1
|
Peel A, Rushworth RL, Torpy DJ. Novel agents to treat adrenal insufficiency: findings of preclinical and early clinical trials. Expert Opin Investig Drugs 2024; 33:115-126. [PMID: 38284211 DOI: 10.1080/13543784.2024.2311207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 01/24/2024] [Indexed: 01/30/2024]
Abstract
INTRODUCTION Adrenal insufficiency currently affects over 300/million population, with higher morbidity and mortality compared to the general population. Current glucocorticoid replacement therapy is limited by a lack of reliable biomarkers to guide dosing, inter-patient variation in metabolism and narrow therapeutic window. Increased morbidity and mortality may relate to unappreciated under- or over-exposure to glucocorticoids and impaired cortisol circadian rhythm. New agents are required to emulate physiological cortisol secretion and individualize glucocorticoid dosing. AREAS COVERED History of glucocorticoid therapy, current limitations, and novel chronotherapeutic glucocorticoid delivery mechanisms. Literature search incorporated searches of PubMed and Embase utilizing terms such as adrenal insufficiency, Chronocort, Plenadren, continuous subcutaneous hydrocortisone infusion (CHSI), and glucocorticoid receptor modulator. EXPERT OPINION Glucocorticoid chronotherapy is necessary to optimize glucocorticoid exposure and minimize complications. Current oral chronotherapeutics provide improved dosing functionality, but are modifiable only in specific increments and cannot accommodate ultradian cortisol variation. Current data show improvement in quality of life but not morbidity or mortality outcomes. CHSI has significant potential for individualized glucocorticoid dosing, but would require a suitable biomarker of glucocorticoid adequacy to be implementable. Avenues for future research include determining a glucocorticoid sufficiency biomarker, development of interstitial or systemic cortisol monitoring, or development of glucocorticoid receptor modulators.
Collapse
Affiliation(s)
- Andrew Peel
- Endocrine and Metabolic Unit, Royal Adelaide Hospital, Adelaide, Australia
| | - R Louise Rushworth
- School of Medicine, Sydney, The University of Notre Dame, Australia, Sydney, Australia
| | - David J Torpy
- Endocrine and Metabolic Unit, Royal Adelaide Hospital, Adelaide, Australia
| |
Collapse
|
2
|
McElroy SL, Coloma PM, Berger B, Guerdjikova AI, Joyce JM, Liebowitz MR, Pain S, Rabasa C. Efficacy, safety, and tolerability of nivasorexant in adults with binge-eating disorder: A randomized, Phase II proof of concept trial. Int J Eat Disord 2023; 56:2120-2130. [PMID: 37584285 DOI: 10.1002/eat.24039] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Revised: 07/25/2023] [Accepted: 07/25/2023] [Indexed: 08/17/2023]
Abstract
OBJECTIVE This Phase II, placebo-controlled, double-blind study investigated the efficacy, safety, and tolerability of nivasorexant in the treatment of adults with moderate to severe binge-eating disorder (BED). METHODS Adults meeting the DSM-5 BED criteria were randomized 1:1 to placebo or nivasorexant (100 mg b.i.d.). The primary endpoint was the change from baseline to Week 12 in the number of binge eating (BE) days per week. Exploratory efficacy endpoints included cessation of BE in the last 4 weeks of treatment; and change from baseline to Week 12 in the number of BE episodes/week, the clinician global impression (CGI) of change, the Yale-Brown Obsessive-Compulsive Scale modified for BE, and the Hamilton rating scale for depression (HAMD-17). Key safety outcomes included treatment-emergent adverse events (TEAEs) and adverse events of special interest (i.e., somnolence and fatigue). RESULTS Sixty-eight participants were randomized to each treatment arm. The change from baseline to Week 12 in the number of BE days/week was the same for placebo (least squares mean [LSM]: -2.93) and nivasorexant (LSM: -2.93), with no difference between the treatment groups (LSM difference = .000 [95% confidence interval (CI): -.69, .69], p = .9992). Furthermore, no differences between treatment groups were observed in the exploratory efficacy endpoints. Nivasorexant was well tolerated; the overall incidence of TEAEs was balanced between treatment groups, and the frequency of somnolence and fatigue in the nivasorexant group were similar to placebo. DISCUSSION In this proof-of-concept study, 100 mg b.i.d. nivasorexant did not improve BE in adults with moderate to severe BED. PUBLIC SIGNIFICANCE The results of this Phase II study indicate that nivasorexant was well tolerated in adults with BED, but did not improve binge eating behavior over placebo. Further research is needed to improve our understanding of the role of the orexin-1 receptor in BED.
Collapse
Affiliation(s)
- Susan L McElroy
- Lindner Center of HOPE, Department of Psychiatry & Behavioral Neuroscience, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | | | | | - Anna I Guerdjikova
- Lindner Center of HOPE, Department of Psychiatry & Behavioral Neuroscience, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - J Mark Joyce
- Clinical Neuroscience Solutions, Inc., Jacksonville, Florida, USA
| | - Michael R Liebowitz
- Medical Research Network, New York, New York, USA
- Department of Psychiatry, Columbia University, New York, New York, USA
| | - Scott Pain
- Idorsia Pharmaceuticals Ltd, Allschwil, Switzerland
| | | |
Collapse
|
3
|
Kato Y, Lim AY, Sakolish C, Valdiviezo A, Moyer HL, Hewitt P, Bajaj P, Han G, Rusyn I. Analysis of reproducibility and robustness of OrganoPlate® 2-lane 96, a liver microphysiological system for studies of pharmacokinetics and toxicological assessment of drugs. Toxicol In Vitro 2022; 85:105464. [PMID: 36057418 PMCID: PMC10015056 DOI: 10.1016/j.tiv.2022.105464] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Revised: 07/26/2022] [Accepted: 08/26/2022] [Indexed: 02/06/2023]
Abstract
Establishing the functionality, reproducibility, robustness, and reliability of microphysiological systems is a critical need for adoption of these technologies. A high throughput microphysiological system for liver studies was recently proposed in which induced pluripotent stem cell-derived hepatocytes (iHeps) and non-parenchymal cells (endothelial cells and THP-1 cells differentiated with phorbol 12-myristate 13-acetate into macrophage-like cells) were co-cultured in OrganoPlate® 2-lane 96 devices. The goal of this study was to evaluate this platform using additional cell types and conditions and characterize its utility and reproducibility. Primary human hepatocytes or iHeps, with and without non-parenchymal cells, were cultured for up to 17 days. Image-based cell viability, albumin and urea secretion into culture media, CYP3A4 activity and drug metabolism were assessed. The iHeps co-cultured with non-parenchymal cells demonstrated stable cell viability and function up to 17 days; however, variability was appreciable both within and among studies. The iHeps in monoculture did not form clusters and lost viability and function over time. The primary human hepatocytes in monoculture also exhibited low cell viability and hepatic function. Metabolism of various drugs was most efficient when iHeps were co-cultured with non-parenchymal cells. Overall, we found that the OrganoPlate® 2-lane 96 device, when used with iHeps and non-parenchymal cells, is a functional liver microphysiological model; however, the high-throughput nature of this model is somewhat dampened by the need for replicates to compensate for high variability.
Collapse
Affiliation(s)
- Yuki Kato
- Department of Veterinary Physiology and Pharmacology, Texas A&M University, College Station, TX 77843, USA; Laboratory for Drug Discovery and Development, Shionogi Pharmaceutical Research Center, Shionogi & Co., Ltd., Osaka 561-0825, Japan
| | - Alicia Y Lim
- Department of Veterinary Physiology and Pharmacology, Texas A&M University, College Station, TX 77843, USA
| | - Courtney Sakolish
- Department of Veterinary Physiology and Pharmacology, Texas A&M University, College Station, TX 77843, USA
| | - Alan Valdiviezo
- Department of Veterinary Physiology and Pharmacology, Texas A&M University, College Station, TX 77843, USA
| | - Haley L Moyer
- Department of Veterinary Physiology and Pharmacology, Texas A&M University, College Station, TX 77843, USA
| | - Philip Hewitt
- Chemical and Preclinical Safety, Merck Healthcare KGaA, 64293 Darmstadt, Germany
| | - Piyush Bajaj
- Global Investigative Toxicology, Preclinical Safety, Sanofi USA, MA 01701, USA
| | - Gang Han
- Department of Epidemiology and Biostatistics, Texas A&M University, College Station, TX 77843, USA
| | - Ivan Rusyn
- Department of Veterinary Physiology and Pharmacology, Texas A&M University, College Station, TX 77843, USA.
| |
Collapse
|
4
|
Cytochrome P450 isoforms contribution, plasma protein binding, toxicokinetics of enniatin A in rats and in vivo clearance prediction in humans. Food Chem Toxicol 2022; 164:112988. [PMID: 35398446 DOI: 10.1016/j.fct.2022.112988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 03/28/2022] [Accepted: 04/02/2022] [Indexed: 11/21/2022]
Abstract
Emerging mycotoxins, such as enniatin A (ENNA), are becoming a worldwide concern owing to their presence in different types of food and feed. However, comprehensive toxicokinetic data that links intake, exposure and toxicological effects of ENNA has not been elucidated yet. Therefore, the present study investigated the in vitro (rat and human) and in vivo (rat) toxicokinetic properties of ENNA. Towards this, an easily applicable and sensitive bioanalytical method was developed and validated for the estimation of ENNA in rat plasma. ENNA exhibited high plasma protein binding (99%), high hepatic clearance and mainly underwent metabolism via CYP3A4 (74%). The in-house predicted hepatic clearance (54 mL/min/kg) and observed in vivo rat clearance (55 mL/min/kg) were comparable. The predicted in vivo human hepatic clearance was 18 mL/min/kg. ENNA underwent slow absorption (Tmax = 4 h) and rapid elimination following oral administration to rats. The absolute oral bioavailability was 47%. The toxicokinetic findings for ENNA from this study will help in designing and interpreting toxicological studies in rats. Besides, these findings could be used in physiologically based toxicokinetic (PBTK) model development for exposure predictions and risk assessment for ENNA in humans.
Collapse
|
5
|
Al-Hassany L, Goadsby PJ, Danser AHJ, MaassenVanDenBrink A. Calcitonin gene-related peptide-targeting drugs for migraine: how pharmacology might inform treatment decisions. Lancet Neurol 2022; 21:284-294. [DOI: 10.1016/s1474-4422(21)00409-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 09/26/2021] [Accepted: 11/04/2021] [Indexed: 12/15/2022]
|
6
|
McCarthy JS, Yalkinoglu Ö, Odedra A, Webster R, Oeuvray C, Tappert A, Bezuidenhout D, Giddins MJ, Dhingra SK, Fidock DA, Marquart L, Webb L, Yin X, Khandelwal A, Bagchus WM. Safety, pharmacokinetics, and antimalarial activity of the novel plasmodium eukaryotic translation elongation factor 2 inhibitor M5717: a first-in-human, randomised, placebo-controlled, double-blind, single ascending dose study and volunteer infection study. THE LANCET. INFECTIOUS DISEASES 2021; 21:1713-1724. [PMID: 34715032 PMCID: PMC8612936 DOI: 10.1016/s1473-3099(21)00252-8] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 03/02/2021] [Accepted: 04/13/2021] [Indexed: 01/28/2023]
Abstract
BACKGROUND M5717 is the first plasmodium translation elongation factor 2 inhibitor to reach clinical development as an antimalarial. We aimed to characterise the safety, pharmacokinetics, and antimalarial activity of M5717 in healthy volunteers. METHODS This first-in-human study was a two-part, single-centre clinical trial done in Brisbane, QLD, Australia. Part one was a double-blind, randomised, placebo-controlled, single ascending dose study in which participants were enrolled into one of nine dose cohorts (50, 100, 200, 400, 600, 1000, 1250, 1800, or 2100 mg) and randomly assigned (3:1) to M5717 or placebo. A sentinel dosing strategy was used for each dose cohort whereby two participants (one assigned to M5717 and one assigned to placebo) were initially randomised and dosed. Randomisation schedules were generated electronically by independent, unblinded statisticians. Part two was an open-label, non-randomised volunteer infection study using the Plasmodium falciparum induced blood-stage malaria model in which participants were enrolled into three dose cohorts. Healthy men and women of non-childbearing potential aged 18-55 years were eligible for inclusion; individuals in the volunteer infection study were required to be malaria naive. Safety and tolerability (primary outcome of the single ascending dose study and secondary outcome of the volunteer infection study) were assessed by frequency and severity of adverse events. The pharmacokinetic profile of M5717 was also characterised (primary outcome of the volunteer infection study and secondary outcome of the single ascending dose study). Parasite clearance kinetics (primary outcome of the volunteer infection study) were assessed by the parasite reduction ratio and the corresponding parasite clearance half-life; the incidence of recrudescence up to day 28 was determined (secondary outcome of the volunteer infection study). Recrudescent parasites were tested for genetic mutations (exploratory outcome). The trial is registered with ClinicalTrials.gov (NCT03261401). FINDINGS Between Aug 28, 2017, and June 14, 2019, 221 individuals were assessed for eligibility, of whom 66 men were enrolled in the single ascending dose study (eight per cohort for 50-1800 mg cohorts, randomised three M5717 to one placebo, and two in the 2100 mg cohort, randomised one M5717 to one placebo) and 22 men were enrolled in the volunteer infection study (six in the 150 mg cohort and eight each in the 400 mg and 800 mg cohorts). No adverse event was serious; all M5717-related adverse events were mild or moderate in severity and transient, with increased frequency observed at doses above 1250 mg. In the single ascending dose study, treatment-related adverse events occurred in three of 17 individuals in the placebo group; no individual in the 50 mg, 100 mg, or 200 mg groups; one of six individuals in each of the 400 mg, 1000 mg, and 1250 mg groups; two of six individuals in the 600 mg group; and in all individuals in the 1800 mg and 2100 mg groups. In the volunteer infection study, M5717-related adverse events occurred in no participants in the 150 mg or 800 mg groups and in one of eight participants in the 400 mg group. Transient oral hypoesthesia (in three participants) and blurred vision (in four participants) were observed in the 1800 mg or 2100 mg groups and constituted an unknown risk; thus, further dosing was suspended after dosing of the two sentinel individuals in the 2100 mg cohort. Maximum blood concentrations occurred 1-7 h after dosing, and a long half-life was observed (146-193 h at doses ≥200 mg). Parasite clearance occurred in all participants and was biphasic, characterised by initial slow clearance lasting 35-55 h (half-life 231·1 h [95% CI 40·9 to not reached] for 150 mg, 60·4 h [38·6 to 138·6] for 400 mg, and 24·7 h [20·4 to 31·3] for 800 mg), followed by rapid clearance (half-life 3·5 h [3·1 to 4·0] for 150 mg, 3·9 h [3·3 to 4·8] for 400 mg, and 5·5 h [4·8 to 6·4] for 800 mg). Recrudescence occurred in three (50%) of six individuals dosed with 150 mg and two (25%) of eight individuals dosed with 400 mg. Genetic mutations associated with resistance were detected in four cases of parasite recrudescence (two individuals dosed with 150 mg and two dosed with 400 mg). INTERPRETATION The safety, pharmacokinetics, and antimalarial activity of M5717 support its development as a component of a single-dose antimalarial combination therapy or for malaria prophylaxis. FUNDING Wellcome Trust and the healthcare business of Merck KGaA, Darmstadt, Germany.
Collapse
Affiliation(s)
- James S McCarthy
- QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia; The Peter Doherty Institute for Infection and Immunity, The University of Melbourne and the Royal Melbourne Hospital, Melbourne, VIC, Australia
| | | | - Anand Odedra
- QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia; Liverpool School of Tropical Medicine, Liverpool, UK
| | - Rebecca Webster
- QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - Claude Oeuvray
- The Global Health Institute of Merck (an affiliate of Merck KGaA), Eysin, Switzerland
| | - Aliona Tappert
- the healthcare business of Merck KGaA, Darmstadt, Germany
| | | | - Marla J Giddins
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, NY, USA
| | - Satish K Dhingra
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, NY, USA
| | - David A Fidock
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, NY, USA; Division of Infectious Diseases, Department of Medicine, Columbia University Irving Medical Center, New York, NY, USA
| | - Louise Marquart
- QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - Lachlan Webb
- QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - Xiaoyan Yin
- Global Statistics for NDD, Immunology, Endocrinology, Fertility & Others, EMD Serono, Billerica, MA, USA
| | | | | |
Collapse
|
7
|
Darney K, Lautz LS, Béchaux C, Wiecek W, Testai E, Amzal B, Dorne JLCM. Human variability in polymorphic CYP2D6 metabolism: Implications for the risk assessment of chemicals in food and emerging designer drugs. ENVIRONMENT INTERNATIONAL 2021; 156:106760. [PMID: 34256299 DOI: 10.1016/j.envint.2021.106760] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 07/03/2021] [Accepted: 07/04/2021] [Indexed: 06/13/2023]
Abstract
The major human cytochrome P450 CYP2D6 isoform enzyme plays important roles in the liver and in the brain with regards to xenobiotic metabolism. Xenobiotics as CYP2D6 substrates include a whole range of pharmaceuticals, pesticides and plant alkaloids to cite but a few. In addition, a number of endogenous compounds have been shown to be substrates of CYP2D6 including trace amines in the brain such as tyramine and 5-methoxytryptamine as well as anandamide and progesterone. Because of the polymorphic nature of CYP2D6, considerable inter-phenotypic and inter-ethnic differences in the pharmaco/toxicokinetics (PK/TK) and metabolism of CYP2D6 substrates exist with potential consequences on the pharmacology and toxicity of chemicals. Here, large extensive literature searches have been performed to collect PK data from published human studies for a wide range of pharmaceutical probe substrates and investigate human variability in CYP2D6 metabolism. The computed kinetic parameters resulted in the largest open source database, quantifying inter-phenotypic differences for the kinetics of CYP2D6 probe substrates in Caucasian and Asian populations, to date. The database is available in supplementary material (CYPD6 DB) and EFSA knowledge junction (DOI to added). Subsequently, meta-analyses using a hierarchical Bayesian model for markers of chronic oral exposure (oral clearance, area under the plasma concentration time curve) and acute oral exposure (maximum plasma concentration (Cmax) provided estimates of inter-phenotypic differences and CYP2D6-related uncertainty factors (UFs) for chemical risk assessment in Caucasian and Asian populations classified as ultra-rapid (UM), extensive (EMs), intermediate (IMs) and poor metabolisers (PMs). The model allowed the integration of inter-individual (i.e. inter-phenotypic and inter-ethnic), inter-compound and inter-study variability together with uncertainty in each PK parameter. Key findings include 1. Higher frequencies of PMs in Caucasian populations compared to Asian populations (>8% vs 1-2%) for which EM and IM were the most frequent phenotype. 2. Large inter-phenotypic differences in PK parameters for Caucasian EMs (coefficients of variation (CV) > 50%) compared with Caucasian PMs and Asian EMs and IMs (i.e CV < 40%). 3. Inter-phenotypic PK differences between EMs and PMs in Caucasian populations increase with the quantitative contribution of CYP2D6 for the metabolism (fm) for a range of substrates (fmCYP2D6 range: 20-95% of dose) (range: 1-54) to a much larger extent than those for Asian populations (range: 1-4). 4. Exponential meta-regressions between FmCYP2D6 in EMs and inter-phenotypic differences were also shown to differ between Caucasian and Asian populations as well as CYP2D6-related UFs. Finally, implications of these results for the risk assessment of food chemicals and emerging designer drugs of public health concern, as CYP2D6 substrates, are highlighted and include the integration of in vitro metabolism data and CYP2D6-variability distributions for the development of quantitative in vitro in vivo extrapolation models.
Collapse
Affiliation(s)
- K Darney
- French Agency for Food, Environmental and Occupational Health & Safety (ANSES), 14 rue Pierre et Marie Curie, 94701 Maisons-Alfort, France
| | - L S Lautz
- French Agency for Food, Environmental and Occupational Health & Safety (ANSES), 14 rue Pierre et Marie Curie, 94701 Maisons-Alfort, France
| | - C Béchaux
- French Agency for Food, Environmental and Occupational Health & Safety (ANSES), 14 rue Pierre et Marie Curie, 94701 Maisons-Alfort, France
| | - W Wiecek
- Certara UK Ltd, Audrey House, 5th Floor, 16-20 Ely Place, London EC1N 6SN, United Kingdom
| | - E Testai
- Istituto Superior di Sanità, Viale Regina Elena 299, 00161 Rome, Italy
| | - B Amzal
- Quinten Health, 75017 Paris, France
| | - J L C M Dorne
- European Food Safety Authority, Via Carlo Magno,1A, 43126 Parma, Italy.
| |
Collapse
|
8
|
OpenCYP: An open source database exploring human variability in activities and frequencies of polymophisms for major cytochrome P-450 isoforms across world populations. Toxicol Lett 2021; 350:267-282. [PMID: 34352333 DOI: 10.1016/j.toxlet.2021.07.019] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 07/22/2021] [Accepted: 07/27/2021] [Indexed: 12/12/2022]
Abstract
The open source database "OpenCYP database" has been developed based on the results of extensive literature searches from the peer-reviewed literature. OpenCYP provides data on human variability on baseline of activities and polymophism frequencies for selected cytochrome P-450 isoforms (CYP1A2, CYP2A6, CYP2D6, CYP3A4/3A5 and CYP3A7) in healthy adult populations from world populations. CYP enzymatic activities were generally expressed as the metabolic ratio (MR) between an unchanged probe drug and its metabolite(s) in urine or plasma measured in healthy adults. Data on other age groups were very limited and fragmented, constituting an important data gap. Quantitative comparisons were often hampered by the different experimental conditions used. However, variability was quite limited for CYP1A2, using caffeine as a probe substrate, with a symmetrical distribution of metabolic activity values. For CYP3A4, human variability was dependent on the probe substrate itself with low variability when data considering the dextromethorphan/demethilathed metabolite MR were used and large variability when the urinary 6β-hydroxycortisol/cortisol ratio was used. The largest variability in CYP activity was shown for CYP2D6 activity, after oral dosing of dextromethorphan, for which genetic polymorphisms are well characterised and constitute a significant source of variability. It is foreseen that the OpenCYP database can contribute to promising tools to support the further development of QIVIVE and PBK models for human risk assessment of chemicals particularly when combined with information on isoform-specific content in cells using proteomic approaches.
Collapse
|
9
|
Berger B, Muehlan C, Klein G, Dingemanse J. Pharmacokinetics of daridorexant, a dual orexin receptor antagonist, are not affected by renal impairment. Clin Transl Sci 2021; 14:2132-2138. [PMID: 34121345 PMCID: PMC8604215 DOI: 10.1111/cts.13079] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 04/09/2021] [Accepted: 04/14/2021] [Indexed: 11/27/2022] Open
Abstract
The aim of this study was to evaluate the impact of renal impairment on the pharmacokinetics (PKs), safety, and tolerability of daridorexant, a dual orexin receptor antagonist intended for the treatment of insomnia. A single‐center, open‐label study evaluated the PKs of daridorexant in patients with severe renal function impairment (SRFI; determined by creatinine clearance using the Cockcroft‐Gault equation; N = 8) not on dialysis, and in matched control subjects (based on sex, age, and body weight; N = 7). A single oral dose of daridorexant 25 mg was orally administered in the morning. Blood samples were collected up to 72 h postdose for PK assessments of daridorexant. In patients with SRFI, maximum plasma concentrations (Cmax; geometric mean ratio [GMR] and 90% confidence interval [CI]: 0.94 [0.60–1.46]), time to reach Cmax (Tmax; median difference [90% CI] of −0.25 h [−0.75 to 0.25]), and half‐life (GMR [90% CI] of 0.99 [0.66–1.48]), were virtually unchanged. Exposure (area under the plasma concentration‐time profile) to daridorexant was slightly higher in patients with SRFI than in control subjects with the GMR (90% CI) being 1.16 (0.63–2.12). No safety issue of concern was detected as all adverse events were transient and of mild or moderate intensity, and no treatment‐related effects on vital signs, clinical laboratory, or electrocardiogram variables were observed following daridorexant administration in patients with SRFI and control subjects. Based on these observations, PK alterations of daridorexant due to renal function impairment are not considered of clinical relevance and no dose adjustment is necessary in these patients.
Collapse
Affiliation(s)
- Benjamin Berger
- Department of Clinical Pharmacology, Idorsia Pharmaceuticals Ltd, Allschwil, Switzerland
| | - Clemens Muehlan
- Department of Clinical Pharmacology, Idorsia Pharmaceuticals Ltd, Allschwil, Switzerland
| | | | - Jasper Dingemanse
- Department of Clinical Pharmacology, Idorsia Pharmaceuticals Ltd, Allschwil, Switzerland
| |
Collapse
|
10
|
Quignot N, Więcek W, Lautz L, Dorne JL, Amzal B. Inter-phenotypic differences in CYP2C9 and CYP2C19 metabolism: Bayesian meta-regression of human population variability in kinetics and application in chemical risk assessment. Toxicol Lett 2020; 337:111-120. [PMID: 33232775 DOI: 10.1016/j.toxlet.2020.11.016] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 11/13/2020] [Accepted: 11/19/2020] [Indexed: 01/23/2023]
Abstract
Quantifying variability in pharmacokinetics (PK) and toxicokinetics (TK) provides a science-based approach to refine uncertainty factors (UFs) for chemical risk assessment. In this context, genetic polymorphisms in cytochromes P450 (CYPs) drive inter-phenotypic differences and may result in reduction or increase in metabolism of drugs or other xenobiotics. Here, an extensive literature search was performed to identify PK data for probe substrates of the human polymorphic isoforms CYP2C9 and CYP2C19. Relevant data from 158 publications were extracted for markers of chronic exposure (clearance and area under the plasma concentration-time curve) and analysed using a Bayesian meta-regression model. Enzyme function (EF), driven by inter-phenotypic differences across a range of allozymes present in extensive and poor metabolisers (EMs and PMs), and fraction metabolised (Fm), were identified as exhibiting the highest impact on the metabolism. The Bayesian meta-regression model provided good predictions for such inter-phenotypic differences. Integration of population distributions for inter-phenotypic differences and estimates for EF and Fm allowed the derivation of CYP2C9- and CYP2C19-related UFs which ranged from 2.7 to 12.7, and were above the default factor for human variability in TK (3.16) for PMs and major substrates (Fm >60%). These results provide population distributions and pathway-related UFs as conservative in silico options to integrate variability in CYP2C9 and CYP2C19 metabolism using in vitro kinetic evidence and in the absence of human data. The future development of quantitative extrapolation models is discussed with particular attention to integrating human in vitro and in vivo PK or TK data with pathway-related variability for chemical risk assessment.
Collapse
Affiliation(s)
| | | | - Leonie Lautz
- Risk Assessment Department, French Agency for Food, Environmental and Occupational Health & Safety (ANSES), Maisons-Alfort, France
| | - Jean-Lou Dorne
- European Food Safety Authority, Via Carlo Magno 1A, 43126, Parma, Italy
| | | |
Collapse
|
11
|
Patel R, Barker J, ElShaer A. Pharmaceutical Excipients and Drug Metabolism: A Mini-Review. Int J Mol Sci 2020; 21:E8224. [PMID: 33153099 PMCID: PMC7662502 DOI: 10.3390/ijms21218224] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 10/19/2020] [Accepted: 10/20/2020] [Indexed: 12/17/2022] Open
Abstract
Conclusions from previously reported articles have revealed that many commonly used pharmaceutical excipients, known to be pharmacologically inert, show effects on drug transporters and/or metabolic enzymes. Thus, the pharmacokinetics (absorption, distribution, metabolism and elimination) of active pharmaceutical ingredients are possibly altered because of their transport and metabolism modulation from the incorporated excipients. The aim of this review is to present studies on the interaction of various commonly-used excipients on pre-systemic metabolism by CYP450 enzymes. Excipients such as surfactants, polymers, fatty acids and solvents are discussed. Based on all the reported outcomes, the most potent inhibitors were found to be surfactants and the least effective were organic solvents. However, there are many factors that can influence the inhibition of CYP450, for instance type of excipient, concentration of excipient, type of CYP450 isoenzyme, incubation condition, etc. Such evidence will be very useful in dosage form design, so that the right formulation can be designed to maximize drug bioavailability, especially for poorly bioavailable drugs.
Collapse
Affiliation(s)
| | | | - Amr ElShaer
- Drug Discovery, Delivery and Patient Care (DDDPC), School of Life Sciences, Pharmacy and Chemistry, Kingston University, Kingston upon Thames, Surrey KT1 2EE, UK; (R.P.); (J.B.)
| |
Collapse
|
12
|
Meola TR, Abuhelwa AY, Joyce P, Clifton P, Prestidge CA. A safety, tolerability, and pharmacokinetic study of a novel simvastatin silica-lipid hybrid formulation in healthy male participants. Drug Deliv Transl Res 2020; 11:1261-1272. [PMID: 32918160 DOI: 10.1007/s13346-020-00853-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/07/2020] [Indexed: 01/23/2023]
Abstract
Simvastatin (SIM) is a commonly used cholesterol-lowering drug that can reduce the risk of major cardiovascular events. However, due to its poor intrinsic water solubility, the drug is poorly absorbed from the gastrointestinal tract and exhibits a low oral bioavailability of approximately 5%. The aim of this study was to fabricate and optimize SIM encapsulated silica-lipid hybrids (SLH) as a solid-state lipid-based formulation to enhance absorption and bioavailability during a human in vivo pharmacokinetic study. SLH formulations were formulated by spray drying a submicron emulsion with either Aerosil® 300 fumed silica nanoparticles (SLH-A) or Syloid® 244 amorphous micronized silica (SLH-B). A cross-over, double-blinded study design was implemented to evaluate the performance of SLH formulations compared with a commercially available formulation in 12 healthy male participants after oral administration under fasting conditions. SLH formulations enhanced the bioavailability of SIM up to 1.6-fold and more importantly the active simvastatin acid (SIMA), 3.5-fold when compared with an equivalent dose of commercial formulation. The results demonstrate that the porous nanostructure of SLH impact systemic SIM and SIMA concentrations and may serve as a novel approach to enhance the bioavailability of specifically the parent or metabolite. No significant difference was observed in exposure when SLH formulations were administered at 10 mg in comparison with 20 mg of the commercial formulation, suggesting the potential for dose reduction. The study indicated that SLH formulations were safe and well-tolerated when administered to healthy males, confirming the commercial potential of SLH to enhance the bioavailability of poorly water-soluble drugs. Graphical abstract.
Collapse
Affiliation(s)
- Tahlia R Meola
- UniSA Clinical & Health Sciences, University of South Australia, Adelaide, South Australia, 5000, Australia
- ARC Centre of Excellence in Convergent Bio-Nano Science & Technology, University of South Australia, Adelaide, South Australia, 5000, Australia
| | - Ahmad Y Abuhelwa
- UniSA Clinical & Health Sciences, University of South Australia, Adelaide, South Australia, 5000, Australia
- Discipline of Clinical Pharmacology, College of Medicine and Public Health, Flinders University, Bedford Park, South Australia, 5042, Australia
| | - Paul Joyce
- UniSA Clinical & Health Sciences, University of South Australia, Adelaide, South Australia, 5000, Australia
- ARC Centre of Excellence in Convergent Bio-Nano Science & Technology, University of South Australia, Adelaide, South Australia, 5000, Australia
| | - Peter Clifton
- UniSA Clinical & Health Sciences, University of South Australia, Adelaide, South Australia, 5000, Australia
| | - Clive A Prestidge
- UniSA Clinical & Health Sciences, University of South Australia, Adelaide, South Australia, 5000, Australia.
- ARC Centre of Excellence in Convergent Bio-Nano Science & Technology, University of South Australia, Adelaide, South Australia, 5000, Australia.
| |
Collapse
|
13
|
Lu H, Rosenbaum S, Lu W. Precision Dosing Management with Intelligent Computing in Digital Health. PROCEEDINGS. INTERNATIONAL CONFERENCE ON INTELLIGENT NETWORKING AND COLLABORATIVE SYSTEMS 2020; 1263:269-280. [PMID: 37915763 PMCID: PMC10619515 DOI: 10.1007/978-3-030-57796-4_26] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2023]
Abstract
Pediatric dosing is not only critical for successful pediatric trials in drug development but also paramount to safety and effective treatment at bedside. Due to the complex pharmacokinetic of children compared to adults, several challenges are posed in managing dosing precisely during drug development and after drug approval to clinicians. In particular, given the real-world practice, understanding the impact of development on the dose-exposure-response relationship is essential in optimizing the dosing to children of different ages. In this paper we propose a novel intelligent computing framework to examine how the growth and maturation create size- and age-dependent variability in pharmacokinetics and pharmacodynamics, and summarize the use of modeling-based approaches for dose finding in pediatric drug development, allowing clinicians to anticipate probable treatment effects and to have a higher likelihood of achieving optimal dose regimens early, as well as reducing the drug development cycling time and cost.
Collapse
Affiliation(s)
- Hong Lu
- Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto ON Canada
| | - Sara Rosenbaum
- College of Pharmacy, University of Rhode Island, Kingston, RI USA
| | - Wei Lu
- Department of Computer Science, Keene State College, USNH, Keene NH USA
| |
Collapse
|
14
|
Karsauliya K, Sonker AK, Bhateria M, Taneja I, Srivastava A, Sharma M, Singh SP. Plasma protein binding, metabolism, reaction phenotyping and toxicokinetic studies of fenarimol after oral and intravenous administration in rats. Xenobiotica 2020; 51:72-81. [PMID: 32660295 DOI: 10.1080/00498254.2020.1796170] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Fenarimol (FNL), an organic chlorinated fungicide, is widely used in agriculture for protection from fungal spores and fungi. Despite being an endocrine disruptor, no toxicokinetic data is reported for this fungicide. In the present work, we determined the plasma protein binding, metabolic pathways and toxicokinetics of FNL in rats. In vitro binding of FNL to rat and human plasma proteins was ∼90%, suggesting that FNL is a highly protein bound fungicide. The predicted in vivo hepatic clearance of FNL in rats and humans was estimated to be 36.71 and 14.39 mL/min/kg, respectively, indicating it to be an intermediate clearance compound. Reaction phenotyping assay showed that CYP3A4 mainly contributed to the overall metabolism of FNL. The oral toxicokinetic study of FNL in rats at no observed adverse effect level dose (1 mg/kg) showed maximum plasma concentration (C max) of 33.97 ± 4.45 ng/mL at 1 h (T max). The AUC0-∞ obtained was 180.18 ± 17.76 h*ng/mL, whereas, the t 1/2 was ∼4.74 h. Following intravenous administration, FNL displayed a clearance of 42.48 mL/min/kg which was close to the predicted in vivo hepatic clearance. The absolute oral bioavailability of FNL at 1 mg/kg dose in rats was 45.25%. FNL at 10 mg/kg oral dose exhibited non-linear toxicokinetics with greater than dose-proportional increase in the systemic exposure (AUC0-∞ 8270.53 ± 1798.59 h*ng/mL).
Collapse
Affiliation(s)
- Kajal Karsauliya
- Pesticide Toxicology Laboratory & Regulatory Toxicology Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Lucknow, India.,Department of Pharmacy, Banasthali Vidyapith, Banasthali, India
| | - Ashish Kumar Sonker
- Pesticide Toxicology Laboratory & Regulatory Toxicology Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Lucknow, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Manisha Bhateria
- Pesticide Toxicology Laboratory & Regulatory Toxicology Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Lucknow, India
| | - Isha Taneja
- Simcyp Division, Certara UK Limited, Sheffield, UK
| | - Anshuman Srivastava
- Pesticide Toxicology Laboratory & Regulatory Toxicology Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Lucknow, India
| | - Manu Sharma
- Department of Pharmacy, Banasthali Vidyapith, Banasthali, India
| | - Sheelendra Pratap Singh
- Pesticide Toxicology Laboratory & Regulatory Toxicology Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Lucknow, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India.,Analytical Chemistry Laboratory & Regulatory Toxicology Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Lucknow, India
| |
Collapse
|
15
|
Human variability in influx and efflux transporters in relation to uncertainty factors for chemical risk assessment. Food Chem Toxicol 2020; 140:111305. [DOI: 10.1016/j.fct.2020.111305] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Revised: 03/20/2020] [Accepted: 03/23/2020] [Indexed: 12/11/2022]
|
16
|
Chen B, Zhang XD, Wen J, Zhang B, Chen D, Wang S, Cai JP, Hu GX. Effects of 26 Recombinant CYP3A4 Variants on Brexpiprazole Metabolism. Chem Res Toxicol 2020; 33:172-180. [PMID: 31560202 DOI: 10.1021/acs.chemrestox.9b00186] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
As a new atypical antipsychotic, brexpiprazole is primarily metabolized by cytochrome P450 3A4 (CYP3A4). However, genetic polymorphisms in CYP3A4 cause wide variability in individuals' responses to brexpiprazole, leading to unpredictable adverse side effects or even therapeutic failure. The present study was designed to systematically study the effects of 26 recombinant CYP3A4 variants on the metabolism of brexpiprazole and investigate their enzymatic activity. Wild-type CYP3A4 and the 26 variants were incubated with the substrate brexpiprazole for 30 min at 37 °C. The metabolite DM-3411 was detected using ultraperformance liquid chromatography-tandem mass spectrometry. The activity of the wild-type CYP3A4 and 26 of its variants was analyzed. Then, the mechanism underlying the changes in enzyme function was observed using molecular dynamics simulations and molecular docking. Compared with CYP3A4.1, the enzymatic activities of CYP3A4.19, -.24, and -.28 were not significantly different (from 91.82% to 96.25%), but CYP3A4.14 and CYP3A4.15 exhibited higher enzyme activity (from 117.9 to 127.5%). The remaining 21 isoforms, including CYP3A4.2, -.3, -.4, -.5, -.7, -.8, -.9, -.10, -.11, -.12, -.13, -.16, -.17, -.18, -.20, -.23, -.29, -.31, -.32, -.33 and -.34, displayed lower enzymatic activities (from 2.90% to 75.72%). The results obtained from computer modeling indicated that weak binding affinity impaired the function of CYP3A4.32. Mutations that occur around the active site might lead to a loss of enzymatic activity, while the variants located far away from the active site perhaps had little effect on function of CYP3A4. These comprehensive data provide a reference and prediction for treatment strategies and risk assessments of brexpiprazole.
Collapse
Affiliation(s)
- Bingbing Chen
- School of Pharmaceutical Sciences , Wenzhou Medical University , Wenzhou , Zhejiang 325035 , China
| | - Xiao-Dan Zhang
- School of Pharmaceutical Sciences , Wenzhou Medical University , Wenzhou , Zhejiang 325035 , China
| | - Jian Wen
- School of Pharmaceutical Sciences , Wenzhou Medical University , Wenzhou , Zhejiang 325035 , China
| | - Bowen Zhang
- School of Pharmaceutical Sciences , Wenzhou Medical University , Wenzhou , Zhejiang 325035 , China
| | - Daoxing Chen
- School of Pharmaceutical Sciences , Wenzhou Medical University , Wenzhou , Zhejiang 325035 , China
| | - Shuanghu Wang
- The Laboratory of Clinical Pharmacy , The People's Hospital of Lishui , Lishui , Zhejiang 323000 , China
| | - Jian-Pin Cai
- The Key Laboratory of Geriatrics, National Center of Gerontology, Ministry of Health , Beijing Hospital , Beijing 100730 , China
| | - Guo-Xin Hu
- School of Pharmaceutical Sciences , Wenzhou Medical University , Wenzhou , Zhejiang 325035 , China
| |
Collapse
|
17
|
Darney K, Testai E, Buratti FM, Di Consiglio E, Kasteel EE, Kramer N, Turco L, Vichi S, Roudot AC, Dorne JL, Béchaux C. Inter-ethnic differences in CYP3A4 metabolism: A Bayesian meta-analysis for the refinement of uncertainty factors in chemical risk assessment. ACTA ACUST UNITED AC 2019. [DOI: 10.1016/j.comtox.2019.100092] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
18
|
Quignot N, Wiecek W, Amzal B, Dorne JL. The Yin–Yang of CYP3A4: a Bayesian meta-analysis to quantify inhibition and induction of CYP3A4 metabolism in humans and refine uncertainty factors for mixture risk assessment. Arch Toxicol 2018; 93:107-119. [DOI: 10.1007/s00204-018-2325-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Accepted: 10/02/2018] [Indexed: 12/19/2022]
|
19
|
Abstract
OBJECTIVE The aim of this review is to examine three questions: What are the risks and benefits of treating women with schizophrenia with hormone therapy (HT) at menopause? Should the antipsychotic regimen be changed at menopause? Do early- and late-onset women with schizophrenia respond differently to HT at menopause? METHODS MEDLINE databases for the years 1990 to 2016 were searched using the following interactive terms: schizophrenia, gender, menopause, estrogen, and hormones. The selected articles (62 out of 800 abstracts) were chosen on the basis of their applicability to the objectives of this targeted narrative review. RESULTS HT during the perimenopause in women with schizophrenia ameliorates psychotic and cognitive symptoms, and may also help affective symptoms. Vasomotor, genitourinary, and sleep symptoms are also reduced. Depending on the woman's age and personal risk factors and antipsychotic side effects, the risk of breast cancer and cardiovascular disease may be increased. Antipsychotic types and doses may need to be adjusted at menopause, as may be the mode of administration. CONCLUSIONS Both HT and changes in antipsychotic management should be considered for women with schizophrenia at menopause. The question about differences in response between early- and late-onset women cannot yet be answered.
Collapse
|
20
|
Modelling the Fate of Chemicals in Humans Using a Lifetime Physiologically Based Pharmacokinetic (PBPK) Model in MERLIN-Expo. MODELLING THE FATE OF CHEMICALS IN THE ENVIRONMENT AND THE HUMAN BODY 2018. [DOI: 10.1007/978-3-319-59502-3_10] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
|
21
|
Species differences between rat and human in vitro metabolite profile, in vivo predicted clearance, CYP450 inhibition and CYP450 isoforms that metabolize benzanthrone: Implications in risk assessment. Food Chem Toxicol 2018; 111:94-101. [DOI: 10.1016/j.fct.2017.11.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Revised: 10/25/2017] [Accepted: 11/06/2017] [Indexed: 12/18/2022]
|
22
|
Tomkinson H, McBride E, Martin P, Lisbon E, Dymond AW, Cantarini M, So K, Holt D. Comparison of the Pharmacokinetics of the Phase II and Phase III Capsule Formulations of Selumetinib and the Effects of Food on Exposure: Results From Two Randomized Crossover Trials in Healthy Male Subjects. Clin Ther 2017; 39:2260-2275.e1. [PMID: 28985960 DOI: 10.1016/j.clinthera.2017.08.022] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Revised: 08/24/2017] [Accepted: 08/31/2017] [Indexed: 11/16/2022]
Abstract
PURPOSE Selumetinib (AZD6244, ARRY-142886), an oral, potent, and highly selective mitogen-activated protein kinase 1/2 inhibitor with a short half-life, has shown activity across various tumor types. Before initiation of Phase III trials, the site, scale, and color (hypromellose shell from white [Phase II] to blue [Phase III]) of the selumetinib 25mg capsule manufacture was changed. We present 2 crossover trials evaluating Phase III capsules in healthy subjects. METHODS The relative bioavailability trial was a Phase I, open-label, randomized, 3-treatment, 4-period, 6-sequence crossover trial in healthy male subjects (aged 18-55 years). Subjects received selumetinib 75mg (3 × 25 mg) Phase II or Phase III capsules, or a 35mg oral solution, during 4 dosing periods in 1 of 6 randomized treatment sequences. The food effect trial was a Phase I, open-label, randomized, 2-period crossover trial in healthy male subjects (aged 18-45 years). Subjects were randomized to 1 of 2 sequences to receive selumetinib 75mg (3 × 25 mg) Phase III capsules. In sequence 1, subjects received selumetinib after 10 hours of fasting. Following a washout period, selumetinib was administered after a high-fat meal. In sequence 2, subjects received selumetinib in the fed state, before the fasted state. Pharmacokinetic parameters were determined from serial blood sampling. FINDINGS Twenty-seven subjects were randomized to the relative bioavailability trial; 26 completed all dosing periods. Mean selumetinib AUC was unchanged (geometric least squares mean ratio [GLSMR], 90.01% [90% CI, 81.74-99.11]). Cmax was 18% lower with the Phase III capsules (GLSMR, 81.97% [90% CI, 69.01-97.36]). A post hoc exploratory statistical analysis excluding outlying observations with later Tmax showed that Phase II and III capsules produced similar exposure in terms of Cmax and AUC. High intrasubject variability for Cmax attributed to the pharmacokinetic sampling schedule was judged to have impacted on the estimated GLSMR. In the food effect trial, 34 subjects completed both study periods. A high-fat meal reduced selumetinib Cmax compared with the fasted state (GLSMR, 49.76% [90% CI, 43.82-56.51]); AUC was minimally changed (GLSMR, 84.08% [90% CI, 80.72-87.59]). Median Tmax was prolonged by 1.49 hours. No deaths or serious adverse events were reported. IMPLICATIONS Selumetinib 75mg (3 × 25 mg) Phase III capsules are being used in ongoing pivotal Phase III trials and should be administered in the fasted state. Based on findings from the relative bioavailability trial, pharmacokinetic sampling frequency was increased for healthy subject trials, including the food effect trial. ClinicalTrials.gov identifiers: NCT01635023 (relative bioavailability) and NCT01974349 (food effect).
Collapse
Affiliation(s)
| | | | | | - Eleanor Lisbon
- Quintiles Phase I Services, Overland Park, Kansas, United States
| | | | | | - Karen So
- AstraZeneca, Macclesfield, United Kingdom
| | - David Holt
- AstraZeneca, Macclesfield, United Kingdom
| |
Collapse
|
23
|
González-Rodríguez A, Bernardo M, Penadés R, Arias B, Ruiz Cortés V, Seeman MV, Catalán R. Do FSH/LH ratio and gonadal hormone levels predict clinical improvement in postmenopausal schizophrenia women? Arch Womens Ment Health 2017; 20:613-620. [PMID: 28702774 DOI: 10.1007/s00737-017-0757-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Accepted: 07/03/2017] [Indexed: 01/10/2023]
Abstract
Menopause is a process characterized by a decline in estrogen levels and is therefore a period of biological vulnerability for psychotic relapse in women with schizophrenia. Our goal was to correlate not only gonadal hormone levels but also follicle-stimulating hormone (FSH) and luteinizing hormone (LH) levels with improvement in specific clinical symptoms. Thirty-seven acutely ill postmenopausal schizophrenia women with a newly initiated, clinically determined change in antipsychotic medication participated in a 12-week prospective observational outcome study. Scales used were the PANSS scale for psychotic symptoms, the PSP for functioning, and CGI for global clinical impression. Circulating FSH, LH, estradiol, progesterone, and testosterone serum levels were determined by chemiluminescent immunoassay. Partial correlational analyses were performed along with a Bonferroni significance correction (p < 0.0007). After adjustment for confounding factors, the FSH/LH ratio correlated positively with mean changes in PANSS positive scores, and there was a correlation with worsening of CGI total and cognitive scores. Testosterone was also positively associated with improvement in PANSS positive scores. However, after correction for multiple testing, the initial correlations were no longer statistically significant. In summary, while the hormone assays we did in this small sample did not prove to be significantly linked to clinical improvement in any of the schizophrenia symptom domains, we recommend further investigation of pituitary, adrenal, and gonadal hormone ratios as potential markers of clinical improvement in this population.
Collapse
Affiliation(s)
- Alexandre González-Rodríguez
- Barcelona Clinic Schizophrenia Unit (BCSU), Neurosciences Institute, Hospital Clinic of Barcelona, Department of Psychiatry and Clinical Psychobiology, University of Barcelona, Barcelona, Spain
| | - Miquel Bernardo
- Barcelona Clinic Schizophrenia Unit (BCSU), Neurosciences Institute, Hospital Clinic of Barcelona, Department of Psychiatry and Clinical Psychobiology, University of Barcelona, CIBERSAM, IDIBAPS, 170, Villarroel Street, 08036, Barcelona, Spain.
| | - Rafael Penadés
- Barcelona Clinic Schizophrenia Unit (BCSU), Neurosciences Institute, Hospital Clinic of Barcelona, Department of Psychiatry and Clinical Psychobiology, University of Barcelona, CIBERSAM, IDIBAPS, 170, Villarroel Street, 08036, Barcelona, Spain
| | - Bárbara Arias
- Secció de Zoologia i Antropologia, Departament de Biologia Evolutiva, Ecologia i Ciències Ambientals, Facultat de Biologia, University of Barcelona, Barcelona, Spain
- Institut de Biomedicina de la Universitat de Barcelona (IBUB), CIBERSAM, Instituto de Salud Carlos III, Madrid, Spain
| | | | - Mary V Seeman
- Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada
| | - Rosa Catalán
- Barcelona Clinic Schizophrenia Unit (BCSU), Neurosciences Institute, Hospital Clinic of Barcelona, Department of Psychiatry and Clinical Psychobiology, University of Barcelona, CIBERSAM, IDIBAPS, 170, Villarroel Street, 08036, Barcelona, Spain
| |
Collapse
|
24
|
Fasinu P, Choonara YE, Kumar P, du Toit LC, Bijukumar D, Khan RA, Pillay V. Enhancement of the Oral Bioavailability of Felodipine Employing 8-Arm-Poly(Ethylene Glycol): In Vivo, In Vitro and In Silico Evaluation. AAPS PharmSciTech 2017; 18:617-628. [PMID: 27173987 DOI: 10.1208/s12249-016-0545-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2016] [Accepted: 04/28/2016] [Indexed: 11/30/2022] Open
Abstract
Poor oral bioavailability is the single most important challenge in drug delivery. Prominent among the factors responsible for this is metabolic activity of the intestinal and hepatic cytochrome P450 (CYP450) enzymes. In preliminary studies, it was demonstrated that 8-arm-PEG was able to inhibit the felodipine metabolism. Therefore, this report investigated the oral bioavailability-enhancing property of 8-arm-PEG employing detailed in vitro, in vivo, and in silico evaluations. The in vitro metabolism of felodipine by cytochrome P450 3A4-expressed human liver microsomes (HLM) was optimized yielding a typical Michaelis-Menten plot through the application of Enzyme Kinetic Module software from where the enzyme kinetic parameters were determined. In vitro investigation of 8-arm-poly(ethylene glycol) against CYP3A4-catalyzed felodipine metabolism employing human liver microsomes compared closely with naringenin, a typical grapefruit flavonoid, yielding IC50 values of 7.22 and 121.97 μM, respectively. The investigated potential of 8-arm-poly(ethylene glycol) in oral drug delivery yielded satisfactory in vitro drug release results. The in vivo studies of the effects of 8-arm-poly(ethylene glycol) on the oral bioavailability of felodipine as performed in the Large White pig model showed a >100% increase in plasma felodipine levels compared to controls, with no apparent effect on systemic felodipine clearance. The outcome of this research presents a novel CYP3A4 inhibitor, 8-arm-poly(ethylene glycol) for oral bioavailability enhancement.
Collapse
|
25
|
Abstract
OBJECTIVE Recognizing that needs differ between men and women with schizophrenia and that they vary over time, this review attempts to categorize the needs that are relevant to younger and to older women. METHOD This is a selective literature review focusing on topic areas the two authors determined to be most germane to women with schizophrenia. Articles were selected on the basis of currency, comprehensiveness, and study design. Particular attention was paid to the voices of the women themselves. RESULTS There is considerable overlap between the needs of younger and older women with schizophrenia, but as a general rule, younger women require preventive strategies to stop the escalation of illness while older women require recovery interventions to regain lost hopes and abilities. CONCLUSIONS There is clinical utility in cataloguing the needs of younger and older women with schizophrenia and conceptualizing interventions according to gender and age rather than viewing needed services along purely diagnostic lines.
Collapse
Affiliation(s)
- Mary V Seeman
- Department of Psychiatry, University of Toronto, Toronto, Canada
| | - Rina Gupta
- North East London Foundation Trust, Goodmayes Hospital, Ilford, Essex, UK
| |
Collapse
|
26
|
Xin H, Qi XY, Wu JJ, Wang XX, Li Y, Hong JY, He W, Xu W, Ge GB, Yang L. Assessment of the inhibition potential of Licochalcone A against human UDP-glucuronosyltransferases. Food Chem Toxicol 2016; 90:112-22. [DOI: 10.1016/j.fct.2016.02.007] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2015] [Revised: 01/24/2016] [Accepted: 02/05/2016] [Indexed: 01/19/2023]
|
27
|
Quignot N, Béchaux C, Amzal B. Data collection on toxicokinetic and toxicodynamic interactions of chemical mixtures for human risk assessment. ACTA ACUST UNITED AC 2015. [DOI: 10.2903/sp.efsa.2015.en-711] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
28
|
Felter SP, Daston GP, Euling SY, Piersma AH, Tassinari MS. Assessment of health risks resulting from early-life exposures: Are current chemical toxicity testing protocols and risk assessment methods adequate? Crit Rev Toxicol 2015; 45:219-44. [PMID: 25687245 DOI: 10.3109/10408444.2014.993919] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Abstract Over the last couple of decades, the awareness of the potential health impacts associated with early-life exposures has increased. Global regulatory approaches to chemical risk assessment are intended to be protective for the diverse human population including all life stages. However, questions persist as to whether the current testing approaches and risk assessment methodologies are adequately protective for infants and children. Here, we review physiological and developmental differences that may result in differential sensitivity associated with early-life exposures. It is clear that sensitivity to chemical exposures during early-life can be similar, higher, or lower than that of adults, and can change quickly within a short developmental timeframe. Moreover, age-related exposure differences provide an important consideration for overall susceptibility. Differential sensitivity associated with a life stage can reflect the toxicokinetic handling of a xenobiotic exposure, the toxicodynamic response, or both. Each of these is illustrated with chemical-specific examples. The adequacy of current testing protocols, proposed new tools, and risk assessment methods for systemic noncancer endpoints are reviewed in light of the potential for differential risk to infants and young children.
Collapse
|
29
|
Abstract
Background Venous thromboembolism has been increasingly recognised as a clinical problem in the paediatric population. Guideline recommendations for antithrombotic therapy in paediatric patients are based mainly on extrapolation from adult clinical trial data, owing to the limited number of clinical trials in paediatric populations. The oral, direct Factor Xa inhibitor rivaroxaban has been approved in adult patients for several thromboembolic disorders, and its well-defined pharmacokinetic and pharmacodynamic characteristics and efficacy and safety profiles in adults warrant further investigation of this agent in the paediatric population. Objective The objective of this study was to develop and qualify a physiologically based pharmacokinetic (PBPK) model for rivaroxaban doses of 10 and 20 mg in adults and to scale this model to the paediatric population (0–18 years) to inform the dosing regimen for a clinical study of rivaroxaban in paediatric patients. Methods Experimental data sets from phase I studies supported the development and qualification of an adult PBPK model. This adult PBPK model was then scaled to the paediatric population by including anthropometric and physiological information, age-dependent clearance and age-dependent protein binding. The pharmacokinetic properties of rivaroxaban in virtual populations of children were simulated for two body weight-related dosing regimens equivalent to 10 and 20 mg once daily in adults. The quality of the model was judged by means of a visual predictive check. Subsequently, paediatric simulations of the area under the plasma concentration–time curve (AUC), maximum (peak) plasma drug concentration (Cmax) and concentration in plasma after 24 h (C24h) were compared with the adult reference simulations. Results Simulations for AUC, Cmax and C24h throughout the investigated age range largely overlapped with values obtained for the corresponding dose in the adult reference simulation for both body weight-related dosing regimens. However, pharmacokinetic values in infants and preschool children (body weight <40 kg) were lower than the 90 % confidence interval threshold of the adult reference model and, therefore, indicated that doses in these groups may need to be increased to achieve the same plasma levels as in adults. For children with body weight between 40 and 70 kg, simulated plasma pharmacokinetic parameters (Cmax, C24h and AUC) overlapped with the values obtained in the corresponding adult reference simulation, indicating that body weight-related exposure was similar between these children and adults. In adolescents of >70 kg body weight, the simulated 90 % prediction interval values of AUC and C24h were much higher than the 90 % confidence interval of the adult reference population, owing to the weight-based simulation approach, but for these patients rivaroxaban would be administered at adult fixed doses of 10 and 20 mg. Conclusion The paediatric PBPK model developed here allowed an exploratory analysis of the pharmacokinetics of rivaroxaban in children to inform the dosing regimen for a clinical study in paediatric patients. Electronic supplementary material The online version of this article (doi:10.1007/s40262-013-0090-5) contains supplementary material, which is available to authorized users.
Collapse
|
30
|
Defaux J, Antoine M, Logé C, Le Borgne M, Schuster T, Seipelt I, Aicher B, Teifel M, Günther E, Gerlach M, Marchand P. Discovery of (7-aryl-1,5-naphthyridin-2-yl)ureas as dual inhibitors of ERK2 and Aurora B kinases with antiproliferative activity against cancer cells. Bioorg Med Chem Lett 2014; 24:3748-52. [PMID: 25022204 DOI: 10.1016/j.bmcl.2014.06.078] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2014] [Revised: 06/24/2014] [Accepted: 06/26/2014] [Indexed: 02/07/2023]
Abstract
A novel series of (7-aryl-1,5-naphthyridin-2-yl)ureas was discovered as dual ERK2 and Aurora B kinases inhibitors. Several analogues were active at micromolar and submicromolar range against ERK2 and Aurora B, associated with very promising antiproliferative activity toward various cancer cell lines. Synthesis, structure activity relationship and docking study are reported. In vitro ADME properties and safety data are also discussed.
Collapse
Affiliation(s)
- Julien Defaux
- Université de Nantes, Nantes Atlantique Universités, Laboratoire de Chimie Thérapeutique, Cibles et Médicaments des Infections et du Cancer IICiMed EA 1155, UFR des Sciences Pharmaceutiques et Biologiques, 1 rue Gaston Veil, 44035 Nantes, France
| | - Maud Antoine
- Université de Nantes, Nantes Atlantique Universités, Laboratoire de Chimie Thérapeutique, Cibles et Médicaments des Infections et du Cancer IICiMed EA 1155, UFR des Sciences Pharmaceutiques et Biologiques, 1 rue Gaston Veil, 44035 Nantes, France
| | - Cédric Logé
- Université de Nantes, Nantes Atlantique Universités, Laboratoire de Chimie Thérapeutique, Cibles et Médicaments des Infections et du Cancer IICiMed EA 1155, UFR des Sciences Pharmaceutiques et Biologiques, 1 rue Gaston Veil, 44035 Nantes, France
| | - Marc Le Borgne
- Université de Nantes, Nantes Atlantique Universités, Laboratoire de Chimie Thérapeutique, Cibles et Médicaments des Infections et du Cancer IICiMed EA 1155, UFR des Sciences Pharmaceutiques et Biologiques, 1 rue Gaston Veil, 44035 Nantes, France
| | - Tilmann Schuster
- Æterna Zentaris GmbH, Weismuellerstrasse 50, 60314 Frankfurt/Main, Germany
| | - Irene Seipelt
- Æterna Zentaris GmbH, Weismuellerstrasse 50, 60314 Frankfurt/Main, Germany
| | - Babette Aicher
- Æterna Zentaris GmbH, Weismuellerstrasse 50, 60314 Frankfurt/Main, Germany
| | - Michael Teifel
- Æterna Zentaris GmbH, Weismuellerstrasse 50, 60314 Frankfurt/Main, Germany
| | - Eckhard Günther
- Æterna Zentaris GmbH, Weismuellerstrasse 50, 60314 Frankfurt/Main, Germany
| | - Matthias Gerlach
- Æterna Zentaris GmbH, Weismuellerstrasse 50, 60314 Frankfurt/Main, Germany
| | - Pascal Marchand
- Université de Nantes, Nantes Atlantique Universités, Laboratoire de Chimie Thérapeutique, Cibles et Médicaments des Infections et du Cancer IICiMed EA 1155, UFR des Sciences Pharmaceutiques et Biologiques, 1 rue Gaston Veil, 44035 Nantes, France.
| |
Collapse
|
31
|
Tomalik-Scharte D, Suleiman AA, Frechen S, Kraus D, Kerkweg U, Rokitta D, Di Gion P, Queckenberg C, Fuhr U. Population pharmacokinetic analysis of circadian rhythms in hepatic CYP3A activity using midazolam. J Clin Pharmacol 2014; 54:1162-9. [PMID: 24782075 DOI: 10.1002/jcph.318] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2014] [Revised: 04/20/2014] [Accepted: 04/24/2014] [Indexed: 12/15/2022]
Abstract
Diurnal changes in the activity of drug metabolizing enzymes may contribute to the variability in drug disposition and drug effects. The aim of this study was to quantify the circadian rhythmicity exhibited by hepatic CYP3A. A 10 μg/kg intravenous bolus dose, followed by a 30-hour 4 μg/kg/h intravenous infusion of midazolam, used as a probe substrate for hepatic CYP3A activity, was administered to 16 healthy volunteers (8 males and 8 females). Blood samples were drawn hourly for 24 hours after achieving steady state, and plasma concentrations of midazolam and its main metabolite 1-OH midazolam were determined. Population pharmacokinetic analysis was performed using nonlinear mixed effects modeling. One-compartment pharmacokinetic models best described midazolam and 1-OH midazolam pharmacokinetic disposition. An unequivocal but minor diurnal pattern was identified in the midazolam plasma concentration profiles, which was described using a cosine function with a 24-hours period. The fluctuation in the relative CYP3A activity ranged between 10% above average around 15:00, and 10% below average around 03:00. None of the covariates tested had a significant impact on the parameters estimated. Although a diurnal pattern in hepatic CYP3A activity was identified, its magnitude suggests that it is small and without clinical significance for drug therapy.
Collapse
Affiliation(s)
- Dorota Tomalik-Scharte
- Department of Pharmacology, Clinical Pharmacology Unit, University Hospital of Cologne, Cologne, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Hao GT, Zhou HY, Gao HZ, Qu HY, Liang YG, Li YY, Dong RH, Zhang LJ, Wang XF, Liu ZY. Pharmacokinetics of oxycodone hydrochloride and three of its metabolites after intravenous administration in Chinese patients with pain. Pharmacol Rep 2014; 66:153-8. [DOI: 10.1016/j.pharep.2013.08.012] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2012] [Revised: 07/29/2013] [Accepted: 08/13/2013] [Indexed: 11/29/2022]
|
33
|
Defaux J, Antoine M, Le Borgne M, Schuster T, Seipelt I, Aicher B, Teifel M, Günther E, Gerlach M, Marchand P. Discovery of 7-Aryl-Substituted (1,5-Naphthyridin-4-yl)ureas as Aurora Kinase Inhibitors. ChemMedChem 2013; 9:217-32. [DOI: 10.1002/cmdc.201300384] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2013] [Revised: 11/04/2013] [Indexed: 11/09/2022]
|
34
|
Valcke M, Krishnan K. Characterization of the human kinetic adjustment factor for the health risk assessment of environmental contaminants. J Appl Toxicol 2013; 34:227-40. [PMID: 24038072 DOI: 10.1002/jat.2919] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2013] [Accepted: 07/15/2013] [Indexed: 12/26/2022]
Abstract
A default uncertainty factor of 3.16 (√10) is applied to account for interindividual variability in toxicokinetics when performing non-cancer risk assessments. Using relevant human data for specific chemicals, as WHO/IPCS suggests, it is possible to evaluate, and replace when appropriate, this default factor by quantifying chemical-specific adjustment factors for interindividual variability in toxicokinetics (also referred to as the human kinetic adjustment factor, HKAF). The HKAF has been determined based on the distributions of pharmacokinetic parameters (e.g., half-life, area under the curve, maximum blood concentration) in relevant populations. This article focuses on the current state of knowledge of the use of physiologically based algorithms and models in characterizing the HKAF for environmental contaminants. The recent modeling efforts on the computation of HKAF as a function of the characteristics of the population, chemical and its mode of action (dose metrics), as well as exposure scenario of relevance to the assessment are reviewed here. The results of these studies, taken together, suggest the HKAF varies as a function of the sensitive subpopulation and dose metrics of interest, exposure conditions considered (route, duration, and intensity), metabolic pathways involved and theoretical model underlying its computation. The HKAF seldom exceeded the default value of 3.16, except in very young children (i.e., <≈ 3 months) and when the parent compound is the toxic moiety. Overall, from a public health perspective, the current state of knowledge generally suggest that the default uncertainty factor is sufficient to account for human variability in non-cancer risk assessments of environmental contaminants.
Collapse
Affiliation(s)
- Mathieu Valcke
- Département de santé environnementale et santé au travail, Université de Montréal, CP 6128, Succursale Centre-Ville, Montréal, Québec, Canada, H3C 3 J7; Institut national de santé publique du Québec, 190 Boul. Crémazie Est, Montréal, QC, Canada, H2P 1E2
| | | |
Collapse
|
35
|
Tripathi R, Rizvi A, Pandey SK, Dwivedi H, Saxena J. Ketoconazole, a cytochrome P(450) inhibitor can potentiate the antimalarial action of α/β arteether against MDR Plasmodium yoelii nigeriensis. Acta Trop 2013; 126:150-5. [PMID: 23391499 DOI: 10.1016/j.actatropica.2013.01.012] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2012] [Revised: 01/21/2013] [Accepted: 01/28/2013] [Indexed: 10/27/2022]
Abstract
The emergence of multidrug resistant (MDR) strains of Plasmodium falciparum in South East Asia and other tropical countries, is posing serious challenge for the international efforts to eradicate malaria. New drug target/ACT/non-ACT combinations need to be discovered to control the spread of MDR malaria. The present communication deals with antimalarial potential of a new combination comprising of ketoconazole (KTZ) (an antifungal/inhibitor of CYP3A4) and artemisinin derivative α/β arteether (ART). In vitro interactions of these drugs against chloroquine sensitive/resistant P. falciparum (Pf3D7/K1) have shown an overall additive interaction with mean sum fractional inhibitory concentrations (∑FICs) of 1.1±0.33 against 3D7 and 1.51±0.42 against K1 strains. Sub-curative doses of KTZ (150mg/kg×7 days) combined with ART (6.25-12.5mg/kg×5 days) both administered orally have shown 100% curative action against MDR P. yoelii nigeriensis in Swiss mice. Besides lower dose of KTZ (75mg/kg) which is non-curative itself, in combination with 12.5mg/kg×5 days of ART treatment, was also 100% curative. Further studies on mechanism of action of KTZ (150mg/kg single dose) have shown that significant inhibitory action of the antifungal drug is through very high level of suppression of CYP (nearly 90%) compared to that of healthy mice liver. The companion drug therapy comprising of KTZ together with ART (25mg/kg×1 dose) also produced more than 50% inhibitory effect on the CYP enzyme level. Since the ART is known to be rapidly metabolized by the liver cytochrome P450 (CYP) 3A4 to Dihydroquinghasu, the combined therapy with KTZ (a strong CYP 3A4 inhibitor) may influence the pharmacokinetics of ART and consequently slow down the drug metabolism and prolong the plasma life of the active drug, which would contribute to enhanced antimalarial action of ART against MDR P. yoelii nigeriensis.
Collapse
|
36
|
Greenblatt DJ, von Moltke LL. Gender Has a Small but Statistically Significant Effect on Clearance of CYP3A Substrate Drugs. J Clin Pharmacol 2013; 48:1350-5. [DOI: 10.1177/0091270008323754] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
37
|
Abstract
Quinine (QN) and quinidine (QND) have been commonly used as effective and affordable antimalarials for over many years. Quinine primarily is used for severe malaria treatment. However, plasmodia resistance to these drugs and poor patient compliance limits their administration to the patients. The declining sensitivity of the parasite to the drugs can thus be dealt with by combining with a suitable partner drug. In the present study QN/QND was assessed in combination with clarithromycin (CLTR), an antibiotic of the macrolide family. In vitro interactions of these drugs with CLTR against Plasmodium falciparum (P. falciparum) have shown a synergistic response with mean sum fractional inhibitory concentrations (ΣFICs) of ≤1 (0.85 ± 0.11 for QN + CLTR and 0.64 ± 0.09 for QND + CLTR) for all the tested combination ratios. Analysis of this combination of QN/QND with CLTR in mouse model against Plasmodium yoelii nigeriensis multi-drug resistant (P. yoelii nigeriensis MDR) showed that a dose of 200 mg/kg/day for 4 days of QN or QND produces 100% curative effect with 200 mg/kg/day for 7 days and 150 mg/kg/day for 7 days CLTR respectively, while the same dose of individual drugs could produce only up to a maximum 20% cure. It is postulated that CLTR, a CYP3A4 inhibitor, might have caused reduced CYP3A4 activity leading to increased plasma level of the QN/QND to produce enhanced antimalarial activity. Further, parasite apicoplast disruption by CLTR synergies the antimalarial action of QN and QND.
Collapse
|
38
|
Zhu Y, Zhou J. Identification of the Significant Involvement and Mechanistic Role of CYP3A4/5 in Clopidogrel Bioactivation. ACS Med Chem Lett 2012; 3:844-9. [PMID: 24900388 DOI: 10.1021/ml3002067] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2012] [Accepted: 09/09/2012] [Indexed: 11/30/2022] Open
Abstract
The clinical response to the antiplatelet prodrug clopidogrel is associated with high intersubject variability and a certain level of therapeutic resistance. Previous studies have suggested that genetic polymorphism of CYP2C19 might be one determinant of clopidogrel efficacy and led to the CYP2C19 genotype-tailored antithrombotic therapy. However, evidence against the role of CYP2C19 from multiple studies implied the involvement of other factors. Here, we report that prodrug activation of the thiophene motif in clopidogrel is attenuated by heavy metabolic attrition of the piperidine motif. CYP3A4/5 was identified to be the enzyme metabolizing the piperidine motif. Inhibiting CYP3A4/5-mediated attrition was shown to potentiate active metabolite formation, which was found to be catalyzed by multiple CYP enzymes. Identifying the significant involvement of CYP3A4/5 and characterizing its mechanistic role in clopidogrel bioactivation might assist future pharmacogenomic studies in exploring the full mechanism underlying clopidogrel efficacy.
Collapse
Affiliation(s)
- Yaoqiu Zhu
- MetabQuest Research Laboratory, 202 Chengfu Road, Beijing 100871, People's
Republic of China
| | - Jiang Zhou
- Analytical
Instrumentation Center,
College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, People's Republic of China
| |
Collapse
|
39
|
Dickschen K, Willmann S, Thelen K, Lippert J, Hempel G, Eissing T. Physiologically Based Pharmacokinetic Modeling of Tamoxifen and its Metabolites in Women of Different CYP2D6 Phenotypes Provides New Insight into the Tamoxifen Mass Balance. Front Pharmacol 2012; 3:92. [PMID: 22661948 PMCID: PMC3357105 DOI: 10.3389/fphar.2012.00092] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2012] [Accepted: 04/27/2012] [Indexed: 12/15/2022] Open
Abstract
Tamoxifen is a first-line endocrine agent in the mechanism-based treatment of estrogen receptor positive (ER+) mammary carcinoma and applied to breast cancer patients all over the world. Endoxifen is a secondary and highly active metabolite of tamoxifen that is formed among others by the polymorphic cytochrome P450 2D6 (CYP2D6). It is widely accepted that CYP2D6 poor metabolizers exert a pronounced decrease in endoxifen steady-state plasma concentrations compared to CYP2D6 extensive metabolizers. Nevertheless, an in-depth understanding of the chain of cause and effect between CYP2D6 genotype, endoxifen steady-state plasma concentration, and subsequent tamoxifen treatment benefit still remains to be evolved. In this study, physiologically based pharmacokinetic (PBPK)-modeling was applied to mechanistically investigate the impact of CYP2D6 phenotype on endoxifen formation in female breast cancer patients undergoing tamoxifen therapy. A PBPK-model of tamoxifen and its pharmacologically important metabolites N-desmethyltamoxifen (NDM-TAM), 4-hydroxytamoxifen (4-OH-TAM), and endoxifen was developed and validated. This model is able to simulate the pharmacokinetics (PK) after single and repeated oral tamoxifen doses in female breast cancer patients in dependence of the CYP2D6 phenotype. A detailed model-based analysis of the mass balance offered support for a recent hypothesis stating a more prominent role for endoxifen formation from 4-OH-TAM. In the future this model provides a good basis to further investigate the linkage of PK, mode of action, and treatment outcome in dependence of factors such as phenotype, ethnicity, or co-treatment with CYP2D6 inhibitors.
Collapse
Affiliation(s)
- Kristin Dickschen
- Klinische Pharmazie, Institut für Pharmazeutische und Medizinische Chemie, Westfälische Wilhelms-Universität Münster Münster, Germany
| | | | | | | | | | | |
Collapse
|
40
|
Seeman MV. Treating schizophrenia at the time of menopause. Maturitas 2012; 72:117-20. [PMID: 22503514 DOI: 10.1016/j.maturitas.2012.03.008] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2012] [Revised: 03/07/2012] [Accepted: 03/09/2012] [Indexed: 12/29/2022]
Abstract
The purpose of this review is to optimize treatment for women with schizophrenia during the menopause. Recommendations are based on a relatively sparse literature derived from searching PubMed, PsychINFO, SOCINDEX with appropriate search terms for all years subsequent to 2000. Attention needs to be paid to menopausal symptoms in women with schizophrenia and to the possibility that psychotic symptoms may worsen at this time and that general health may deteriorate. Antipsychotic treatment may need to be modified and cardiac and metabolic health indices closely monitored.
Collapse
Affiliation(s)
- Mary V Seeman
- Department of Psychiatry, University of Toronto, Centre for Addiction and Mental Health, 250 College St., Toronto, Ontario M5T 1R8, Canada.
| |
Collapse
|
41
|
Abstract
Chemical risk assessment for human health requires a multidisciplinary approach through four steps: hazard identification and characterization, exposure assessment, and risk characterization. Hazard identification and characterization aim to identify the metabolism and elimination of the chemical (toxicokinetics) and the toxicological dose-response (toxicodynamics) and to derive a health-based guidance value for safe levels of exposure. Exposure assessment estimates human exposure as the product of the amount of the chemical in the matrix consumed and the consumption itself. Finally, risk characterization evaluates the risk of the exposure to human health by comparing the latter to with the health-based guidance value. Recently, many research efforts in computational toxicology have been put together to characterize population variability and uncertainty in each of the steps of risk assessment to move towards more quantitative and transparent risk assessment. This chapter focuses specifically on modeling population variability and effects for each step of risk assessment in order to provide an overview of the statistical and computational tools available to toxicologists and risk assessors. Three examples are given to illustrate the applicability of those tools: derivation of pathway-related uncertainty factors based on population variability, exposure to dioxins, dose-response modeling of cadmium.
Collapse
Affiliation(s)
- Jean Lou Dorne
- Emerging Risks Unit, European Food Safety Authority, Parma, Italy.
| | | | | | | | | | | |
Collapse
|
42
|
Valcke M, Krishnan K. An assessment of the impact of physico-chemical and biochemical characteristics on the human kinetic adjustment factor for systemic toxicants. Toxicology 2011; 286:36-47. [DOI: 10.1016/j.tox.2011.05.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2011] [Revised: 04/28/2011] [Accepted: 05/06/2011] [Indexed: 11/26/2022]
|
43
|
Fasinu P, Pillay V, Ndesendo VMK, du Toit LC, Choonara YE. Diverse approaches for the enhancement of oral drug bioavailability. Biopharm Drug Dispos 2011; 32:185-209. [PMID: 21480294 DOI: 10.1002/bdd.750] [Citation(s) in RCA: 95] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2010] [Revised: 11/23/2010] [Accepted: 01/28/2011] [Indexed: 12/31/2022]
Abstract
In conscious and co-operating patients, oral drug delivery remains the preferable route of drug administration. However, not all drugs possess the desirable physicochemical and pharmacokinetic properties which favor oral administration mainly due to poor bioavailability. This has in some cases led to the choice of other routes of administration, which may compromise the convenience and increase the risk of non-compliance. Poor bioavailability has necessitated the administration of higher than normally required oral doses which often leads to economic wastages, risk of toxicity, erratic and unpredictable responses. The challenge over the years has been to design techniques that will allow oral administration of most drugs, irrespective of their properties, to achieve a therapeutic systemic availability. This will be a worthy achievement since over 90% of therapeutic compounds are known to possess oral bioavailability limitations. In this review, an attempt has been made to explore various approaches that have been used in recent years to improve oral drug bioavailability, including physical and chemical means. This review strives to provide a comprehensive overview of advances made over the past 10 years (2000-2010) in the improvement of the oral bioavailability of drugs. Briefly, the design of prodrugs to bypass metabolism or to enhance solubility as well as modification of formulation techniques such as the use of additives, permeation enhancers, solubilizers, emulsifiers and non-aqueous vehicles have been discussed. Arising approaches, such as formulation modification techniques; novel drug delivery systems, which exploit the gastrointestinal regionality of drugs, and include the pharmaceutical application of nanotechnology as an emerging area in drug delivery; inhibition of efflux pumps; and inhibition of presystemic metabolism have been more extensively addressed. This critical review sought to assess each method aimed at enhancing the oral bioavailability of drugs in terms of the purpose, scientific basis, limitations, commercial application, as well as the areas in which current research efforts are being focused and should be focused in the future.
Collapse
Affiliation(s)
- Pius Fasinu
- Department of Pharmacy and Pharmacology, University of the Witwatersrand, 7 York Road, Parktown 2193, Johannesburg, South Africa
| | | | | | | | | |
Collapse
|
44
|
Cubitt HE, Yeo KR, Howgate EM, Rostami-Hodjegan A, Barter ZE. Sources of interindividual variability in IVIVE of clearance: an investigation into the prediction of benzodiazepine clearance using a mechanistic population-based pharmacokinetic model. Xenobiotica 2011; 41:623-38. [DOI: 10.3109/00498254.2011.560294] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
45
|
Wright AJ, Gomes T, Mamdani MM, Horn JR, Juurlink DN. The risk of hypotension following co-prescription of macrolide antibiotics and calcium-channel blockers. CMAJ 2011; 183:303-7. [PMID: 21242274 DOI: 10.1503/cmaj.100702] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
BACKGROUND The macrolide antibiotics clarithromycin and erythromycin may potentiate calcium-channel blockers by inhibiting cytochrome P450 isoenzyme 3A4. However, this potential drug interaction is widely underappreciated and its clinical consequences have not been well characterized. We explored the risk of hypotension or shock requiring hospital admission following the simultaneous use of calcium-channel blockers and macrolide antibiotics. METHODS We conducted a population-based, nested, case-crossover study involving people aged 66 years and older who had been prescribed a calcium-channel blocker between Apr. 1, 1994, and Mar. 31, 2009. Of these patients, we included those who had been admitted to hospital for the treatment of hypotension or shock. For each antibiotic, we estimated the risk of hypotension or shock associated with the use of a calcium blocker using a pair-matched analytic approach to contrast each patient's exposure to each macrolide antibiotic (erythromycin, clarithromycin or azithromycin) in a seven-day risk interval immediately before admission to hospital and in a seven-day control interval one month earlier. RESULTS Of the 7100 patients admitted to hospital because of hypotension while receiving a calcium-channel blocker, 176 had been prescribed a macrolide antibiotic during either the risk or control intervals. Erythromycin (the strongest inhibitor of cytochrome P450 3A4) was most strongly associated with hypotension (odds ratio [OR] 5.8, 95% confidence interval [CI] 2.3-15.0), followed by clarithromycin (OR 3.7, 95% CI 2.3-6.1). Azithromycin, which does not inhibit cytochrome P450 3A4, was not associated with an increased risk of hypotension (OR 1.5, 95% CI 0.8-2.8). We found similar results in a stratified analysis of patients who received only dihydropyridine calcium-channel blockers. INTERPRETATION In older patients receiving a calcium-channel blocker, use of erythromycin or clarithromycin was associated with an increased risk of hypotension or shock requiring admission to hospital. Preferential use of azithromycin should be considered when a macrolide antibiotic is required for patients already receiving a calcium-channel blocker.
Collapse
|
46
|
Ronis MJJ, Chen Y, Liu X, Blackburn ML, Shankar K, Landes RD, Fang N, Badger TM. Enhanced expression and glucocorticoid-inducibility of hepatic cytochrome P450 3A involve recruitment of the pregnane-X-receptor to promoter elements in rats fed soy protein isolate. J Nutr 2011; 141:10-6. [PMID: 21084653 DOI: 10.3945/jn.110.127423] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Previous studies and Expt. 1 of the current study demonstrate that diets made with soy protein isolate (SPI) enhance the glucocorticoid-inducibility of hepatic cytochrome P450 (CYP)3A-dependent monooxygenase activities (P < 0.05) compared with diets made with casein (CAS). To determine the underlying molecular mechanism, in a second experiment, we analyzed the time course of dexamethasone (DEX)-induction of hepatic CYP3A mRNA expression on postnatal d (PND) 25 and PND60 in male and female rats fed SPI- or CAS-based diets. After 50 mg(/)kg DEX, CYP3A1 mRNA expression increased >200-fold in SPI-fed males and females at PND25 compared with a 100-fold increase in CAS-fed rats (P < 0.05). The DEX-induced increase in CYP3A1 mRNA in SPI-fed rats on PND60 was also greater than that in CAS-fed rats. The induction by DEX of CYP3A2 mRNA was 1- to 3-fold greater in rats fed SPI compared with those fed CAS on PND25 (P < 0.05). Quantitation of newly synthesized CYP3A1 RNA transcripts by nuclear run-on analysis demonstrated a greater rate of basal transcription in SPI-fed compared with CAS-fed rats on PND60 accompanied by greater binding of the pregnane X receptor (PXR) to a response element on the CYP3A1 promoter in SPI-fed compared with CAS-fed rats (P < 0.05). These data suggest that increased hepatic CYP3A expression and inducibility following SPI feeding involves recruitment of PXR to its response element and suggests that soy consumption has potential effects on metabolism and transport of a wide variety of drugs and on bile acid homeostasis via proteins regulated by this transcription factor.
Collapse
Affiliation(s)
- Martin J J Ronis
- Department of Pharmacology and Toxicology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA.
| | | | | | | | | | | | | | | |
Collapse
|
47
|
Andreassen TN, Klepstad P, Davies A, Bjordal K, Lundström S, Kaasa S, Dale O. Influences on the pharmacokinetics of oxycodone: a multicentre cross-sectional study in 439 adult cancer patients. Eur J Clin Pharmacol 2010; 67:493-506. [PMID: 21140139 PMCID: PMC3076582 DOI: 10.1007/s00228-010-0948-5] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2010] [Accepted: 10/27/2010] [Indexed: 12/16/2022]
Abstract
Objective Oxycodone is widely used for the treatment of cancer pain, but little is known of its pharmacokinetics in cancer pain patients. The aim of this study was to explore the relationships between ordinary patient characteristics and serum concentrations of oxycodone and the ratios noroxycodone or oxymorphone/oxycodone in cancer patients. Methods Four hundred and thirty-nine patients using oral oxycodone for cancer pain were included. The patients’ characteristics (sex, age, body mass index [BMI], Karnofsky performance status, “time since starting opioids”, “oxycodone total daily dose”, “time from last oxycodone dose”, use of CYP3A4 inducer/inhibitor, “use of systemic steroids”, “number of medications taken in the last 24 h”, glomerular filtration rate (GFR) and albumin serum concentrations) influence on oxycodone serum concentrations or metabolite/oxycodone ratios were explored by multiple regression analyses. Results Sex, CYP3A4 inducers/inhibitors, total daily dose, and “time from last oxycodone dose” predicted oxycodone concentrations. CYP3A4 inducers, total daily dose, and “number of medications taken in the last 24 h” predicted the oxymorphone/oxycodone ratio. Total daily dose, “time from last dose to blood sample”, albumin, sex, CYP3A4 inducers/inhibitors, steroids, BMI and GFR predicted the noroxycodone/oxycodone ratio. Conclusion Women had lower oxycodone serum concentrations than men. CYP3A4 inducers/inhibitors should be used with caution as these are predicted to have a significant impact on oxycodone pharmacokinetics. Other characteristics explained only minor parts of the variability of the outcomes.
Collapse
Affiliation(s)
- Trine Naalsund Andreassen
- Pain and Palliation Research Group, Department of Circulation and Medical Imaging, Faculty of Medicine, Norwegian University of Science and Technology, Trondheim, Norway.
| | | | | | | | | | | | | |
Collapse
|
48
|
Suzuki Y, Sawamura K, Ono S, Fukui N, Sugai T, Watanabe J, Tsuneyama N, Inoue Y, Someya T. The wide variability of perospirone metabolism and the effect of perospirone on prolactin in psychiatric patients. Prog Neuropsychopharmacol Biol Psychiatry 2010; 34:830-3. [PMID: 20363276 DOI: 10.1016/j.pnpbp.2010.03.027] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2010] [Revised: 03/19/2010] [Accepted: 03/19/2010] [Indexed: 10/19/2022]
Abstract
BACKGROUND Perospirone was developed in Japan and is used for the treatment of schizophrenia and related illnesses. The authors investigated the relationship between the dosage of perospirone and the plasma levels of perospirone and its active metabolite, ID15036, and also evaluated the impact of the plasma concentrations of perospirone and ID15036 on the plasma prolactin level to examine whether perospirone or ID15036 affected the dopamine D(2) blockade, in psychiatric patients treated with perospirone. METHODS The subjects consisted of 21 adults treated with perospirone (4-60 mg/day). The plasma perospirone and ID15036 levels were measured in 21 patients and serum prolactin levels were investigated in 10 male patients with schizophrenia. RESULTS The plasma ID15036 level was higher than the plasma perospirone, and a positive correlation was observed between the dosage of perospirone and the ID15036 levels (p=0.032). The 10 male patients showed a positive correlation between the plasma perospirone levels and plasma prolactin levels (r=0.688, p=0.028) and between the plasma ID15036 levels and prolactin levels (r=0.775, p=0.009). CONCLUSION The plasma levels of ID15036 may have a greater impact on the dopamine D(2) blockade than perospirone in patients treated with perospirone.
Collapse
Affiliation(s)
- Yutaro Suzuki
- Department of Psychiatry, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Dorne JLCM. Metabolism, variability and risk assessment. Toxicology 2009; 268:156-64. [PMID: 19932147 DOI: 10.1016/j.tox.2009.11.004] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2009] [Revised: 10/26/2009] [Accepted: 11/03/2009] [Indexed: 12/25/2022]
Abstract
For non-genotoxic carcinogens, "thresholded toxicants", Acceptable/Tolerable Daily Intakes (ADI/TDI) represent a level of exposure "without appreciable health risk" when consumed everyday or weekly for a lifetime and are derived by applying an uncertainty factor of a 100-fold to a no-observed-adverse-effect-levels (NOAEL) or to a benchmark dose. This UF allows for interspecies differences and human variability and has been subdivided to take into account toxicokinetics and toxicodynamics with even values of 10(0.5) (3.16) for the human aspect. Ultimately, such refinements allow for chemical-specific adjustment factors and physiologically based models to replace such uncertainty factors. Intermediate to chemical-specific adjustment factors are pathway-related uncertainty factors which have been derived for phase I, phase II metabolism and renal excretion. Pathway-related uncertainty factors are presented here as derived from the result of meta-analyses of toxicokinetic variability data in humans using therapeutic drugs metabolised by a single pathway in subgroups of the population. Pathway-related lognormal variability was derived for each metabolic route. The resulting pathway-related uncertainty factors showed that the current uncertainty factor for toxicokinetics (3.16) would not cover human variability for genetic polymorphism and age differences (neonates, children, the elderly). Latin hypercube (Monte Carlo) models have also been developed using quantitative metabolism data and pathway-related lognormal variability to predict toxicokinetics variability and uncertainty factors for compounds handled by several metabolic routes. For each compound, model results gave accurate predictions compared to published data and observed differences arose from data limitations, inconsistencies between published studies and assumptions during model design and sampling. Finally, under the 6(th) framework EU project NOMIRACLE (http://viso.jrc.it/nomiracle/), novel methods to improve the risk assessment of chemical mixtures were explored (1) harmonization of the use of uncertainty factors for human and ecological risk assessment using mechanistic descriptors (2) use of toxicokinetics interaction data to derive UFs for chemical mixtures. The use of toxicokinetics data in risk assessment are discussed together with future approaches including sound statistical approaches to optimise predictability of models and recombinant technology/toxicokinetics assays to identify metabolic routes for chemicals and screen mixtures of environmental health importance.
Collapse
Affiliation(s)
- J L C M Dorne
- University of Southampton, Clinical Pharmacology Group, Institute of Human Nutrition, School of Medicine, Southampton, UK.
| |
Collapse
|
50
|
Chen X, Wang H, Zhou G, Zhang X, Dong X, Zhi L, Jin L, He F. Molecular population genetics of human CYP3A locus: signatures of positive selection and implications for evolutionary environmental medicine. ENVIRONMENTAL HEALTH PERSPECTIVES 2009; 117:1541-8. [PMID: 20019904 PMCID: PMC2790508 DOI: 10.1289/ehp.0800528] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2008] [Accepted: 06/18/2009] [Indexed: 05/11/2023]
Abstract
BACKGROUND The human CYP3A gene cluster codes for cytochrome P450 (CYP) subfamily enzymes that catalyze the metabolism of various exogenous and endogenous chemicals and is an obvious candidate for evolutionary and environmental genomic study. Functional variants in the CYP3A locus may have undergone a selective sweep in response to various environmental conditions. OBJECTIVE The goal of this study was to profile the allelic structure across the human CYP3A locus and investigate natural selection on that locus. METHODS From the CYP3A locus spanning 231 kb, we resequenced 54 genomic DNA fragments (a total of 43,675 bases) spanning four genes (CYP3A4, CYP3A5, CYP3A7, and CYP3A43) and two pseudogenes (CYP3AP1 and CYP3AP2), and randomly selected intergenic regions at the CYP3A locus in Africans (24 individuals), Caucasians (24 individuals), and Chinese (29 individuals). We comprehensively investigated the nucleotide diversity and haplotype structure and examined the possible role of natural selection in shaping the sequence variation throughout the gene cluster. RESULTS Neutrality tests with Tajima's D, Fu and Li's D* and F*, and Fay and Wu's H indicated possible roles of positive selection on the entire CYP3A locus in non-Africans. Sliding-window analyses of nucleotide diversity and frequency spectrum, as well as haplotype diversity and phylogenetically inferred haplotype structure, revealed that CYP3A4 and CYP3A7 had recently undergone or were undergoing a selective sweep in all three populations, whereas CYP3A43 and CYP3A5 were undergoing a selective sweep in non-Africans and Caucasians, respectively. CONCLUSION The refined allelic architecture and selection spectrum for the human CYP3A locus highlight that evolutionary dynamics of molecular adaptation may underlie the phenotypic variation of the xenobiotic disposition system and varied predisposition to complex disorders in which xenobiotics play a role.
Collapse
Affiliation(s)
- Xiaoping Chen
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, Beijing Institute of Radiation Medicine, Chinese National Human Genome Center at Beijing, Beijing, China
- Department of Pharmacology, School of Pharmaceutical Science, Central South University, Changsha, Hunan, China
| | - Haijian Wang
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, Beijing Institute of Radiation Medicine, Chinese National Human Genome Center at Beijing, Beijing, China
- Laboratory of Systems Biology, State Key Laboratory of Genetic Engineering and MOE Key Laboratory of Contemporary Anthropology, School of Life Sciences and Institutes of Biomedical Sciences, Fudan University, Shanghai, China
- The Simons Center for Systems Biology, School of Natural Sciences, Institute for Advanced Study, Princeton, New Jersey, USA
| | - Gangqiao Zhou
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, Beijing Institute of Radiation Medicine, Chinese National Human Genome Center at Beijing, Beijing, China
| | - Xiumei Zhang
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, Beijing Institute of Radiation Medicine, Chinese National Human Genome Center at Beijing, Beijing, China
| | - Xiaojia Dong
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, Beijing Institute of Radiation Medicine, Chinese National Human Genome Center at Beijing, Beijing, China
| | - Lianteng Zhi
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, Beijing Institute of Radiation Medicine, Chinese National Human Genome Center at Beijing, Beijing, China
| | - Li Jin
- Laboratory of Systems Biology, State Key Laboratory of Genetic Engineering and MOE Key Laboratory of Contemporary Anthropology, School of Life Sciences and Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Fuchu He
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, Beijing Institute of Radiation Medicine, Chinese National Human Genome Center at Beijing, Beijing, China
- Laboratory of Systems Biology, State Key Laboratory of Genetic Engineering and MOE Key Laboratory of Contemporary Anthropology, School of Life Sciences and Institutes of Biomedical Sciences, Fudan University, Shanghai, China
- Address correspondence to F. He, State Key Laboratory of Proteomics, Beijing Proteome Research Center, Beijing Institute of Radiation Medicine, 27 Taiping Rd., Beijing 100850, P.R. China. Telephone/fax: 86 10 80705155. E-mail:
| |
Collapse
|