1
|
Zhang B, Jiao W. Biochar facilitated bacterial reduction of Cr(VI) by Shewanella Putrefaciens CN32: Pathways and surface characteristics. ENVIRONMENTAL RESEARCH 2022; 214:113971. [PMID: 35952752 DOI: 10.1016/j.envres.2022.113971] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 06/29/2022] [Accepted: 07/20/2022] [Indexed: 06/15/2023]
Abstract
Biochar can facilitate the microbial reduction of various pollutants in soil and groundwater environments, but its impact on Cr(VI) reduction by dissimilatory metal reducing bacteria (DMRB) remains to be systematically investigated. In this study, we prepared biochars at 500 °C and 700 °C from wheat straw and grass, and investigated the impact of these biochars on Cr(VI) reduction by a model DMRB, Shewanella Putrefaciens CN32 (CN32). Pristine biochars abiotically reduced Cr(VI), which decreased the concentration and toxicity of chromium to CN32 cells, and brought about higher overall Cr(VI) removal extent after CN32 were added sequentially; on the other hand, no enhancement effect were observed when biochars and CN32 were added simultaneously. Further tests between biologically reduced biochars and Cr(VI) revealed that the reaction rates between bioreduced biochars and Cr(VI) are relatively sluggish compared to that of direct Cr(VI) reduction by CN32, which prohibited biochars from directly accelerating the Cr(VI) reduction by CN32 in simultaneous-addition scenario. The relative importance of biochars' surface functional groups and surface areas on their reactivities towards Cr(VI) reduction were also investigated. This study deepened our understanding towards the role of biochar played during bacterial Cr(VI) reduction and could potentially contribute to optimizing the biochar-based Cr(VI) bioremediation strategies.
Collapse
Affiliation(s)
- Bo Zhang
- CAS Key Lab of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Wentao Jiao
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China.
| |
Collapse
|
2
|
Chidiac C, Kim Y, de Lannoy C. Enhanced Pb(II) removal from water using conductive carbonaceous nanomaterials as bacterial scaffolds: An experimental and modelling approach. JOURNAL OF HAZARDOUS MATERIALS 2022; 431:128516. [PMID: 35255332 DOI: 10.1016/j.jhazmat.2022.128516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 02/14/2022] [Accepted: 02/17/2022] [Indexed: 06/14/2023]
Abstract
This study investigated the abilities of electrochemically active bacteria (EAB) as bio-catalysts for Pb(II) bioreduction in an attached growth reactor. Electrically conductive carbon nanofibers (CNF) were used as bacterial scaffolds to facilitate electron transfer between EAB and Pb(II). Our results demonstrated that the CNF attached growth reactor can remove > 80% and > 90% of Pb(II) from solution at 0.5 mg/L and 5.0 mg/L concentrations, respectively, and maintained Pb(II) levels < 0.10 mg/L over repeated Pb(II) dosages dosed at all concentrations. Experimental measurements by SEM-EDX and ICP-OES provided evidence that Pb(II) was reduced to Pb0, suggesting that Pb(II) was adsorbed onto CNFs, and subsequently bioreduced. Numerical modelling was used to estimate Pb(II) concentrations along the CNFs via capturing Pb(II)'s diffusive transport, and the removal mechanisms governed by EAB and CNF adsorption. The model simulation results demonstrated that Pb(II) bioreduction was dominant in the reactor and the significance of Monod kinetics, biofilm thickness and Pb(II) dosage concentration on its removal. This study is the first to prove EAB's ability to treat Pb(II) from contaminated waters in an attached growth configuration. The findings here demonstrate that CNFs can boost biological treatment efficacies in wastewater and/or water treatment to meet stringent water guidelines.
Collapse
Affiliation(s)
- Cassandra Chidiac
- Department of Chemical Engineering, McMaster University, 1280 Main Street West, Hamilton, ON, Canada.
| | - Younggy Kim
- Department of Civil Engineering, McMaster University, Canada.
| | - Charles de Lannoy
- Department of Chemical Engineering, McMaster University, 1280 Main Street West, Hamilton, ON, Canada.
| |
Collapse
|
3
|
Yasir MW, Siddique MBA, Shabbir Z, Ullah H, Riaz L, Nisa WU, Shah AA. Biotreatment potential of co-contaminants hexavalent chromium and polychlorinated biphenyls in industrial wastewater: Individual and simultaneous prospects. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 779:146345. [PMID: 33752007 DOI: 10.1016/j.scitotenv.2021.146345] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Revised: 02/21/2021] [Accepted: 03/03/2021] [Indexed: 05/26/2023]
Abstract
Co-existence of polychlorinated biphenyls (PCBs) and hexavalent chromium (Cr(VI)) in the environment due to effluent from industries has aggravated the pollution problem. Both contaminants can alter chemical interactions, processes and impair enzymatic activities in the ecosystem that results in negative impacts on aquatic and terrestrial life. Previously, research has been performed for the fate and transfer of these contaminants individually, but simultaneous removal approaches have not received much attention. Cr(VI) exists in a highly toxic form in the environment once released, whereas location of chlorine atoms in the ring determines PCBs toxicity. Lower chlorinated compounds are easily degradable whereas as high chlorinated compounds require sequential strategy for transformation. Microorganisms can develop different mechanism to detoxify both pollutants. However, occurrence of multiple contaminants in single system can alter the bioremediation efficiency of bacteria. Use of metal resistance bacterial for the degradation of organic compounds has been widely used bioaugmentation strategy. Along with that use of sorbents/bio sorbents, biosurfactants and phytoremediation approaches have already been well reported. Bioremediation strategy with dual potential to detoxify the Cr(VI) and PCBs would be a probable option for simultaneous biotreatment. Application of bioreactors and biofilms covered organic particles can be utilized as efficient bioaugmentation approach. In this review, biotreatment systems and bacterial oxidative and reductive enzymes/processes are explained and possible biotransformation pathway has been purposed for bioremediation of co-contaminated waters.
Collapse
Affiliation(s)
- Muhammad Wahab Yasir
- Department of Environmental Sciences, PMAS-Arid Agriculture University Rawalpindi, Shamsabad Murree Road, Rawalpindi, 46300, Punjab, Pakistan.
| | - Muhammad Bashir Ahmed Siddique
- Department of Environmental Sciences, PMAS-Arid Agriculture University Rawalpindi, Shamsabad Murree Road, Rawalpindi, 46300, Punjab, Pakistan
| | - Zunera Shabbir
- Department of Agronomy, Horticulture and Plant Science, South Dakota State University, SD 57006, USA.
| | - Habib Ullah
- Department of Environmental Science, Zhejiang University, Hangzhou, Zhejiang 310058, China.
| | - Luqman Riaz
- College of Life Science, Henan Normal University, Xinxiang 453007, China
| | - Waqar-Un- Nisa
- Center for Interdisciplinary Research in Basic Sciences (SA-CIRBS), International Islamic University, Islamabad, Pakistan
| | - Anis Ali Shah
- Department of Botany, University of Narowal, Pakistan
| |
Collapse
|
4
|
Shi LD, Wang Z, Liu T, Wu M, Lai CY, Rittmann BE, Guo J, Zhao HP. Making good use of methane to remove oxidized contaminants from wastewater. WATER RESEARCH 2021; 197:117082. [PMID: 33819663 DOI: 10.1016/j.watres.2021.117082] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 03/13/2021] [Accepted: 03/20/2021] [Indexed: 06/12/2023]
Abstract
Being an energetic fuel, methane is able to support microbial growth and drive the reduction of various electron acceptors. These acceptors include a broad range of oxidized contaminants (e.g., nitrate, nitrite, perchlorate, bromate, selenate, chromate, antimonate and vanadate) that are ubiquitously detected in water environments and pose threats to human and ecological health. Using methane as electron donor to biologically reduce these contaminants into nontoxic forms is a promising solution to remediate polluted water, considering that methane is a widely available and inexpensive electron donor. The understanding of methane-based biological reduction processes and the responsible microorganisms has grown in the past decade. This review summarizes the fundamentals of metabolic pathways and microorganisms mediating microbial methane oxidation. Experimental demonstrations of methane as an electron donor to remove oxidized contaminants are summarized, compared, and evaluated. Finally, the review identifies opportunities and unsolved questions that deserve future explorations for broadening understanding of methane oxidation and promoting its practical applications.
Collapse
Affiliation(s)
- Ling-Dong Shi
- College of Environmental and Resource Science, Zhejiang University, Hangzhou, Zhejiang, China; Zhejiang Province Key Lab Water Pollution Control & Environment, Zhejiang University, Hangzhou, Zhejiang, China
| | - Zhen Wang
- College of Environmental and Resource Science, Zhejiang University, Hangzhou, Zhejiang, China; Zhejiang Province Key Lab Water Pollution Control & Environment, Zhejiang University, Hangzhou, Zhejiang, China
| | - Tao Liu
- Advanced Water Management Centre, The University of Queensland, St Lucia, Brisbane, Queensland 4072, Australia
| | - Mengxiong Wu
- Advanced Water Management Centre, The University of Queensland, St Lucia, Brisbane, Queensland 4072, Australia
| | - Chun-Yu Lai
- Advanced Water Management Centre, The University of Queensland, St Lucia, Brisbane, Queensland 4072, Australia
| | - Bruce E Rittmann
- Biodesign Swette Center for Environmental Biotechnology, Arizona State University, P.O. Box 875701, Tempe, Arizona 85287-5701, U.S.A
| | - Jianhua Guo
- Advanced Water Management Centre, The University of Queensland, St Lucia, Brisbane, Queensland 4072, Australia.
| | - He-Ping Zhao
- College of Environmental and Resource Science, Zhejiang University, Hangzhou, Zhejiang, China; Zhejiang Province Key Lab Water Pollution Control & Environment, Zhejiang University, Hangzhou, Zhejiang, China.
| |
Collapse
|
5
|
External Carbon Source Facilitates Indirect Cr (VI) Bioreduction Process by Anaerobic Sludge Produced from Kitchen Waste. SUSTAINABILITY 2021. [DOI: 10.3390/su13094806] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
This study presented the investigation on indirect Cr (VI) bioreduction process by anaerobic sludge produced from kitchen waste (ASKW) using an external source of glucose and sulfate to favor the reducing environment. These compounds were added at the beginning of the experiment along with 500 mg·L−1 Cr (VI). The system containing 1 g of glucose and 2 g of sulfate attained a higher reduction, which was 10% higher than that of the control experiment. This study indicated that a neutral environment (pH ~7), along with a high release of polysaccharides (PS), improved the removal efficiency by Cr (VI) bioreduction process. Desulfovibrio and Sulfurospirillum (genus level), which accounted for 3% and 1% of the whole microorganism, respectively, were responsible for the sulfidogenic reaction. Additionally, Thermovirga (genus level) reduced from 14% to 11% and 10%. These microorganisms contributed to dominating the indirect Cr (VI) bioreduction process. SEM and FTIR analysis of the sludges obtaining from the indirect Cr (VI) bioreduction systems indicated that the external glucose could facilitate the formation of looser porous structures and richer functional groups of sludges, thus adsorbing more Cr (III) to reduce its toxicity. Meanwhile, the intensity of the hydroxyl bond, which possesses strong reducibility, was much higher after adding external glucose. Chromate reductase gene (chrR) and sulfite reductase gene (dsrA) contributed to the indirect Cr (VI) bioreduction process. These might be the main mechanisms of the external glucose acting on indirect Cr (VI) bioreduction by ASKW.
Collapse
|
6
|
Ng CK, Karahan HE, Loo SCJ, Chen Y, Cao B. Biofilm-Templated Heteroatom-Doped Carbon-Palladium Nanocomposite Catalyst for Hexavalent Chromium Reduction. ACS APPLIED MATERIALS & INTERFACES 2019; 11:24018-24026. [PMID: 31251015 DOI: 10.1021/acsami.9b04095] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
In this study, we report an interdisciplinary and novel strategy toward biofilm engineering for the development of a biofilm-templated heteroatom-doped catalytic system through bioreduction and biofilm matrix-facilitated immobilization of the in situ-formed catalytic nanoparticles followed by controlled pyrolysis. We showed that (i) even under room temperature and bulk aerobic conditions, Shewanella oneidensis MR-1 biofilms reduced Pd(II) to form Pd(0) nanocrystals (∼10 to 20 nm) that were immobilized in the biofilm matrix and in cellular membranes, (ii) the MR-1 biofilms with the immobilized Pd(0) nanocrystals exhibited nanocatalytic activity, (iii) exposure to Pd(II) greatly increased the rate of cell detachment from the biofilm and posed a risk of biofilm dispersal, (iv) controlled pyrolysis (carbonization) of the biofilm led to the formation of a stable heteroatom-doped carbon-palladium (C-Pd) nanocomposite catalyst, and (v) the biofilm-templated C-Pd nanocomposite catalyst exhibited a high Cr(VI) reduction activity and maintained a high reduction rate over multiple catalytic cycles. Considering that bacteria are capable of synthesizing a wide range of metal and metalloid nanoparticles, the biofilm-templated approach for the fabrication of the catalytic C-Pd nanocomposite we have demonstrated here should prove to be widely applicable for the production of different nanocomposites that are of importance to various environmental applications.
Collapse
Affiliation(s)
- Chun Kiat Ng
- Singapore Centre for Environmental Life Sciences Engineering, Interdisciplinary Graduate School , Nanyang Technological University , 637551 Singapore
- Department of Engineering Science , University of Oxford , Oxford OX1 3PJ , United Kingdom
| | - H Enis Karahan
- School of Chemical and Biomedical Engineering , Nanyang Technological University , 637459 Singapore
| | - Say Chye Joachim Loo
- Singapore Centre for Environmental Life Sciences Engineering, Interdisciplinary Graduate School , Nanyang Technological University , 637551 Singapore
| | - Yuan Chen
- The University of Sydney, School of Chemical and Biomolecular Engineering , Sydney , New South Wales 2006 , Australia
| | - Bin Cao
- Singapore Centre for Environmental Life Sciences Engineering, Interdisciplinary Graduate School , Nanyang Technological University , 637551 Singapore
| |
Collapse
|
7
|
Bhattacharya A, Gupta A, Kaur A, Malik D. Alleviation of hexavalent chromium by using microorganisms: insight into the strategies and complications. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2019; 79:411-424. [PMID: 30924796 DOI: 10.2166/wst.2019.060] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
Excessive industrialization and anthropogenic activities have resulted in widespread prevalence of heavy metals including hexavalent chromium in the environment. In addition to toxic properties, Cr(VI) possesses high stability and mobility, which in total makes it included in the list of priority heavy metals; thus it needs to be managed urgently. Among different methods available for remediation of Cr(VI), bioremediation is considered as one of the sustainable methods which could effectively be utilized for controlling Cr(VI) pollution. In this aspect, the treatment of Cr(VI)-containing wastewater originating from industries is noteworthy. The present review thus is an attempt to present a systematic overview dealing with studies on remediation of hexavalent chromium by using microorganisms and their application in treatment of Cr(VI)-containing industrial wastewaters. Various factors affecting the Cr(VI) removal and methods to enhance the bio-treatment are highlighted, which might act as a basis for researchers developing Cr(VI) bioremediation techniques.
Collapse
Affiliation(s)
- Amrik Bhattacharya
- University School of Environment Management, Guru Gobind Singh Indraprastha University, Sector 16-C, Dwarka, New Delhi 110078, India E-mail:
| | - Anshu Gupta
- University School of Environment Management, Guru Gobind Singh Indraprastha University, Sector 16-C, Dwarka, New Delhi 110078, India E-mail:
| | - Amarjeet Kaur
- University School of Environment Management, Guru Gobind Singh Indraprastha University, Sector 16-C, Dwarka, New Delhi 110078, India E-mail:
| | - Darshan Malik
- Shivaji College, University of Delhi, New Delhi 110027, India
| |
Collapse
|
8
|
Wang X, Huang N, Shao J, Hu M, Zhao Y, Huo M. Coupling heavy metal resistance and oxygen flexibility for bioremoval of copper ions by newly isolated Citrobacter freundii JPG1. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2018; 226:194-200. [PMID: 30119044 DOI: 10.1016/j.jenvman.2018.08.042] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Revised: 08/02/2018] [Accepted: 08/07/2018] [Indexed: 06/08/2023]
Abstract
The potential for bioremoval of copper ions was investigated by a novel strain of bacterium Citrobacter freundii JPG1, which was newly isolated from gold mining tailing in China and grew either aerobically or anaerobically. The strain cross-tolerated heavy metals of Ag+, Cd2+, Co2+, Cr6+, Cu2+ and Ni2+ and removed copper under both aerobic and anaerobic conditions with the stress of copper. Under aerobic conditions, the cells grew rapidly and exhibited higher biomass at low copper concentrations (<1 mmol L-1), while the growth of cells was almost completely inhibited at high copper concentrations (2 mmol L-1). However, the cell growths were less affected by copper under anaerobic conditions. Similarly, the copper-removal efficiency was affected by oxygen and the capability of copper removal by anaerobic cells was significantly higher than that of aerobic cells (P < 0.05). The quantitative measurement of extracellular biosorption and intercellular bioaccumulation of copper indicated that biosorption efficiencies for aerobic cells (37%) and anaerobic cells (38%) were similar but the bioaccumulation by anaerobic cells was almost ten-fold higher than that by aerobic cells, indicating bioaccumulation contributed most in copper reduction under anaerobic conditions. Overall, the results suggested the facultative strain C. freundii JPG1 had great potential in the treatment of copper-laden industrial wastewater under both aerobic and anaerobic conditions.
Collapse
Affiliation(s)
- Xiaoyu Wang
- Key Laboratory of Wetland Ecology and Vegetation Restoration of National Environmental Protection, Northeast Normal University, Changchun 130117, PR China; Engineering Lab for Water Pollution Control and Resources, Northeast Normal University, Changchun 130117, PR China.
| | - Ning Huang
- Engineering Lab for Water Pollution Control and Resources, Northeast Normal University, Changchun 130117, PR China.
| | - Jing Shao
- Engineering Lab for Water Pollution Control and Resources, Northeast Normal University, Changchun 130117, PR China.
| | - Mingzhong Hu
- School of Chemical Engineering, Changchun University of Technology, Changchun 130012, PR China.
| | - Yan Zhao
- School of Chemistry and Environmental Engineering, Changchun University of Science and Technology, Changchun 130022, PR China.
| | - Mingxin Huo
- Engineering Lab for Water Pollution Control and Resources, Northeast Normal University, Changchun 130117, PR China.
| |
Collapse
|
9
|
Gaikwad MS, Balomajumder C. Removal of Cr(VI) and fluoride by membrane capacitive deionization with nanoporous and microporous Limonia acidissima (wood apple) shell activated carbon electrode. Sep Purif Technol 2018. [DOI: 10.1016/j.seppur.2017.12.006] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
10
|
Loloei M, Rezaee A, Roohaghdam AS, Aliofkhazraei M. Conductive microbial cellulose as a novel biocathode for Cr (VI) bioreduction. Carbohydr Polym 2017; 162:56-61. [DOI: 10.1016/j.carbpol.2017.01.046] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2016] [Revised: 01/09/2017] [Accepted: 01/10/2017] [Indexed: 11/24/2022]
|
11
|
Gu L, Huang B, Xu Z, Ma X, Pan X. Dissolved organic matter as a terminal electron acceptor in the microbial oxidation of steroid estrogen. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2016; 218:26-33. [PMID: 27543904 DOI: 10.1016/j.envpol.2016.08.028] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2016] [Revised: 07/13/2016] [Accepted: 08/09/2016] [Indexed: 06/06/2023]
Abstract
Steroid estrogen in natural waters may be biodegraded by quinone-reducing bacteria, dissolved organic matter (DOM) may serve as a terminal electron acceptor in this process. The influence of temperature, pH, dissolved oxygen and light illumination on the reduction efficiency of anthraquinone-2-disulfonate (AQS) was investigated using 17β-estradiol (E2) as the target species. The optimum reduction conditions were found to be in the dark under anaerobic conditions at pH 8.0 and 30 °C. Quinone-reducing bacteria can use the quinone structure of DOM components as a terminal electron acceptor coupling with microbial growth to promote biodegradation. Compared with other DOM models, AQS best stimulated E2 biodegradation and the mediating effect was improved as the AQS concentration increased from 0 to 0.5 mM. However, further increase had an inhibiting effect. Natural DOM containing lake humic acid (LHA) and lake fulvic acid (LFA) had a very important accelerating effect on the degradation of E2, the action mechanism of which was consistent with that defined using DOM models. The natural DOM contained more aromatic compounds, demonstrating their greater electron-accepting capacity and generally more effective support for microorganism growth and E2 oxidation than Aldrich humic acid (HA). These results provide a more comprehensive understanding of microbial degradation of steroid estrogens in anaerobic environments and confirm DOM as an important terminal electron acceptor in pollutant transformation.
Collapse
Affiliation(s)
- Lipeng Gu
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, Yunnan 650500, PR China
| | - Bin Huang
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, Yunnan 650500, PR China.
| | - Zhixiang Xu
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, Yunnan 650500, PR China
| | - Xiaodong Ma
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, Yunnan 650500, PR China
| | - Xuejun Pan
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, Yunnan 650500, PR China
| |
Collapse
|
12
|
Production of Manganese Oxide Nanoparticles by Shewanella Species. Appl Environ Microbiol 2016; 82:5402-9. [PMID: 27342559 DOI: 10.1128/aem.00663-16] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Accepted: 06/21/2016] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED Several species of the bacterial genus Shewanella are well-known dissimilatory reducers of manganese under anaerobic conditions. In fact, Shewanella oneidensis is one of the most well studied of all metal-reducing bacteria. In the current study, a number of Shewanella strains were tested for manganese-oxidizing capacity under aerobic conditions. All were able to oxidize Mn(II) and to produce solid dark brown manganese oxides. Shewanella loihica strain PV-4 was the strongest oxidizer, producing oxides at a rate of 20.3 mg/liter/day and oxidizing Mn(II) concentrations of up to 9 mM. In contrast, S. oneidensis MR-1 was the weakest oxidizer tested, producing oxides at 4.4 mg/liter/day and oxidizing up to 4 mM Mn(II). Analysis of products from the strongest oxidizers, i.e., S loihica PV-4 and Shewanella putrefaciens CN-32, revealed finely grained, nanosize, poorly crystalline oxide particles with identical Mn oxidation states of 3.86. The biogenic manganese oxide products could be subsequently reduced within 2 days by all of the Shewanella strains when culture conditions were made anoxic and an appropriate nutrient (lactate) was added. While Shewanella species were detected previously as part of manganese-oxidizing consortia in natural environments, the current study has clearly shown manganese-reducing Shewanella species bacteria that are able to oxidize manganese in aerobic cultures. IMPORTANCE Members of the genus Shewanella are well known as dissimilatory manganese-reducing bacteria. This study shows that a number of species from Shewanella are also capable of manganese oxidation under aerobic conditions. Characterization of the products of the two most efficient oxidizers, S. loihica and S. putrefaciens, revealed finely grained, nanosize oxide particles. With a change in culture conditions, the manganese oxide products could be subsequently reduced by the same bacteria. The ability of Shewanella species both to oxidize and to reduce manganese indicates that the genus plays a significant role in the geochemical cycling of manganese. Due to the high affinity of manganese oxides for binding other metals, these bacteria may also contribute to the immobilization and release of other metals in the environment.
Collapse
|
13
|
Thacher R, Hsu L, Ravindran V, Nealson KH, Pirbazari M. Modeling the transport and bioreduction of hexavalent chromium in aquifers: Influence of natural organic matter. Chem Eng Sci 2015. [DOI: 10.1016/j.ces.2015.08.011] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
14
|
Jin X, Wang F, Gu C, Yang X, Kengara FO, Bian Y, Song Y, Jiang X. The interactive biotic and abiotic processes of DDT transformation under dissimilatory iron-reducing conditions. CHEMOSPHERE 2015; 138:18-24. [PMID: 26025430 DOI: 10.1016/j.chemosphere.2015.05.020] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2014] [Revised: 05/04/2015] [Accepted: 05/10/2015] [Indexed: 06/04/2023]
Abstract
The objective of the study was to elucidate the biotic and abiotic processes under dissimilatory iron reducing conditions involved in reductive dechlorination and iron reduction. DDT transformation was investigated in cultures of Shewanella putrefaciens 200 with/without α-FeOOH. A modified first-order kinetics model was developed and described DDT transformation well. Both the α-FeOOH reduction rate and the dechlorination rate of DDT were positively correlated to the biomass. Addition of α-FeOOH enhanced reductive dechlorination of DDT by favoring the cell survival and generating Fe(II) which was absorbed on the surface of bacteria and iron oxide. 92% of the absorbed Fe(II) was Na-acetate (1M) extractable. However, α-FeOOH also played a negative role of competing for electrons as reflected by the dechlorination rate of DDT was inhibited when increasing the α-FeOOH from 1 g L(-1) to 5 g L(-1). DDT was measured to be toxic to S. putrefaciens 200. The metabolites DDD, DDE and DDMU were recalcitrant to S. putrefaciens 200. The results suggested that iron oxide was not the key factor to promote the dissipation of DDX (DDT and the metabolites), whereas the one-electron reduction potential (E1) of certain organochlorines is the main factor and that the E1 higher than the threshold of the reductive driving forces of DIRB probably ensures the occur of reductive dechlorination.
Collapse
Affiliation(s)
- Xin Jin
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Fang Wang
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Chenggang Gu
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Xinglun Yang
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | | | - Yongrong Bian
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Yang Song
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Xin Jiang
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China.
| |
Collapse
|
15
|
Rahman A, Nahar N, Nawani NN, Jass J, Hossain K, Saud ZA, Saha AK, Ghosh S, Olsson B, Mandal A. Bioremediation of hexavalent chromium (VI) by a soil-borne bacterium, Enterobacter cloacae B2-DHA. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART A, TOXIC/HAZARDOUS SUBSTANCES & ENVIRONMENTAL ENGINEERING 2015; 50:1136-1147. [PMID: 26191988 DOI: 10.1080/10934529.2015.1047670] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Chromium and chromium containing compounds are discharged into the nature as waste from anthropogenic activities, such as industries, agriculture, forest farming, mining and metallurgy. Continued disposal of these compounds to the environment leads to development of various lethal diseases in both humans and animals. In this paper, we report a soil borne bacterium, B2-DHA that can be used as a vehicle to effectively remove chromium from the contaminated sources. B2-DHA is resistant to chromium with a MIC value of 1000 µg mL(-1) potassium chromate. The bacterium has been identified as a Gram negative, Enterobacter cloacae based on biochemical characteristics and 16S rRNA gene analysis. TOF-SIMS and ICP-MS analyses confirmed intracellular accumulation of chromium and thus its removal from the contaminated liquid medium. Chromium accumulation in cells was 320 µg/g of cells dry biomass after 120-h exposure, and thus it reduced the chromium concentration in the liquid medium by as much as 81%. Environmental scanning electron micrograph revealed the effect of metals on cellular morphology of the isolates. Altogether, our results indicate that B2-DHA has the potential to reduce chromium significantly to safe levels from the contaminated environments and suggest the potential use of this bacterium in reducing human exposure to chromium, hence avoiding poisoning.
Collapse
Affiliation(s)
- Aminur Rahman
- a Systems Biology Research Center, School of Bioscience, University of Skövde , Skövde , Sweden
| | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Thatoi H, Das S, Mishra J, Rath BP, Das N. Bacterial chromate reductase, a potential enzyme for bioremediation of hexavalent chromium: a review. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2014; 146:383-399. [PMID: 25199606 DOI: 10.1016/j.jenvman.2014.07.014] [Citation(s) in RCA: 246] [Impact Index Per Article: 24.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2014] [Revised: 07/03/2014] [Accepted: 07/10/2014] [Indexed: 05/14/2023]
Abstract
Hexavalent chromium is mobile, highly toxic and considered as a priority environmental pollutant. Chromate reductases, found in chromium resistant bacteria are known to catalyse the reduction of Cr(VI) to Cr(III) and have recently received particular attention for their potential use in bioremediation process. Different chromate reductases such as ChrR, YieF, NemA and LpDH, have been identified from bacterial sources which are located either in soluble fractions (cytoplasm) or bound to the membrane of the bacterial cell. The reducing conditions under which these enzymes are functional can either be aerobic or anaerobic or sometimes both. Enzymatic reduction of Cr(VI) to Cr(III) involves transfer of electrons from electron donors like NAD(P)H to Cr(VI) and simultaneous generation of reactive oxygen species (ROS). Based on the steps involved in electron transfer to Cr(VI) and the subsequent amount of ROS generated, two reaction mechanisms, namely, Class I "tight" and Class II "semi tight" have been proposed. The present review discusses on the types of chromate reductases found in different bacteria, their mode of action and potential applications in bioremediation of hexavalent chromium both under free and immobilize conditions. Besides, techniques used in characterization of the Cr (VI) reduced products were also discussed.
Collapse
Affiliation(s)
- Hrudayanath Thatoi
- Department of Biotechnology, College of Engineering and Technology, Biju Patnaik University of Technology, Techno-Campus, Ghatikia, Bhubaneswar 751003, Odisha, India.
| | - Sasmita Das
- Department of Biotechnology, College of Engineering and Technology, Biju Patnaik University of Technology, Techno-Campus, Ghatikia, Bhubaneswar 751003, Odisha, India
| | - Jigni Mishra
- Department of Biotechnology, College of Engineering and Technology, Biju Patnaik University of Technology, Techno-Campus, Ghatikia, Bhubaneswar 751003, Odisha, India
| | - Bhagwat Prasad Rath
- Department of Biotechnology, College of Engineering and Technology, Biju Patnaik University of Technology, Techno-Campus, Ghatikia, Bhubaneswar 751003, Odisha, India
| | - Nigamananda Das
- Department of Chemistry, North Orissa University, Takatpur, Baripada 757003, Odisha, India
| |
Collapse
|
17
|
Mabrouk MEM, Arayes MA, Sabry SA. Hexavalent chromium reduction by chromate-resistant haloalkaliphilic Halomonas sp. M-Cr newly isolated from tannery effluent. BIOTECHNOL BIOTEC EQ 2014; 28:659-667. [PMID: 26740769 PMCID: PMC4684053 DOI: 10.1080/13102818.2014.937092] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2013] [Accepted: 02/12/2014] [Indexed: 10/25/2022] Open
Abstract
The current study aimed to isolate and characterize a chromate-resistant bacterium from tannery effluent, able to reduce Cr(VI) aerobically at high pH and salinity. Environmental contamination by hexavalent chromium, Cr(VI), presents a serious public health problem. Enrichment led to the isolation of 12 bacteria displaying different degrees of chromate reduction. Phenotypic characterization and phylogenetic analysis based on 16S rDNA sequence comparison indicated that the most potent strain belonged to the genus Halomonas. The new strain designated as Halomonas sp. M-Cr was able to reduce 82% of 50 mg L-1 Cr(VI) in 48 h, concomitant with discolouring of yellow colour of the medium and formation of white insoluble precipitate of Cr(III). It exhibited growth up to 3500 mg L-1 Cr(VI), 20% NaCl and showed strong Cr(VI) reduction under alkaline condition, pH 10. Scanning electron microscopy revealed precipitation of chromium hydroxide on bacterial cell surfaces, which showed characteristic peak of chromium in energy-dispersive X-ray analysis. Plackett-Burman design was used to evaluate the influence of related parameters for enhancing Cr(VI) reduction. Glucose, yeast extract and KH2PO 4 were confirmed as significant variables in the medium. Data suggest Halomonas sp. M-Cr as a promising candidate for bioremediation of Cr(VI) contaminated effluents particularly in saline and alkaline environments. Up to our knowledge, this is the first report on isolation of haloalkaliphilic Halomonas sp. from tannery effluent.
Collapse
Affiliation(s)
- Mona E M Mabrouk
- Botany Department, Faculty of Science, Damanhour University , Damanhour , Egypt
| | - Mervat A Arayes
- Botany Department, Faculty of Science, Damanhour University , Damanhour , Egypt
| | - Soraya A Sabry
- Botany and Microbiology Department, Faculty of Science, Alexandria University , Alexandria , Egypt
| |
Collapse
|
18
|
Novotnik B, Zuliani T, Ščančar J, Milačič R. Inhibition of the nitrification process in activated sludge by trivalent and hexavalent chromium, and partitioning of hexavalent chromium between sludge compartments. CHEMOSPHERE 2014; 105:87-94. [PMID: 24462082 DOI: 10.1016/j.chemosphere.2013.12.096] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2013] [Revised: 12/01/2013] [Accepted: 12/25/2013] [Indexed: 06/03/2023]
Abstract
The input of wastewater treatment plants (WWTPs) may contain high concentrations of Cr(III) and Cr(VI), which can affect nitrogen removal. In the present study the influence of different Cr(III) and Cr(VI) concentrations towards activated sludge nitrification was studied. To better understand the mechanisms of Cr(VI) toxicity, its reduction, adsorption and uptake in activated sludge was investigated in a batch growth system. Quantification of Cr(VI) was performed by speciated isotope dilution inductively coupled plasma mass spectrometry. It was found that Cr(VI) concentrations above 1.0 mg L(-1) and Cr(III) concentrations higher than 50 mg L(-1) negatively affected nitrification. Speciation studies indicated almost complete reduction of Cr(VI) after 24h of incubation when Cr(VI) concentrations were lower than 2.5 mg L(-1), whereas for Cr(VI) added to 5 mg L(-1) around 40% remained unreduced. The study of the partitioning of Cr in the activated sludge was performed by the addition of Cr(VI) in concentrations of 2.5 and 5.0 mg L(-1). Results revealed that Cr was allocated mainly within the intercellular compartments, whereas intracellular and adsorbed Cr represented less than 0.1% of the Cr sludge concentrations. Cr(VI) was reduced in all compartments, the most efficiently (about 94%) within the intracellular and intercellular fractions. The extent of reduction of adsorbed Cr was 92% and 80% for 2.5 and 5.0mg of Cr(VI) L(-1), respectively. The results of present investigation provide a new insight into the toxicity of Cr species towards activated sludge nitrification, which is of significant importance for the management of WWTPs in order to prevent them from inflows containing harmful Cr(VI) concentrations.
Collapse
Affiliation(s)
- Breda Novotnik
- Department of Environmental Sciences, Jožef Stefan Institute, Jamova 39, 1000 Ljubljana, Slovenia; Jožef Stefan International Postgraduate School, Jamova 39, 1000 Ljubljana, Slovenia
| | - Tea Zuliani
- Department of Environmental Sciences, Jožef Stefan Institute, Jamova 39, 1000 Ljubljana, Slovenia
| | - Janez Ščančar
- Department of Environmental Sciences, Jožef Stefan Institute, Jamova 39, 1000 Ljubljana, Slovenia; Jožef Stefan International Postgraduate School, Jamova 39, 1000 Ljubljana, Slovenia
| | - Radmila Milačič
- Department of Environmental Sciences, Jožef Stefan Institute, Jamova 39, 1000 Ljubljana, Slovenia; Jožef Stefan International Postgraduate School, Jamova 39, 1000 Ljubljana, Slovenia.
| |
Collapse
|
19
|
Disruption of putrescine biosynthesis in Shewanella oneidensis enhances biofilm cohesiveness and performance in Cr(VI) immobilization. Appl Environ Microbiol 2013; 80:1498-506. [PMID: 24362428 DOI: 10.1128/aem.03461-13] [Citation(s) in RCA: 70] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Although biofilm-based bioprocesses have been increasingly used in various applications, the long-term robust and efficient biofilm performance remains one of the main bottlenecks. In this study, we demonstrated that biofilm cohesiveness and performance of Shewanella oneidensis can be enhanced through disrupting putrescine biosynthesis. Through random transposon mutagenesis library screening, one hyperadherent mutant strain, CP2-1-S1, exhibiting an enhanced capability in biofilm formation, was obtained. Comparative analysis of the performance of biofilms formed by S. oneidensis MR-1 wild type (WT) and CP2-1-S1 in removing dichromate (Cr2O7(2-)), i.e., Cr(VI), from the aqueous phase showed that, compared with the WT biofilms, CP2-1-S1 biofilms displayed a substantially lower rate of cell detachment upon exposure to Cr(VI), suggesting a higher cohesiveness of the mutant biofilms. In addition, the amount of Cr(III) immobilized by CP2-1-S1 biofilms was much larger, indicating an enhanced performance in Cr(VI) bioremediation. We further showed that speF, a putrescine biosynthesis gene, was disrupted in CP2-1-S1 and that the biofilm phenotypes could be restored by both genetic and chemical complementations. Our results also demonstrated an important role of putrescine in mediating matrix disassembly in S. oneidensis biofilms.
Collapse
|
20
|
Long D, Tang X, Cai K, Chen G, Chen L, Duan D, Zhu J, Chen Y. Cr(VI) reduction by a potent novel alkaliphilic halotolerant strain Pseudochrobactrum saccharolyticum LY10. JOURNAL OF HAZARDOUS MATERIALS 2013; 256-257:24-32. [PMID: 23669787 DOI: 10.1016/j.jhazmat.2013.04.020] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2012] [Revised: 03/21/2013] [Accepted: 04/15/2013] [Indexed: 06/02/2023]
Abstract
A novel Cr(VI)-reducing strain, Pseudochrobactrum saccharolyticum LY10, was isolated and characterized for its high Cr(VI)-reducing ability. Strain LY10 had typical characteristics of alkali-tolerance and halotolerance. Kinetic analysis indicated that the maximum reduction rate was achieved under optimum conditions with initial pH 8.3, 20gL(-1) NaCl, 55mgL(-1) Cr(VI), and 1.47×10(9)cellsmL(-1) of cell concentration. Further mechanism studies verified that the removal of Cr(VI) was mainly achieved by a metabolism-dependent bioreduction process. Strain LY10 accumulated chromium both in and around the cells, with cell walls acting as the major binding sites for chromium. X-ray absorption near-edge structure (XANES) analysis further confirmed that the chromium immobilized by the cells was in the Cr(III) state. In the present study, Pseudochrobactrum saccharolyticum was, for the first time, reported to be a Cr(VI)-reducing bacteria. Results from this research would provide a potential candidate for bioremediation of Cr(VI)-contaminated environments, especially alkaline and saline milieus with Cr(VI) at low-to-mid concentrations.
Collapse
Affiliation(s)
- Dongyan Long
- Institute of Environmental Science and Technology, Zhejiang University, Yuhangtang Road 388, Hangzhou, 310058, Zhejiang, PR China
| | | | | | | | | | | | | | | |
Collapse
|
21
|
Narayani M, Vidya Shetty K. Reduction of hexavalent chromium by a novelOchrobactrumsp. - microbial characteristics and reduction kinetics. J Basic Microbiol 2013; 54:296-305. [DOI: 10.1002/jobm.201200183] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2012] [Accepted: 10/06/2012] [Indexed: 11/10/2022]
Affiliation(s)
- M. Narayani
- National Institute of Technology Karnataka Surathkal; Srinivasnagar, Karnataka India
| | - K. Vidya Shetty
- National Institute of Technology Karnataka Surathkal; Srinivasnagar, Karnataka India
| |
Collapse
|
22
|
Katsaveli K, Vayenas D, Tsiamis G, Bourtzis K. Bacterial diversity in Cr(VI) and Cr(III)-contaminated industrial wastewaters. Extremophiles 2012; 16:285-96. [PMID: 22258276 DOI: 10.1007/s00792-012-0429-0] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2011] [Accepted: 01/05/2012] [Indexed: 11/28/2022]
Abstract
The bacterial community structure of a chromium water bath, a chromium drainage waste system, a chromium pretreatment tank, and a trivalent chromium precipitation tank from the Hellenic Aerospace Industry S.A. was assessed using 16S rRNA libraries and a high-density DNA microarray (PhyloChip). 16S rRNA libraries revealed a bacterial diversity consisting of 14 distinct operational taxonomic units belonging to five bacterial phyla: Alphaproteobacteria, Betaproteobacteria, Gammaproteobacteria, Actinobacteria, and Bacteroidetes. However, employing a novel microarray-based approach (PhyloChip), a high bacterial diversity consisting of 30 different phyla was revealed, with representatives of 181 different families. This made it possible to identify a core set of genera present in all wastewater treatment stages examined, consisting of members of Alphaproteobacteria, Betaproteobacteria, Gammaproteobacteria, Deltaproteobacteria, Epsilonproteobacteria, and Bacteroidetes. In the chromium pretreatment tank, where the concentration of Cr(VI) is high (2.3 mg/l), we identified the presence of Pseudomonadales, Actinomycetales, and Enterobacteriales in abundance. In the chromium precipitation tank, where the concentration of Cr(III) is high, the dominant bacteria consortia were replaced by members of Rhodocyclales and Chloroflexi. The bacterial community structure changed significantly with changes in the chromium concentration. This in-depth analysis should prove useful for the design and development of improved bioremediation strategies.
Collapse
Affiliation(s)
- Katerina Katsaveli
- Department of Environmental and Natural Resources Management, University of Ioannina, 2 Seferi St., 30100, Agrinio, Greece.
| | | | | | | |
Collapse
|
23
|
Senderovich Y, Halpern M. Bacterial community composition associated with chironomid egg masses. JOURNAL OF INSECT SCIENCE (ONLINE) 2012; 12:149. [PMID: 23461272 PMCID: PMC3646614 DOI: 10.1673/031.012.14901] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2011] [Accepted: 06/06/2012] [Indexed: 05/22/2023]
Abstract
Chironomids (Diptera: Chironomidae) are the most widely distributed and often the most abundant insect in freshwater. They undergo a complete metamorphosis of four life stages, of which the egg, larva, and pupae are aquatic and the adult is terrestrial. Chironomid egg masses were found to be natural reservoirs of Vibrio cholerae and Aeromonas species. To expand the knowledge of the endogenous bacterial community associated with chironomid egg masses, denaturing gradient gel electrophoresis and clone analysis of 16S rRNA gene libraries were used in this study. Bacterial community composition associated with chironomid egg masses was found to be stable among different sampling periods. Cloned libraries of egg masses revealed that about 40% of the clones were related to bacteria known to degrade various toxicants. These findings were further supported when bacterial species that showed resistance to different toxic metals were isolated from egg masses and larval samples. Chironomids are found under a wide range of water conditions and are able to survive pollutants. However, little is known about their protective mechanisms under these conditions. Chironomid egg masses are inhabited by a stable endogenous bacterial community, which may potentially play a role in protecting chironomids from toxicants in polluted environments. Further study is needed to support this hypothesis.
Collapse
Affiliation(s)
- Yigal Senderovich
- Department of Evolutionary and Environmental Biology, Faculty of Natural Sciences, University of Haifa, Mount Carmel, Haifa 31905, Israel
| | - Malka Halpern
- Department of Evolutionary and Environmental Biology, Faculty of Natural Sciences, University of Haifa, Mount Carmel, Haifa 31905, Israel
- Department of Biology and Environment, Faculty of Natural Sciences, University of Haifa, Oranim, Tivon 36006, Israel
| |
Collapse
|
24
|
Sayel H, Bahafid W, Tahri Joutey N, Derraz K, Fikri Benbrahim K, Ibnsouda Koraichi S, El Ghachtouli N. Cr(VI) reduction by Enterococcus gallinarum isolated from tannery waste-contaminated soil. ANN MICROBIOL 2011. [DOI: 10.1007/s13213-011-0372-9] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
25
|
Gnanamani A, Kavitha V, Radhakrishnan N, Suseela Rajakumar G, Sekaran G, Mandal A. Microbial products (biosurfactant and extracellular chromate reductase) of marine microorganism are the potential agents reduce the oxidative stress induced by toxic heavy metals. Colloids Surf B Biointerfaces 2010; 79:334-9. [DOI: 10.1016/j.colsurfb.2010.04.007] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2010] [Revised: 04/10/2010] [Accepted: 04/13/2010] [Indexed: 10/19/2022]
|
26
|
Caravelli AH, Zaritzky NE. About the performance of Sphaerotilus natans to reduce hexavalent chromium in batch and continuous reactors. JOURNAL OF HAZARDOUS MATERIALS 2009; 168:1346-1358. [PMID: 19345486 DOI: 10.1016/j.jhazmat.2009.03.018] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2008] [Revised: 03/03/2009] [Accepted: 03/04/2009] [Indexed: 05/27/2023]
Abstract
The hexavalent chromium biological reduction constitutes a safe and economical detoxification procedure of wastewaters containing Cr(VI). However, little research has been done to evaluate Cr(VI) tolerance and reduction capacity of microbial cultures under different growth conditions. The aims of this work were (a) to evaluate the capacity of Sphaerotilus natans to reduce Cr(VI) to Cr(III) in a continuous system limited in carbon and energy source or in nitrogen source, (b) to evaluate the toxic effect of Cr(VI) on this microorganism, (c) to carry out a complete analysis of Cr(VI) reduction by S. natans not only in continuous regime but also in batch system, and (d) to model the obtained results mathematically. S. natans exhibited great resistance to Cr(VI) (19-78 mg l(-1)) and optimal growth in continuous and batch systems using a mineral medium supplemented only with citric acid as organic substrate. In carbon- and energy-limited continuous systems, a maximum percentual decrease in Cr(VI) by 13% was reached for low influent Cr(VI) concentration (4.3-5.32 mg Cr(VI)l(-1)); the efficiency of the process did not notoriously increase as the length of cellular residence time was increased from 4.16 to 50h. A nitrogen-limited continuous operation with a cellular residence time of 28.5h resulted in a Cr(VI) decrease of approximately 26-32%. In batch system, a mathematical model allowed to predict the Cr(VI) concentration as a function of time and the ratio between the initial Cr(VI) concentration and that of the biomass. High concentrations of initial Cr(VI) and biomass produced the highest performance of the process of Cr(VI) reduction reached in batch system, aspects which should be considered in detoxification strategies of wastewaters.
Collapse
Affiliation(s)
- Alejandro H Caravelli
- Centro de Investigación y Desarrollo en Criotecnología de Alimentos (CIDCA), CCT - CONICET - La Plata Fac, Ciencias Exactas, Universidad Nacional de La Plata, 47 y 116 La Plata, Argentina.
| | | |
Collapse
|
27
|
Kinetic Study and Mathematical Modeling of Chromium(VI) Reduction and Microorganism Growth Under Mixed Culture. Curr Microbiol 2009; 59:565-71. [DOI: 10.1007/s00284-009-9478-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2009] [Accepted: 07/27/2009] [Indexed: 11/25/2022]
|
28
|
Chai LY, Huang SH, Yang ZH, Peng B, Huang Y, Chen YH. Hexavalent chromium reduction by Pannonibacter phragmitetus BB isolated from soil under chromium-containing slag heap. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART A, TOXIC/HAZARDOUS SUBSTANCES & ENVIRONMENTAL ENGINEERING 2009; 44:615-622. [PMID: 19337925 DOI: 10.1080/10934520902784690] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
The objective of this study was to find an indigenous Cr(VI)-reducing bacterium that can effectively be used for Cr(VI) remediation in the contaminated soils. The results showed that one isolate from soil under a chromium-containing slag heap at a steel-alloy factory in China had a strong ability of reducing Cr(VI). It can completely reduce 500 mg L(-1) Cr (VI) within 24 h. Based on 16S rRNA gene sequence and similarity analysis, this isolate was identified as Pannonibacter phragmitetus and assigned as strain BB. Images of scanning electron microscopy (SEM) indicated that the cell surface of P. phragmitetus BB remained intact without cell rupture under 500 mg L(-1) Cr (VI) stress. The transmission electron microscopy (TEM) patterns showed that the Cr(VI) reduction products were both bound to the outer surface of the cells and dispersed in the culture medium, thereby suggesting that the reduction of Cr (VI) occurred extracellularly. Elemental analysis by energy dispersive X-ray (EDX) revealed that Cr was the major element comprising the reduction product. Furthermore, X-ray photoelectron spectroscope (XPS) verified that the Cr(VI) reduction product was Cr(III) compounds.
Collapse
Affiliation(s)
- Li Y Chai
- Institute of Environmental Science & Engineering, School of Metallurgical Science & Engineering, Central South University, Changsha, Hunan, China
| | | | | | | | | | | |
Collapse
|
29
|
He Z, Gao F, Sha T, Hu Y, He C. Isolation and characterization of a Cr(VI)-reduction Ochrobactrum sp. strain CSCr-3 from chromium landfill. JOURNAL OF HAZARDOUS MATERIALS 2009; 163:869-873. [PMID: 18722054 DOI: 10.1016/j.jhazmat.2008.07.041] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2008] [Revised: 05/25/2008] [Accepted: 07/09/2008] [Indexed: 05/26/2023]
Abstract
A strain CSCr-3 with high Cr(VI)-reducing ability under alkaline conditions was isolated from a chromium landfill and identified as Ochrobactrum sp. on the basis of 16S rRNA gene sequence analysis. The cells were rod shaped, Gram-negative and motile. The physiological characteristics and Cr(VI)-reduction of the strain were also studied. The results showed that the Ochrobactrum sp. strain CSCr-3 was tolerant to very high concentration of Cr(VI) (800 mg/L) and capable of reducing different forms of Cr(VI) (chromate and dichromate), under a wide range of temperatures (25-40 degrees C) and pH (7-11) with optimum at 35 degrees C and initial pH 10. Higher rates of Cr(VI)-reduction were observed with higher initial cell and Cr(VI) concentrations. Strain CSCr-3 could reduce Cr(VI) very efficiently over a wide range of Cr(VI) concentrations (100-800 mg/L). The addition of glucose caused a dramatic increase in Cr(VI)-reduction by Ochrobactrum sp. CSCr-3, while the presence of sulfate or nitrate had no influence. The presence of other metals, such as Cu, Co, Mn, etc., significantly stimulated Cr(VI)-reduction ability by the strain CSCr-3. The results obtained in this study have significance for the bioremediation of chromate pollution.
Collapse
Affiliation(s)
- Zhiguo He
- School of Minerals Processing and Bioengineering, Central South University, Changsha, 410083, PR China
| | | | | | | | | |
Collapse
|
30
|
Elangovan R, Philip L, Chandraraj K. Hexavalent Chromium Reduction by Free and Immobilized Cell-free Extract of Arthrobacter rhombi-RE. Appl Biochem Biotechnol 2009; 160:81-97. [DOI: 10.1007/s12010-008-8515-6] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2008] [Accepted: 12/29/2008] [Indexed: 10/21/2022]
|
31
|
Zhu W, Chai L, Ma Z, Wang Y, Xiao H, Zhao K. Anaerobic reduction of hexavalent chromium by bacterial cells of Achromobacter sp. Strain Ch1. Microbiol Res 2008; 163:616-23. [DOI: 10.1016/j.micres.2006.09.008] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
32
|
Viamajala S, Peyton BM, Sani RK, Apel WA, Petersen JN. Toxic Effects of Chromium(VI) on Anaerobic and Aerobic Growth of Shewanella oneidensis MR-1. Biotechnol Prog 2008; 20:87-95. [PMID: 14763828 DOI: 10.1021/bp034131q] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Cr(VI) was added to early- and mid-log-phase Shewanella oneidensis (S. oneidensis) MR-1 cultures to study the physiological state-dependent toxicity of Cr(VI). Cr(VI) reduction and culture growth were measured during and after Cr(VI) reduction. Inhibition of growth was observed when Cr(VI) was added to cultures of MR-1 growing aerobically or anaerobically with fumarate as the terminal electron acceptor. Under anaerobic conditions, there was immediate cessation of growth upon addition of Cr(VI) in early- and mid-log-phase cultures. However, once Cr(VI) was reduced below detection limits (0.002 mM), the cultures resumed growth with normal cell yield values observed. In contrast to anaerobic MR-1 cultures, addition of Cr(VI) to aerobically growing cultures resulted in a gradual decrease of the growth rate. In addition, under aerobic conditions, lower cell yields were also observed with Cr(VI)-treated cultures when compared to cultures that were not exposed to Cr(VI). Differences in response to Cr(VI) between aerobically and anaerobically growing cultures indicate that Cr(VI) toxicity in MR-1 is dependent on the physiological growth condition of the culture. Cr(VI) reduction has been previously studied in Shewanella spp., and it has been proposed that Shewanella spp. may be used in Cr(VI) bioremediation systems. Studies of Shewanella spp. provide valuable information on the microbial physiology of dissimilatory metal reducing bacteria; however, our study indicates that S. oneidensis MR-1 is highly susceptible to growth inhibition by Cr(VI) toxicity, even at low concentrations [0.015 mM Cr(VI)].
Collapse
Affiliation(s)
- Sridhar Viamajala
- Department of Chemical Engineering, and WSU/NSF IGERT Center for Multiphase Environmental Research, Washington State University, P.O. Box 642719, Pullman, Washington 99164-2719, USA
| | | | | | | | | |
Collapse
|
33
|
Caravelli AH, Giannuzzi L, Zaritzky NE. Reduction of hexavalent chromium by Sphaerotilus natans a filamentous micro-organism present in activated sludges. JOURNAL OF HAZARDOUS MATERIALS 2008; 156:214-222. [PMID: 18215460 DOI: 10.1016/j.jhazmat.2007.12.014] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2007] [Revised: 09/07/2007] [Accepted: 12/06/2007] [Indexed: 05/25/2023]
Abstract
Wastewaters produced by various industries may contain undesirable amounts of hexavalent chromium (Cr(VI)), as chromate and dichromate, a hazardous metal affecting flora and animals of aquatic ecosystems as well as human health. One removal strategy comprises the microbial reduction of Cr(VI) to Cr(III), a less soluble chemical species that is less toxic than Cr(VI). In this work, the ability to reduce Cr(VI) of Sphaerotilus natans, a filamentous bacterium usually found in activated sludge systems, was evaluated. In aerobic conditions, S. natans was able to efficiently reduce Cr(VI) to Cr(III) from dichromate solutions ranging between 4.5 and 80 mg Cr(VI)l(-1) in the presence of a carbonaceous source. A simultaneous evaluation of the microbial respiratory activity inhibition was also carried out to analyze the toxic effect of Cr(VI). Cr(VI) reduction by S. natans was mathematically modeled; chromium(VI) reduction rate depended on both Cr(VI) concentration and active biomass concentration. Although it is known that S. natans removes heavy metal cations such as Cr(III) by biosorption, the ability of this micro-organism to reduce Cr(VI), which behaves as an oxyanion in aqueous solutions, is a novel finding. The distinctive capacity to reduce Cr(VI) to Cr(III) than remain soluble or precipitated becomes S. natans a potential micro-organism to decontaminate wastewaters.
Collapse
Affiliation(s)
- Alejandro H Caravelli
- Centro de Investigación y Desarrollo en Criotecnología de Alimentos (CIDCA), CONICET-Fac Ciencias Exactas, Universidad Nacional de La Plata, La Plata, Argentina.
| | | | | |
Collapse
|
34
|
Okeke BC. Bioremoval of hexavalent chromium from water by a salt tolerant bacterium, Exiguobacterium sp. GS1. J Ind Microbiol Biotechnol 2008; 35:1571-9. [DOI: 10.1007/s10295-008-0399-5] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2007] [Accepted: 07/07/2008] [Indexed: 11/29/2022]
|
35
|
Isolation, identification and characterization of a Hypocrea tawa strain with high Cr(VI) reduction potential. Biochem Eng J 2008. [DOI: 10.1016/j.bej.2007.12.014] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
36
|
Fe(III), Cr(VI), and Fe(III) mediated Cr(VI) reduction in alkaline media using a Halomonas isolate from Soap Lake, Washington. Biodegradation 2008; 19:841-50. [DOI: 10.1007/s10532-008-9187-1] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2007] [Accepted: 03/27/2008] [Indexed: 11/25/2022]
|
37
|
Lee SE, Lee JU, Chon HT, Lee JS. Microbiological reduction of hexavalent chromium by indigenous chromium-resistant bacteria in sand column experiments. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2008; 30:141-145. [PMID: 18286377 DOI: 10.1007/s10653-008-9132-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2006] [Accepted: 05/17/2007] [Indexed: 05/25/2023]
Abstract
Indigenous bacteria that are resistant to high concentrations of Cr(VI) were isolated from a Cr-contaminated sediment. Sand column experiments were conducted using the isolated bacteria to investigate microbial effects on Cr(VI) reduction in open systems that simulated subsurface conditions. The indigenous Cr-resistant bacteria appeared to reduce Cr(VI) in the column experiments. When 12 mg/L of Cr(VI) was injected into the columns, the removal efficiencies of Cr(VI) by the isolated bacteria were 39.1%, 62.5%, and 63.6% at 24, 48, and 72 h retention times of Cr(VI) solution, respectively. These results imply that the linear velocity of groundwater or pore water should be less than 0.63 cm/h for effective removal of Cr(VI) in subsurface conditions. In comparison, the noninoculated control column did not show a significant variation in dissolved Cr(VI) concentration. The results indicated that reduction of Cr(VI) was occurring in the column due to the activity of the indigenous bacteria.
Collapse
Affiliation(s)
- Sung-Eun Lee
- Research Institute of Engineering Science, Seoul National University, Seoul 151-744, South Korea
| | | | | | | |
Collapse
|
38
|
Okeke BC, Laymon J, Crenshaw S, Oji C. Environmental and kinetic parameters for Cr(VI) bioreduction by a bacterial monoculture purified from Cr(VI)-resistant consortium. Biol Trace Elem Res 2008; 123:229-41. [PMID: 18317706 DOI: 10.1007/s12011-008-8098-7] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2007] [Accepted: 01/21/2008] [Indexed: 10/22/2022]
Abstract
Hexavalent chromium, Cr(VI), is toxic to living systems. Widespread contamination of water and soil by Cr(VI) present a serious public health problem. Chromium-resistant bacteria can reduce and detoxify Cr(VI). Twelve bacteria resistant to high concentrations of Cr(VI) were isolated from soil enrichment cultures. Environmental parameters and kinetic parameters of Cr(VI) bioreduction by one monoculture isolate, identified by 16S rRNA gene sequence as Bacillus sp. PB2, were studied. The optimal temperature for growth and Cr(VI) reduction was 35 degrees C. The isolate grew luxuriantly and substantially reduced Cr(VI) at initial pH 7.5 to 9. Maximal Cr(VI) bioreduction occurred at initial pH 8.0. Substantial Cr(VI) bioreduction was observed in salt media, but removal efficiency was inversely related to salt concentration (1-9%). Michaelis-Menten hyperbolic equation and the Lineweaver-Burk double reciprocal plot were comparatively employed to determine the k (m) and V (max) of Cr(VI) bioreduction. A k (m) of 82.5 microg mL(-1) and V (max) of 7.78 microg mL(-1) h(-1) were calculated by nonlinear regression analysis of the hyperbola curve. Linear regression analysis of the double reciprocal plot revealed k (m) and V (max) of 80.9 microg mL(-1) and 10.6 microg mL(-1) h(-1), respectively. Time course studies displayed about 90% reduction of Cr(VI) at an initial concentration of 8,000 microg L(-1) in 8 h, with an estimated t (1/2) of 4 h. Data from time course analysis of the rate of Cr(VI) bioreduction fitted zero-order model, and the kinetic constant k was calculated to be 840 microg L(-1) h(-1). The monoculture isolate, Bacillus sp. PB2, strongly reduces Cr(VI) and could be used for bioremediation of Cr(VI)-contaminated aquatic and terrestrial environments.
Collapse
Affiliation(s)
- Benedict C Okeke
- Department of Biology, Auburn University Montgomery, P.0. Box 244023, Montgomery, AL, 36124, USA.
| | | | | | | |
Collapse
|
39
|
Reduction of high concentrations of chromate by Leucobacter sp. CRB1 isolated from Changsha, China. World J Microbiol Biotechnol 2007. [DOI: 10.1007/s11274-007-9564-7] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
40
|
|
41
|
Li X, Wei W, Zeng X, He D, Yin J, Zeng J, Wu L. Study on Chromium (VI) Reduction Kinetics by Pseudomonas aeruginosa Using a Combined System of Acoustic Wave Impedance Analyzer and UV-Vis Spectrophotometer. Curr Microbiol 2006; 53:249-54. [PMID: 16874546 DOI: 10.1007/s00284-006-0123-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2006] [Accepted: 04/18/2006] [Indexed: 10/24/2022]
Abstract
A novel system combining acoustic wave impedance (AWI) analyzer with UV-vis spectrophotometer was developed for the study of chromium (VI) reduction kinetics by Pseudomonas aeruginosa. AWI gave information about the growth of Pseudomonas aeruginosa, and UV-vis spectrophotometer gave information about the concentration of chromium (VI) simultaneously. A combined system response model, for chromium (VI) reduction kinetics at lower initial chromium (VI) concentrations, was derived and proved based on the novel system. Taking into account the effect of bacterial growth on chromium (VI) reduction, the new model successfully simulated chromium (VI) bioremediation process. By fitting chromium (VI) reduction data toward the derived model, the kinetic parameters related to the process were obtained. When the concentration of peptone was 10 g L(-1), the half-velocity reduction rate constant K (C) and the maximum specific chromium (VI) reduction rate constant nu(max) were 0.7682 mg chromium (VI) L(-1) and 2.5814 x 10(-12) mg chromium (VI) cells(-1) h(-1), respectively. It was found that the combined system can provide real-time, reliable, and two-dimensional kinetic information, and can be applied to study other biological processes.
Collapse
Affiliation(s)
- Xuefang Li
- State Key Laboratory of Chemo/Biosensoring and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Hunan, Changsha 410082, PR China
| | | | | | | | | | | | | |
Collapse
|
42
|
Tang YJ, Meadows AL, Keasling JD. A kinetic model describingShewanella oneidensis MR-1 growth, substrate consumption, and product secretion. Biotechnol Bioeng 2006; 96:125-33. [PMID: 16865732 DOI: 10.1002/bit.21101] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Aerobic growth of Shewanella oneidensis MR-1 in minimal lactate medium was studied in batch cultivation. Acetate production was observed in the middle of the exponential growth phase and was enhanced when the dissolved oxygen (DO) concentration was low. Once the lactate was nearly exhausted, S. oneidensis MR-1 used the acetate produced during growth on lactate with a similar biomass yield as lactate. A two-substrate Monod model, with competitive and uncompetitive substrate inhibition, was devised to describe the dependence of biomass growth on lactate, acetate, and oxygen and the acetate growth inhibition across a broad range of concentrations. The parameters estimated for this model indicate interesting growth kinetics: lactate is converted to acetate stoichiometrically regardless of the DO concentration; cells grow well even at low DO levels, presumably due to a very low K(m) for oxygen; cells metabolize acetate (maximum specific growth rate, micro(max,A) of 0.28 h(-1)) as a single carbon source slower than they metabolize lactate (micro(max,L) of 0.47 h(-1)); and growth on acetate is self-inhibiting at a concentration greater than 10 mM. After estimating model parameters to describe growth and metabolism under six different nutrient conditions, the model was able to successfully estimate growth, oxygen and lactate consumption, and acetate production and consumption under entirely different growth conditions.
Collapse
Affiliation(s)
- Yinjie J Tang
- Synthetic Biology Department, Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720-3224, USA
| | | | | |
Collapse
|
43
|
Humphries AC, Mikheenko IP, Macaskie LE. Chromate reduction by immobilized palladized sulfate-reducing bacteria. Biotechnol Bioeng 2006; 94:81-90. [PMID: 16570313 DOI: 10.1002/bit.20814] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Resting cells of Desulfovibrio vulgaris NCIMB 8303 and Desulfovibrio desulfuricans NCIMB 8307 were used for the hydrogenase-mediated reduction of Pd(II) to Pd(0). The resulting hybrid palladium bionanocatalyst (Bio-Pd(0)) was used in the reduction of Cr(VI) to the less environmentally problematic Cr(III) species. The reduction of Cr(VI) by free and agar-immobilized Bio-Pd(0) was evaluated. Investigations using catalyst suspensions showed that Cr(VI) reduction was similar ( approximately 170 nmol Cr(VI)/h/mg Bio-Pd(0)) when Bio-Pd(0) was produced using D. vulgaris or D. desulfuricans. Continuous-flow studies using D. vulgaris Bio-Pd(0) with agar as the immobilization matrix investigated the effect of Bio-Pd(0) loading, inlet Cr(VI) concentration, and flow rate on the efficiency of Cr(VI) reduction. Reduction of Cr(VI) was highest at a D. vulgaris Bio-Pd(0) loading of 7.5 mg Bio-Pd(0)/mL agar (3:1 dry cell wt: Pd(0)), an input [Cr(VI)] of 100 microM, and a flow rate of 1.75 mL/h (approx. 3.5 column volumes/h). A mathematical interpretation predicted the activity of the immobilized Bio-Pd(0) for a given set of conditions within 5% of the value found by experiment. Considering the system as an 'artificial enzyme' analog and application of applied enzyme kinetics gave an apparent K(m) value (K(m app)) of 430 microM Cr(VI) and a determined value of flow-through reactor activity which differed by 11% from that predicted mathematically.
Collapse
Affiliation(s)
- A C Humphries
- School of Biosciences, The University of Birmingham, Edgbaston, Birmingham, United Kingdom
| | | | | |
Collapse
|
44
|
Vatsouria A, Vainshtein M, Kuschk P, Wiessner A, D K, Kaestner M. Anaerobic co-reduction of chromate and nitrate by bacterial cultures of Staphylococcus epidermidis L-02. J Ind Microbiol Biotechnol 2005; 32:409-14. [PMID: 16091944 DOI: 10.1007/s10295-005-0020-0] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2004] [Accepted: 07/04/2005] [Indexed: 10/25/2022]
Abstract
Industrial wastewater is often polluted by Cr(VI) compounds, presenting a serious environmental problem. This study addresses the removal of toxic, mutagenic Cr(VI) by means of microbial reduction to Cr(III), which can then be precipitated as oxides or hydroxides and extracted from the aquatic system. A strain of Staphylococcus epidermidis L-02 was isolated from a bacterial consortium used for the remediation of a chromate-contaminated constructed wetland system. This strain reduced Cr(VI) by using pyruvate as an electron donor under anaerobic conditions. The aims of the present study were to investigate the specific rate of Cr(VI) reduction by the strain L-02, the effects of chromate and nitrate (available as electron acceptors) on the strain, and the interference of chromate and nitrate reduction processes. The presence of Cr(VI) decreased the growth rate of the bacterium. Chromate and nitrate reduction did not occur under sterile conditions but was observed during tests with the strain L-02. The presence of nitrate increased both the specific Cr(VI) reduction rate and the cell number. Under denitrifying conditions, Cr(VI) reduction was not inhibited by nitrite, which was produced during nitrate reduction. The average specific rate of chromate reduction reached 4.4 micromol Cr 10(10 )cells(-1 )h(-1), but was only 2.0 micromol Cr 10(10 )cells(-1 )h(-1) at 20 degrees C. The maximum specific rate was as high as 8.8-9.8 micromol Cr 10(10 )cells(-1 )h(-1). The role of nitrate in chromate reduction is discussed.
Collapse
Affiliation(s)
- A Vatsouria
- Institute of Biochemistry and Physiology of Microorganisms, Russian Academy of Sciences, pr. Nauki 5, 142290, Pushchino, Russia.
| | | | | | | | | | | |
Collapse
|
45
|
Abstract
Heavy metal chelation property of exopolysaccharide produced by Enterobacter cloaceae, a marine bacterium, isolated from the West Coast of India, is reported in this paper. The exopolysaccharide demonstrated excellent chelating properties with respect to cadmium (65%) followed by copper (20%) and cobalt (8%) at 100 mg/l heavy metal concentration. However, it could not chelate mercury. A comparative study of the percentage biosorption of the above mentioned metals is presented here.
Collapse
Affiliation(s)
- Anita Iyer
- Central Salt and Marine Chemicals Research Institute, Bhavnagar 364002, Gujarat, India
| | | | | |
Collapse
|
46
|
Iyer A, Mody K, Jha B. Accumulation of hexavalent chromium by an exopolysaccharide producing marine Enterobacter cloaceae. MARINE POLLUTION BULLETIN 2004; 49:974-977. [PMID: 15556183 DOI: 10.1016/j.marpolbul.2004.06.023] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
An exopolysaccharide producing Enterobacter cloaceae (AK-I-MB-71a) was tested for its Cr (VI) tolerance. This isolate was not only resistant to this heavy metal but also showed enhanced growth and exopolysaccharide production in the presence of Cr (VI) at 25, 50 and 100 ppm concentrations. XRF analysis of both the biomass as well as the exopolysaccharide revealed that a sum total of about 60-70% chromium was accumulated by this bacterium. This indicated that this organism could prove to be a potential candidate in the field of bioremediation with respect to chromium removal.
Collapse
Affiliation(s)
- Anita Iyer
- Central Salt and Marine Chemicals Research Institute, Bhavnagar 364002, India
| | | | | |
Collapse
|
47
|
Stasinakis AS, Thomaidis NS, Mamais D, Lekkas TD. Investigation of Cr(VI) reduction in continuous-flow activated sludge systems. CHEMOSPHERE 2004; 57:1069-1077. [PMID: 15504465 DOI: 10.1016/j.chemosphere.2004.08.020] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2004] [Revised: 08/03/2004] [Accepted: 08/11/2004] [Indexed: 05/24/2023]
Abstract
The aim of this research was to investigate hexavalent chromium, Cr(VI), reduction by activated sludge and to evaluate the use of continuous-flow activated sludge systems for the treatment of Cr(VI)-containing wastewater. Three series of experiments were conducted using two parallel lab-scale activated sludge systems. During the first experiment, one system was used as a control, while the other received Cr(VI) concentrations equal to 0.5, 1, 3 and 5mg l(-1). For all concentrations added, approximately 40% of the added Cr(VI) was removed during the activated sludge process. Determination of chromium species in the dissolved and particulate phase revealed that the removed Cr(VI) was sorbed by the activated sludge flocs mainly as trivalent chromium, Cr(III), while the residual chromium in the dissolved phase was mainly detected as Cr(VI). Activated sludge ability to reduce Cr(VI) was independent of the acclimatization of biomass to Cr(VI) and it was not affected by the toxic effect of Cr(VI) on autotrophic and heterotrophic microorganisms. During the second experiment, both systems were operated under two different hydraulic residence time (theta equal to 20 and 28h) and three different initial organic substrate concentration (COD equal to 300, 150 and 0mg l(-1)). Cr(VI) reduction was favored by an increase of theta, while it was limited by influent COD concentration. Finally, at the last experiment the effect of anoxic and anaerobic reactors on Cr(VI) reduction was investigated. It was observed that the use of an anoxic zone or an anaerobic-anoxic zone ahead of the aerobic reactor favored Cr(VI) reduction, increasing mean percentage Cr(VI) reduction to almost 80%.
Collapse
Affiliation(s)
- Athanasios S Stasinakis
- Laboratory of Water and Air Quality, Department of Environmental Studies, University of the Aegean, University Hill, Mytilene 81 100, Greece.
| | | | | | | |
Collapse
|
48
|
Guha H. Biogeochemical influence on transport of chromium in manganese sediments: experimental and modeling approaches. JOURNAL OF CONTAMINANT HYDROLOGY 2004; 70:1-36. [PMID: 15068867 DOI: 10.1016/j.jconhyd.2003.08.012] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2002] [Accepted: 08/22/2003] [Indexed: 05/24/2023]
Abstract
Hexavalent chromium (Cr(VI)) was reduced to immobile and nontoxic Cr(III) by a dissimilatory metal reducing bacteria, Shewanella alga Simidu (BrY-MT) ATCC 55627. A series of kinetic batch and dynamic column experiments were conducted to provide an understanding of Cr(VI) reduction by the facultative anaerobe BrY-MT. Reduction of Cr(VI) was rapid (within 1 h) in columns packed with quartz sand and bacteria, whereas Cr(VI) reduction by BrY-MT was delayed (57 h) in the presence of beta-MnO2-coated sand. A mathematical model was developed and evaluated against data obtained from column experiments. The model takes into account (1) advective-dispersive transport of Cr(III), Cr(VI), lactate, and protein (mobile and immobile bacteria); (2) first-order kinetic adsorption of Cr(III) and lactate; (3) conversion of solid phase beta-MnO2 to solid phase MnOOH due to oxidation of Cr(III); (4) dual-Monod kinetics, where Cr(VI) is the electron acceptor and lactate is the electron donor. The breakthrough data for Cr(III), Cr(VI), lactate, and protein (mobile and immobile bacteria) were fitted simultaneously. The breakthrough data are well described by the mathematical model that considers the above processes. This result demonstrates the ability of the coupled hydrobiogeochemical model to simulate chromium transport in complex reactive systems.
Collapse
Affiliation(s)
- Hillol Guha
- Department of Environmental Resources Management, Miami-Dade County, FL 33130, USA.
| |
Collapse
|
49
|
Cheung KH, Gu JD. Reduction of chromate (CrO4(2-)) by an enrichment consortium and an isolate of marine sulfate-reducing bacteria. CHEMOSPHERE 2003; 52:1523-1529. [PMID: 12867184 DOI: 10.1016/s0045-6535(03)00491-0] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
An enrichment consortium and an isolate (isolate TKW) of sulfate-reducing bacteria (SRB) have been obtained from metal-contaminated marine sediments of Tokwawan, Hong Kong SAR. These bacteria are capable of reducing highly toxic and soluble hexavalent chromium (Cr6+) enzymatically into less toxic and insoluble trivalent chromium (Cr3+) under anaerobic conditions. The enrichment consortium almost completely (98.5%) reduced 0.6 mM Cr6+ in 168 h and the rate of reduction was 0.5 g (Cr6+) g(protein)(-1)h(-1). In comparison, with Cr6+ as the sole electron acceptor (as a surrogate for SO4(2-)), isolate TKW reduced 94.5% of the initially added Cr6+ (0.36 mM) in 288 h, with the rate of 0.26 g (Cr6+) g(protein)(-1)h(-1). Adsorption by these bacteria was not the major mechanism contributing to the transformation or removal of Cr6+. The biomass and Cr3+ in the cultures increased simultaneously with the reduction of Cr6+. These indigenous SRB might have potential application in bioremediation of metal contaminated sediments.
Collapse
Affiliation(s)
- K H Cheung
- Department of Ecology & Biodiversity, Laboratory of Environmental Toxicology, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, PR China
| | | |
Collapse
|
50
|
Guha H, Jayachandran K, Maurrasse F. Microbiological reduction of chromium(VI) in presence of pyrolusite-coated sand by Shewanella alga Simidu ATCC 55627 in laboratory column experiments. CHEMOSPHERE 2003; 52:175-183. [PMID: 12729700 DOI: 10.1016/s0045-6535(03)00104-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Hexavalent chromium (Cr(VI)) was reduced to non-toxic trivalent chromium (Cr(III)) by a dissimilatory metal reducing bacteria, Shewanella alga Simidu (BrY-MT) ATCC 55627. A series of dynamic column experiments were conducted to provide an understanding of Cr(VI) reduction by the facultative anaerobe BrY-MT in the presence of pyrolusite (beta-MnO(2)) coated sand and uncoated-quartz sand. All dynamic column experiments were conducted under growth conditions using Cr(VI) as the terminal electron acceptor and lactate as the electron donor and energy source. Reduction of Cr(VI) was rapid (within 8 h) in columns packed with uncoated quartz sand and BrY-MT, whereas Cr(VI) reduction by BrY-MT was delayed (57 h) in the presence of beta-MnO(2)-coated sand. The role of beta-MnO(2) in this study was to provide oxidation of trivalent chromium (Cr(III)). BrY-MT attachment was higher on beta-MnO(2)-coated sand than on uncoated quartz sand at 10, 60, and 85.5 h. Results have shown that this particular strain of Shewanella did not appreciably reduce Mn(IV) to Mn(II) species nor biosorbed Cr and Mn during its metabolic activities.
Collapse
Affiliation(s)
- Hillol Guha
- Miami-Dade County, Department of Environmental Resources Management, 33 SW 2nd Avenue, PH-2, Miami, FL 33130, USA.
| | | | | |
Collapse
|