1
|
Kuroda Y, Nonaka M, Kamikubo Y, Ogawa H, Murayama T, Kurebayashi N, Sakairi H, Miyano K, Komatsu A, Dodo T, Nakano-Ito K, Yamaguchi K, Sakurai T, Iseki M, Hayashida M, Uezono Y. Inhibition of endothelin A receptor by a novel, selective receptor antagonist enhances morphine-induced analgesia: Possible functional interaction of dimerized endothelin A and μ-opioid receptors. Biomed Pharmacother 2021; 141:111800. [PMID: 34175819 DOI: 10.1016/j.biopha.2021.111800] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 05/13/2021] [Accepted: 05/24/2021] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND The misuse of opioids has led to an epidemic in recent times. The endothelin A receptor (ETAR) has recently attracted attention as a novel therapeutic target to enhance opioid analgesia. We hypothesized that endothelin A receptors may affect pain mechanisms by heterodimerization with μ opioid receptors. We examined the mechanisms of ETAR-mediated pain and the potential therapeutic effects of an ETAR antagonist, Compound-E, as an agent for analgesia. METHODS Real-time in vitro effect of Compound-E on morphine response was assessed in HEK293 cells expressing both endothelin A and μ opioid receptors through CellKey™ and cADDis cAMP assays. Endothelin A/μ opioid receptor dimerization was assessed by immunoprecipitation and live cell imaging. The in vivo effect of Compound-E was evaluated using a morphine analgesia mouse model that observed escape response behavior, body temperature, and locomotor activity. RESULTS In CellKey™ and cAMP assays, pretreatment of cells with endothelin-1 attenuated morphine-induced responses. These responses were improved by Compound-E, but not by BQ-123 nor by bosentan, an ETAR and endothelin B receptor antagonist. Dimerization of ETARs and μ opioid receptors was confirmed by Western blot and total internal reflection fluorescence microscopy in live cells. In vivo, Compound-E potentiated and prolonged the analgesic effects of morphine, enhanced hypothermia, and increased locomotor activity compared to morphine alone. CONCLUSION The results suggest that attenuation by endothelin-1 of morphine analgesia may be caused by dimerization of Endothelin A/μ opioid receptors. The novel ETAR antagonist Compound-E could be an effective adjunct to reduce opioid use.
Collapse
Affiliation(s)
- Yui Kuroda
- Department of Anesthesiology and Pain Medicine, Juntendo University Graduate School of Medicine, Tokyo, Japan; Department of Pain Control Research, The Jikei University School of Medicine, Tokyo, Japan
| | - Miki Nonaka
- Department of Pain Control Research, The Jikei University School of Medicine, Tokyo, Japan
| | - Yuji Kamikubo
- Department of Cellular and Molecular Pharmacology, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Haruo Ogawa
- Institute of Molecular and Cellular Biosciences, The University of Tokyo, Tokyo, Japan
| | - Takashi Murayama
- Department of Cellular and Molecular Pharmacology, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Nagomi Kurebayashi
- Department of Cellular and Molecular Pharmacology, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Hakushun Sakairi
- Department of Cellular and Molecular Pharmacology, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Kanako Miyano
- Department of Pain Control Research, The Jikei University School of Medicine, Tokyo, Japan; Division of Cancer Pathophysiology, National Cancer Center Research Institute, Tokyo, Japan
| | - Akane Komatsu
- Department of Anesthesiology and Pain Medicine, Juntendo University Graduate School of Medicine, Tokyo, Japan; Department of Pain Control Research, The Jikei University School of Medicine, Tokyo, Japan
| | - Tetsushi Dodo
- Strategy Planning & Operations, Medicine Development Center, Eisai Co., Ltd., Ibaraki, Japan
| | - Kyoko Nakano-Ito
- Global Drug Safety, Medicine Development Center, Eisai Co., Ltd., Ibaraki, Japan
| | - Keisuke Yamaguchi
- Department of Pain Medicine, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Takashi Sakurai
- Department of Cellular and Molecular Pharmacology, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Masako Iseki
- Department of Anesthesiology and Pain Medicine, Juntendo University Graduate School of Medicine, Tokyo, Japan; Department of Pain Medicine, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Masakazu Hayashida
- Department of Anesthesiology and Pain Medicine, Juntendo University Graduate School of Medicine, Tokyo, Japan; Department of Pain Medicine, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Yasuhito Uezono
- Department of Pain Control Research, The Jikei University School of Medicine, Tokyo, Japan; Department of Pain Medicine, Juntendo University Graduate School of Medicine, Tokyo, Japan; Supportive and Palliative Care Research Support Office, National Center Hospital East, Chiba, Japan; Project for Supportive Care Research, Exploratory Oncology Research and Clinical Trial Center, National Cancer Center, Tokyo, Japan.
| |
Collapse
|
2
|
Robinson SA, Jones AD, Brynildsen JK, Ehrlich ME, Blendy JA. Neurobehavioral effects of neonatal opioid exposure in mice: Influence of the OPRM1 SNP. Addict Biol 2020; 25:e12806. [PMID: 31267641 PMCID: PMC8450766 DOI: 10.1111/adb.12806] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Revised: 06/05/2019] [Accepted: 06/06/2019] [Indexed: 01/09/2023]
Abstract
Opioid use among pregnant women is a growing public health concern in the United States. Infants exposed to opioids in utero are at risk of exhibiting neonatal opioid withdrawal syndrome (NOWS). The biological mechanisms underlying short and long-term consequences of in utero opioid exposure and NOWS are unknown. A potential genetic factor is a single-nucleotide polymorphism (SNP) in the mu-opioid receptor gene (OPRM1 A118G). Opioid exposed infants with the G-allele spend less time in hospitals after birth. To determine whether this SNP modulates the neurobehavioral effects of neonatal opioid exposure and withdrawal, we used mice possessing the equivalent Oprm1 SNP (A112G). Pups were treated chronically with saline or morphine from postnatal days (PNDs) 1 to 14, a developmental period equivalent to the third trimester of a human pregnancy and a sensitive period for opioid exposure in rodents. Morphine treatment produced significant developmental delays regardless of genotype and increased total ultrasonic vocalizations in males during spontaneous withdrawal. Animals were aged and tested for anxiety and drug response during adolescence and adulthood, respectively. AA morphine-treated animals showed reduced activity in the marble burying task compared with saline controls; however, this effect was absent in AG and GG animals. As adults, AA males exposed to morphine from PNDs 1 to 14 exhibited enhanced development of locomotor sensitization to morphine, whereas females showed reduced locomotor sensitization. These data suggest the involvement of the Oprm1 SNP for certain outcomes of neonatal opioid exposure and highlight the importance of considering sex and genetic variability for the prognosis of NOWS.
Collapse
MESH Headings
- Analgesics, Opioid/pharmacology
- Animals
- Behavior, Animal/drug effects
- Brain/drug effects
- Disease Models, Animal
- Female
- Male
- Mice
- Mice, Inbred C57BL
- Opioid-Related Disorders/genetics
- Polymorphism, Single Nucleotide/drug effects
- Polymorphism, Single Nucleotide/genetics
- Pregnancy
- Prenatal Exposure Delayed Effects/genetics
- Receptors, Opioid, mu/drug effects
- Receptors, Opioid, mu/genetics
Collapse
Affiliation(s)
- Shivon A. Robinson
- Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania, Philadelphia PA, 19104
| | - Alonzo D. Jones
- Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania, Philadelphia PA, 19104
| | - Julia K. Brynildsen
- Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania, Philadelphia PA, 19104
| | - Michelle E. Ehrlich
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York NY, 10029
| | - Julie A. Blendy
- Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania, Philadelphia PA, 19104
| |
Collapse
|
3
|
Kolik LG, Nadorova AV, Narkevich VB, Kudrin VS. Hemantane a Derivative of Aminoadamantane Alleviates Morphine-Induced Hyperlocomotion via Modulation of Activity of the Dopaminergic and Serotonergic Systems. NEUROCHEM J+ 2020. [DOI: 10.1134/s1819712420010134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
4
|
Marie N, Canestrelli C, Noble F. Role of pharmacokinetic and pharmacodynamic parameters in neuroadaptations induced by drugs of abuse, with a focus on opioids and psychostimulants. Neurosci Biobehav Rev 2019; 106:217-226. [DOI: 10.1016/j.neubiorev.2018.06.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Revised: 05/29/2018] [Accepted: 06/06/2018] [Indexed: 01/16/2023]
|
5
|
Rouhani F, Khodarahmi P, Naseh V. NGF, BDNF and Arc mRNA Expression in the Hippocampus of Rats After Administration of Morphine. Neurochem Res 2019; 44:2139-2146. [DOI: 10.1007/s11064-019-02851-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Revised: 07/26/2019] [Accepted: 07/29/2019] [Indexed: 12/21/2022]
|
6
|
Charbogne P, Gardon O, Martín-García E, Keyworth HL, Matsui A, Mechling AE, Bienert T, Nasseef T, Robé A, Moquin L, Darcq E, Ben Hamida S, Robledo P, Matifas A, Befort K, Gavériaux-Ruff C, Harsan LA, Von Everfeldt D, Hennig J, Gratton A, Kitchen I, Bailey A, Alvarez VA, Maldonado R, Kieffer BL. Mu Opioid Receptors in Gamma-Aminobutyric Acidergic Forebrain Neurons Moderate Motivation for Heroin and Palatable Food. Biol Psychiatry 2017; 81:778-788. [PMID: 28185645 PMCID: PMC5386808 DOI: 10.1016/j.biopsych.2016.12.022] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Revised: 11/12/2016] [Accepted: 12/12/2016] [Indexed: 12/13/2022]
Abstract
BACKGROUND Mu opioid receptors (MORs) are central to pain control, drug reward, and addictive behaviors, but underlying circuit mechanisms have been poorly explored by genetic approaches. Here we investigate the contribution of MORs expressed in gamma-aminobutyric acidergic forebrain neurons to major biological effects of opiates, and also challenge the canonical disinhibition model of opiate reward. METHODS We used Dlx5/6-mediated recombination to create conditional Oprm1 mice in gamma-aminobutyric acidergic forebrain neurons. We characterized the genetic deletion by histology, electrophysiology, and microdialysis; probed neuronal activation by c-Fos immunohistochemistry and resting-state functional magnetic resonance imaging; and investigated main behavioral responses to opiates, including motivation to obtain heroin and palatable food. RESULTS Mutant mice showed MOR transcript deletion mainly in the striatum. In the ventral tegmental area, local MOR activity was intact, and reduced activity was only observed at the level of striatonigral afferents. Heroin-induced neuronal activation was modified at both sites, and whole-brain functional networks were altered in live animals. Morphine analgesia was not altered, and neither was physical dependence to chronic morphine. In contrast, locomotor effects of heroin were abolished, and heroin-induced catalepsy was increased. Place preference to heroin was not modified, but remarkably, motivation to obtain heroin and palatable food was enhanced in operant self-administration procedures. CONCLUSIONS Our study reveals dissociable MOR functions across mesocorticolimbic networks. Thus, beyond a well-established role in reward processing, operating at the level of local ventral tegmental area neurons, MORs also moderate motivation for appetitive stimuli within forebrain circuits that drive motivated behaviors.
Collapse
Affiliation(s)
- Pauline Charbogne
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, CNRS/INSERM/Université de Strasbourg, 1 rue Laurent Fries, 67404 Illkirch, France,Douglas Mental Health Institute, Department of Psychiatry, McGill University, 6875 boulevard LaSalle, H4H 1R3 Montreal, QC, Canada
| | - Olivier Gardon
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, CNRS/INSERM/Université de Strasbourg, 1 rue Laurent Fries, 67404 Illkirch, France
| | - Elena Martín-García
- Departament de Ciencies Experimentals i de la Salut, Universitat Pompeu Fabra, PRBB, C/Dr. Aiguader 88, 08003 Barcelona, Spain
| | - Helen L. Keyworth
- Faculty of Health and Medical Sciences, AY Building, University of Surrey, Guildford, Surrey GU2 7XH, UK
| | - Aya Matsui
- Section on Neuronal Structure, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, USA
| | - Anna E. Mechling
- Department of Radiology, Medical Physics, Medical Center – University of Freiburg, Faculty of Medicine, University of Freiburg, Germany,Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Thomas Bienert
- Department of Radiology, Medical Physics, Medical Center – University of Freiburg, Faculty of Medicine, University of Freiburg, Germany
| | - Taufiq Nasseef
- Douglas Mental Health Institute, Department of Psychiatry, McGill University, 6875 boulevard LaSalle, H4H 1R3 Montreal, QC, Canada
| | - Anne Robé
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, CNRS/INSERM/Université de Strasbourg, 1 rue Laurent Fries, 67404 Illkirch, France
| | - Luc Moquin
- Douglas Mental Health Institute, Department of Psychiatry, McGill University, 6875 boulevard LaSalle, H4H 1R3 Montreal, QC, Canada
| | - Emmanuel Darcq
- Douglas Mental Health Institute, Department of Psychiatry, McGill University, 6875 boulevard LaSalle, H4H 1R3 Montreal, QC, Canada
| | - Sami Ben Hamida
- Douglas Mental Health Institute, Department of Psychiatry, McGill University, 6875 boulevard LaSalle, H4H 1R3 Montreal, QC, Canada
| | - Patricia Robledo
- Departament de Ciencies Experimentals i de la Salut, Universitat Pompeu Fabra, PRBB, C/Dr. Aiguader 88, 08003 Barcelona, Spain
| | - Audrey Matifas
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, CNRS/INSERM/Université de Strasbourg, 1 rue Laurent Fries, 67404 Illkirch, France
| | - Katia Befort
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, CNRS/INSERM/Université de Strasbourg, 1 rue Laurent Fries, 67404 Illkirch, France
| | - Claire Gavériaux-Ruff
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, CNRS/INSERM/Université de Strasbourg, 1 rue Laurent Fries, 67404 Illkirch, France
| | - Laura-Adela Harsan
- Department of Radiology, Medical Physics, Medical Center – University of Freiburg, Faculty of Medicine, University of Freiburg, Germany,Laboratory of Engineering, Informatics and Imaging (ICube), Integrative multimodal imaging in healthcare (IMIS), UMR 7357, University of Strasbourg, France,University Hospital Strasbourg, Department of Biophysics and Nuclear Medicine, Strasbourg, France
| | - Dominik Von Everfeldt
- Department of Radiology, Medical Physics, Medical Center – University of Freiburg, Faculty of Medicine, University of Freiburg, Germany
| | - Jurgen Hennig
- Department of Radiology, Medical Physics, Medical Center – University of Freiburg, Faculty of Medicine, University of Freiburg, Germany
| | - Alain Gratton
- Douglas Mental Health Institute, Department of Psychiatry, McGill University, 6875 boulevard LaSalle, H4H 1R3 Montreal, QC, Canada
| | - Ian Kitchen
- Faculty of Health and Medical Sciences, AY Building, University of Surrey, Guildford, Surrey GU2 7XH, UK
| | - Alexis Bailey
- Faculty of Health and Medical Sciences, AY Building, University of Surrey, Guildford, Surrey GU2 7XH, UK
| | - Veronica A. Alvarez
- Section on Neuronal Structure, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, USA
| | - Rafael Maldonado
- Departament de Ciencies Experimentals i de la Salut, Universitat Pompeu Fabra, PRBB, C/Dr. Aiguader 88, 08003 Barcelona, Spain
| | - Brigitte L. Kieffer
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, CNRS/INSERM/Université de Strasbourg, 1 rue Laurent Fries, 67404 Illkirch, France,Douglas Mental Health Institute, Department of Psychiatry, McGill University, 6875 boulevard LaSalle, H4H 1R3 Montreal, QC, Canada,Corresponding author. Douglas Mental Health Institute, Department of Psychiatry, McGill, University, 6875 boulevard LaSalle, H4H 1R3 Montreal, QC, Canada, Phone: 514 761-6131 ext.: 3175; fax: 514 762-3033,
| |
Collapse
|
7
|
Bakhtazad A, Vousooghi N, Garmabi B, Zarrindast MR. Evaluation of the CART peptide expression in morphine sensitization in male rats. Eur J Pharmacol 2017; 802:52-59. [PMID: 28238767 DOI: 10.1016/j.ejphar.2017.02.040] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Revised: 02/20/2017] [Accepted: 02/22/2017] [Indexed: 11/24/2022]
Abstract
The importance of Cocaine- and amphetamine-regulated transcript (CART) peptide in reinforcing effects of addictive drugs specially alcohol and psychostimulants has been stablished. Involvement of CART peptide in rewarding effects of opioids in brain has recently been reported. Here we have studied the expression of CART mRNA and peptide in the reward pathway in morphine-induced sensitization phenomenon and also evaluated the peptide level fluctuations in CSF and plasma. Male Wistar rats received 7-day morphine injection (20mg/kg) and then after a 7-day washout period, a challenge dose of 10mg/kg morphine was administered and locomotor activity and oral stereotypical behaviors were recorded. Besides, the expression level of CART mRNA and peptide in four important areas of the mesocorticolimbic reward pathway including nucleus accumbens, striatum, prefrontal cortex, and hippocampus were measured by real-time PCR and western blotting, respectively. The level of the peptide in CSF and plasma was measured by Elisa method. The expression level of CART mRNA and protein in brain regions and also the peptide level in CSF and plasma were significantly down-regulated after 7-day morphine administration. These reduced levels returned to nearly normal rates after 7-day wash-out period. Administration of morphine challenge dose led to significant upregulation of CART gene expression (both mRNA and peptide) in the brain, and elevation of peptide level in CSF and plasma in morphine-sensitized rats. It can be concluded that CART is released in the framework of reward pathway and may serve as an important neurotransmitter in the process of morphine dependence and sensitization.
Collapse
Affiliation(s)
- Atefeh Bakhtazad
- Department of Neuroscience, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Nasim Vousooghi
- Department of Neuroscience, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran; Genetics Laboratory, Iranian National Center for Addiction Studies (INCAS), Iranian Institute for Reduction of High-Risk Behaviors, Tehran University of Medical Sciences, Tehran, Iran; Research Center for Cognitive and Behavioral Sciences, Tehran University of Medical Sciences, Tehran, Iran
| | - Behzad Garmabi
- Department of Neuroscience, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Reza Zarrindast
- Genetics Laboratory, Iranian National Center for Addiction Studies (INCAS), Iranian Institute for Reduction of High-Risk Behaviors, Tehran University of Medical Sciences, Tehran, Iran; Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran; Department of Cognitive Neuroscience, Institute for Cognitive Science Studies, Tehran, Iran; Genomics Center, School of Advanced Sciences, Tehran Medical Branch, Islamic Azad University, Tehran, Iran; School of Cognitive Sciences, Institute for Studies in Theoretical Physics and Mathematics, Tehran, Iran.
| |
Collapse
|
8
|
Farahmandfar M, Bakhtazad A, Akbarabadi A, Zarrindast MR. The influence of dopaminergic system in medial prefrontal cortex on ketamine-induced amnesia in passive avoidance task in mice. Eur J Pharmacol 2016; 781:45-52. [DOI: 10.1016/j.ejphar.2016.03.060] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2015] [Revised: 03/26/2016] [Accepted: 03/31/2016] [Indexed: 11/26/2022]
|
9
|
Allouche S, Le Marec T, Coquerel A, Noble F, Marie N. Striatal dopamine D1 and D2 receptors are differentially regulated following buprenorphine or methadone treatment. Psychopharmacology (Berl) 2015; 232:1527-33. [PMID: 25358852 DOI: 10.1007/s00213-014-3785-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2014] [Accepted: 10/20/2014] [Indexed: 01/11/2023]
Abstract
RATIONALE Chronic administration of morphine induces adaptations in neurotransmission system such as the dopamine pathway, and these modifications could be influenced by the drug administration pattern. Methadone and buprenorphine are the two main opioid substitution therapies, and despite their protracted use in humans, no study has investigated their ability to regulate dopamine system after chronic exposure/withdrawal. OBJECTIVES We evaluated the consequences of two administration patterns of methadone and buprenorphine on striatal dopamine D1 (D1R) and D2 (D2R) receptor levels. METHODS Mice were treated with escalating doses of methadone or buprenorphine for 5 days either once daily (binge) or three times a day (TTD). D1R and D2R density in striatum was measured by autoradiography using [(3)H]-SCH23390 and [(3)H]-raclopride, respectively, at 1 (WD1), 14 (WD14), and 35 (WD35) days after the last opioid injection. RESULTS A downregulation of D1R was observed upon TTD administration of buprenorphine and binge methadone treatment while an increase of those receptor levels was detected both with binge buprenorphine and TTD methadone treatments. Concerning the D2R, we rather measured an early or late downregulation with both agonists and administration patterns. CONCLUSIONS Our results demonstrated that methadone and buprenorphine were able to differentially regulate dopamine receptor density depending on the withdrawal period and the administration pattern.
Collapse
Affiliation(s)
- Stéphane Allouche
- Centre National de la Recherche Scientifique, Unité Mixte de Recherche 8206, Paris, France
| | | | | | | | | |
Collapse
|
10
|
Jenda M, Gawel K, Marszalek M, Komsta L, Kotlinska JH. AMN082, a metabotropic glutamate receptor 7 allosteric agonist, attenuates locomotor sensitization and cross-sensitization induced by cocaine and morphine in mice. Prog Neuropsychopharmacol Biol Psychiatry 2015; 57:166-75. [PMID: 25448778 DOI: 10.1016/j.pnpbp.2014.11.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/09/2014] [Revised: 10/29/2014] [Accepted: 11/06/2014] [Indexed: 10/24/2022]
Abstract
Previous studies have indicated that metabotropic glutamate receptors 7 (mGluR7s) are involved in drug addiction. However, the role of these receptors in drug-induced behavioral sensitization is unknown. The aim of the present study was to determine whether systemic injection of AMN082, a selective mGluR7 allosteric agonist, reduces the cocaine- and morphine-induced hyperactivity and the development and expression of locomotor sensitization, and also affects the reciprocal cross-sensitization to the stimulant effect of cocaine and morphine in mice. AMN082 (1.25-10.0 mg/kg, i.p.) did not have an impact on locomotion of naive mice and did not affect the acute cocaine- or morphine-induced hyperactivity, except the dose of 10 mg/kg that suppressed the locomotor effect of both drugs. Repeated exposure to cocaine or morphine (10 mg/kg, 5× every 3 days) gradually increased locomotion during induction of sensitization and after 4 (cocaine) or 7 day (morphine) withdrawal phase when challenged with cocaine (10 mg/kg, i.p.) or morphine (10 mg/kg, i.p.) on day 17 or 20, respectively. Pretreatment of animals with the lower doses of AMN082 (1.25-5.0 mg/kg, i.p.), 30 min before every cocaine or morphine injection during repeated drug administration or before cocaine or morphine challenge, dose-dependently attenuated the development, as well as the expression of cocaine or morphine locomotor sensitization. AMN082 also inhibited the reciprocal cross-sensitization between these drugs. Prior to administration of MMPIP (10 mg/kg, i.p.), a selective mGluR7 antagonist reversed the inhibitory effect of AMN082 on the development or expression of cocaine or morphine sensitization. These data indicate that AMN082 attenuated the development and expression of cocaine and morphine sensitization, and the reciprocal cross-sensitization via a mechanism that involves mGluR7s. Thus, AMN082 might have therapeutic implications not only in the treatment of cocaine or opioid addiction but also in the treatment of cocaine/opioid polydrug-abusers.
Collapse
Affiliation(s)
- M Jenda
- Department of Pharmacology and Pharmacodynamics, Medical University, Lublin, Poland
| | - K Gawel
- Department of Pharmacology and Pharmacodynamics, Medical University, Lublin, Poland
| | - M Marszalek
- Department of Pharmacology and Pharmacodynamics, Medical University, Lublin, Poland
| | - L Komsta
- Department of Medicinal Chemistry, Medical University, Lublin, Poland
| | - J H Kotlinska
- Department of Pharmacology and Pharmacodynamics, Medical University, Lublin, Poland.
| |
Collapse
|
11
|
Swimming improves the emotional memory deficit by scopolamine via mu opioid receptors. Physiol Behav 2014; 128:237-46. [DOI: 10.1016/j.physbeh.2014.02.011] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2013] [Revised: 09/29/2013] [Accepted: 02/04/2014] [Indexed: 11/23/2022]
|
12
|
Influence of pre-exposure to morphine on cannabinoid-induced impairment of spatial memory in male rats. Behav Brain Res 2013; 256:157-64. [DOI: 10.1016/j.bbr.2013.07.054] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2013] [Revised: 07/28/2013] [Accepted: 07/30/2013] [Indexed: 11/23/2022]
|
13
|
Babovic D, Jiang L, Goto S, Gantois I, Schütz G, Lawrence AJ, Waddington JL, Drago J. Behavioural and anatomical characterization of mutant mice with targeted deletion of D1 dopamine receptor-expressing cells: response to acute morphine. J Pharmacol Sci 2013; 121:39-47. [PMID: 23337398 DOI: 10.1254/jphs.12214fp] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022] Open
Abstract
Considerable topographic overlap exists between brain opioidergic and dopaminergic neurons. Pharmacological blockade of the dopamine D(1) receptor (Drd1a) reverses several behavioural phenomena elicited by opioids. The present study examines the effects of morphine in adult mutant (MUT) mice expressing the attenuated diphtheria toxin-176 gene in Drd1a-expressing cells, a mutant line shown previously to undergo post-natal striatal atrophy and loss of Drd1a-expression. MUT and wild-type mice were assessed behaviourally following acute administration of 10 mg/kg morphine. Treatment with morphine reduced locomotion and rearing similarly in both genotypes but reduced total grooming only in MUT mice. Morphine-induced Straub tail and stillness were heightened in MUT mice. Chewing and sifting were decreased in MUT mice and these effects were not modified by morphine. Loss of striatal Drd1-positive cells and up-regulated D(2)-expression, as reflected in down-regulated D(1)-like and up-regulated D(2)-like binding, respectively, is not uniform along the cranio-caudal extent in this model but appears to be greater in the caudal striatum. Preferential caudal loss of µ-opioid-expression, a marker for the striosomal compartment, was seen. These data indicate that Drd1a-positive cell loss modifies the exploratory behavioural response elicited by morphine, unmasking novel morphine-induced MUT-specific behaviours and generating a hypersensitivity to morphine for others.
Collapse
Affiliation(s)
- Daniela Babovic
- Molecular & Cellular Therapeutics, Royal College of Surgeons in Ireland, Dublin, Ireland
| | | | | | | | | | | | | | | |
Collapse
|
14
|
Rezayof A, Assadpour S, Alijanpour S. Morphine-induced anxiolytic-like effect in morphine-sensitized mice: involvement of ventral hippocampal nicotinic acetylcholine receptors. Pharmacol Biochem Behav 2012; 103:460-6. [PMID: 23067878 DOI: 10.1016/j.pbb.2012.10.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2012] [Revised: 10/01/2012] [Accepted: 10/06/2012] [Indexed: 10/27/2022]
Abstract
In the present study, the effects of repeated intra-ventral hippocampal (intra-VH) microinjections of nicotinic acetylcholine receptor agonist or antagonist on morphine-induced anxiolytic-like behavior were investigated in morphine-sensitized mice using elevated plus-maze. Intraperitoneal (i.p.) administration of different doses of morphine (5, 7.5 and 10mg/kg) increased the percentage of open arm time (%OAT), open arm entries (%OAE), but not locomotor activity, indicating an anxiolytic-like response to morphine. The maximum response was obtained by 7.5mg/kg of the opioid. The anxiety-like behavior which was induced by a lower dose of morphine (5mg/kg) was significantly increased in mice that had previously received once daily injections of morphine (10 and 20mg/kg, i.p.) for 3 days. It should be considered that this treatment also increased locomotor activity in morphine-sensitized mice. Furthermore, the response to an ineffective dose of morphine (5mg/kg, i.p.) in the EPM was significantly increased in the animals that had previously received nicotine for 3 days (0.1, 0.3, 0.5 and 0.7 μg/mouse; intra-VH), 5 min prior to the injections of morphine (5mg/kg/day × 3 days; i.p.). On the other hand, the increase of morphine-induced anxiolytic-like effect in animals that had previously received the 3-day morphine (20mg/kg) was dose dependently suppressed by once daily injections of mecamylamine (0.5, 1 and 2 μg/mouse/day × 3 days; intra-VH). It is important to note that repeated intra-VH administrations of the same doses of nicotine or mecamylamine alone caused no significant change in morphine (5mg/kg)-induced anxiety-like parameters in the EPM. In conclusion, it seems that morphine sensitization affects the anxiety-like behavior in the EPM and the cholinergic system in the ventral hippocampus, via nicotinic receptors, may play an important role in this effect.
Collapse
Affiliation(s)
- Ameneh Rezayof
- Department of Animal Biology, School of Biology and Center of Excellence in Phylogeny of Living Organisms, College of Science, University of Tehran, Tehran, Iran.
| | | | | |
Collapse
|
15
|
Amnesia induced by morphine in spatial memory retrieval inhibited in morphine-sensitized rats. Eur J Pharmacol 2012; 683:132-9. [DOI: 10.1016/j.ejphar.2012.02.038] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2011] [Revised: 01/20/2012] [Accepted: 02/26/2012] [Indexed: 12/17/2022]
|
16
|
Farahmandfar M, Zarrindast MR, Kadivar M, Karimian SM, Naghdi N. The effect of morphine sensitization on extracellular concentrations of GABA in dorsal hippocampus of male rats. Eur J Pharmacol 2011; 669:66-70. [DOI: 10.1016/j.ejphar.2011.07.050] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2011] [Revised: 06/26/2011] [Accepted: 07/30/2011] [Indexed: 11/30/2022]
|
17
|
Le Marec T, Marie-Claire C, Noble F, Marie N. Chronic and intermittent morphine treatment differently regulates opioid and dopamine systems: a role in locomotor sensitization. Psychopharmacology (Berl) 2011; 216:297-303. [PMID: 21340469 DOI: 10.1007/s00213-011-2223-6] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2010] [Accepted: 02/03/2011] [Indexed: 11/25/2022]
Abstract
RATIONALE Behavioral sensitization induced by repeated morphine administrations may depend on patterns of administration. However, neurobiological mechanisms involved in this sensitization are largely unknown. OBJECTIVES We compared the effects of intermittent (20 mg/kg, once daily for 7 days) and chronic (escalating doses from 5 to 40 mg/kg, three times a day for 5 days) morphine treatments in mice on locomotor activity. We also quantified, by autoradiography, mu opioid receptor (MOR) in ventral tegmental area (VTA), dopamine D1 (D1R) and D2 (D2R) receptors in striatum. RESULTS Whereas the intermittent treatment led to a long-term sensitization to locomotor effects of morphine [until withdrawal day (WD) 14], the chronic treatment induced a tolerance (WD1) followed by a transient sensitization (WD14). Binding studies demonstrated a decrease of MOR in VTA at WD1 for the chronic treatment. In contrast, striatal D1R level was decreased at WD1, and increased at WD14 for the chronic treatment. For the D2R, we observed a decrease from WD1 to WD14 for the intermittent treatment and an increase at WD1 followed by a decrease at WD14 for the chronic treatment. CONCLUSIONS These results demonstrate that chronic and intermittent morphine treatments could induce different behavioral adaptations that could be explained in part by distinct changes occurring in dopamine and opioid systems.
Collapse
MESH Headings
- Analgesics, Opioid/administration & dosage
- Analgesics, Opioid/pharmacology
- Animals
- Autoradiography
- Behavior, Animal/drug effects
- Corpus Striatum/drug effects
- Corpus Striatum/metabolism
- Dose-Response Relationship, Drug
- Drug Administration Schedule
- Drug Tolerance
- Male
- Mice
- Morphine/administration & dosage
- Morphine/pharmacology
- Motor Activity/drug effects
- Receptors, Dopamine D1/drug effects
- Receptors, Dopamine D1/metabolism
- Receptors, Dopamine D2/drug effects
- Receptors, Dopamine D2/metabolism
- Receptors, Opioid, mu/metabolism
- Time Factors
- Ventral Tegmental Area/drug effects
- Ventral Tegmental Area/metabolism
Collapse
Affiliation(s)
- Thierry Le Marec
- Centre National de la Recherche Scientifique, Unité Mixte de Recherche 8206, Paris, France
| | | | | | | |
Collapse
|
18
|
Farahmandfar M, Karimian SM, Zarrindast MR, Kadivar M, Afrouzi H, Naghdi N. Morphine sensitization increases the extracellular level of glutamate in CA1 of rat hippocampus via μ-opioid receptor. Neurosci Lett 2011; 494:130-4. [DOI: 10.1016/j.neulet.2011.02.074] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2010] [Revised: 02/01/2011] [Accepted: 02/26/2011] [Indexed: 12/17/2022]
|
19
|
Rodríguez-Arias M, Aguilar MA, Manzanedo C, Miñarro J. Preclinical evidence of new opioid modulators for the treatment of addiction. Expert Opin Investig Drugs 2010; 19:977-94. [PMID: 20629615 DOI: 10.1517/13543784.2010.500612] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
IMPORTANCE OF THE FIELD Addiction to opiates is one of the most severe forms of substance dependence, and despite a variety of pharmacological approaches to treat it, relapse is observed in a high percentage of subjects. New pharmacological compounds are necessary to improve the outcome of treatments and reduce adverse side effects. Moreover, drugs that act on the opioid system can also be of benefit in the treatment of alcohol or cocaine addiction. AREA COVERED BY THIS REVIEW: Recent preclinical studies of pharmacological agents for the treatment of opiate addiction (2008 to the present date). WHAT THE READER WILL GAIN The reader will be informed of the latest drugs shown in animal models to modify dependence on opiates and the reinforcing effects of these drugs. In addition, reports of the latest studies to test these compounds in models of other drug addictions are reviewed. TAKE HOME MESSAGE The classic clinical pharmacotherapy for opiate dependence, involving mu-opioid receptor agonists or antagonists, has not yielded a high success rate in humans. In pharmacotherapy for opioid dependence, new options are emerging and different pharmacological strategies are now being tested.
Collapse
Affiliation(s)
- Marta Rodríguez-Arias
- Facultad de Psicología, Departamento de Psicobiología, Unidad de Investigación Psicobiología de las Drogodependencias, Universitat de Valencia, Avda. Blasco Ibáñez 21, Valencia, Spain
| | | | | | | |
Collapse
|
20
|
Zarrindast M, Madadi F, Ahmadi S. Repeated administrations of dopamine receptor agents affect lithium-induced state-dependent learning in mice. J Psychopharmacol 2009; 23:645-51. [PMID: 18635706 DOI: 10.1177/0269881108093926] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The influence of repeated administration of dopamine receptor agents on the effect of lithium on lithium-induced state-dependent learning was examined in mice. Immediate post-training intraperitoneal (i.p.) administrations of lithium (10 and 20 m/kg) decreased the step-down latency of a single-trial inhibitory avoidance task. This was fully or partly reversed by pre-test administration of the same doses of the drug, with maximum response at the dose of 10 mg/kg, suggesting state-dependent learning was induced by lithium. Here, it has also been shown that repeated intracerebroventricular administrations of a mixed D1/D2 dopamine receptors agonist apomorphine (once daily injections of 0.5 microg/mouse for three consecutive days followed by five days of no drug treatment) increased the effect of lower doses of pre-test lithium (1.25, 2.5 and 5 mg/kg, i.p.) on the reinstatement of the step-down latency decreased by post-training lithium (10 mg/kg). On the contrary, not only repeated administrations of the dopamine D1 receptor antagonist SCH 23390 (0.5 and 1 microg/mouse) but also the dopamine D2 receptor antagonist sulpiride (0.3 and 1 microg/mouse) disrupted the state-dependent learning induced by lithium. These results suggest that state-dependent learning induced by lithium may be altered by repeated pretreatment of dopamine receptor agents.
Collapse
Affiliation(s)
- Mr Zarrindast
- Department of Pharmacology, Tehran University of Medical Sciences, Tehran, Iran.
| | | | | |
Collapse
|
21
|
Becker A, Grecksch G, Zernig G, Ladstaetter E, Hiemke C, Schmitt U. Haloperidol and risperidone have specific effects on altered pain sensitivity in the ketamine model of schizophrenia. Psychopharmacology (Berl) 2009; 202:579-87. [PMID: 18810393 DOI: 10.1007/s00213-008-1336-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2008] [Accepted: 09/03/2008] [Indexed: 01/27/2023]
Abstract
RATIONALE The ketamine (ket) model reflects features of schizophrenia as well as secondary symptoms such as altered pain sensitivity. OBJECTIVES In the present study, we investigated the effect of subchronic oral treatment with haloperidol (hal, 0.075 mg/kg) and risperidone (ris, 0.2 mg/kg) on altered pain perception and locomotor activity in this model. RESULTS In reaction to 5 mg/kg morphine, ket pretreated animals showed a diminished analgesic response. Hal had no analgesic effect per se, but the compound normalised the analgesic reaction to morphine in the ket pretreated animals. The effect of ris was complex. First, there was no analgesic effect per se, and control animals showed a dose-dependent increase in the analgesic index after morphine injection. In the ket group treated with ris, the analgesic response to 5 mg/kg morphine was attenuated and in response to 10 mg/kg analgesia was comparable with that measured in controls. The reduced analgesic effect was not due to pharmacokinetic differences in morphine metabolism. After administration via drinking water in saline-injected control animals, the hal blood serum concentration was 2.6 +/- 0.45 ng/ml. In ket-injected animals, the mean serum concentration of hal amounted to 1.2 +/- 0.44 ng/ml. In the experiment using ris, animals in the control group had higher ris serum concentrations compared with ket-injected animals. In control animals, morphine dose dependently decreased locomotor activity. This effect was significantly stronger in the ket pretreated groups. CONCLUSIONS Hal and ris had different effects on altered pain sensitivity. It was hypothesised that these results are connected with alterations in dopamine D2 and mu opioid receptor binding.
Collapse
Affiliation(s)
- Axel Becker
- Faculty of Medicine, Institute of Pharmacology and Toxicology, Otto von Guericke University, Leipziger Str. 44, 39120 Magdeburg, Germany.
| | | | | | | | | | | |
Collapse
|
22
|
Brown RM, Short JL, Cowen MS, Ledent C, Lawrence AJ. A differential role for the adenosine A2A receptor in opiate reinforcement vs opiate-seeking behavior. Neuropsychopharmacology 2009; 34:844-56. [PMID: 18536706 DOI: 10.1038/npp.2008.72] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The adenosine A(2A) receptor is specifically enriched in the medium spiny neurons that make up the 'indirect' output pathway from the ventral striatum, a structure known to have a crucial, integrative role in processes such as reward, motivation, and drug-seeking behavior. In the present study we investigated the impact of adenosine A(2A) receptor deletion on behavioral responses to morphine in a number of reward-related paradigms. The acute, rewarding effects of morphine were evaluated using the conditioned place preference paradigm. Operant self-administration of morphine on both fixed and progressive ratio schedules as well as cue-induced drug-seeking was assessed. In addition, the acute locomotor response to morphine as well as sensitization to morphine was evaluated. Decreased morphine self-administration and breakpoint in A(2A) knockout mice was observed. These data support a decrease in motivation to consume the drug, perhaps reflecting diminished rewarding effects of morphine in A(2A) knockout mice. In support of this finding, a place preference to morphine was not observed in A(2A) knockout mice but was present in wild-type mice. In contrast, robust cue-induced morphine-seeking behavior was exhibited by both A(2A) knockout and wild-type mice after a period of withdrawal. The acute locomotor response to morphine in the A(2A) knockout was similar to wild-type mice, yet A(2A) knockout mice did not display tolerance to chronic morphine under the present paradigm. Both genotypes display locomotor sensitization to morphine, implying a lack of a role for the A(2A) receptor in the drug-induced plasticity necessary for the development or expression of sensitization. Collectively, these data suggest a differential role for adenosine A(2A) receptors in opiate reinforcement compared to opiate-seeking.
Collapse
Affiliation(s)
- Robyn Mary Brown
- Brain Injury and Repair Group, Howard Florey Institute, University of Melbourne, Parkville, VIC, Australia
| | | | | | | | | |
Collapse
|
23
|
Sepehrizadeh Z, Bahrololoumi Shapourabadi M, Ahmadi S, Hashemi Bozchlou S, Zarrindast MR, Sahebgharani M. DECREASED AMPA GLuR2, BUT NOT GLuR3, mRNA EXPRESSION IN RAT AMYGDALA AND DORSAL HIPPOCAMPUS FOLLOWING MORPHINE-INDUCED BEHAVIOURAL SENSITIZATION. Clin Exp Pharmacol Physiol 2008; 35:1321-30. [DOI: 10.1111/j.1440-1681.2008.05004.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
24
|
Sepehrizadeh Z, Sahebgharani M, Ahmadi S, Shapourabadi MB, Bozchlou SH, Zarrindast MR. Morphine-induced behavioral sensitization increased the mRNA expression of NMDA receptor subunits in the rat amygdala. Pharmacology 2008; 81:333-43. [PMID: 18391508 DOI: 10.1159/000122959] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2007] [Accepted: 12/02/2007] [Indexed: 01/28/2023]
Abstract
This study was designed to evaluate the effect of repeated morphine treatment on rat behavioral responses. In the genetic section, the mRNA expression of NMDA receptor subunits (NR1 and NR2A) was measured in certain areas of the male rat brain (striatum, prefrontal cortex, hippocampus, hypothalamus and amygdala). In the behavioral section, the effect of repeated morphine treatment on animal models such as locomotion, oral stereotypy, and state-dependent memory in a passive avoidance test was evaluated in the presence or absence of MK801 (NMDA receptor antagonist). Our results showed that chronic morphine treatment, followed by a 7-day (but not 24-hour) washout period, potentiated the effect of test doses of morphine, which is referred to as behavioral sensitization. Meanwhile, pretreatment of animals with MK801 (0.1 and 0.25 mg/kg), 30 min before a test dose of morphine (5 mg/kg), failed to attenuate the locomotion and oral stereotypy in the behavioral sensitization state. Interestingly, a higher dose of MK801 (0.25 mg/kg) decreased memory retrieval induced by morphine (2.5 mg/kg) in state-dependent memory. This effect may be due to the intrinsic motor enhancer property of higher doses of MK801, rather than the blockade of NMDA receptors. It can be concluded that MK801 does not affect morphine-induced behavioral sensitization in the expression phase. In the genetic section of the study, results of quantitative real-time RT-PCR clearly indicated that morphine sensitization increased the expression of NMDA receptor subunits mRNA in the amygdala (NR1 by 104% and NR2A by 85%), while the other areas of the brain were unaffected. Maenwhile, no change in the mRNA levels was observed in non-sensitized animals (chronic morphine treatment followed by a 24-hour washout period). In summary, the present study indicates that repeated morphine treatment followed by long-term (7-day washout) induces behavioral sensitization and causes a delayed increase in mRNA levels of NMDA receptor subunits in the rat amygdala. Meanwhile, it has previously been reported that the amygdala is involved in behavioral sensitization. Thus, it can be concluded that the increase in NMDA receptor expression is associated with morphine-induced behavioral sensitization.
Collapse
Affiliation(s)
- Zargham Sepehrizadeh
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, University of Tehran, Tehran, Iran
| | | | | | | | | | | |
Collapse
|
25
|
Zarrindast MR, Hoghooghi V, Rezayof A. Inhibition of morphine-induced amnesia in morphine-sensitized mice: Involvement of dorsal hippocampal GABAergic receptors. Neuropharmacology 2008; 54:569-76. [DOI: 10.1016/j.neuropharm.2007.11.004] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2007] [Revised: 11/03/2007] [Accepted: 11/08/2007] [Indexed: 11/25/2022]
|
26
|
Borgkvist A, Usiello A, Greengard P, Fisone G. Activation of the cAMP/PKA/DARPP-32 signaling pathway is required for morphine psychomotor stimulation but not for morphine reward. Neuropsychopharmacology 2007; 32:1995-2003. [PMID: 17251906 DOI: 10.1038/sj.npp.1301321] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Activation of the cAMP/PKA pathway in the dopaminoceptive neurons of the striatum has been proposed to mediate the actions of various classes of drugs of abuse. Here, we show that, in the mouse nucleus accumbens and dorsal striatum, acute administration of morphine resulted in an increase in the state of phosphorylation of the dopamine- and cAMP-regulated phosphoprotein of 32 kDa (DARPP-32) at Thr34, without affecting phosphorylation at Thr75. The ability of morphine to stimulate Thr34 phosphorylation was prevented by blockade of dopamine D1 receptors. DARPP-32 knockout mice and T34A DARPP-32 mutant mice displayed a lower hyperlocomotor response to a single injection of morphine than wild-type controls. In contrast, in T75A DARPP-32 mutant mice, morphine-induced psychomotor activation was indistinguishable from that of wild-type littermates. In spite of their reduced response to the acute hyperlocomotor effect of morphine, DARPP-32 knockout mice and T34A DARPP-32 mutant mice were able to develop behavioral sensitization to morphine comparable to that of wild-type controls and to display morphine conditioned place preference. These results demonstrate that dopamine D1 receptor-mediated activation of the cAMP/DARPP-32 cascade in striatal medium spiny neurons is involved in the psychomotor action, but not in the rewarding properties, of morphine.
Collapse
Affiliation(s)
- Anders Borgkvist
- Department of Neuroscience, Karolinska Institutet, Retzius väg 8, 17177 Stockholm, Sweden
| | | | | | | |
Collapse
|
27
|
Zarrindast MR, Asgari-Afshar A, Sahebgharani M. Morphine-induced antinociception in the formalin test: sensitization and interactions with D1 and D2 dopamine receptors and nitric oxide agents. Behav Pharmacol 2007; 18:177-84. [PMID: 17426481 DOI: 10.1097/fbp.0b013e32813c5462] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
In this study, the effects of dopamine receptor antagonists and nitric oxide agents on morphine-induced sensitization in the formalin test in mice have been investigated. Repeated daily intraperitoneal administration of morphine (30 mg/kg for 3 days) followed by a 11-day wash out period increased morphine-induced antinociception in the formalin test, which may be due to sensitization. The antinociceptive response to higher doses of morphine (6 and 9 mg/kg) but not 3 mg/kg was significantly increased in sensitized animals compared with control groups. Pretreatment of animals with an opioid receptor antagonist, naloxone (4 mg/kg), during repeated administration of morphine, attenuated the morphine-induced sensitization. In the second part of the study, the animals received SCH23390 (D1 receptor antagonist), sulpiride (D2 receptor antagonist), L-Arg (nitric oxide precursor) and NG-nitro-L-Arg methylester (nitric oxide synthase inhibitor) during repeated morphine administration, to evaluate the role of dopamine receptor antagonists and nitric oxide agents in this phenomenon. Pretreatment of animals with NG-nitro-L-Arg methylester (20 mg/kg) and sulpiride (100 mg/kg) during morphine sensitization decreased the antinociceptive response to higher doses of morphine in the formalin test. It is concluded that D2 dopamine receptor and nitric oxide mechanisms may be involved at least partly in morphine-induced sensitization in the formalin test.
Collapse
Affiliation(s)
- Mohammad-Reza Zarrindast
- Department of Pharmacology, School of Medicine and Iranian National Center for Addiction Studies, Tehran University of Medical Sciences, Tehran, Iran.
| | | | | |
Collapse
|
28
|
Eun JS, Bae K, Yun YP, Hong JT, Kwon HN, Oh KW. Inhibitory effects of paeonol on morphine-induced locomotor sensitization and conditioned place preference in mice. Arch Pharm Res 2006; 29:904-10. [PMID: 17121187 DOI: 10.1007/bf02973913] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The inhibitory effects of paeonol, a major compound of Paeoniae radix, on the development of locomotor sensitization, conditioned place preference (CPP) and dopamine receptor supersensitivity induced by the repeated administration of morphine were investigated through behavioral experiments. A single administration of morphine produces hyperlocomotion. Repeated administration of morphine develops sensitization (reverse tolerance), a progressive enhancement of locomotion, which is used as a model for studying the drug-induced drug-seeking behaviors, and CPP, which is used as a model for studying drug reinforcement. Paeonol inhibited morphine-induced hyperlocomotion, sensitization and CPP. In addition, paeonol inhibited the development of postsynaptic dopamine receptors supersensitivity, which may be an underlying common mechanism that mediates the morphine-induced dopaminergic behaviors such as sensitization and CPP. Apomorphine (a dopamine agonist)-induced climbing behaviors also were inhibited by a single direct administration of paeonol. These results provide evidence that paeonol exerts anti-dopaminergic activity, and it is suggested that paeonol may be useful for the prevention and therapy of these adverse actions of morphine.
Collapse
Affiliation(s)
- Jae Soon Eun
- College of Pharmacy, Woosuk University, Samrye 565-701, Korea
| | | | | | | | | | | |
Collapse
|
29
|
Yoo JH, Yang EM, Cho JH, Lee JH, Jeong SM, Nah SY, Kim HC, Kim KW, Kim SH, Lee SY, Jang CG. Inhibitory effects of berberine against morphine-induced locomotor sensitization and analgesic tolerance in mice. Neuroscience 2006; 142:953-61. [PMID: 16934942 DOI: 10.1016/j.neuroscience.2006.07.008] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2005] [Revised: 07/03/2006] [Accepted: 07/11/2006] [Indexed: 10/24/2022]
Abstract
We previously reported that a methanolic extract of Coptis japonica, which is a well-known traditional oriental medicine, inhibits morphine-induced conditioned place preference (CPP) in mice. Berberine is a major component of Coptis japonica extract, and it has been established that the adverse effects of morphine on the brain involve dopamine (DA) receptors. However, to our knowledge, no study has investigated the inhibitory effects of berberine on morphine-induced locomotor sensitization and analgesic tolerance in mice. Here, we investigated the effects of berberine on morphine-induced locomotor sensitization and on the development of analgesic tolerance. Furthermore, we examined the effects of berberine treatment on N-methyl-D-aspartate (NMDA) receptor channel activity expressed in Xenopus laevis oocytes. Berberine was found to completely block both morphine-induced locomotor sensitization and analgesic tolerance, and reduce D(1) and NMDA receptor bindings in the cortex. Moreover, berberine markedly inhibited NMDA current in Xenopus laevis oocytes expressing NMDA receptor subunits. Our results suggest that the inhibitory effects of berberine on morphine-induced locomotor sensitization and analgesic tolerance are closely related to the modulation of D1 and NMDA receptors, and that berberine should be viewed as a potential novel means of attenuating morphine-induced sensitization and analgesic tolerance.
Collapse
Affiliation(s)
- J-H Yoo
- Department of Pharmacology, College of Pharmacy, Sungkyunkwan University, Suwon 440-746, Republic of Korea
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Zarrindast MR, Khalilzadeh A, Malekmohammadi N, Fazli-Tabaei S. Influence of morphine- or apomorphine-induced sensitization on histamine state-dependent learning in the step-down passive avoidance test. Behav Brain Res 2006; 171:50-5. [PMID: 16677725 DOI: 10.1016/j.bbr.2006.03.015] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2006] [Revised: 03/12/2006] [Accepted: 03/14/2006] [Indexed: 10/24/2022]
Abstract
Effects of morphine- or apomorphine-induced sensitization on histamine state-dependent memory of passive avoidance task were examined in mice. Pre-training intracerebroventricular (i.c.v.) administration of histamine (20 microg/mouse) decreased the learning of a one-trial passive avoidance task. Pre-test administration of histamine (10 and 20 microg/mouse) reversed amnesia induced by pre-training of histamine, with maximum response at 20 microg/mouse. Pre-training histamine-induced amnesia was also reversed in morphine- or apomorphine-sensitized mice that had previously received once daily injections of morphine (20 and 30 mg/kg) or apomorphine (0.5 and 1 mg/kg) for 3 days. The reversion of histamine-induced amnesia in morphine-sensitized mice was decreased by once daily administration of naloxone (0.5 and 1 mg/kg), SCH 23390 (0.05 and 0.1 mg/kg) or sulpiride (25, 50 and 100 mg/kg) prior to injection of morphine (30 mg/kg/day, 3 days). Furthermore, once daily administration of sulpiride (50 and 100 mg/kg) but not SCH 23390 (0.01, 0.05 and 0.1 mg/kg) prior to apomorphine (1 mg/kg, for 3 days) decreased the reversion of pre-training histamine-induced amnesia by apomorphine. The results suggest that apomorphine or morphine sensitization affects the impairment of memory induced by histamine and thus it is postulated that opioid and dopamine receptors may play an important role in this effect.
Collapse
Affiliation(s)
- Mohammad-Reza Zarrindast
- Department of Pharmacology, School of Medicine and Iranian National Center for Addiction Studies, Tehran University of Medical Sciences, Iran.
| | | | | | | |
Collapse
|
31
|
Heidari P, Sahebgharani M, Riazi G, Zarrindast MR. Influence of Morphine and Dopamine Receptor Sensitization on Locomotor Activity in Mice. Pharmacology 2006; 78:185-92. [PMID: 17063042 DOI: 10.1159/000096428] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2006] [Accepted: 08/23/2006] [Indexed: 11/19/2022]
Abstract
In the present study, the influence of morphine- and dopamine receptor antagonists-induced sensitization on morphine-induced locomotion in mice was investigated. Morphine (30, 40 and 50 mg/kg) increased, while lower doses of the opioid (10 and 20 mg/kg) decreased locomotor activity of mice. Subchronic repeated pretreatment of animals with morphine showed an increase in locomotion induced by the opioid. Clozapine reduced locomotor activity induced by morphine in both the naïve and subchronic morphine-treated animals. Subchronic pretreatment of clozapine also caused an increase in the locomotion induced by morphine. Sulpiride also decreased locomotion induced by morphine and its subchronic administration of the drug caused an increase in morphine- or apomorphine-induced locomotion. Co-administration of clozapine with sulpiride did not elicit potentiation in inhibiting the morphine effect. The D2 receptor mRNA expression was also increased by repeated morphine administration. It may be concluded that morphine-induced sensitization may be due to increase in D2 receptor mRNA expression. Sulpiride and clozapine may induce sensitization and also inhibit morphine-induced locomotion through their dopamine receptor blocking properties.
Collapse
Affiliation(s)
- Parviz Heidari
- Institute of Biochemistry and Biophysics (IBB), University of Tehran, Tehran, Iran
| | | | | | | |
Collapse
|
32
|
Zarrindast MR, Farahmandfar M, Rostami P, Rezayof A. The influence of central administration of dopaminergic and cholinergic agents on morphine-induced amnesia in morphine-sensitized mice. J Psychopharmacol 2006; 20:59-66. [PMID: 16174677 DOI: 10.1177/0269881105057003] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
In the present study, effects of intracerebroventricular (i.c.v.) injections of dopaminergic and cholinergic agents on morphine-induced amnesia in morphine-sensitized mice were investigated by using a one-trial passive avoidance task. Amnesia induced by pre-training morphine was significantly reversed in morphine-sensitized mice, which had previously received once daily injections of morphine (20 and 30 mg/kg, s.c.) for 3 days. Three daily injections of SKF 38393 (1, 2 and 4 g/mouse, i.c.v.) or SCH 23390 (0.25, 0.5, 0.75 and 1 g/mouse, i.c.v.) before morphine, and during morphine-sensitization, decreased and increased the amnesia induced by pre-training morphine respectively. Three daily injections of quinpirole (0.3, 1 and 3 g/mouse, i.c.v.) or sulpiride (0.03, 0.1, 0.3 and 1 g/mouse, i.c.v.) before morphine, also decreased and increased the amnesia induced by pre-training morphine respectively. Morphine-sensitized mice received similar injections of cholinergic agents. Three daily injections of physostigmine (1, 3 and 5 g/mouse, i.c.v.) or atropine (1, 4 and 7 g/mouse, i.c.v.) before morphine, and during morphine-sensitization, decreased and increased the amnesia induced by pre-training morphine respectively. Three daily injections of nicotine (0.75, 1 and 2 g/mouse, i.c.v.) or mecamylamine (1, 3 and 6 g/mouse, i.c.v.) before morphine, also decreased and increased the amnesia induced by pre-training morphine respectively. The results suggest that morphine sensitization affects the impairment of memory formation and thus it is postulated that central dopaminergic and cholinergic systems may play an important role in this effect.
Collapse
|
33
|
Zarrindast MR, Askari E, Khalilzadeh A, Nouraei N. Morphine State-Dependent Learning Sensitization and Interaction with Nitric Oxide. Pharmacology 2006; 78:66-71. [PMID: 16946625 DOI: 10.1159/000095541] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2006] [Accepted: 07/04/2006] [Indexed: 11/19/2022]
Abstract
In the present study, the effects of nitric oxide (NO) precursor L-arginine and L-NAME, a potent inhibitor of NO synthase (NOS), on the expression of sensitization of morphine were investigated. Pre-training administration of morphine (5 mg/kg) impaired memory retrieval compared to pre-training saline-treated animals. Amnesia due to pre-training morphine (5 mg/kg) was restored by pre-test morphine (5 mg/kg). The retrieval impairment was also inhibited in mice which had received once-daily injections of morphine (20 and 30 mg/kg, s.c.) for 3 days, followed by 5 days of no drug treatment before training (in order to induce morphine sensitization). Administration of L-arginine (60 mg/kg/day - 3 days) or L-NAME (20 mg/kg/day - 3 days) before training did not alter morphine state dependency. During acquisition of sensitization, administration of L-arginine (60 mg/kg) 20 min before morphine (10 mg/kg/day, for 3 days) increased, while injection of L-NAME (20 mg/kg) 20 min before morphine (30 mg/kg/day, for 3 days) decreased morphine state dependency. It is concluded that NO is involved in the morphine-induced sensitization.
Collapse
Affiliation(s)
- Mohammad-Reza Zarrindast
- Department of Pharmacology and Iranian National Center for Addiction Studies, School of Medicine, Tehran University of Medical Sciences, PO Box 13145-784 Tehran, Iran.
| | | | | | | |
Collapse
|
34
|
Manzanedo C, Aguilar MA, Rodríguez-Arias M, Miñarro J. Sensitization to the rewarding effects of morphine depends on dopamine. Neuroreport 2005; 16:201-5. [PMID: 15671878 DOI: 10.1097/00001756-200502080-00028] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The influence of dopamine (DA) on sensitization to the rewarding effects of morphine was evaluated. The effects of pre-treatment with saline or morphine plus naloxone, CGS 10746B, haloperidol, SCH 23390 and raclopride, on the place conditioning induced by 2 mg/kg morphine were evaluated. This dose was ineffective in saline pre-treated animals but induced a clear conditioned place preference in mice pre-treated with morphine, CGS 10746B or haloperidol. Conversely, animals pre-treated with morphine plus naloxone, CGS 10746B, SCH 23390, raclopride and the high dose of haloperidol did not acquire place preference. Our results demonstrated that DA release and subsequent DA D1 and D2 receptor activation is essential for the development of sensitization to the rewarding effects of morphine.
Collapse
Affiliation(s)
- Carmen Manzanedo
- Departamento de Psicobiología, Facultad de Psicología, Universitat de València, Av. Blasco Ibañez, 21. 46010 Valencia, Spain
| | | | | | | |
Collapse
|
35
|
Li JX, Zhao WL, Liang JH. Effects of carbamazepine on morphine-induced behavioral sensitization in mice. Brain Res 2004; 1019:77-83. [PMID: 15306241 DOI: 10.1016/j.brainres.2004.05.082] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/23/2004] [Indexed: 01/22/2023]
Abstract
Effects of carbamazepine on behavioral sensitization to morphine in mice has been investigated. Mice treated daily for 7 days with morphine (10 mg/kg) induced behavioral sensitization. Carbamazepine (10, 20, 40 mg/kg, i.p.) itself dose-dependently inhibited the locomotor activity of mice, but did not affect the acute morphine induced hyperactivity. Chronic treatment with carbamazepine had no effect on the development of morphine behavioral sensitization. Co-administration of carbamazepine 30 min prior to morphine had no significant effect on the development of behavioral sensitization. After the behavioral sensitization has been established, carbamazepine (10, 20, 40mg/kg, i.p.) did not affect the expression of morphine sensitization. However, carbamazepine (10, 20, 40mg/kg, i.p.) dose-dependently potentiated the transfer of morphine sensitization. The data of the present study implies that carbamazepine may influence the maintenance process of behavioral sensitization, which results in the enhancement of the transfer of behavioral sensitization. In clinic, the present results suggest that chronic use of carbamazepine might have abuse potential in opioid abusers.
Collapse
Affiliation(s)
- Jun-Xu Li
- Department of Neuropharmacology, National Institute on Drug Dependence, Peking University, 38 Xueyuan Road, Haidian District, Beijing 100083, PR China
| | | | | |
Collapse
|
36
|
Zarrindast MR, Rezayof A. Morphine state-dependent learning: sensitization and interactions with dopamine receptors. Eur J Pharmacol 2004; 497:197-204. [PMID: 15306205 DOI: 10.1016/j.ejphar.2004.06.041] [Citation(s) in RCA: 84] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2004] [Accepted: 06/22/2004] [Indexed: 10/26/2022]
Abstract
In the present study, the effects of morphine sensitization on impairment of memory formation and the state-dependent learning by morphine have been investigated in mice. Pretraining administration of morphine (0.5, 2.5 and 5 mg/kg) dose dependently decreased the learning of a one-trial passive avoidance task. Pretest administration of morphine (0.5, 2.5 and 5 mg/kg) induced state-dependent retrieval of the memory acquired under pretraining morphine influence. Pretraining or pretest administration of naloxone (0.25, 0.5 and 1 mg/kg) reversed both responses to morphine (5 mg/kg). Amnesia induced by pretraining morphine was significantly reversed in morphine-sensitized mice which had previously received once daily injections of morphine [20 and 30 mg/kg, subcutaneously (s.c.)] for 3 days. Morphine sensitization tended to reverse but did not significantly affect morphine state-dependent memory. The inhibition of morphine-induced amnesia in morphine-sensitized mice was decreased by once daily administration of naloxone (0.5, 1 and 2 mg/kg) 30 min prior to injection of morphine (20 mg/kg/day x 3 days). Three-days administration of 1-phenyl-7,8-dihydroxy-2,3,4,5-tetrahydro-1H-3-benzazepine HCL (SKF 38393; 8, 16 and 32 mg/kg) or SCH 23390; R(+)-7-chloro-8-hydroxy-3-methyl-1-phenyl-2,3,4,5-tetrahydro-1H-3-benzazepine HCL (0.01, 0.05 and 0.1 mg/kg) before morphine (for 3 days) and during morphine-sensitization, decreased and increased, the amnesia induced by pretraining morphine, respectively. Similar administration of quinpirole (0.5, 1 and 2 mg/kg) or sulpiride (25, 50 and 100 mg/kg) before morphine also decreased and increased the amnesia induced by pretraining morphine, respectively. The results suggest that morphine sensitization affects the impairment of memory formation, but not the facilitation of retrieval induced by morphine and thus it is postulated that dopamine receptors may play an important role in this effect.
Collapse
Affiliation(s)
- Mohammad-Reza Zarrindast
- Department of Pharmacology, School of Medicine Tehran University of Medical Sciences, P. O. Box 13145-784, Tehran, Iran.
| | | |
Collapse
|
37
|
Abstract
This paper is the twenty-fifth consecutive installment of the annual review of research concerning the endogenous opioid system, now spanning over a quarter-century of research. It summarizes papers published during 2002 that studied the behavioral effects of molecular, pharmacological and genetic manipulation of opioid peptides, opioid receptors, opioid agonists and opioid antagonists. The particular topics that continue to be covered include the molecular-biochemical effects and neurochemical localization studies of endogenous opioids and their receptors related to behavior (Section 2), and the roles of these opioid peptides and receptors in pain and analgesia (Section 3); stress and social status (Section 4); tolerance and dependence (Section 5); learning and memory (Section 6); eating and drinking (Section 7); alcohol and drugs of abuse (Section 8); sexual activity and hormones, pregnancy, development and endocrinology (Section 9); mental illness and mood (Section 10); seizures and neurologic disorders (Section 11); electrical-related activity and neurophysiology (Section 12); general activity and locomotion (Section 13); gastrointestinal, renal and hepatic functions (Section 14); cardiovascular responses (Section 15); respiration and thermoregulation (Section 16); and immunological responses (Section 17).
Collapse
Affiliation(s)
- Richard J Bodnar
- Department of Psychology and Neuropsychology Doctoral Sub-Program, Queens College, City University of New York, CUNY, 65-30 Kissena Blvd., Flushing, NY 11367, USA.
| | | |
Collapse
|