center for Biologics Evaluation and Research Electron Microscopy Lab, Division of Viral Products, Center for Biologics Evaluation and Research, U.S. Food and Drug Administration, 10903 New Hampshire Ave. Silver Spring, MD 20993, USA.
| | - Margaret C Bash
- Laboratory of Bacterial Polysaccharides, Division of Bacterial, Parasitic, and Allergenic Products, Center for Biologics Evaluation and Research, U.S. Food and Drug Administration, 10903 New Hampshire Ave. Silver Spring, MD 20993, USA.
| |
Collapse
|
7
|
Awanye AM, Chang CM, Wheeler JX, Chan H, Marsay L, Dold C, Rollier CS, Bird LE, Nettleship JE, Owens RJ, Pollard AJ, Derrick JP. Immunogenicity profiling of protein antigens from capsular group B Neisseria meningitidis. Sci Rep 2019; 9:6843. [PMID: 31048732 PMCID: PMC6497663 DOI: 10.1038/s41598-019-43139-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Accepted: 04/11/2019] [Indexed: 11/29/2022] Open
Abstract
Outer membrane vesicle (OMV)- based vaccines have been used to provide strain-specific protection against capsular group B Neisseria meningitidis infections, but the full breadth of the immune response against the components of the OMV has not been established. Sera from adults vaccinated with an OMV vaccine were used to screen 91 outer membrane proteins (OMPs) incorporated in an antigen microarray panel. Antigen-specific IgG levels were quantified pre-vaccination, and after 12 and 18 weeks. These results were compared with IgG levels from mice vaccinated with the same OMV vaccine. The repertoires of highly responding antigens in humans and mice overlapped, but were not identical. The highest responding antigens to human IgG comprised four integral OMPs (PorA, PorB, OpcA and PilQ), a protein which promotes the stability of PorA and PorB (RmpM) and two lipoproteins (BamC and GNA1162). These observations will assist in evaluating the role of minor antigen components within OMVs in providing protection against meningococcal infection. In addition, the relative dominance of responses to integral OMPs in humans emphasizes the importance of this subclass and points to the value of maintaining conformational epitopes from integral membrane proteins in vaccine formulations.
Collapse
Affiliation(s)
- Amaka M Awanye
- Lydia Becker Institute of Immunology and Inflammation, School of Biological Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester, M13 9PL, UK
| | - Chun-Mien Chang
- Lydia Becker Institute of Immunology and Inflammation, School of Biological Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester, M13 9PL, UK
| | - Jun X Wheeler
- National Institute for Biological Standards and Control, Blanche Lane, South Mimms, Hertfordshire, EN6 3QG, UK
| | - Hannah Chan
- National Institute for Biological Standards and Control, Blanche Lane, South Mimms, Hertfordshire, EN6 3QG, UK
| | - Leanne Marsay
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford, and the NIHR Oxford Biomedical Research Centre, Oxford, OX3 7LE, UK
| | - Christina Dold
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford, and the NIHR Oxford Biomedical Research Centre, Oxford, OX3 7LE, UK
| | - Christine S Rollier
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford, and the NIHR Oxford Biomedical Research Centre, Oxford, OX3 7LE, UK
| | - Louise E Bird
- Oxford Protein Production Facility, Research Complex at Harwell, Rutherford Appleton Laboratory, Harwell, Didcot, OX11 0FA, UK
| | - Joanne E Nettleship
- Oxford Protein Production Facility, Research Complex at Harwell, Rutherford Appleton Laboratory, Harwell, Didcot, OX11 0FA, UK
| | - Raymond J Owens
- Oxford Protein Production Facility, Research Complex at Harwell, Rutherford Appleton Laboratory, Harwell, Didcot, OX11 0FA, UK
| | - Andrew J Pollard
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford, and the NIHR Oxford Biomedical Research Centre, Oxford, OX3 7LE, UK
| | - Jeremy P Derrick
- Lydia Becker Institute of Immunology and Inflammation, School of Biological Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester, M13 9PL, UK.
| |
Collapse
|
8
|
Masignani V, Pizza M, Moxon ER. The Development of a Vaccine Against Meningococcus B Using Reverse Vaccinology. Front Immunol 2019; 10:751. [PMID: 31040844 PMCID: PMC6477034 DOI: 10.3389/fimmu.2019.00751] [Citation(s) in RCA: 96] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Accepted: 03/20/2019] [Indexed: 12/04/2022] Open
Abstract
The discovery of vaccine antigens through whole genome sequencing (WGS) contrasts with the classical hypothesis-driven laboratory-based analysis of microbes to identify components to elicit protective immunity. This radical change in scientific direction and action in vaccine research is captured in the term reverse vaccinology. The complete genome sequence of an isolate of Neisseria meningitidis serogroup B (MenB) was systematically analyzed to identify proteins predicted to be secreted or exported to the outer membrane. This identified hundreds of genes coding for potential surface-exposed antigens. These were amplified, cloned in expression vectors and used to immunize mice. Antisera against 350 recombinant antigens were obtained and analyzed in a panel of immunological assays from which 28 were selected as potentially protective based on the -antibody dependent, complement mediated- serum bactericidal activity assay. Testing of these candidate vaccine antigens, using a large globally representative strain collection of Neisseria species isolated from cases of disease and carriage, indicated that no single component would be sufficient to induce broad coverage and that a “universal” vaccine should contain multiple antigens. The final choice of antigens to be included was based on cross-protective ability, assayed by serum bactericidal activity and maximum coverage of the extensive antigenic variability of MenB strains. The resulting multivalent vaccine formulation selected consisted of three recombinant antigens (Neisserial Heparin Binding Antigen or NHBA, Factor H binding protein or fHbp and Neisseria Adhesin A or NadA). To improve immunogenicity and potential strain coverage, an outer membrane vesicle component obtained from the epidemic New Zealand strain (OMVNz) was added to the formulation to create a four component vaccine, called 4CMenB. A series of phase 2 and 3 clinical trials were conducted to evaluate safety and tolerability and to estimate the vaccine effectiveness of human immune responses at different ages and how these were affected by various factors including concomitant vaccine use and lot-to-lot consistency. 4CMenB was approved in Europe in 2013 and introduced in the National Immunization Program in the UK starting from September 2015 when the vaccine was offered to all newborns using a 2, 4, and 12 months schedule., The effectiveness against invasive MenB disease measured at 11 months after the study start and 5 months after the second vaccination was 83% and there have been no safety concerns.
Collapse
Affiliation(s)
| | | | - E Richard Moxon
- Department of Pediatrics, Oxford University, Oxford, United Kingdom
| |
Collapse
|
9
|
Christodoulides M, Heckels J. Novel approaches to Neisseria meningitidis vaccine design. Pathog Dis 2018; 75:3078540. [PMID: 28369428 DOI: 10.1093/femspd/ftx033] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Accepted: 03/20/2017] [Indexed: 12/30/2022] Open
Abstract
A range of vaccines is available for preventing life-threatening diseases caused by infection with Neisseria meningitidis (meningococcus, Men). Capsule polysaccharide (CPS)-conjugate vaccines are successful prophylactics for serogroup MenA, MenC, MenW and MenY infections, and outer membrane vesicle (OMV) vaccines have been used successfully for controlling clonal serogroup MenB infections. MenB vaccines based on recombinant proteins identified by reverse vaccinology (Bexsero™) and proteomics (Trumenba™) approaches have recently been licensed and Bexsero™ has been introduced into the UK infant immunisation programme. In this review, we chart the development of these licensed vaccines. In addition, we discuss the plethora of novel vaccinology approaches that have been applied to the meningococcus with varying success in pre-clinical studies, but which provide technological platforms for application to other pathogens. These strategies include modifying CPS, lipooligosaccharide and OMV; the use of recombinant proteins; structural vaccinology approaches of designing synthetic peptide/mimetope vaccines, DNA vaccines and engineered proteins; epitope presentation on biological and synthetic particles; through vaccination with live-attenuated pathogen(s), or with heterologous bacteria expressing vaccine antigens, or to competitive occupation of the nasopharyngeal niche by commensal bacterial spp. After close to a century of vaccine research, it is possible that meningococcal disease may be added, shortly, to the list of diseases to have been eradicated worldwide by rigorous vaccination campaigns.
Collapse
|
10
|
Abstract
The majority of invasive meningococcal disease (IMD) in the developed world is caused by capsular group B Neisseria meningitidis, however success with vaccination against organisms bearing this capsule has previously been restricted to control of geographically limited clonal outbreaks. As we enter a new era, with the first routine program underway to control endemic group B meningococcal disease for infants in the UK, it is timely to review the key landmarks in group B vaccine development, and discuss the issues determining whether control of endemic group B disease will be achieved. Evidence of a reduction in carriage acquisition of invasive group B meningococcal strains, after vaccination among adolescents, is imperative if routine immunization is to drive population control of disease beyond those who are vaccinated (i.e. through herd immunity). The need for multiple doses to generate a sufficiently protective response and reactogenicity remain significant problems with the new generation of vaccines. Despite these limitations, early data from the UK indicate that new group B meningococcal vaccines have the potential to have a major impact on meningococcal disease, and to provide new insight into how we might do better in the future.
Collapse
Affiliation(s)
- N Y Wang
- a School of Medicine , Monash University , Melbourne , Australia.,b Department of Paediatrics , Oxford Vaccine Group , Oxford , UK
| | - A J Pollard
- b Department of Paediatrics , Oxford Vaccine Group , Oxford , UK.,c NIHR Oxford Biomedical Research Centre, University of Oxford , Oxford , UK
| |
Collapse
|
11
|
Parikh SR, Andrews NJ, Beebeejaun K, Campbell H, Ribeiro S, Ward C, White JM, Borrow R, Ramsay ME, Ladhani SN. Effectiveness and impact of a reduced infant schedule of 4CMenB vaccine against group B meningococcal disease in England: a national observational cohort study. Lancet 2016; 388:2775-2782. [PMID: 28100432 DOI: 10.1016/s0140-6736(16)31921-3] [Citation(s) in RCA: 218] [Impact Index Per Article: 24.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2016] [Revised: 10/10/2016] [Accepted: 10/10/2016] [Indexed: 11/19/2022]
Abstract
BACKGROUND In September, 2015, the UK became the first country to introduce the multicomponent group B meningococcal (MenB) vaccine (4CMenB, Bexsero) into a publicly funded national immunisation programme. A reduced two-dose priming schedule was offered to infants at 2 months and 4 months, alongside an opportunistic catch-up for 3 month and 4 month olds. 4CMenB was predicted to protect against 73-88% of MenB strains. We aimed to assess the effectiveness and impact of 4CMenB in vaccine-eligible infants in England. METHODS Public Health England (PHE) undertakes enhanced surveillance of meningococcal disease through a combination of clinical, public health, and laboratory reporting. Laboratory-confirmed cases of meningococcal disease are followed up with PHE local health protection teams, general practitioners, and hospital clinicians to collect demographic data, vaccination history, clinical presentation, and outcome. For cases diagnosed between Sept 1, 2015, and June 30, 2016, vaccine effectiveness was assessed using the screening method. Impact was assessed by comparing numbers of cases of MenB in vaccine-eligible children to equivalent cohorts in the previous 4 years and to cases in vaccine-ineligible children. FINDINGS Coverage of 4CMenB in infants eligible for routine vaccination was high, achieving 95·5% for one dose and 88·6% for two doses by 6 months of age. Two-dose vaccine effectiveness was 82·9% (95% CI 24·1-95·2) against all MenB cases, equivalent to a vaccine effectiveness of 94·2% against the highest predicted MenB strain coverage of 88%. Compared with the prevaccine period, there was a 50% incidence rate ratio (IRR) reduction in MenB cases in the vaccine-eligible cohort (37 cases vs average 74 cases; IRR 0·50 [95% CI 0·36-0·71]; p=0·0001), irrespective of the infants' vaccination status or predicted MenB strain coverage. Similar reductions were observed even after adjustment for disease trends in vaccine-eligible and vaccine-ineligible children. INTERPRETATION The two-dose 4CMenB priming schedule was highly effective in preventing MenB disease in infants. Cases in vaccine-eligible infants halved in the first 10 months of the programme. While ongoing national surveillance will continue to monitor the longer-term impact of the programme, these findings represent a step forward in the battle against meningococcal disease and will help reassure that the vaccine protects against this deadly infection. FUNDING Public Health England.
Collapse
Affiliation(s)
- Sydel R Parikh
- Immunisation, Hepatitis, and Blood Safety Department, Public Health England, London, UK
| | - Nick J Andrews
- Statistics, Modelling, and Economics Department, Public Health England, London, UK
| | - Kazim Beebeejaun
- Immunisation, Hepatitis, and Blood Safety Department, Public Health England, London, UK
| | - Helen Campbell
- Immunisation, Hepatitis, and Blood Safety Department, Public Health England, London, UK
| | - Sonia Ribeiro
- Immunisation, Hepatitis, and Blood Safety Department, Public Health England, London, UK
| | - Charlotte Ward
- Immunisation, Hepatitis, and Blood Safety Department, Public Health England, London, UK
| | - Joanne M White
- Immunisation, Hepatitis, and Blood Safety Department, Public Health England, London, UK
| | - Ray Borrow
- Meningococcal Reference Unit, Public Health England, Manchester, UK
| | - Mary E Ramsay
- Immunisation, Hepatitis, and Blood Safety Department, Public Health England, London, UK
| | - Shamez N Ladhani
- Immunisation, Hepatitis, and Blood Safety Department, Public Health England, London, UK.
| |
Collapse
|
12
|
Gandhi A, Balmer P, York LJ. Characteristics of a new meningococcal serogroup B vaccine, bivalent rLP2086 (MenB-FHbp; Trumenba®). Postgrad Med 2016; 128:548-56. [PMID: 27467048 DOI: 10.1080/00325481.2016.1203238] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Neisseria meningitidis is a common cause of bacterial meningitis, often leading to permanent sequelae or death. N. meningitidis is classified into serogroups based on the composition of the bacterial capsular polysaccharide; the 6 major disease-causing serogroups are designated A, B, C, W, X, and Y. Four of the 6 disease-causing serogroups (A, C, Y, and W) can be effectively prevented with available quadrivalent capsular polysaccharide protein conjugate vaccines; however, capsular polysaccharide conjugate vaccines are not effective against meningococcal serogroup B (MnB). There is no vaccine available for serogroup X. The public health need for an effective serogroup B vaccine is evident, as MnB is the most common cause of meningococcal disease in the United States and is responsible for almost half of all cases in persons aged 17 to 22 years. In fact, serogroup B meningococci were responsible for the recent meningococcal disease outbreaks on college campuses. However, development of a suitable serogroup B vaccine has been challenging, as serogroup B polysaccharide-based vaccines were found to be poorly immunogenic. Vaccine development for MnB focused on identifying potential outer membrane protein targets that elicit broadly protective immune responses across strains from the vast number of proteins that exist on the bacterial surface. Human factor H binding protein (fHBP; also known as LP2086), a conserved surface-exposed bacterial lipoprotein, was identified as a promising vaccine candidate. Two recombinant protein-based serogroup B vaccines that contain fHBP have been successfully developed and licensed in the United States under an accelerated approval process: bivalent rLP2086 (MenB-FHbp; Trumenba®) and 4CMenB (MenB-4 C; Bexsero®). This review will focus on bivalent rLP2086 only, including vaccine components, mechanism of action, and potential coverage across serogroup B strains in the United States.
Collapse
Affiliation(s)
- Ashesh Gandhi
- a United States Medical and Scientific Affairs , Pfizer Vaccines , Collegeville , PA , USA
| | - Paul Balmer
- b Global Medical and Scientific Affairs , Pfizer Vaccines , Collegeville , PA , USA
| | - Laura J York
- b Global Medical and Scientific Affairs , Pfizer Vaccines , Collegeville , PA , USA
| |
Collapse
|
13
|
Cellular Immune Responses in Humans Induced by Two Serogroup B Meningococcal Outer Membrane Vesicle Vaccines Given Separately and in Combination. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2016; 23:353-62. [PMID: 26865595 DOI: 10.1128/cvi.00666-15] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2015] [Accepted: 02/04/2016] [Indexed: 11/20/2022]
Abstract
MenBvac and MeNZB are safe and efficacious outer membrane vesicle (OMV) vaccines against serogroup B meningococcal disease. Antibody responses have previously been investigated in a clinical trial with these two OMV vaccines given separately (25 μg/dose) or in combination (12.5 and 12.5 μg/dose) in three doses administered at 6-week intervals. Here, we report the results from analyzing cellular immune responses against MenBvac and MeNZB OMVs in terms of antigen-specific CD4(+)T cell proliferation and secretion of cytokines. The proliferative CD4(+)T cell responses to the combined vaccine were of the same magnitude as the homologous responses observed for each individual vaccine. The results also showed cross-reactivity in the sense that both vaccine groups receiving separate vaccines responded to both homologous and heterologous OMV antigen when assayed for antigen-specific cellular proliferation. In addition, a multiplex bead array assay was used to analyze the presence of Th1 and Th2 cytokines in cell culture supernatants. The results showed that gamma interferon, interleukin-4 (IL-4), and IL-10 responses could be detected as a result of vaccination with both the MenBvac and the MeNZB vaccines given separately, as well as when given in combination. With respect to cross-reactivity, the cytokine results paralleled the observations made for proliferation. In conclusion, the results demonstrate that cross-reactive cellular immune responses involving both Th1 and Th2 cytokines can be induced to the same extent by different tailor-made OMV vaccines given either separately or in combination with half the dose of each vaccine.
Collapse
|
14
|
Sadarangani M, Hoe CJ, Makepeace K, van der Ley P, Pollard AJ. Phase variation of Opa proteins of Neisseria meningitidis and the effects of bacterial transformation. J Biosci 2016; 41:13-9. [PMID: 26949083 DOI: 10.1007/s12038-016-9588-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Opa proteins are major proteins involved in meningococcal colonization of the nasopharynx and immune interactions. Opa proteins undergo phase variation (PV) due to the presence of the 5'-CTCTT-3' coding repeat (CR) sequence. The dynamics of PV of meningococcal Opa proteins is unknown. Opa PV, including the effect of transformation on PV, was assessed using a panel of Opa-deficient strains of Neisseria meningitidis. Analysis of Opa expression from UK disease-causing isolates was undertaken. Different opa genes demonstrated variable rates of PV, between 6.4 × 10(-4) and 6.9 × 10(-3) per cell per generation. opa genes with a longer CR tract had a higher rate of PV (r(2) = 0.77, p = 0.1212). Bacterial transformation resulted in a 180-fold increase in PV rate. The majority of opa genes in UK disease isolates (315/463, 68.0%) were in the 'on' phase, suggesting the importance of Opa proteins during invasive disease. These data provide valuable information for the first time regarding meningococcal Opa PV. The presence of Opa PV in meningococcal populations and high expression of Opa among invasive strains likely indicates the importance of this protein in bacterial colonization in the human nasopharynx. These findings have potential implications for development of vaccines derived from meningococcal outer membranes.
Collapse
Affiliation(s)
- Manish Sadarangani
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford, Centre for Clinical Vaccinology and Tropical Medicine, Churchill Hospital, Oxford OX3 7LE, UK,
| | | | | | | | | |
Collapse
|
15
|
Vasquez AE, Manzo RA, Soto DA, Barrientos MJ, Maldonado AE, Mosqueira M, Avila A, Touma J, Bruce E, Harris PR, Venegas A. Oral administration of recombinant Neisseria meningitidis PorA genetically fused to H. pylori HpaA antigen increases antibody levels in mouse serum, suggesting that PorA behaves as a putative adjuvant. Hum Vaccin Immunother 2015; 11:776-88. [PMID: 25750999 PMCID: PMC4514328 DOI: 10.1080/21645515.2015.1011011] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
The Neisseria meningitidis outer membrane protein PorA from a Chilean strain was purified as a recombinant protein. PorA mixed with AbISCO induced bactericidal antibodies against N. meningitidis in mice. When PorA was fused to the Helicobacter pylori HpaA antigen gene, the specific response against H. pylori protein increased. Splenocytes from PorA-immunized mice were stimulated with PorA, and an increase in the secretion of IL-4 was observed compared with that of IFN-γ. Moreover, in an immunoglobulin sub-typing analysis, a substantially higher IgG1 level was found compared with IgG2a levels, suggesting a Th2-type immune response. This study revealed a peculiar behavior of the purified recombinant PorA protein per se in the absence of AbISCO as an adjuvant. Therefore, the resistance of PorA to proteolytic enzymes, such as those in the gastrointestinal tract, was analyzed, because this is an important feature for an oral protein adjuvant. Finally, we found that PorA fused to the H. pylori HpaA antigen, when expressed in Lactococcus lactis and administered orally, could enhance the antibody response against the HpaA antigen approximately 3 fold. These observations strongly suggest that PorA behaves as an effective oral adjuvant.
Collapse
Affiliation(s)
- Abel E Vasquez
- a Department of Biotechnology ; Instituto de Salud Pública de Chile ; Ñuñoa , Santiago , Chile
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Sanders H, Norheim G, Chan H, Dold C, Vipond C, Derrick JP, Pollard AJ, Maiden MCJ, Feavers IM. FetA Antibodies Induced by an Outer Membrane Vesicle Vaccine Derived from a Serogroup B Meningococcal Isolate with Constitutive FetA Expression. PLoS One 2015; 10:e0140345. [PMID: 26466091 PMCID: PMC4605655 DOI: 10.1371/journal.pone.0140345] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2014] [Accepted: 09/24/2015] [Indexed: 02/06/2023] Open
Abstract
Invasive meningococcal disease causes over 3500 cases each year in Europe, with particularly high incidence among young children. Among serogroup B meningococci, which cause most of the cases, high diversity in the outer membrane proteins (OMPs) is observed in endemic situations; however, comprehensive molecular epidemiological data are available for the diversity and distribution of the OMPs PorA and FetA and these can be used to rationally design a vaccine with high coverage of the case isolates. The aim of this study was to determine whether outer membrane vesicles (OMVs) derived from an isolate with constitutive FetA expression (MenPF-1 vaccine) could be used to induce antibodies against both the PorA and FetA antigens. The immunogenicity of various dose levels and number of doses was evaluated in mice and rabbits, and IgG antibody responses tested against OMVs and recombinant PorA and FetA proteins. A panel of four isogenic mutants was generated and used to evaluate the relative ability of the vaccine to induce serum bactericidal activity (SBA) against FetA and PorA. Sera from mice were tested in SBA against the four target strains. Results demonstrated that the MenPF-1 OMVs were immunogenic against PorA and FetA in both animal models. Furthermore, the murine antibodies induced were bactericidal against isogenic mutant strains, suggesting that antibodies to both PorA and FetA were functional. The data presented indicate that the MenPF-1 vaccine is a suitable formulation for presenting PorA and FetA OMPs in order to induce bactericidal antibodies, and that proceeding to a Phase I clinical trial with this vaccine candidate is justified.
Collapse
Affiliation(s)
- Holly Sanders
- National Institute of Biological Standards and Control, South Mimms, Potters Bar, United Kingdom
| | - Gunnstein Norheim
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford, and the NIHR Oxford Biomedical Research Centre, Oxford, United Kingdom
- Division of Infectious Disease Control, Norwegian Institute of Public Health, Oslo, Norway Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Hannah Chan
- National Institute of Biological Standards and Control, South Mimms, Potters Bar, United Kingdom
- * E-mail:
| | - Christina Dold
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford, and the NIHR Oxford Biomedical Research Centre, Oxford, United Kingdom
| | - Caroline Vipond
- National Institute of Biological Standards and Control, South Mimms, Potters Bar, United Kingdom
| | - Jeremy P. Derrick
- Faculty of Life Sciences, The University of Manchester, Michael Smith Building, Oxford Road, Manchester, United Kingdom
| | - Andrew J. Pollard
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford, and the NIHR Oxford Biomedical Research Centre, Oxford, United Kingdom
| | | | - Ian M. Feavers
- National Institute of Biological Standards and Control, South Mimms, Potters Bar, United Kingdom
| |
Collapse
|
17
|
Poolman JT, Richmond P. Multivalent meningococcal serogroup B vaccines: challenges in predicting protection and measuring effectiveness. Expert Rev Vaccines 2015. [PMID: 26204792 DOI: 10.1586/14760584.2015.1071670] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Vaccines targeting Neisseria meningitidis serogroup B (MenB) have been attempted for 40 years. Monovalent outer membrane vesicle vaccines targeted at epidemic outbreaks have been successfully developed. Newer vaccines aim to induce antibodies to cross-reactive antigens, such as factor H binding protein (rLP2086) or a mix of outer membrane vesicle, factor H binding protein and other minor antigens (4CMenB). The true protective coverage among circulating MenB isolates afforded by these vaccines is unknown. Carefully conducted Phase IV post-implementation evaluations designed to measure specific effectiveness against major circulating MenB clonal lineages are needed to address the critical question of which antigens are linked to protection. Progress with whole-genome sequencing and bio-informatics may allow the composition of antigen mozaics based on two major outer membrane proteins: PorA and FetA.
Collapse
Affiliation(s)
- Jan T Poolman
- Bacterial Vaccine Discovery & Early Development, Janssen, Zernikedreef 9; 2333 CK Leiden, The Netherlands
| | | |
Collapse
|
18
|
Role of factor H binding protein in Neisseria meningitidis virulence and its potential as a vaccine candidate to broadly protect against meningococcal disease. Microbiol Mol Biol Rev 2014; 77:234-52. [PMID: 23699256 DOI: 10.1128/mmbr.00056-12] [Citation(s) in RCA: 86] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Neisseria meningitidis is a Gram-negative microorganism that exists exclusively in humans and can cause devastating invasive disease. Although capsular polysaccharide-based vaccines against serogroups A, C, Y, and W135 are widely available, the pathway to a broadly protective vaccine against serogroup B has been more complex. The last 11 years has seen the discovery and development of the N. meningitidis serogroup B (MnB) outer membrane protein factor H binding protein (fHBP) as a vaccine component. Since the initial discovery of fHBP, a tremendous amount of work has accumulated on the diversity, structure, and regulation of this important protein. fHBP has proved to be a virulence factor for N. meningitidis and a target for functional bactericidal antibodies. fHBP is critical for survival of meningococci in the human host, as it is responsible for the primary interaction with human factor H (fH). Binding of hfH by the meningococcus serves to downregulate the host alternative complement pathway and helps the organism evade host innate immunity. Preclinical studies have shown that an fHBP-based vaccine can elicit serum bactericidal antibodies capable of killing MnB, and the vaccine has shown very encouraging results in human clinical trials. This report reviews our current knowledge of fHBP. In particular, we discuss the recent advances in our understanding of fHBP, its importance to N. meningitidis, and its potential role as a vaccine for preventing MnB disease.
Collapse
|
19
|
Gasparini R, Amicizia D, Domnich A, Lai PL, Panatto D. Neisseria meningitidis B vaccines: recent advances and possible immunization policies. Expert Rev Vaccines 2014; 13:345-64. [PMID: 24476428 DOI: 10.1586/14760584.2014.880341] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Since the development of the first-generation vaccines based on outer membrane vesicles (OMV), which were able to contain strain-specific epidemics, but were not suitable for universal use, enormous steps forward in the prevention of Neisseria meningitidis B have been made. The first multicomponent vaccine, Bexsero(®), has recently been authorized for use; other vaccines, bivalent rLP2086 and next-generation OMV vaccines, are under development. The new vaccines may substantially contribute to reducing invasive bacterial infections as they could cover most Neisseria meningitidis B strains. Moreover, other potentially effective serogroup B vaccine candidates are being studied in preclinical settings. It is therefore appropriate to review what has recently been achieved in the prevention of disease caused by serogroup B.
Collapse
|
20
|
Panatto D, Amicizia D, Lai PL, Gasparini R. Neisseria meningitidisB vaccines. Expert Rev Vaccines 2014; 10:1337-51. [DOI: 10.1586/erv.11.103] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
21
|
Bai X, Borrow R. Genetic shifts ofNeisseria meningitidisserogroup B antigens and the quest for a broadly cross-protective vaccine. Expert Rev Vaccines 2014; 9:1203-17. [DOI: 10.1586/erv.10.116] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
22
|
Khatami A, Pollard AJ. The epidemiology of meningococcal disease and the impact of vaccines. Expert Rev Vaccines 2014; 9:285-98. [DOI: 10.1586/erv.10.3] [Citation(s) in RCA: 100] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
23
|
van de Waterbeemd B, Zomer G, Kaaijk P, Ruiterkamp N, Wijffels RH, van den Dobbelsteen GPJM, van der Pol LA. Improved production process for native outer membrane vesicle vaccine against Neisseria meningitidis. PLoS One 2013; 8:e65157. [PMID: 23741478 PMCID: PMC3669287 DOI: 10.1371/journal.pone.0065157] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2013] [Accepted: 04/23/2013] [Indexed: 11/18/2022] Open
Abstract
An improved detergent-free process has been developed to produce vaccine based on native outer membrane vesicles (NOMV) against Neisseria meningitidis serogroup B. Performance was evaluated with the NonaMen vaccine concept, which provides broad coverage based on nine distinct PorA antigens. Scalable aseptic equipment was implemented, replacing undesirable steps like ultracentrifugation, inactivation with phenol, and the use of preservatives. The resulting process is more consistent and gives a higher yield than published reference processes, enabling NOMV production at commercial scale. Product quality met preliminary specifications for 9 consecutive batches, and an ongoing study confirmed real-time stability up to 12 months after production. As the NOMV had low endotoxic activity and induced high bactericidal titres in mice, they are expected to be safe and effective in humans. The production process is not limited to NonaMen and may be applicable for other N. meningitidis serogroups and other gram-negative pathogens. The current results therefore facilitate the late-stage development and clinical evaluation of NOMV vaccines.
Collapse
Affiliation(s)
- Bas van de Waterbeemd
- National Institute for Public Health and the Environment (RIVM), Vaccinology, Bilthoven, The Netherlands.
| | | | | | | | | | | | | |
Collapse
|
24
|
Bambini S, Piet J, Muzzi A, Keijzers W, Comandi S, De Tora L, Pizza M, Rappuoli R, van de Beek D, van der Ende A, Comanducci M. An analysis of the sequence variability of meningococcal fHbp, NadA and NHBA over a 50-year period in the Netherlands. PLoS One 2013; 8:e65043. [PMID: 23717687 PMCID: PMC3663754 DOI: 10.1371/journal.pone.0065043] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2012] [Accepted: 04/26/2013] [Indexed: 02/04/2023] Open
Abstract
Studies of meningococcal evolution and genetic population structure, including the long-term stability of non-random associations between variants of surface proteins, are essential for vaccine development. We analyzed the sequence variability of factor H-binding protein (fHbp), Neisserial Heparin-Binding Antigen (NHBA) and Neisseria adhesin A (NadA), three major antigens in the multicomponent meningococcal serogroup B vaccine 4CMenB. A panel of invasive isolates collected in the Netherlands over a period of 50 years was used. To our knowledge, this strain collection covers the longest time period of any collection available worldwide. Long-term persistence of several antigen sub/variants and of non-overlapping antigen sub/variant combinations was observed. Our data suggest that certain antigen sub/variants including those used in 4CMenB are conserved over time and promoted by selection.
Collapse
Affiliation(s)
| | - Jurgen Piet
- Academic Medical Center, Department of Medical Microbiology, Amsterdam, The Netherlands
| | | | - Wendy Keijzers
- Academic Medical Center, Department of Medical Microbiology, Amsterdam, The Netherlands
- The Netherlands Reference Laboratory for Bacterial Meningitis, Amsterdam, The Netherlands
| | | | | | | | | | | | - Arie van der Ende
- Academic Medical Center, Department of Medical Microbiology, Amsterdam, The Netherlands
- The Netherlands Reference Laboratory for Bacterial Meningitis, Amsterdam, The Netherlands
- * E-mail: (AVDE); (MC)
| | | |
Collapse
|
25
|
Holst J, Oster P, Arnold R, Tatley MV, Næss LM, Aaberge IS, Galloway Y, McNicholas A, O'Hallahan J, Rosenqvist E, Black S. Vaccines against meningococcal serogroup B disease containing outer membrane vesicles (OMV): lessons from past programs and implications for the future. Hum Vaccin Immunother 2013; 9:1241-53. [PMID: 23857274 PMCID: PMC3901813 DOI: 10.4161/hv.24129] [Citation(s) in RCA: 160] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
The utility of wild-type outer membrane vesicle (wtOMV) vaccines against serogroup B (MenB) meningococcal disease has been explored since the 1970s. Public health interventions in Cuba, Norway and New Zealand have demonstrated that these protein-based vaccines can prevent MenB disease. Data from large clinical studies and retrospective statistical analyses in New Zealand give effectiveness estimates of at least 70%. A consistent pattern of moderately reactogenic and safe vaccines has been seen with the use of approximately 60 million doses of three different wtOMV vaccine formulations. The key limitation of conventional wtOMV vaccines is their lack of broad protective activity against the large diversity of MenB strains circulating globally. The public health intervention in New Zealand (between 2004–2008) when MeNZB was used to control a clonal MenB epidemic, provided a number of new insights regarding international and public-private collaboration, vaccine safety surveillance, vaccine effectiveness estimates and communication to the public. The experience with wtOMV vaccines also provide important information for the next generation of MenB vaccines designed to give more comprehensive protection against multiple strains.
Collapse
Affiliation(s)
- Johan Holst
- Division of Infectious Disease Control; Norwegian Institute of Public Health; Oslo, Norway
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
|
27
|
|
28
|
Norheim G, Tunheim G, Naess LM, Kristiansen PA, Caugant DA, Rosenqvist E. An Outer Membrane Vesicle Vaccine for Prevention of Serogroup A and W-135 Meningococcal Disease in the African Meningitis Belt. Scand J Immunol 2012; 76:99-107. [DOI: 10.1111/j.1365-3083.2012.02709.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
29
|
Lennon D, Reid S, Stewart J, Jackson C, Crengle S, Percival T. Reducing inequalities with vaccines: New Zealand's MeNZB vaccine initiative to control an epidemic. J Paediatr Child Health 2012; 48:193-201. [PMID: 21996021 DOI: 10.1111/j.1440-1754.2010.01969.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Disadvantaged children of Māori and Pacific origin in New Zealand carry an inequitable burden of infectious diseases, many of which are preventable, some by vaccine. Immunisation is recognised in the developing world as a cheap, effective and efficient means of reducing inequalities. The MeNZB immunisation programme delivered in 2004-2006 towards the expected natural end of a projected 15-year epidemic appears to have had an effect (difficult to prove conclusively) on reducing the disproportionate burden of meningococcal disease carried by this group of children. It was delayed by the late engagement of the New Zealand Ministry of Health, fully briefed from 1996, leading to unnecessary and potentially avoidable deaths and sequelae, many lifelong. Further, failure to adequately assess vaccine effectiveness means that the contribution of MeNZB to the observed reduction in disease, particularly in those aged less than five years, will never be reliably known. However, the MeNZB campaign has at least left a legacy: the National Immunisation Register, which should enable New Zealand to minimise the 'vaccine inverse care law' and contribute to reducing ethnic inequity in the burden of vaccine preventable diseases.
Collapse
Affiliation(s)
- Diana Lennon
- Community Paediatrics, The University of Auckland, Auckland, New Zealand.
| | | | | | | | | | | |
Collapse
|
30
|
Saleem M, Prince SM, Patel H, Chan H, Feavers IM, Derrick JP. Refolding, purification and crystallization of the FrpB outer membrane iron transporter from Neisseria meningitidis. Acta Crystallogr Sect F Struct Biol Cryst Commun 2012; 68:231-5. [PMID: 22298007 PMCID: PMC3274411 DOI: 10.1107/s1744309111056028] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2011] [Accepted: 12/28/2011] [Indexed: 11/10/2022]
Abstract
FrpB is an integral outer membrane protein from the human pathogen Neisseria meningitidis. It is a member of the TonB-dependent transporter family and promotes the uptake of iron across the outer membrane. There is also evidence that FrpB is an antigen and hence a potential component of a vaccine against meningococcal meningitis. FrpB incorporating a polyhistidine tag was overexpressed in Escherichia coli into inclusion bodies. The protein was then solubilized in urea, refolded and purified to homogeneity. Two separate antigenic variants of FrpB were crystallized by sitting-drop vapour diffusion. Crystals of the F5-1 variant diffracted to 2.4 Å resolution and belonged to space group C2, with unit-cell parameters a = 176.5, b = 79.4, c = 75.9 Å, β = 98.3°. Crystal-packing calculations suggested the presence of a monomer in the asymmetric unit. Crystals of the F3-3 variant also diffracted to 2.4 Å resolution and belonged to space group P2(1)2(1)2(1), with unit-cell parameters a = 85.3, b = 104.6, c = 269.1 Å. Preliminary analysis suggested the presence of an FrpB trimer in the asymmetric unit.
Collapse
Affiliation(s)
- Muhammad Saleem
- Michael Smith Building, Faculty of Life Sciences, University of Manchester, Oxford Road, Manchester, England
| | - Stephen M. Prince
- Manchester Interdisciplinary Biocentre, Faculty of Life Sciences, University of Manchester, Princess Street, Manchester, England
| | - Hema Patel
- National Institute for Biological Standards and Control, Health Protection Agency, Blanche Lane, South Mimms, Potters Bar, Hertfordshire, England
| | - Hannah Chan
- National Institute for Biological Standards and Control, Health Protection Agency, Blanche Lane, South Mimms, Potters Bar, Hertfordshire, England
| | - Ian M. Feavers
- National Institute for Biological Standards and Control, Health Protection Agency, Blanche Lane, South Mimms, Potters Bar, Hertfordshire, England
| | - Jeremy P. Derrick
- Michael Smith Building, Faculty of Life Sciences, University of Manchester, Oxford Road, Manchester, England
| |
Collapse
|
31
|
Gorringe AR, Pajón R. Bexsero: a multicomponent vaccine for prevention of meningococcal disease. Hum Vaccin Immunother 2012; 8:174-83. [PMID: 22426368 DOI: 10.4161/hv.18500] [Citation(s) in RCA: 95] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Serogroup B meningococcal (MenB) disease remains a serious public health problem for which a cross-protective vaccine effective against a wide range of MenB isolates has not been available. Novartis Vaccines has developed a vaccine for the prevention of MenB disease that contains four antigenic components: factor H binding protein (fHbp), neisserial adhesin A (NadA), Neisseria heparin binding antigen (NHBA) and outer membrane vesicles from a New Zealand epidemic strain (which provides PorA). This vaccine has been submitted for regulatory review in Europe so it is timely to review the design of the vaccine, results to date in clinical studies and the potential strain coverage provided by the vaccine. It is also critical to discuss the key issues for the long-term success of the vaccine which include strain coverage, potential persistence of protection, potential effects on carriage of MenB strains, potential for escape mutants and cost effectiveness.
Collapse
|
32
|
Zollinger WD, Poolman JT, Maiden MCJ. Meningococcal serogroup B vaccines: will they live up to expectations? Expert Rev Vaccines 2011; 10:559-61. [PMID: 21604975 DOI: 10.1586/erv.11.41] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
33
|
Misra N, Panda PK, Shah K, Sukla LB, Chaubey P. Population coverage analysis of T-Cell epitopes of Neisseria meningitidis serogroup B from Iron acquisition proteins for vaccine design. Bioinformation 2011; 6:255-61. [PMID: 21738325 PMCID: PMC3124689 DOI: 10.6026/97320630006255] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2011] [Accepted: 06/01/2011] [Indexed: 01/10/2023] Open
Abstract
Although the concept of Reverse Vaccinology was first pioneered for sepsis and meningococcal meningitidis causing bacterium, Neisseria meningitides, no broadly effective vaccine against serogroup B meningococcal disease is yet available. In the present investigation, HLA distribution analysis was undertaken to select three most promiscuous T-cell epitopes out of ten computationally validated epitopes of Iron acquisition proteins from Neisseria MC58 by using the population coverage tool of Immune Epitope Database (IEDB). These epitopes have been determined on the basis of their binding ability with maximum number of HLA alleles along with highest population coverage rate values for all the geographical areas studied. The comparative population coverage analysis of moderately immunogenic and high immunogenic peptides suggests that the former may activate T-cell response in a fairly large proportion of people in most geographical areas, thus indicating their potential for development of epitope-based vaccine.
Collapse
Affiliation(s)
- Namrata Misra
- Bioresources Engineering Department, Institute of Minerals and Materials Technology (formerly Regional Research Lab), CSIR, Bhubaneswar-751013, Orissa,India
| | - Prasanna Kumar Panda
- Bioresources Engineering Department, Institute of Minerals and Materials Technology (formerly Regional Research Lab), CSIR, Bhubaneswar-751013, Orissa,India
| | - Kavita Shah
- Environmental Biochemistry and Bioinformatics Lab, Department of Zoology, Mahila Mahavidyalaya, Banaras Hindu University, Varanasi-221 005, India
| | - Lala Bihari Sukla
- Bioresources Engineering Department, Institute of Minerals and Materials Technology (formerly Regional Research Lab), CSIR, Bhubaneswar-751013, Orissa,India
| | - Priyanka Chaubey
- Environmental Biochemistry and Bioinformatics Lab, Department of Zoology, Mahila Mahavidyalaya, Banaras Hindu University, Varanasi-221 005, India
| |
Collapse
|
34
|
Bai X, Findlow J, Borrow R. Recombinant protein meningococcal serogroup B vaccine combined with outer membrane vesicles. Expert Opin Biol Ther 2011; 11:969-85. [PMID: 21615224 DOI: 10.1517/14712598.2011.585965] [Citation(s) in RCA: 85] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
INTRODUCTION Meningococcal infection is a major cause of morbidity and mortality worldwide. Infection with Neisseria meningitidis is most common in young children, teenagers and people with certain medical conditions. Effective polysaccharide and glycoconjugate vaccines for serogroups A, C, W135 and Y have been developed. A similar capsular polysaccharide approach for serogroup B (MenB) has by most been judged as unsuitable, hence, no broad coverage vaccine has been licensed to date. The novel vaccine Bexsero (previously 4CMenB) has been developed and proven safe and immunogenic in clinical trials. AREAS COVERED The authors outline the constituents of Bexsero and immunogenicity and safety data from preclinical and clinical trials published in peer-reviewed literature, meeting proceedings and publicly-available clinical trial websites from 2000 to 2010. EXPERT OPINION Bexsero is well tolerated with a proven safety profile, and has demonstrated a robust immune response across different age groups against a range of diverse MenB strains. These data suggest that Bexsero has the ability to provide protection in infants, who are at the greatest risk of developing meningococcal disease.
Collapse
Affiliation(s)
- Xilian Bai
- Vaccine Evaluation Unit, Health Protection Agency North West, Manchester Medical Microbiology Partnership, Manchester Royal Infirmary, Manchester, M13 9WZ, UK.
| | | | | |
Collapse
|
35
|
Potential of recombinant opa proteins as vaccine candidates against hyperinvasive meningococci. Infect Immun 2011; 79:2810-8. [PMID: 21464082 DOI: 10.1128/iai.01338-10] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Neisseria meningitidis causes half a million cases of septicemia and meningitis globally each year. The opacity (Opa) integral outer membrane proteins from N. meningitidis are polymorphic and highly immunogenic. Particular combinations of Opa proteins are associated with the hyperinvasive meningococcal lineages that have caused the majority of serogroup B and C meningococcal disease in industrialized countries over the last 60 years. For the first time, this genetic structuring of a diverse outer membrane protein family has been used to select a novel combination of representative antigens for immunogenicity testing. Fourteen recombinant Opa variants were produced and used in murine immunizations inducing an increase in specific antimeningococcal total IgG levels. All 14 Opa proteins elicited bactericidal antibodies against at least one hyperinvasive meningococcal isolate, and most isolates from each hyperinvasive lineage were killed by at least one Opa antiserum at a titer of 1:16 or greater. Cross-reactive bactericidal antibody responses were observed among clonal complexes. A theoretical coverage of 90% can be achieved by using a particular combination of 6 Opa proteins against an isolate collection of 227 recent United Kingdom disease cases. This study indicates the potential of Opa proteins to provide broad coverage against multiple meningococcal hyperinvasive lineages.
Collapse
|
36
|
Roy N, Barman S, Ghosh A, Pal A, Chakraborty K, Das SS, Saha DR, Yamasaki S, Koley H. Immunogenicity and protective efficacy of Vibrio cholerae outer membrane vesicles in rabbit model. ACTA ACUST UNITED AC 2011; 60:18-27. [PMID: 20528929 DOI: 10.1111/j.1574-695x.2010.00692.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We show here that oral immunization with purified outer membrane vesicles (OMVs) of Vibrio cholerae induces a prolonged high rise in the protective antibody titre. Rabbit immune sera were vibriocidal against the homologous and against several heterologous V. cholerae strains in vitro. In addition, OMV immunization conferred significant protective immunity against subsequent bacterial challenges. Thirty OMV-immunized rabbits were challenged with different V. cholerae strains; each challenged group contained five immunized and three unimmunized animals. All the immunized rabbits survived bacterial challenges and were healthy after 24 h, except the two from each group that received the SG24 and SG06 strains, respectively, which developed watery diarrhoea. In contrast, all the unimmunized animals developed cholera-like symptoms, with a death toll of eight within 24 h of challenge. This is the first report of the induction of protective immunity by V. cholerae OMVs in a rabbit model (removable intestinal tie-adult rabbit diarrhoea) that mimics the human disease. Finally, OMVs were found to be significantly less reactogenic than the live and the heat-killed bacteria. Our studies show that oral immunization with OMVs of V. cholerae may induce long-term immunity and may be useful as a 'nonliving' vaccine candidate for the future.
Collapse
Affiliation(s)
- Nivedita Roy
- Division of Bacteriology, National Institute of Cholera and Enteric Diseases, Kolkata, India
| | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Fransen F, Stenger RM, Poelen MCM, van Dijken HH, Kuipers B, Boog CJP, van Putten JPM, van Els CACM, van der Ley P. Differential effect of TLR2 and TLR4 on the immune response after immunization with a vaccine against Neisseria meningitidis or Bordetella pertussis. PLoS One 2010; 5:e15692. [PMID: 21203418 PMCID: PMC3009743 DOI: 10.1371/journal.pone.0015692] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2010] [Accepted: 11/22/2010] [Indexed: 02/06/2023] Open
Abstract
Neisseria meningitidis and Bordetella pertussis are Gram-negative bacterial pathogens that can cause serious diseases in humans. N. meningitidis outer membrane vesicle (OMV) vaccines and whole cell pertussis vaccines have been successfully used in humans to control infections with these pathogens. The mechanisms behind their effectiveness are poorly defined. Here we investigated the role of Toll-like receptor (TLR) 2 and TLR4 in the induction of immune responses in mice after immunization with these vaccines. Innate and adaptive immune responses were compared between wild type mice and mice deficient in TLR2, TLR4, or TRIF. TRIF-deficient and TLR4-deficient mice showed impaired immunity after immunization. In contrast, immune responses were not lower in TLR2−/− mice but tended even to be higher after immunization. Together our data demonstrate that TLR4 activation contributes to the immunogenicity of the N. meningitidis OMV vaccine and the whole cell pertussis vaccine, but that TLR2 activation is not required.
Collapse
Affiliation(s)
- Floris Fransen
- Laboratory of Vaccine Research, Netherlands Vaccine Institute, Bilthoven, The Netherlands
- Department of Immunology and Infectious Diseases, Utrecht University, Utrecht, The Netherlands
| | - Rachel M. Stenger
- Laboratory of Vaccine Research, Netherlands Vaccine Institute, Bilthoven, The Netherlands
| | - Martien C. M. Poelen
- Laboratory of Vaccine Research, Netherlands Vaccine Institute, Bilthoven, The Netherlands
| | - Harry H. van Dijken
- Laboratory of Vaccine Research, Netherlands Vaccine Institute, Bilthoven, The Netherlands
| | - Betsy Kuipers
- Laboratory of Vaccine Research, Netherlands Vaccine Institute, Bilthoven, The Netherlands
| | - Claire J. P. Boog
- Laboratory of Vaccine Research, Netherlands Vaccine Institute, Bilthoven, The Netherlands
- Department of Immunology and Infectious Diseases, Utrecht University, Utrecht, The Netherlands
| | - Jos P. M. van Putten
- Department of Immunology and Infectious Diseases, Utrecht University, Utrecht, The Netherlands
| | | | - Peter van der Ley
- Laboratory of Vaccine Research, Netherlands Vaccine Institute, Bilthoven, The Netherlands
- * E-mail:
| |
Collapse
|
38
|
The genetic structure of Neisseria meningitidis populations in Cuba before and after the introduction of a serogroup BC vaccine. INFECTION GENETICS AND EVOLUTION 2010; 10:546-54. [DOI: 10.1016/j.meegid.2010.02.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2009] [Revised: 02/04/2010] [Accepted: 02/05/2010] [Indexed: 11/20/2022]
|
39
|
Abstract
No broadly effective vaccines are available for prevention of group B meningococcal disease, which accounts for >50% of all cases. The group B capsule is an autoantigen and is not a suitable vaccine target. Outer-membrane vesicle vaccines appear to be safe and effective, but serum bactericidal responses in infants are specific for a porin protein, PorA, which is antigenically variable. To broaden protection, outer-membrane vesicle vaccines have been prepared from >1 strain, from mutants with >1 PorA, or from mutants with genetically detoxified endotoxin and overexpressed desirable antigens, such as factor H binding protein. Also, recombinant protein vaccines such as factor H binding protein, given alone or in combination with other antigens, are in late-stage clinical development and may be effective against the majority of group B strains. Thus, the prospects have never been better for developing vaccines for prevention of meningococcal disease, including that caused by group B strains.
Collapse
Affiliation(s)
- Dan M Granoff
- Center for Immunobiology and Vaccine Development, Children's Hospital Oakland Research Institute, Oakland, California, USA.
| |
Collapse
|
40
|
Affiliation(s)
- Lionel K K Tan
- Centre for Molecular Microbiology and Infection, Imperial College London, London, United Kingdom
| | | | | |
Collapse
|
41
|
Sadarangani M, Pollard AJ. Serogroup B meningococcal vaccines—an unfinished story. THE LANCET. INFECTIOUS DISEASES 2010; 10:112-24. [DOI: 10.1016/s1473-3099(09)70324-x] [Citation(s) in RCA: 97] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
42
|
Khalil MK, Borrow R. Serogroup B meningococcal disease during Hajj: Preparing for the worst scenario. Travel Med Infect Dis 2009; 7:231-4. [DOI: 10.1016/j.tmaid.2009.07.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2009] [Revised: 07/14/2009] [Accepted: 07/16/2009] [Indexed: 11/27/2022]
|
43
|
Phase I safety and immunogenicity study of a candidate meningococcal disease vaccine based on Neisseria lactamica outer membrane vesicles. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2009; 16:1113-20. [PMID: 19553555 DOI: 10.1128/cvi.00118-09] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Natural immunity to meningococcal disease in young children is associated epidemiologically with carriage of commensal Neisseria species, including Neisseria lactamica. We have previously demonstrated that outer membrane vesicles (OMVs) from N. lactamica provide protection against lethal challenge in a mouse model of meningococcal septicemia. We evaluated the safety and immunogenicity of an N. lactamica OMV vaccine in a phase I placebo-controlled, double-blinded clinical trial. Ninety-seven healthy young adult male volunteers were randomized to receive three doses of either an OMV vaccine or an Alhydrogel control. Subsequently, some subjects who had received the OMV vaccine also received a fourth dose of OMV vaccine, 6 months after the third dose. Injection site reactions were more frequent in the OMV-receiving group, but all reactions were mild or moderate in intensity. The OMV vaccine was immunogenic, eliciting rises in titers of immunoglobulin G (IgG) against the vaccine OMVs, together with a significant booster response, as determined by an enzyme-linked immunosorbent assay. Additionally, the vaccine induced modest cross-reactive immunity to six diverse strains of serogroup B Neisseria meningitidis, including IgG against meningococcal OMVs, serum bactericidal antibodies, and opsonophagocytic activity. The percentages of subjects showing > or =4-fold rises in bactericidal antibody titer obtained were similar to those previously reported for the Norwegian meningococcal OMV vaccine against the same heterologous meningococcal strain panel. In conclusion, this N. lactamica OMV vaccine is safe and induces a weak but broad humoral immune response to N. meningitidis.
Collapse
|
44
|
Lewis S, Sadarangani M, Hoe JC, Pollard AJ. Challenges and progress in the development of a serogroup B meningococcal vaccine. Expert Rev Vaccines 2009; 8:729-45. [PMID: 19485754 DOI: 10.1586/erv.09.30] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Serogroup B meningococci cause the majority of the meningococcal disease burden in developed countries. Production of an effective and safe vaccine for serogroup B organisms has been hampered by the poor immunogenicity of the capsular polysaccharide that defines this group of bacteria. Previous efforts have focused on outer membrane vesicle vaccines, which have been implemented successfully during clonal outbreaks. However, the search for a universal vaccine against endemic polyclonal serogroup B meningococcal disease continues. In this review, we have highlighted recent development of outer membrane vesicle vaccines and progress in the evaluation of recombinant outer membrane protein vaccines.
Collapse
Affiliation(s)
- Susan Lewis
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford, Centre for Clinical Vaccinology and Tropical Medicine, Churchill Hospital, Headington, Oxford, OX3 7LJ, UK.
| | | | | | | |
Collapse
|
45
|
Holst J, Martin D, Arnold R, Huergo CC, Oster P, O'Hallahan J, Rosenqvist E. Properties and clinical performance of vaccines containing outer membrane vesicles from Neisseria meningitidis. Vaccine 2009; 27 Suppl 2:B3-12. [PMID: 19481313 DOI: 10.1016/j.vaccine.2009.04.071] [Citation(s) in RCA: 297] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Meningococcal outer membrane proteins have been used for over 20 years in more than 80 million doses; either as carrier protein in a Haemophilus influenzae type b (Hib) polysaccharide conjugate vaccine or as vesicle vaccine formulations against meningococcal disease. Conventional wild-type outer membrane vesicle (wtOMV) vaccines are the only formulations that have shown efficacy against serogroup B meningococcal disease. This has been demonstrated in Cuba, Norway and New Zealand; where epidemics, dominated by one particular strain or clone, were causing high rates of disease and wtOMV vaccines have been used for epidemic control. The most significant limitation for widespread use of wtOMV is that the immune response is strain-specific in infants, mostly directed against the immuno-dominant porin protein, PorA. The natural orientation of surface-exposed membrane antigens and the preservation of good physico-chemical stability are key features of OMV vaccines. The efficacy, tolerability and safety of wtOMV vaccines have been well proven. The most recent experience from New Zealand demonstrated a vaccine effectiveness of 80% for children less than 5 years of age, over a period of 24 months. Such results are encouraging for the further use of "tailor-made" OMV vaccines for epidemic control. Moreover, it provides opportunities for development of OMV vaccines with various additional cross-protective potential. There is good reason to believe that in the coming few years the "OMV-concept" will be exploited further and that a number of cross-protective "universal" antigens will be included in vaccines against serogroup B meningococcal disease. The desire to have a global vaccine strategy that enables susceptible individuals to be protected against all the relevant serogroups of meningococcal disease may become a reality.
Collapse
Affiliation(s)
- Johan Holst
- Department of Bacteriology and Immunology, Norwegian Institute of Public Health, Oslo, P.O. Box 4404 Nydalen, Oslo NO-0403, Norway.
| | | | | | | | | | | | | |
Collapse
|
46
|
Immunogenicity and tolerability in infants of a New Zealand epidemic strain meningococcal B outer membrane vesicle vaccine. Pediatr Infect Dis J 2009; 28:385-90. [PMID: 19384263 DOI: 10.1097/inf.0b013e318195205e] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
BACKGROUND An outer membrane vesicle meningococcal vaccine (MeNZB), was developed for the New Zealand epidemic strain of Neisseria meningitidis B:4:P1.7-2,4. METHODS A phase II, randomized, observer blind, controlled study evaluating the safety, reactogenicity, and immunogenicity of MeNZB administered with routine New Zealand immunizations at 6 weeks, 3 months, and 5 months of age (n = 375). Group 1 (n = 250) received 25 mug MeNZB and routine immunizations with a fourth MeNZB dose given at 10 months (n = 51). Group 2 (n = 125) received routine immunizations only. Sero-response was a > or =4-fold rise in vaccine strain serum bactericidal antibody titer compared with baseline or a titer of at least 1:8 for baselines <1:4. Reactogenicity was monitored for 7 days after vaccination. RESULTS Sero-response in Group 1 was achieved in 53% (95% Confidence interval [CI]: 46-59, n = 239) and 69% (95% CI: 54-80, n = 45) with geometric mean antibody titers of 9 (95% CI: 7-10) and 22 (95% CI: 12-39) after the third and fourth doses, respectively. No negative interference by MeNZB on routine immunizations was detected. There were no serious adverse events judged to be vaccine related. CONCLUSIONS In this group of New Zealand infants, 4 MeNZB doses were required to demonstrate titers comparable with those achieved after 3 doses in older children. MeNZB was safe when used concomitantly with routine New Zealand immunizations to 5 months of age.
Collapse
|
47
|
Yang L, Zhang X, Peng J, Zhu Y, Dong J, Xu J, Jin Q. Distribution of surface-protein variants of hyperinvasive meningococci in China. J Infect 2009; 58:358-67. [PMID: 19324418 DOI: 10.1016/j.jinf.2009.02.020] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2008] [Revised: 02/24/2009] [Accepted: 02/25/2009] [Indexed: 11/20/2022]
Abstract
OBJECTIVE Information regarding the different types of FetA and PorB meningococci that circulate in various regions of the world is still scarce. The present study investigated the distribution of FetA and PorB variable region (VR) types among meningococci belonging to hyperinvasive lineages circulating in China. METHODS The approach consisted of genotypic analysis of 201 Neisseria meningitidis strains belonging to hyperinvasive lineages isolated in China during the period 1956-2006. RESULTS Sixteen different PorB types were found, 8 of which were newly identified. Of the 24 different FetA VR types, 3 were determined to be novel. Particular combinations of FetA and PorB types associated with distinct clonal complexes were also observed. Most cases of invasive disease were caused by five individual clones: A: P1.7-1,10: F5-5: ST-3 (cc1) with P3.6,11,10,7 (class 3 PorB protein; VR1-6, VR2-11, VR3-10, and VR4-7); A: P1.20,9: F3-1: ST-5 (cc5) with P3.4,11,10,7; A: P1.20,9: F3-1: ST-5 (cc5) with P3.9,11,10,7; A: P1.20,9: F3-1: ST-7 (cc5) with P3.4,11,10,7; and C: P1.7-2,14: F3-3: ST-4821 (cc4821) with P3.9,15,6,7. CONCLUSION A number of antigen-gene variants and combinations exhibited broad temporal and geographic distributions, although several invasive clones were mainly associated with a specified timeframe. The changes that are increasingly emerging in circulating strains and the prevalent clone replacement describe the molecular epidemiology of meningococcal disease in China. Our findings have implications for both public-health monitoring and further study of this organism.
Collapse
Affiliation(s)
- Li Yang
- State Key Laboratory for Molecular Virology and Genetic Engineering, Institute of Pathogen Biology, Chinese Academy of Medical Sciences, Beijing, China
| | | | | | | | | | | | | |
Collapse
|
48
|
Meningococcal outer membrane vesicle vaccines derived from mutant strains engineered to express factor H binding proteins from antigenic variant groups 1 and 2. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2008; 16:156-62. [PMID: 19109451 DOI: 10.1128/cvi.00403-08] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Meningococcal outer membrane vesicle (OMV) vaccines, which are treated with detergents to decrease endotoxin activity, are safe and effective in humans. However, the vaccines elicit serum bactericidal antibody responses largely directed against PorA, which is antigenically variable. We previously prepared a native (non-detergent-treated) OMV vaccine from a mutant of group B strain H44/76 in which the lpxL1 gene was inactivated, which resulted in penta-acylated lipid A with attenuated endotoxin activity. To enhance protection, we overexpressed factor H binding protein (fHbp) from the antigenic variant 1 group. The vaccine elicited broad serum bactericidal antibody responses in mice against strains with fHbp variant 1 (approximately 70% of group B isolates) but not against strains with variant 2 or 3. In the present study, we constructed a mutant of group B strain NZ98/254 with attenuated endotoxin that expressed both endogenous variant 1 and heterologous fHbp variant 2. A mixture of the two native OMV vaccines from the H44/76 and NZ98/254 mutants stimulated proinflammatory cytokine responses by human peripheral blood mononuclear cells similar to those stimulated by control, detergent-treated OMV vaccines from the wild-type strains. In mice, the mixture of the two native OMV vaccines elicited broad serum bactericidal antibody responses against strains with heterologous PorA and fHbp in the variant 1, 2, or 3 group. By adsorption studies, the principal bactericidal antibody target was determined to be fHbp. Thus, native OMV vaccines from mutants expressing fHbp variants have the potential to be safe for humans and to confer broad protection against meningococcal disease from strains expressing fHbp from each of the antigenic variant groups.
Collapse
|
49
|
Pace D, Cuschieri P, Galea Debono A, Attard-Montalto S. Epidemiology of pathogenic Neisseria meningitidis serogroup B serosubtypes in Malta: Implications for introducing PorA based vaccines. Vaccine 2008; 26:5952-6. [DOI: 10.1016/j.vaccine.2008.08.059] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2008] [Revised: 07/29/2008] [Accepted: 08/31/2008] [Indexed: 10/21/2022]
|
50
|
Davenport V, Groves E, Horton RE, Hobbs CG, Guthrie T, Findlow J, Borrow R, Naess LM, Oster P, Heyderman RS, Williams NA. Mucosal Immunity in Healthy Adults after Parenteral Vaccination with Outer‐Membrane Vesicles fromNeisseria meningitidisSerogroup B. J Infect Dis 2008; 198:731-40. [PMID: 18636953 DOI: 10.1086/590669] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Affiliation(s)
- Victoria Davenport
- Cellular and Molecular Medicine, School of Medical Sciences, University of Bristol, Bristol, United Kingdom
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|