1
|
Hernández-Flores S, Santos-Medrano GE, Rico-Martínez R. Integral Study of Paramecium caudatum Acute and Chronic Toxicity, Sites of Entry and Distribution, Bioconcentration and Body Burdens of Five Metals. BULLETIN OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2023; 111:19. [PMID: 37493828 DOI: 10.1007/s00128-023-03768-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 07/03/2023] [Indexed: 07/27/2023]
Abstract
An integral analysis of the acute and chronic toxicity, bioaccumulation, sites of entry, and distribution of four trace metals: copper, iron, lead, and nickel, and the non-trace metal mercury were performed in the ciliate Paramecium caudatum. Mercury was the fastest metal accumulated, and the most toxic. The sensitivity of Paramecium caudatum to the five metals tested (Cu, Fe, Hg, Ni, and Zn) falls in the range of other ciliate species. We observed similarities between the toxicity of the five metals to the ciliate P. caudatum with the rotifer Euchlanis dilatata: (a) Mercury was the most toxic metal in terms of acute and body burdens. (b) Acute values were very similar in both species, Hg as the most toxic and Fe as the less toxic, (c) the vacuole/ingestion chronic tests were more sensitive than growth inhibition chronic tests. These analyses would ideally help generate safer guidelines for protecting aquatic biota.
Collapse
|
2
|
Xu Y, Soininen J, Zhang S, Fan X. Disentangling the relative roles of natural and anthropogenic-induced stressors in shaping benthic ciliate diversity in a heavily disturbed bay. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 801:149683. [PMID: 34416601 DOI: 10.1016/j.scitotenv.2021.149683] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 07/31/2021] [Accepted: 08/11/2021] [Indexed: 06/13/2023]
Abstract
Coastal areas are facing biodiversity loss and degradation of habitats due to intensified human activities. However, our understanding of the relative contribution of natural gradients and human induced disturbance to biodiversity is limited. Here, we investigated the response of three facets of alpha and beta diversity of benthic ciliates to environmental gradients in a highly disturbed estuarine bay in China. We used linear regression and distance-based redundancy analysis to determine the key driving factors for biodiversity. Variation partitioning was further used to examine the relative influence of natural gradients and anthropogenic disturbances on ciliate communities. Our results revealed that ciliate alpha diversity and functional composition remained similar despite notable variation in species composition along salinity gradient. Sediment grain size, together with heavy metals were the strongest determinants in shaping both alpha and beta diversity. After controlling for the effect of natural factors, heavy metals still had significant impacts on beta diversity. Human induced nitrogen enrichment was positively correlated with algivorous functional group with possible impacts on benthic food webs. These results suggest that beta diversity is overall more sensitive to anthropogenic stressors than alpha diversity and give important insights into the role of anthropogenic disturbance on coastal diversity, being also useful for developing ecosystem protection and conservation strategies.
Collapse
Affiliation(s)
- Yuan Xu
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai 200241, China.
| | - Janne Soininen
- Department of Geosciences and Geography, University of Helsinki, Helsinki 00560, Finland
| | - Shukun Zhang
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai 200241, China
| | - Xinpeng Fan
- School of Life Sciences, East China Normal University, Shanghai 200241, China
| |
Collapse
|
3
|
Mukhtar I, Wu S, Wei S, Chen R, Cheng Y, Liang C, Chen J. Transcriptome Profiling Revealed Multiple rquA Genes in the Species of Spirostomum (Protozoa: Ciliophora: Heterotrichea). Front Microbiol 2021; 11:574285. [PMID: 33469448 PMCID: PMC7813818 DOI: 10.3389/fmicb.2020.574285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Accepted: 12/07/2020] [Indexed: 11/13/2022] Open
Abstract
Adaptation to life at different oxygen tensions plays a role in protozoan ecology and controls the distribution of different species in anoxic habitats. The ciliate genus Spirostomum inhabiting fresh or low salinity water globally where these species are considered as bioindicators. Under anaerobic or low oxygen conditions, the rhodoquinol-dependent pathway has been reported in the species from the class Heterotrichea. With the help of RNA sequencing (RNAseq) data, Spirostomum spp., are suitable for deep molecular investigations on rquA for rhodoquinone (RQ) biosynthesis. In this study, Spirostomum ambiguum, Spirostomum subtilis, and Spirostomum teres collected from densely vegetated freshwater habitat in Fuzhou, China, explored the evidence of rquA. Based on transcriptome analysis, two to three RquA proteins were identified in S. ambiguum, S. teres, and S. subtilis, respectively. The presence of a key Motif-I of RquA and mitochondrial targeting signals (MTS), also confirmed the identity of these as RquA. Furthermore, Spirostomum RquA proteins could be sorted into two groups based on their conserved amino acid (CAA) residues. Phylogenetic analysis also exhibited RquA division into two subclades contained RquA1 and RquA2/RquA3 and supports two to three paralogs of rquA genes in the genomes Spirostomum spp. Additional transcriptomes and genomes analysis of Blepharisma spp., and Stentor spp., respectively, also revealed at least two paralogs of rquA in members of the class Heterotrichea. The present study provides evidence for the presence of RquA and rhodoquinol dependent fumarate reduction pathway in Spirostomum species potentially use to respire in the oxygen-depleted habitats and two to three diverse rquA genes.
Collapse
Affiliation(s)
- Irum Mukhtar
- Institute of Oceanography, Minjiang University, Fuzhou, China
| | - Siyi Wu
- Institute of Oceanography, Minjiang University, Fuzhou, China
| | - Shurong Wei
- Institute of Oceanography, Minjiang University, Fuzhou, China
| | - Ruanni Chen
- Institute of Oceanography, Minjiang University, Fuzhou, China
| | - Yunying Cheng
- Institute of Oceanography, Minjiang University, Fuzhou, China
| | - Chen Liang
- Institute of Oceanography, Minjiang University, Fuzhou, China
| | - Jianming Chen
- Institute of Oceanography, Minjiang University, Fuzhou, China
| |
Collapse
|
4
|
Liñán-Cabello MA, Liñán-Rico V, Ortega-Ortíz C, Verduzco-Zapata M. Pathological evidence in Plicopurpura pansa associated with the stranding of a bulk carrier ship during Hurricane "Patricia" in the Mexican Central Pacific. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:38370-38380. [PMID: 32803581 DOI: 10.1007/s11356-020-10006-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2019] [Accepted: 07/02/2020] [Indexed: 06/11/2023]
Abstract
Due to the effects of Hurricane Patricia (2015), the bulk freighter "El Llanitos" ran aground in the rocky intertidal zone of Colima, Mexico. We assessed the impact of this ship's stranding on a population of the gastropod Plicopurpura pansa. Toxic elements, hydrocarbons, shell deformities, presence of tumors, imposex, and morphological relationships were analyzed. Two years after the stranding occurred, high cyanide concentrations (0.0363 mg/l) and Ni concentrations above permissible limits (3.35 mg/l) were found in surface seawater. Hydrocarbon concentrations were high in the aft zone of the ship and decreased towards the bow area of the freighter. The P. pansa specimens collected closest to the ship structure presented a high prevalence of tumorations in the structure of the foot and morphological anomalies in the shell structure; imposex was 32% and there was evidence of effects on the growth indicator. The evidence presented here supports the existence of a significant impact from the grounding of the ship on a protected gastropod species associated with the rocky intertidal zone on the coast of Colima. The potential of P. pansa as a bioindicator species of pollution caused by toxic elements and hydrocarbons associated with stranding events in the tropical Pacific is documented.
Collapse
Affiliation(s)
- Marco A Liñán-Cabello
- Facultad de Ciencias Marinas, Universidad de Colima, Km 19.5 Carretera Manzanillo-Barra de Navidad, C.P 28860, Manzanillo, Colima, Mexico.
| | - Viridiana Liñán-Rico
- Departamento de Estudios para el Desarrollo Sustentable de Zonas Costeras Centro Universitario de la Costa Sur, Universidad de Guadalajara, Gómez Farías 82, CP 48980, San Patricio-Melaque, Mexico
| | - Christian Ortega-Ortíz
- Facultad de Ciencias Marinas, Universidad de Colima, Km 19.5 Carretera Manzanillo-Barra de Navidad, C.P 28860, Manzanillo, Colima, Mexico
| | - Manuel Verduzco-Zapata
- Facultad de Ciencias Marinas, Universidad de Colima, Km 19.5 Carretera Manzanillo-Barra de Navidad, C.P 28860, Manzanillo, Colima, Mexico
| |
Collapse
|
5
|
Vilas-Boas JA, Cardoso SJ, Senra MVX, Rico A, Dias RJP. Ciliates as model organisms for the ecotoxicological risk assessment of heavy metals: A meta-analysis. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 199:110669. [PMID: 32450358 DOI: 10.1016/j.ecoenv.2020.110669] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Revised: 04/14/2020] [Accepted: 04/19/2020] [Indexed: 06/11/2023]
Abstract
Ciliates are key components of aquatic ecosystems, significantly contributing to the decomposition of organic matter and energy transfer to higher trophic levels. They are considered good biological indicators of chemical pollution and relatively sensitive to heavy metal contamination. In this study, we performed a meta-analysis of the available toxicity data of heavy metals and ciliates to assess: (1) the sensitivity of freshwater ciliates to different heavy metals, (2) the relative sensitivity of ciliates in comparison to the standard test species used in ecotoxicological risk assessment, and (3) the difference in sensitivity across ciliate taxa. Our study shows that the tolerance of ciliates to heavy metals varies notably, which is partly influenced by differences in methodological conditions across studies. Ciliates are, in general, sensitive to Mercury > Cadmium > Copper > Zinc > Lead > Chromium. Also, this study shows that most ciliates are more tolerant to heavy metal pollution than the standard test species used in ecotoxicological risk assessments, i.e., Raphidocelis subcapitata, Daphnia magna, and Onchornyncus mykiss. Threshold concentrations derived from toxicity data for these species is expected to confer sufficient protection for the vast majority of ciliate species. Our data analysis also shows that the most commonly tested ciliate species, Paramecium caudatum and Tetrahymena thermophila, are not necessarily the most sensitive ones to heavy metal pollution. Finally, this study stresses the importance of developing standard toxicity test protocols for ciliates, which could lead to a better comprehension of the toxicological impact of heavy metals and other contaminants to ciliate species.
Collapse
Affiliation(s)
- Jéssica Andrade Vilas-Boas
- Laboratório de Protozoologia, Instituto de Ciências Biológicas, Universidade Federal de Juiz de Fora, 36036-900, Juiz de Fora, Minas Gerais, Brazil; Programa de Pós-graduação em Biodiversidade e Conservação da Natureza, Universidade Federal de Juiz de Fora, 36036-900, Juiz de Fora, Minas Gerais, Brazil.
| | - Simone Jaqueline Cardoso
- Programa de Pós-graduação em Biodiversidade e Conservação da Natureza, Universidade Federal de Juiz de Fora, 36036-900, Juiz de Fora, Minas Gerais, Brazil; Departamento de Zoologia, Instituto de Ciências Biológicas, Universidade Federal de Juiz de Fora, 36036-900, Juiz de Fora, Minas Gerais, Brazil
| | - Marcus Vinicius Xavier Senra
- Laboratório de Protozoologia, Instituto de Ciências Biológicas, Universidade Federal de Juiz de Fora, 36036-900, Juiz de Fora, Minas Gerais, Brazil; Instituto de Recursos Naturais, Pós-graduação em Meio Ambiente e Recursos Hídricos, Universidade Federal de Itajubá, 36036-900, Itajubá, Minas Gerais, Brazil
| | - Andreu Rico
- IMDEA Water Institute, Science and Technology Campus of the University of Alcalá, Avenida Punto Com 2, 28805, Alcalá de Henares, Madrid, Spain
| | - Roberto Júnio Pedroso Dias
- Laboratório de Protozoologia, Instituto de Ciências Biológicas, Universidade Federal de Juiz de Fora, 36036-900, Juiz de Fora, Minas Gerais, Brazil; Programa de Pós-graduação em Biodiversidade e Conservação da Natureza, Universidade Federal de Juiz de Fora, 36036-900, Juiz de Fora, Minas Gerais, Brazil; Departamento de Zoologia, Instituto de Ciências Biológicas, Universidade Federal de Juiz de Fora, 36036-900, Juiz de Fora, Minas Gerais, Brazil
| |
Collapse
|
6
|
Chi Y, Duan L, Luo X, Cheng T, Warren A, Huang J, Chen X. A new contribution to the taxonomy and molecular phylogeny of three, well-known freshwater species of the ciliate genus Spirostomum (Protozoa: Ciliophora: Heterotrichea). Zool J Linn Soc 2019. [DOI: 10.1093/zoolinnean/zlz115] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
AbstractMembers of the heterotrich genus Spirostomum are commonly found in freshwater or low salinity biotopes. In the present study, three species (S. minus, S. subtilis and S. teres) collected from freshwater habitats in Qingdao, China, are investigated using morphological and molecular methods. Detailed morphometric data are documented and improved diagnosis are supplied based on a combination of previous and present studies. In addition, small subunit ribosomal DNA (SSU rDNA) sequences are obtained from the clonal cultures. Phylogenetic analyses show that all three species are placed in the Spirostomum clade. However, isolates of the morphospecies S. minus are divided into two paraphyletic clades, while ‘populations’ of the nominal species, S. teres, are placed in at least four separate groups in the tree. After comparing morphological and molecular differences in closely related forms available, we hypothesized that S. minus and S. teres might represent species complexes. A key to the identification of the ten valid species of Spirostomum is also supplied.
Collapse
Affiliation(s)
- Yong Chi
- Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao, China
| | - Lili Duan
- Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao, China
| | - Xiaotian Luo
- Key Laboratory of Aquatic Biodiversity and Conservation of Chinese Academy of Sciences, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Ting Cheng
- Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao, China
| | - Alan Warren
- Department of Life Sciences, Natural History Museum, London, UK
| | - Jie Huang
- Key Laboratory of Aquatic Biodiversity and Conservation of Chinese Academy of Sciences, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Xiangrui Chen
- School of Marine Sciences, Ningbo University, Ningbo, China
| |
Collapse
|
7
|
Characterization and Determination of the Toxicological Risk of Biochar Using Invertebrate Toxicity Tests in the State of Aguascalientes, México. APPLIED SCIENCES-BASEL 2019. [DOI: 10.3390/app9081706] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Following a quantitative analysis of adequate feedstock, comprising 11 woody biomass species, four biochars were generated using a Kon-Tiki flame curtain kiln in the state of Aguascalientes, Mexico. Despite the high quality (certified by European Biochar Certificate), the biochars contain substantial quantities of hazardous substances, such as polycyclic aromatic hydrocarbons, polychlorinated dibenzo-p-dioxins and dibenzofurans, polychlorinated biphenyls, and heavy metals, which can induce adverse effects if wrongly applied to the environment. To assess the toxicity of biochars to non-target organisms, toxicity tests with four benthic and zooplanktonic invertebrate species, the ciliate Paramecium caudatum, the rotifer Lecane quadridentata, and the cladocerans Daphnia magna and Moina macrocopa were performed using biochar elutriates. In acute and chronic toxicity tests, no acute toxic effect to ciliates, but significant lethality to rotifers and cladocerans was detected. This lethal toxicity might be due to ingestion/digestion by enzymatic/mechanic processes of biochar by cladocerans and rotifers of toxic substances present in the biochar. No chronic toxicity was found where biochar elutriates were mixed with soil. These data indicate that it is instrumental to use toxicity tests to assess biochars’ toxicity to the environment, especially when applied close to sensitive habitats, and to stick closely to the quantitative set-point values.
Collapse
|
8
|
Forster D, Filker S, Kochems R, Breiner HW, Cordier T, Pawlowski J, Stoeck T. A Comparison of Different Ciliate Metabarcode Genes as Bioindicators for Environmental Impact Assessments of Salmon Aquaculture. J Eukaryot Microbiol 2018; 66:294-308. [DOI: 10.1111/jeu.12670] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Revised: 06/22/2018] [Accepted: 07/18/2018] [Indexed: 12/20/2022]
Affiliation(s)
- Dominik Forster
- Ecology Group; University of Technology Kaiserslautern; D-67663 Kaiserslautern Germany
| | - Sabine Filker
- Molecular Ecology; University of Technology Kaiserslautern; D-67663 Kaiserslautern Germany
| | - Rebecca Kochems
- Ecology Group; University of Technology Kaiserslautern; D-67663 Kaiserslautern Germany
| | - Hans-Werner Breiner
- Ecology Group; University of Technology Kaiserslautern; D-67663 Kaiserslautern Germany
| | - Tristan Cordier
- Department of Genetics and Evolution; University of Geneva; 1211 Geneva Switzerland
| | - Jan Pawlowski
- Department of Genetics and Evolution; University of Geneva; 1211 Geneva Switzerland
- ID-Gene ecodiagnostics Ltd.; Campus Biotech Innovation Park 1202 Geneva Switzerland
| | - Thorsten Stoeck
- Ecology Group; University of Technology Kaiserslautern; D-67663 Kaiserslautern Germany
| |
Collapse
|
9
|
Xu Y, Stoeck T, Forster D, Ma Z, Zhang L, Fan X. Environmental status assessment using biological traits analyses and functional diversity indices of benthic ciliate communities. MARINE POLLUTION BULLETIN 2018; 131:646-654. [PMID: 29886992 DOI: 10.1016/j.marpolbul.2018.04.064] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Revised: 04/10/2018] [Accepted: 04/25/2018] [Indexed: 06/08/2023]
Abstract
In this study, we tested the hypothesis that the functional diversity of benthic ciliates has high potential to monitor marine ecological status. Therefore, we investigated the spatial and temporal variation of functional diversity of benthic ciliates in the Yangtze Estuary during one year using biological traits analyses and functional diversity indices. Traits and community compositions showed clear spatial and temporal variations. Among a variety of biological traits, feeding type and body size emerged as strongest predictable variables. Functional divergence (FDiv) had an advantage over two other functional diversity indices, as well as over classical diversity measures (i.e. richness, evenness, Shannon-Wiener) to infer environmental status. Significant correlations between biological traits, FDiv and environmental variables (i.e. nutrients, temperature, salinity) suggested that functional diversity of benthic ciliates might be used as a bio-indicator in environmental status assessments. Further mandatory researches need to implement functional diversity of ciliates in routine monitoring programs were discussed.
Collapse
Affiliation(s)
- Yuan Xu
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai 200062, China
| | - Thorsten Stoeck
- University of Kaiserslautern, Ecology Group, Erwin Schroedinger Str. 14, D-67663 Kaiserslautern, Germany
| | - Dominik Forster
- University of Kaiserslautern, Ecology Group, Erwin Schroedinger Str. 14, D-67663 Kaiserslautern, Germany
| | - Zuhang Ma
- School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Liquan Zhang
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai 200062, China.
| | - Xinpeng Fan
- School of Life Sciences, East China Normal University, Shanghai 200241, China.
| |
Collapse
|
10
|
ÇAPAR DİNÇER S. Freshwater ciliates from Beytepe Pond in Ankara with new records for Turkey. TURK J ZOOL 2016. [DOI: 10.3906/zoo-1508-57] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
11
|
Bitencourt JAP, Pereira DC, da Silva Neto ID, Crapez MAC. Evaluation of the sensitivity to zinc of ciliates Euplotes vannus and Euplotes crassus and their naturally associated bacteria isolated from a polluted tropical bay. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2015; 22:6236-6245. [PMID: 25408072 DOI: 10.1007/s11356-014-3828-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2014] [Accepted: 11/06/2014] [Indexed: 06/04/2023]
Abstract
The aim of this study was to evaluate the Zn sensitivity of Euplotes vannus, Euplotes crassus, and their naturally associated bacteria sampled from sediments in the northwest and east regions of Guanabara Bay. The unexposed ciliates and bacteria did not appear to be negatively affected by 96 h of assay. In the control group, E. vannus exhibited an increase in the biomass content from 2.3 × 10(2) to 2.3 × 10(3) μg C cm(-3) between 0 and 96 h, and E. crassus increased up to 7.07 × 10(2) μg C cm(-3) at 48 h. The maximum biomass was pointed by E. crassus (1.33 × 10(3) μg C cm(-3)) in the presence of 0.005 mg Zn L(-1) and E. vannus was naturally associated bacteria (2.40 × 10(-1) μg C cm(-3)) in the presence of 1.0 mg Zn L(-1) (96 h). The growth of E. vannus from the northwest region showed concentration-dependent manners, and it is more sensitive to zinc than E. crassus from the southeast. Naturally associated bacteria showed better adaptation to increasing concentrations of Zn, and the Dunnett test showed that previous environmental selection is important. These results show that new bioremediation tools are necessary.
Collapse
Affiliation(s)
- José Augusto Pires Bitencourt
- Departamento de Biologia Marinha, Universidade Federal Fluminense, Outeiro São João Batista, s/no., Centro, Niterói, Rio de Janeiro, 24020-141, Brazil,
| | | | | | | |
Collapse
|
12
|
Watson MG, Scardino AJ, Zalizniak L, Shimeta J. Colonisation and succession of marine biofilm-dwelling ciliate assemblages on biocidal antifouling and fouling-release coatings in temperate Australia. BIOFOULING 2015; 31:709-720. [PMID: 26652666 DOI: 10.1080/08927014.2015.1105221] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Ciliate assemblages are often overlooked, but ubiquitous components of microbial biofilms which require a better understanding. Ciliate, diatom and bacterial colonisation were evaluated on two fouling-release (FR) coatings, viz. Intersleek 970 and Hempasil X3, and two biocidal antifouling (AF) coatings, viz. Intersmooth 360 and Interspeed 5640, in Port Phillip Bay, Australia. A total of 15 genera were identified during the 10 week deployment. Intersleek 970 displayed the most rapid fouling by ciliates, reaching 63.3(± 5.9) cells cm(-2). After 10 weeks, all four coatings were extensively fouled. However, the toxicity of the AF coatings still significantly inhibited microbial fouling compared to the FR coatings. On all treatments, colonies of sessile peritrichs dominated the ciliate assemblage in the early stage of succession, but as the biofilm matured, vagile ciliates exerted more influence on the assemblage structure. The AF coatings showed selective toxic effects, causing significant differences in the ciliate species assemblages among the treatments.
Collapse
Affiliation(s)
- Matthew G Watson
- a Centre for Environmental Sustainability and Remediation, School of Applied Sciences , RMIT University , Bundoora , Australia
| | - Andrew J Scardino
- b Maritime Platforms Division , Defence Science and Technology Organisation , Fishermans Bend , Australia
| | - Liliana Zalizniak
- a Centre for Environmental Sustainability and Remediation, School of Applied Sciences , RMIT University , Bundoora , Australia
| | - Jeff Shimeta
- a Centre for Environmental Sustainability and Remediation, School of Applied Sciences , RMIT University , Bundoora , Australia
| |
Collapse
|
13
|
Identification of two nickel ion-induced genes, NCI16 and PcGST1, in Paramecium caudatum. EUKARYOTIC CELL 2014; 13:1181-90. [PMID: 25001407 DOI: 10.1128/ec.00112-14] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Here, we describe the isolation of two nickel-induced genes in Paramecium caudatum, NCI16 and PcGST1, by subtractive hybridization. NCI16 encoded a predicted four-transmembrane domain protein (∼16 kDa) of unknown function, and PcGST1 encoded glutathione S-transferase (GST; ∼25 kDa) with GST and glutathione peroxidase (GPx) activities. Exposing cells to cobalt chloride also caused the moderate upregulation of NCI16 and PcGST1 mRNAs. Both nickel sulfate and cobalt chloride dose dependently induced NCI16 and PcGST1 mRNAs, but with different profiles. Nickel treatment caused a continuous increase in PcGST1 and NCI16 mRNA levels for up to 3 and 6 days, respectively, and a notable increase in H₂O₂ concentrations in P. caudatum. NCI16 expression was significantly enhanced by incubating cells with H₂O₂, implying that NCI16 induction in the presence of nickel ions is caused by reactive oxygen species (ROS). On the other hand, PcGST1 was highly induced by the antioxidant tert-butylhydroquinone (tBHQ) but not by H2O2, suggesting that different mechanisms mediate the induction of NCI16 and PcGST1. We introduced a luciferase reporter vector with an ∼0.42-kb putative PcGST1 promoter into cells and then exposed the transformants to nickel sulfate. This resulted in significant luciferase upregulation, indicating that the putative PcGST1 promoter contains a nickel-responsive element. Our nickel-inducible system also may be applicable to the efficient expression of proteins that are toxic to host cells or require temporal control.
Collapse
|
14
|
Saib A, Berrebbah H, Berredjem M, Djebar MR. Cytotoxic study of three derivatives amidophosphonates on alternative cellular model: Paramecium tetraurelia. Toxicol Res (Camb) 2014. [DOI: 10.1039/c4tx00033a] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
15
|
de Castro LAM, Küppers GC, Schweikert M, Harada ML, Paiva TDS. Ciliates from eutrophized water in the northern Brazil and morphology of Cristigera hammeri Wilbert, 1986 (Ciliophora, Scuticociliatia). Eur J Protistol 2014; 50:122-33. [DOI: 10.1016/j.ejop.2014.01.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2013] [Revised: 01/23/2014] [Accepted: 01/27/2014] [Indexed: 11/29/2022]
|
16
|
Analysis and evolution of water quality of the upper Váh River (northern Slovakia) by long-term changes in the community structure of ciliates (Protista: Ciliophora). Biologia (Bratisl) 2013. [DOI: 10.2478/s11756-013-0211-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
17
|
Coyne KJ, Countway PD, Pilditch CA, Lee CK, Caron DA, Cary SC. Diversity and Distributional Patterns of Ciliates in Guaymas Basin Hydrothermal Vent Sediments. J Eukaryot Microbiol 2013; 60:433-47. [DOI: 10.1111/jeu.12051] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2012] [Revised: 03/18/2013] [Accepted: 03/18/2013] [Indexed: 11/29/2022]
Affiliation(s)
- Kathryn J. Coyne
- College of Earth, Ocean, and Environment; University of Delaware; 700 Pilottown Road Lewes Delaware 19958 USA
| | - Peter D. Countway
- Department of Biological Sciences; University of Southern California; Los Angeles California 90089-0371 USA
| | - Conrad A. Pilditch
- Department of Biological Sciences; University of Waikato; Private Bag 3105 Hamilton 3240 New Zealand
| | - Charles K. Lee
- Department of Biological Sciences; University of Waikato; Private Bag 3105 Hamilton 3240 New Zealand
| | - David A. Caron
- Department of Biological Sciences; University of Southern California; Los Angeles California 90089-0371 USA
| | - Stephen C. Cary
- College of Earth, Ocean, and Environment; University of Delaware; 700 Pilottown Road Lewes Delaware 19958 USA
- Department of Biological Sciences; University of Waikato; Private Bag 3105 Hamilton 3240 New Zealand
| |
Collapse
|
18
|
Hrenovic J, Milenkovic J, Daneu N, Kepcija RM, Rajic N. Antimicrobial activity of metal oxide nanoparticles supported onto natural clinoptilolite. CHEMOSPHERE 2012; 88:1103-7. [PMID: 22677524 DOI: 10.1016/j.chemosphere.2012.05.023] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2012] [Revised: 05/10/2012] [Accepted: 05/12/2012] [Indexed: 05/26/2023]
Abstract
The antimicrobial activity of Cu(2)O, ZnO and NiO nanoparticles supported onto natural clinoptilolite was investigated in the secondary effluent under dark conditions. After 24h of contact the Cu(2)O and ZnO nanoparticles reduced the numbers of viable bacterial cells of Escherichia coli and Staphylococcus aureus in pure culture for four to six orders of magnitude and showed consistent 100% of antibacterial activity against native E. coli after 1h of contact during 48 exposures. The antibacterial activity of NiO nanoparticles was less efficient. The Cu(2)O and NiO nanoparticles showed 100% of antiprotozoan activity against Paramecium caudatum and Euplotes affinis after 1h of contact, while ZnO nanoparticles were less efficient. The morphology and crystallinity of the nanoparticles were not affected by microorganisms. The metal oxide nanoparticles could find a novel application in the disinfection of secondary effluent and removal of pathogenic microorganisms in the tertiary stage of wastewater treatment.
Collapse
Affiliation(s)
- Jasna Hrenovic
- University of Zagreb, Faculty of Science, Division of Biology, Zagreb, Croatia.
| | | | | | | | | |
Collapse
|
19
|
Gomiero A, Sforzini S, Dagnino A, Nasci C, Viarengo A. The use of multiple endpoints to assess cellular responses to environmental contaminants in the interstitial marine ciliate Euplotes crassus. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2012; 114-115:206-216. [PMID: 22459342 DOI: 10.1016/j.aquatox.2012.02.030] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2011] [Revised: 02/21/2012] [Accepted: 02/26/2012] [Indexed: 05/31/2023]
Abstract
This paper presents the results of investigations on the suitability of Euplotes crassus, an interstitial marine ciliate, to be used as model organism in ecotoxicology and thereafter to evaluate the toxicity of estuarine and coastal sediments upon laboratory exposure. Nowadays, anthropogenic activities have resulted in accumulation of metals and organic pollutants in the environment as well as in the food chain hence leading to serious ecological and human health problems. This may pose a risk to benthic and epibenthic organisms and it is crucial to discover toxicity tests that will identify adverse effects of sediment-associated chemicals on benthic organisms. Due to their nature as a eukaryotic cell/organism and their position in the food web, ciliated protozoa are suitable models for evaluating the effects of pollution on aquatic communities. Lethal and sublethal effects of exposure to inorganic and organic pollutants were tested on the cell mortality, replication rate, lysosomal membrane stability and endocytosis rate of E. crassus. Increasing nominal concentrations of individual and mixtures of mercury, copper, and benzo(a)pyrene were investigated in this study as they might be bioavailable in naturally occurring polluted sites. A significant decrease in the mean replication rate (p<0.05) was found after 24h exposures to m/μM concentrations of all tested pollutants. At the same time, significant decreases of lysosomal membrane stability (p<0.05) were observed for Cu (5 μM), Hg (10 nM), and B(a)P (200 nM). Among the entire suite of tests, endocytosis rate test demonstrated the highest sensitivity. Exposures to binary mixtures of all studied pollutants were performed showing both inorganic-organic and inorganic-inorganic additive and/or antagonist effects. Moreover, medium salinity was also varied to mimic estuarine-like environmental conditions linking biological response to ionic strengths. Under these conditions significant increases of both endocytosis rate and lysosomal membrane stability were observed and related to the increment of some Hg- and Cu-related toxic complexes. The studied biomarkers were always able to discriminate between the effects of organic and inorganic pollutants. Together with the short time and simplicity of the test procedures, results obtained in this study indicate that E. crassus is a promising and convenient bioindicator for evaluating the toxicity of different environmental matrixes like pore water, sediments and wastewaters--polluted by metals and organic pollutants.
Collapse
Affiliation(s)
- A Gomiero
- DISIT, University of West Piedmont "Amedeo Avogadro", Viale T. Michel 11, IT-15121 Alessandria, Italy.
| | | | | | | | | |
Collapse
|
20
|
Houneida B, Berrebah H, Berredjem M, Djebar MR. Effect of novel phosphoramidate on growth and respiratory metabolism of Paramecium aurelia. J Nat Sci Biol Med 2012; 3:48-51. [PMID: 22690051 PMCID: PMC3361778 DOI: 10.4103/0976-9668.95949] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
The continuous increase in the number of new chemicals as well as the discharges of solid and liquid wastes triggered the need for simple and inexpensive bioassays for routine testing. In recent years, there has been increasing development of methods (particularly rapid tests) for testing environmental samples. This paper describes the quick toxic evaluation of a novel synthetic compound: Phosphoramidate derivative B at different concentrations (2, 4 and 8 μM) for 72 h on Paramecium aurelia. We showed that B concentrations affect the growth of Paramecium in concentration- dependent manner; also it decreases the growth rate and increases response percentage in concentration- dependent manner. The value of LC50 obtained for these protozoa was estimated at 4.9693 μM after 24 hours of exposure. The respiratory metabolism of protozoan is perturbed at three concentrations, noting that the oxygen consumption was significantly increased at high concentrations after 18 hours of exposure. The results indicate that the Paramecium toxicity assay could be used as a complementary system to rapidly elucidate the cytotoxic potential of insecticides. The major advantages associated with these tests are: inexpensive, simple, rapid and seem to be attractive alternatives to conventional bioassays
Collapse
Affiliation(s)
- Benbouzid Houneida
- Laboratory of Cell Toxicology, General Direction of Scientific Research and Technological Development, Algeria
| | | | | | | |
Collapse
|
21
|
Vaerewijck MJM, Sabbe K, Baré J, Spengler HP, Favoreel HW, Houf K. Assessment of the efficacy of benzalkonium chloride and sodium hypochlorite against Acanthamoeba polyphaga and Tetrahymena spp. J Food Prot 2012; 75:541-6. [PMID: 22410229 DOI: 10.4315/0362-028x.jfp-11-359] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The efficacy of benzalkonium chloride and sodium hypochlorite against Acanthamoeba polyphaga and two Tetrahymena spp. was determined based on the European Standard EN 1276:2009 suspension test. Trophozoite viability was assessed by determination of the membrane integrity using flow cytometry as a fast screening technique. Bovine serum albumin was added to simulate clean (0.3 g/liter) and dirty (3 g/liter) conditions. Benzalkonium chloride caused cell lysis at concentrations above 50 mg/liter under clean and dirty conditions. A concentration of 50 mg of free chlorine per liter had a strong biocidal effect on acanthamoebae and tetrahymenae after 15 min under clean and dirty conditions. Our results suggest that benzalkonium chloride and sodium hypochlorite were effective against the three microorganisms at concentrations commonly applied in the food industry.
Collapse
Affiliation(s)
- M J M Vaerewijck
- Department of Veterinary Public Health and Food Safety, Ghent University, Merelbeke, Belgium
| | | | | | | | | | | |
Collapse
|
22
|
Kamika I, Momba MNB. Comparing the tolerance limits of selected bacterial and protozoan species to nickel in wastewater systems. THE SCIENCE OF THE TOTAL ENVIRONMENT 2011; 410-411:172-181. [PMID: 22014510 DOI: 10.1016/j.scitotenv.2011.09.060] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2011] [Revised: 09/05/2011] [Accepted: 09/21/2011] [Indexed: 05/31/2023]
Abstract
Heavy-metal resistant microorganisms play a significant role in the treatment of industrial wastewater. The detoxifying ability of these resistant microorganisms can be manipulated for bioremediation of heavy metals in wastewater systems. This study aimed at comparing the tolerance limit of selected wastewater protozoan species (Aspidisca sp., Trachelophyllum sp. and Peranema sp.) against Ni(2+) with that of selected bacterial species (Bacillus licheniformis-ATCC12759, Brevibacillus laterosporus-ATCC64 and Pseudomonas putida-ATCC31483) commonly found in wastewater systems. The isolates were exposed to various concentrations of Ni(2+) in mixed liquor and their tolerance to Ni(2+) assessed at different temperatures (25°C, 30°C, 35°C and 40°C) and pHs (4, 6, 7, 8 and 10). The physicochemical parameters such as chemical oxygen demand (COD) and dissolved oxygen (DO) of the media and the growth rates of the isolates were measured using standard methods. In terms of their minimum inhibitory concentrations (MIC), the results revealed that the isolates could tolerate Ni(2+) at concentrations ranging between 32 and 52ppm for protozoa and between 52 and 84ppm for bacteria. B. licheniformis-ATCC12759 was the most tolerant bacterial species (MIC: 84ppm-Ni(2+)) while Peranema sp. was the most tolerant protozoan species (MIC: 52ppm-Ni(2+)). At 10 and/or 20ppm-Ni(2+) the growth of B. licheniformis-ATCC12759 (6.30 days(-1) for 10 and 5.73 days(-1) for 20ppm-Ni(2+)), P. putida-ATCC31483 (6.02 days(-1) for 10 and 5.31 days(-1) for 20ppm-Ni(2+)) and Peranema sp. (2.15 days(-1) for 10ppm-Ni(2+)) was stimulated after one day of incubation. Statistical evidence showed significant differences (p=0.0065) between the MIC of the six isolates and positive correlations between COD and the growth rates of isolates (r=0.8999/0.8810 for bacteria/protozoa). The tolerance limit of all isolates was significantly dependent on the pH and the temperature. The study suggests that these isolates can be used for the bioremediation of nickel in industrial wastewater systems.
Collapse
Affiliation(s)
- I Kamika
- Department of Environmental, Water and Earth Sciences, Faculty of Science, Tshwane University of Technology, Arcadia Campus, P/Bag X680, Pretoria 0001, South Africa
| | | |
Collapse
|
23
|
Zhou L, Li J, Lin X, Al-Rasheid KAS. Use of RAPD to detect DNA damage induced by nitrofurazone in marine ciliate, Euplotes vannus (Protozoa, Ciliophora). AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2011; 103:225-232. [PMID: 21481819 DOI: 10.1016/j.aquatox.2011.03.002] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2010] [Revised: 03/02/2011] [Accepted: 03/07/2011] [Indexed: 05/30/2023]
Abstract
The random amplified polymorphic DNA (RAPD) assay was evaluated as a potential tool to detect the ecotoxicity induced by nitrofurazone in marine ciliate, Euplotes vannus. The data revealed a reduction in viability of the test ciliates with increasing nitrofurazone concentration in the range of 0-24 mgl(-1) and time of exposure from 24 to 96 h. The nitrofurazone treated ciliates were subjected to DNA damage analysis by RAPD assay. Among the 33 test RAPD primers used in this study, 11 primers with 60-70% GC content produced unique polymorphic band patterns. A total of 213 bands of 155-3317 bp in molecular size range were observed in the untreated cells. In comparison with the control ciliates, the nitrofurazone treated groups showed differences in RAPD profiles with respect to the band intensity, disappearance of bands and appearance of new bands of amplified DNA. The variation of RAPD profiles showed both the time- and concentration-dependent relationships. The data suggested significant genomic template instability, which corresponds well with the viability of the test ciliates. Thus the results demonstrated the potential of the RAPD assay for application as a powerful tool for detecting genotoxicity induced by fishy drugs in aquatic environment.
Collapse
Affiliation(s)
- Liang Zhou
- Laboratory of Protozoology, Key Laboratory of Ecology and Environmental Science in Guangdong Higher Education, Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, College of Life Science, South China Normal University, Guangzhou 510631, Guangdong, China
| | | | | | | |
Collapse
|
24
|
|
25
|
Yeh YS, Huang KN, Jen SL, Li YC, Young MS. Development of a multitarget tracking system for paramecia. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2010; 81:074302. [PMID: 20687744 DOI: 10.1063/1.3460266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
This investigation develops a multitarget tracking system for the motile protozoa, paramecium. The system can recognize, track, and record the orbit of swimming paramecia within a 4 mm diameter of a circular experimental pool. The proposed system is implemented using an optical microscope, a charge-coupled device camera, and a software tool, Laboratory Virtual Instrumentation Engineering Workbench (LABVIEW). An algorithm for processing the images and analyzing the traces of the paramecia is developed in LABVIEW. It focuses on extracting meaningful data in an experiment and recording them to elucidate the behavior of paramecia. The algorithm can also continue to track paramecia even if they are transposed or collide with each other. The experiment demonstrates that this multitarget tracking design can really track more than five paramecia and simultaneously yield meaningful data from the moving paramecia at a maximum speed of 1.7 mm/s.
Collapse
Affiliation(s)
- Yu-Sing Yeh
- Department of Electrical Engineering, National Cheng Kung University, Tainan, 701 Taiwan
| | | | | | | | | |
Collapse
|
26
|
Rehman A, Shakoori FR, Shakoori AR. Heavy metal uptake by Euplotes mutabilis and its possible use in bioremediation of industrial wastewater. BULLETIN OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2009; 83:130-135. [PMID: 19387521 DOI: 10.1007/s00128-009-9725-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2007] [Accepted: 04/08/2009] [Indexed: 05/27/2023]
Abstract
A ciliate protozoan, Euplotes mutabilis, isolated from heavy metal laden industrial wastewater, has been shown to tolerate multiple heavy metals thus suggesting its significance in bioremediation of industrial effluents. This ciliate tolerated Zn(2+) up to 33 microg/mL, Cd(2+) up to 22 microg/mL and Ni(2+) up to 18 microg/mL. The ciliate could uptake 85% Zn(2+), 84% of Cd(2+) and 87% of Ni(2+) after 96 h of inoculation of growth medium containing 10 microg/mL of Zn(2+) and 5 microg/mL of Cd(2+) and Ni(2+), with actively growing ciliates. After 6 days of incubation the ciliate removed 87% Cd(2+), 92% Ni(2+), and 93% Zn(2+) from the wastewater. The heavy metal uptake capability of Euplotes mutabilis may be employed for metal detoxification operations.
Collapse
Affiliation(s)
- A Rehman
- Department of Microbiology and Molecular Genetics, University of the Punjab, New Campus, Lahore, Pakistan
| | | | | |
Collapse
|
27
|
Rehman A, Shakoori FR, Shakoori AR. Heavy metal resistant freshwater ciliate, Euplotes mutabilis, isolated from industrial effluents has potential to decontaminate wastewater of toxic metals. BIORESOURCE TECHNOLOGY 2008; 99:3890-5. [PMID: 17888657 DOI: 10.1016/j.biortech.2007.08.007] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2007] [Revised: 08/06/2007] [Accepted: 08/06/2007] [Indexed: 05/17/2023]
Abstract
The ciliate, Euplotes mutabilis, isolated from industrial wastewater of tanneries of Kasur, Pakistan, showed tolerance against Cd2+ (22 microg ml(-1)), Cr6+ (60 microg ml(-1)), Pb2+ (75 microg ml(-1)) and Cu2+ (22 microg ml(-1)). The heavy metals, Cr and Pb, were randomly selected for determining the capability of the ciliate to reduce the concentration of these metal ions in the medium and to evaluate its potential use as bioremediator of wastewater. The live protozoans could remove 97% of Pb2+ and 98% of Cr6+ from the medium, 96 h after inoculation of the medium containing 10 micro gml(-1) of metal ions. The acid digestion of ciliate showed 89% of Pb2+ and 93% of Cr6+ ions accumulated in the organism. When the ciliate was exposed to heavy metals at a larger scale viz., 10 l of water containing 10 micro gml(-1) of heavy metals, it removed 86% of Pb2+ and 90% of Cr6+ from the medium. The metal uptake ability of E. mutabilis, as evidenced by its survival and growth in 100ml and 10 l of water containing 10 microg ml(-1) of metal ions, reduction in the concentration of heavy metals in the medium and its increased uptake by the live cells, and no metal uptake by the heat killed ciliate can be exploited for metal detoxification of industrial wastes and environmental clean-up operations.
Collapse
Affiliation(s)
- Abdul Rehman
- Department of Microbiology and Molecular Genetics, University of the Punjab, New Campus, Lahore 54590, Pakistan
| | | | | |
Collapse
|
28
|
Rehman A, Shakoori FR, Shakoori AR. Multiple metal resistance and uptake by a ciliate, Stylonychia mytilus, isolated from industrial effluents and its possible use in wastewater treatment. BULLETIN OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2007; 79:410-4. [PMID: 17874022 DOI: 10.1007/s00128-007-9270-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2007] [Accepted: 08/22/2007] [Indexed: 05/17/2023]
Affiliation(s)
- A Rehman
- Department of Microbiology and Molecular Genetics (AR) and School of Biological Sciences (ARS), University of the Punjab, New Campus, Lahore 54590, Pakistan
| | | | | |
Collapse
|
29
|
Rehman A, Shakoori FR, Shakoori AR. Uptake of heavy metals by Stylonychia mytilus and its possible use in decontamination of industrial wastewater. World J Microbiol Biotechnol 2007. [DOI: 10.1007/s11274-007-9436-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
30
|
Madoni P, Romeo MG. Acute toxicity of heavy metals towards freshwater ciliated protists. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2006; 141:1-7. [PMID: 16198032 DOI: 10.1016/j.envpol.2005.08.025] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2005] [Revised: 07/18/2005] [Accepted: 08/15/2005] [Indexed: 05/04/2023]
Abstract
The acute toxicity of five heavy metals to four species of freshwater ciliates (Colpidium colpoda, Dexiotricha granulosa, Euplotes aediculatus, and Halteria grandinella) was examined in laboratory tests. After exposing the ciliates to soluble compound of cadmium, copper, chromium, lead, and nickel at several selected concentrations, the mortality rate was registered and the LC50 values (with 95% confidence intervals) were calculated. Large differences appeared in sensitivities of the four species to the metals. H. grandinella showed the highest sensitivity for cadmium (0.07 mg l(-1), LC50) and lead (0.12 mg l(-1), LC50), whilst E. aediculatus showed the highest sensitivity for nickel (0.03 mg l(-1), LC50). The comparison with data obtained with other species indicate that Halteria grandinella and Euplotes aediculatus are excellent and convenient bioindicator for evaluating the toxicity of waters and wastewaters polluted by heavy metals. The short time (24 h) and simplicity of the test procedure enable this test to be used in laboratory studies.
Collapse
Affiliation(s)
- Paolo Madoni
- Dipartimento di Scienze Ambientali, Università degli Studi di Parma, Parco Area delle Scienze 11/A, 43100 Parma, Italy.
| | | |
Collapse
|
31
|
Takahashi T, Yoshii M, Kawano T, Kosaka T, Hosoya H. A new approach for the assessment of acrylamide toxicity using a green paramecium. Toxicol In Vitro 2005; 19:99-105. [PMID: 15582361 DOI: 10.1016/j.tiv.2004.06.012] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2004] [Revised: 06/10/2004] [Accepted: 06/25/2004] [Indexed: 11/21/2022]
Abstract
Exposure to acrylamide induces neurotoxic effects in humans. In addition, it induces genotoxic, reproductive and carcinogenic effects in laboratory animals. However, no convenient bioassay system for assessing acrylamide toxicity to animal and plant cells has been proposed to date. The present study aims to evaluate acrylamide toxicity to a green paramecium, Paramecium bursaria, bearing many endosymbiotic algae, because some chemicals are highly toxic to paramecia or microalgae, and some protozoa are already used for evaluation of environmental contaminations. Results showed that high acrylamide concentrations (> or = 1500 mg/l) have a lethal effect on P. bursaria. Although low acrylamide concentrations (< or = 150 mg/l) induced less change on the paramecium growth, the number of endosymbiotically growing algal cells drastically decreased. The acrylamide concentration required to induce a 50% decrease in the cell number (IC(50)) was determined to be 7.8 mg/l for endosymbiotic algae, indicating that the algal sensitivity to acrylamide was 7 and 15 times higher than that of Syrian hamster embryo (SHE) cells and the host cells, respectively. Here, we propose the use of P. bursaria being a convenient and sensitive bioindicator as a new approach for the assessment of acrylamide toxicity.
Collapse
Affiliation(s)
- Toshiyuki Takahashi
- Faculty of Science, Department of Biological Science, Graduate School of Science, Hiroshima University, Higashi-Hiroshima 739-8526, Japan
| | | | | | | | | |
Collapse
|