1
|
Al-Mussallam AS, Alshathri RS, Desmedt B, Aldawsari FS, Deconinck E, Alharthi OA, Bawazir AT. Quantitative risk assessments of skin sensitization for 26 allergens in different consumer products in the Saudi market. Regul Toxicol Pharmacol 2024; 153:105714. [PMID: 39368536 DOI: 10.1016/j.yrtph.2024.105714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 08/15/2024] [Accepted: 09/30/2024] [Indexed: 10/07/2024]
Abstract
Fragrance chemicals are ubiquitous in cosmetics; however, they have been linked to allergic contact dermatitis. Allergy prevention involves two main strategies. Firstly, consumers are protected by limiting the maximum concentration of fragrance in a given product to avoid inducing allergies. Secondly, consumers who are already sensitized are protected by having the presence of such fragrance communicated to them. In this study, a validated GC-MS method was employed to quantify 26 allergens in 108 products marketed in Saudi Arabia.Additionally, a quantitative risk assessment (QRA) was performed on the studied cosmetics to determine the risk of inducing allergies. The results indicated that most allergens were present at acceptable concentrations, while 19 products carried a risk of inducing allergies. Furthermore, Lilial and Lyral, two prohibited fragrances, were detected in 97 products. It should be emphasized that this is the first study conducted in Saudi Arabia to evaluate the safety of the well-known 26 fragrance allergens. Hence, this study can potentially serve as a regional standard for future research.
Collapse
Affiliation(s)
| | | | - Bart Desmedt
- Medicines and Health Products, Sciensano, Julliette Wytsmanstraat 14, 1050, Elsene, Belgium
| | | | - Eric Deconinck
- Medicines and Health Products, Sciensano, Julliette Wytsmanstraat 14, 1050, Elsene, Belgium
| | | | | |
Collapse
|
2
|
Galbiati V, Lefevre MA, Maddalon A, Vocanson M, Iulini M, Marinovich M, Corsini E. Role of miR-24-3p and miR-146a-5p in dendritic cells' maturation process induced by contact sensitizers. Arch Toxicol 2023; 97:2183-2191. [PMID: 37326882 PMCID: PMC10322961 DOI: 10.1007/s00204-023-03542-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 06/06/2023] [Indexed: 06/17/2023]
Abstract
MiRNAs are non-coding RNA molecules that regulate gene expression at the post-transcriptional level. Although allergic contact dermatitis has been studied extensively, few studies addressed miRNA expression and their role in dendritic cell activation. The main aim of this work was to investigate the role of miRNAs in the underlying mechanism of dendritic cell maturation induced by contact sensitizers of different potency. Experiments were conducted using THP-1-derived immature DCs (iDCs). Contact allergens of different potency were used: p-benzoquinone, Bandrowski's base, and 2,4-dinitrochlorobenzene as extreme; nickel sulfate hexahydrate, diethyl maleate and 2-mercaptobenzothiazole as moderate; and α-hexyl cinnamaldehyde, eugenol, and imidazolidinyl urea as weak. Selective inhibitor and mimic miRNAs were then used and several cell surface markers was evaluated as targets. Also, patients patch tested with nickel were analyzed to determine miRNAs expression. Results indicate an important role of miR-24-3p and miR-146a-5p in DCs activation. miR-24-3p was up-regulated by extreme and weak contact allergens, while miR-146a-5p was up-regulated by weak and moderate contact allergens and down-regulated only by the extreme ones. Also, the involvement of PKCβ in contact allergen-induced miR-24-3p and miR-146a-5p expression was demonstrated. Furthermore, the expression of the two miRNAs maintains the same trend of expression in both in vitro and in human conditions after nickel exposure. Results obtained suggest the involvement of miR-24 and miR-146a in DCs maturation process in the proposed in vitro model, supported also by human evidences.
Collapse
Affiliation(s)
- Valentina Galbiati
- Laboratory of Toxicology, DiSFeB, Università degli Studi di Milano, Milan, Italy.
| | - Marine-Alexia Lefevre
- CIRI, Centre International de Recherche en Infectiologie, (Team Epidermal Immunity and Allergy), Univ Lyon; Inserm, U1111, Université Claude Bernard Lyon 1; CNRS, UMR5308; ENS de Lyon, Lyon, France
| | - Ambra Maddalon
- Laboratory of Toxicology, DiSFeB, Università degli Studi di Milano, Milan, Italy
| | - Marc Vocanson
- CIRI, Centre International de Recherche en Infectiologie, (Team Epidermal Immunity and Allergy), Univ Lyon; Inserm, U1111, Université Claude Bernard Lyon 1; CNRS, UMR5308; ENS de Lyon, Lyon, France
| | - Martina Iulini
- Laboratory of Toxicology, DiSFeB, Università degli Studi di Milano, Milan, Italy
| | - Marina Marinovich
- Laboratory of Toxicology, DiSFeB, Università degli Studi di Milano, Milan, Italy
| | - Emanuela Corsini
- Laboratory of Toxicology, DiSFeB, Università degli Studi di Milano, Milan, Italy
| |
Collapse
|
3
|
Chapkanov A, Schultz TW, Yordanova D, Kirilov K, Ivanova H, Mekenyan OG. Estimating uncertainty in LLNA EC3 data and its impact on regulatory classifications. Regul Toxicol Pharmacol 2023; 139:105357. [PMID: 36805911 DOI: 10.1016/j.yrtph.2023.105357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 02/01/2023] [Accepted: 02/14/2023] [Indexed: 02/18/2023]
Abstract
The murine Local Lymph Node Assay (LLNA) is a test that produces numerical results (EC3 values) quantifying the sensitization potency of chemicals. These results are broadly used in toxicology and serve as a basis for various classifications, which determine subsequent regulatory decisions. The continuing interest in LLNA data and the diminished likelihood of new experimental EC3 data being generated sparked this investigation of uncertainty. Instead of using the Gaussian distribution as a default choice for assessing variability in a data set, two strictly positive distributions were proposed and their performance over the available experimental EC3 values was tested. In the application stage, how the uncertainty in EC3 values affects the possible classifications was analyzed, and the percentage of the chemicals receiving ambiguous classification was determined. It was shown that this percentage is high, which increases the risk of improper classification. Two approaches were suggested in regulatory practice to address the uncertainty in the EC3 data: the approaches based on "grey zones" and the classification distribution. If a chemical cannot be classified unambiguously, the latter appears to be an acceptable means to assess the level of sensitization potency of chemicals and helps provide better regulatory decisions.
Collapse
Affiliation(s)
- Atanas Chapkanov
- Laboratory of Mathematical Chemistry, Prof. As. Zlatarov University, Bourgas, Bulgaria
| | - Terry W Schultz
- The University of Tennessee, College of Veterinary Medicine, Knoxville, TN, 37996-4500, USA
| | - Darina Yordanova
- Laboratory of Mathematical Chemistry, Prof. As. Zlatarov University, Bourgas, Bulgaria
| | - Kalin Kirilov
- Laboratory of Mathematical Chemistry, Prof. As. Zlatarov University, Bourgas, Bulgaria
| | - Hristiana Ivanova
- Laboratory of Mathematical Chemistry, Prof. As. Zlatarov University, Bourgas, Bulgaria
| | - Ovanes G Mekenyan
- Laboratory of Mathematical Chemistry, Prof. As. Zlatarov University, Bourgas, Bulgaria.
| |
Collapse
|
4
|
Vij P, Donahue DA, Burke KP, Hayashi SM, Maronpot RR. Lack of Skin Sensitization Hazard Potential for alpha-Glycosyl Isoquercitrin (AGIQ) Utilizing the Local Lymph Node Assay. Toxicol Rep 2022; 9:1291-1296. [DOI: 10.1016/j.toxrep.2022.05.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 05/27/2022] [Accepted: 05/30/2022] [Indexed: 11/25/2022] Open
|
5
|
Kim JY, Kim KB, Lee BM. Validation of Quantitative Structure-Activity Relationship (QSAR) and Quantitative Structure-Property Relationship (QSPR) approaches as alternatives to skin sensitization risk assessment. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2021; 84:945-959. [PMID: 34338166 DOI: 10.1080/15287394.2021.1956660] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The aim of this study was conducted to validate the physicochemical properties of a total of 362 chemicals [305 skin sensitizers (212 in the previous study + 93 additional new chemicals), 57 non-skin sensitizers (38 in the previous study + 19 additional new chemicals)] for skin sensitization risk assessment using quantitative structure-activity relationship (QSAR)/quantitative structure-property relationship (QSPR) approaches. The average melting point (MP), surface tension (ST), and density (DS) of the 305 skin sensitizers and 57 non-sensitizers were used to determine the cutoff values distinguishing positive and negative sensitization, and correlation coefficients were employed to derive effective 3-fold concentration (EC3 (%)) values. QSAR models were also utilized to assess skin sensitization. The sensitivity, specificity, and accuracy were 80, 15, and 70%, respectively, for the Toxtree QSAR model; 88, 46, and 81%, respectively, for Vega; and 56, 61, and 56%, respectively, for Danish EPA QSAR. Surprisingly, the sensitivity, specificity, and accuracy were 60, 80, and 64%, respectively, when MP, ST, and DS (MP+ST+DS) were used in this study. Further, MP+ST+DS exhibited a sensitivity of 77%, specificity 57%, and accuracy 73% when the derived EC3 values were classified into local lymph node assay (LLNA) skin sensitizer and non-sensitizer categories. Thus, MP, ST, and DS may prove useful in predicting EC3 values as not only an alternative approach to animal testing but also for skin sensitization risk assessment.
Collapse
Affiliation(s)
- Ji Yun Kim
- Division of Toxicology, College of Pharmacy, Sungkyunkwan University, Suwon, Gyeonggi-do, South Korea
| | - Kyu-Bong Kim
- College of Pharmacy, Dankook University Dandae-ro, Cheonan, Chungnam, South Korea
| | - Byung-Mu Lee
- Division of Toxicology, College of Pharmacy, Sungkyunkwan University, Suwon, Gyeonggi-do, South Korea
| |
Collapse
|
6
|
Inhibitory Effect of Avenanthramides (Avn) on Tyrosinase Activity and Melanogenesis in α-MSH-Activated SK-MEL-2 Cells: In Vitro and In Silico Analysis. Int J Mol Sci 2021; 22:ijms22157814. [PMID: 34360580 PMCID: PMC8345984 DOI: 10.3390/ijms22157814] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 07/12/2021] [Accepted: 07/16/2021] [Indexed: 11/22/2022] Open
Abstract
Melanin causes melasma, freckles, age spots, and chloasma. Anti-melanogenic agents can prevent disease-related hyperpigmentation. In the present study, the dose-dependent tyrosinase inhibitory activity of Avenanthramide (Avn)-A-B-C was demonstrated, and 100 µM Avn-A-B-C produced the strongest competitive inhibition against inter-cellular tyrosinase and melanin synthesis. Avn-A-B-C inhibits the expression of melanogenesis-related proteins, such as TRP1 and 2. Molecular docking simulation revealed that AvnC (−7.6 kcal/mol) had a higher binding affinity for tyrosinase than AvnA (−7.3 kcal/mol) and AvnB (−6.8 kcal/mol). AvnC was predicted to interact with tyrosinase through two hydrogen bonds at Ser360 (distance: 2.7 Å) and Asn364 (distance: 2.6 Å). In addition, AvnB and AvnC were predicted to be skin non-sensitizers in mammals by the Derek Nexus Quantitative Structure–Activity Relationship system.
Collapse
|
7
|
Wu Y, Zhu J, Fu P, Tong W, Hong H, Chen M. Machine Learning for Predicting Risk of Drug-Induced Autoimmune Diseases by Structural Alerts and Daily Dose. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph18137139. [PMID: 34281077 PMCID: PMC8296890 DOI: 10.3390/ijerph18137139] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 06/20/2021] [Accepted: 06/25/2021] [Indexed: 12/28/2022]
Abstract
An effective approach for assessing a drug’s potential to induce autoimmune diseases (ADs) is needed in drug development. Here, we aim to develop a workflow to examine the association between structural alerts and drugs-induced ADs to improve toxicological prescreening tools. Considering reactive metabolite (RM) formation as a well-documented mechanism for drug-induced ADs, we investigated whether the presence of certain RM-related structural alerts was predictive for the risk of drug-induced AD. We constructed a database containing 171 RM-related structural alerts, generated a dataset of 407 AD- and non-AD-associated drugs, and performed statistical analysis. The nitrogen-containing benzene substituent alerts were found to be significantly associated with the risk of drug-induced ADs (odds ratio = 2.95, p = 0.0036). Furthermore, we developed a machine-learning-based predictive model by using daily dose and nitrogen-containing benzene substituent alerts as the top inputs and achieved the predictive performance of area under curve (AUC) of 70%. Additionally, we confirmed the reactivity of the nitrogen-containing benzene substituent aniline and related metabolites using quantum chemistry analysis and explored the underlying mechanisms. These identified structural alerts could be helpful in identifying drug candidates that carry a potential risk of drug-induced ADs to improve their safety profiles.
Collapse
Affiliation(s)
- Yue Wu
- National Center for Toxicological Research, Division of Bioinformatics and Biostatistics, U.S. Food and Drug Administration, Jefferson, AR 72079, USA; (Y.W.); (J.Z.); (W.T.); (H.H.)
| | - Jieqiang Zhu
- National Center for Toxicological Research, Division of Bioinformatics and Biostatistics, U.S. Food and Drug Administration, Jefferson, AR 72079, USA; (Y.W.); (J.Z.); (W.T.); (H.H.)
| | - Peter Fu
- National Center for Toxicological Research, Division of Biochemical Toxicology, U.S. Food and Drug Administration, Jefferson, AR 72079, USA;
| | - Weida Tong
- National Center for Toxicological Research, Division of Bioinformatics and Biostatistics, U.S. Food and Drug Administration, Jefferson, AR 72079, USA; (Y.W.); (J.Z.); (W.T.); (H.H.)
| | - Huixiao Hong
- National Center for Toxicological Research, Division of Bioinformatics and Biostatistics, U.S. Food and Drug Administration, Jefferson, AR 72079, USA; (Y.W.); (J.Z.); (W.T.); (H.H.)
| | - Minjun Chen
- National Center for Toxicological Research, Division of Bioinformatics and Biostatistics, U.S. Food and Drug Administration, Jefferson, AR 72079, USA; (Y.W.); (J.Z.); (W.T.); (H.H.)
- Correspondence: ; Fax: +1-870-543-7865
| |
Collapse
|
8
|
|
9
|
Tokunaga T, Yamamoto G, Takahashi T, Mukumoto M, Sato M, Okamoto M. Sensitive Method for the Identification of Potential Sensitizing Impurities in Reaction Mixtures by Fluorescent Nitrobenzoxadiazole-Labeled Glutathione. Chem Res Toxicol 2020; 33:3001-3009. [PMID: 33256404 DOI: 10.1021/acs.chemrestox.0c00327] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Allergic contact dermatitis is a critical issue in the development of new chemicals. Minor impurities with strong skin-sensitizing properties can be generated as byproducts. However, it is very difficult to identify these skin sensitizers in product mixtures. In this study, fluorescent nitrobenzoxadiazole-labeled glutathione (NBD-GSH) was synthesized to identify small amounts of skin sensitizers in reaction mixtures. Twelve known skin sensitizers and three nonsensitizers were reacted with NBD-GSH. Adducts formed only with the skin sensitizers, which allowed for their detection by a fluorescence detector. Liquid chromatography-mass spectrometry (LC-MS) analyses showed that NBD-GSH reacted with the skin sensitizers via its thiol and amino groups. An adduct of NBD-GSH with the strong skin sensitizer 1-chloro-2,4-dinitrobenzene was detected with a limit of detection of 6 × 10-8 mol/L by high-performance liquid chromatography with fluorescence detection. When a reaction mixture from primary alcohol oxidation was incubated with NBD-GSH, a NBD-GSH adduct formed with skin-sensitizing aldehyde impurities and could be specifically detected by LC-MS with fluorescence detection. This method will be useful for detection and identification of small amounts of skin sensitizers in raw materials, intermediates, reaction mixtures, and end products in the chemical industry.
Collapse
Affiliation(s)
- Takashi Tokunaga
- Environmental Health Science Laboratory, Sumitomo Chemical Co., Ltd., 3-1-98 Kasugadenaka, Konohana-ku, Osaka 554-8558, Japan
| | - Gaku Yamamoto
- Environmental Health Science Laboratory, Sumitomo Chemical Co., Ltd., 3-1-98 Kasugadenaka, Konohana-ku, Osaka 554-8558, Japan
| | - Teruki Takahashi
- Environmental Health Science Laboratory, Sumitomo Chemical Co., Ltd., 3-1-98 Kasugadenaka, Konohana-ku, Osaka 554-8558, Japan
| | - Makiko Mukumoto
- Environmental Health Science Laboratory, Sumitomo Chemical Co., Ltd., 3-1-98 Kasugadenaka, Konohana-ku, Osaka 554-8558, Japan
| | - Masayuki Sato
- Environmental Health Science Laboratory, Sumitomo Chemical Co., Ltd., 3-1-98 Kasugadenaka, Konohana-ku, Osaka 554-8558, Japan
| | - Masahiko Okamoto
- Environmental Health Science Laboratory, Sumitomo Chemical Co., Ltd., 3-1-98 Kasugadenaka, Konohana-ku, Osaka 554-8558, Japan
| |
Collapse
|
10
|
Thyssen JP, Ahlström MG, Bruze M, Rustemeyer T, Lidén C. Metals. Contact Dermatitis 2020. [DOI: 10.1007/978-3-319-72451-5_35-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
11
|
|
12
|
Verbraucherschutz und Risikobewertung — allergieauslösende Substanzen in Verbraucherprodukten. ALLERGO JOURNAL 2019. [DOI: 10.1007/s15007-019-1901-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
13
|
Kimani F, Kim SM, Steinhardt R, Esser-Kahn AP. Correlating the structure and reactivity of a contact allergen, DNCB, and its analogs to sensitization potential. Bioorg Med Chem 2019; 27:2985-2990. [PMID: 31128992 DOI: 10.1016/j.bmc.2019.05.017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Revised: 05/02/2019] [Accepted: 05/10/2019] [Indexed: 11/28/2022]
Abstract
We report a study that seeks to find a correlation between the overall sensitization potential quantified by the expression of IL-8 by stimulated monocytes and the chemical structure of a model contact allergen, 2,4-dinitrochlorobenzene (DNCB). We show that structure and reactivity of the chemical compounds play an important role in activation of the monocytes and subsequent inflammation in tissue. However, we observed a non-linear correlation between the rate of reaction and biological activity indicating a required balance of stability and reactivity.
Collapse
Affiliation(s)
- Flora Kimani
- Institute for Molecular Engineering, University of Chicago, Chicago, IL 60637, United States
| | - Seong-Min Kim
- Institute for Molecular Engineering, University of Chicago, Chicago, IL 60637, United States
| | - Rachel Steinhardt
- Institute for Molecular Engineering, University of Chicago, Chicago, IL 60637, United States
| | - Aaron P Esser-Kahn
- Institute for Molecular Engineering, University of Chicago, Chicago, IL 60637, United States.
| |
Collapse
|
14
|
Kim MK, Kim KB, Kim HS, Lee BM. Alternative skin sensitization prediction and risk assessment using proinflammatory biomarkers, interleukin-1 beta (IL-1β) and inducible nitric oxide synthase (iNOS). JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2019; 82:361-378. [PMID: 31025611 DOI: 10.1080/15287394.2019.1609183] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
As an alternative to animal tests for skin sensitization potency and risk assessment, cell viability and biomarkers related to skin sensitization were analyzed in THP-1 human monocytic leukemia cells. Cell viabilities of 90% (CV90) and 75% (CV75) were determined for 24 selected test chemicals. Further biomarkers related to skin sensitization were also determined under equivalent comparative conditions. In cell viability analyses, potent skin sensitizers exhibited high cytotoxicity, but non-sensitizers did not display this tendency. In biomarker analyses, interleukin-I beta (IL-1β), inducible nitric oxide synthase (iNOS), IL-1β+iNOS, and THP-1 IL-1β+Raw 264.7 IL-1β were found to be suitable for prediction of skin sensitization potency following classification as either skin sensitizers or non-sensitizers (accuracies of 91.7%, 87.5%, 83.3%, and 82.6%, respectively). A significant positive correlation was found between biomarkers and skin sensitization potency, with a correlation coefficient (R) of 0.7 or more (correlation coefficients of 0.77, 0.72, 0.7, and 0.84, respectively). Finally, the skin sensitization potency effective threefold concentration (EC) 3% was predicted using a biomarker equation, with resulting prediction rates (match rate with actual data) of 58.3%, 54.2%, 62.5%, and 60.9%, respectively. The prediction accuracy for the EC3 value obtained from animal data was calculated as 83.3%, 79.2%, 79.2%, and 73.9%, respectively. Thus, these biomarkers, IL-1β and iNOS, may be alternatively used to predict skin sensitization potency and risk assessment.
Collapse
Affiliation(s)
- Min Kook Kim
- a Division of Toxicology , College of Pharmacy, Sungkyunkwan University , Suwon , Gyeonggi-do , South Korea
| | - Kyu-Bong Kim
- b College of Pharmacy , Dankook University , Cheonan , Chungnam , South Korea
| | - Hyung Sik Kim
- a Division of Toxicology , College of Pharmacy, Sungkyunkwan University , Suwon , Gyeonggi-do , South Korea
| | - Byung-Mu Lee
- a Division of Toxicology , College of Pharmacy, Sungkyunkwan University , Suwon , Gyeonggi-do , South Korea
| |
Collapse
|
15
|
Consumer protection and risk assessment: sensitising substances in consumer products. ACTA ACUST UNITED AC 2019. [DOI: 10.1007/s40629-019-0093-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
16
|
Kim MK, Kim KB, Yoon K, Kacew S, Kim HS, Lee BM. IL-1α and IL-1β as alternative biomarkers for risk assessment and the prediction of skin sensitization potency. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2018; 81:830-843. [PMID: 30020862 DOI: 10.1080/15287394.2018.1494474] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Potential biomarkers of skin sensitization in RAW264.7 mouse macrophages were investigated as alternatives to animal experiments and risk assessment. The concentrations that resulted in a cell viability of 90% (CV90) and 75% (CV75) were calculated by using a water-soluble tetrazolium salt (WST)-1 assay and used to analyze the skin sensitization potency of 23 experimental materials under equivalent treatment conditions. In addition, the expression of interleukin (IL)-1α, IL-1β, IL-31, tumor necrosis factor (TNF)-α, inducible nitric oxide synthase (iNOS), prostaglandin E2 (PGE2), and cyclooxygenase-2 (COX-2) was analyzed utilizing Western blotting. In the cell viability analysis, skin sensitizers were generally more cytotoxic and exhibited increased skin sensitization potency. However, nonsensitizers did not show any marked cytotoxic tendency. Biomarker analysis demonstrated that IL-1α, IL-1β, and the combination of IL-1α and IL-1β (IL-1α + IL-1β) predicted reliably skin sensitization potential (1) sensitivities of 94.4%, 83.3%, and 83.3%, specificities of 100%, 100%, and 100%, and (2) accuracies of 95.7%, 87%, and 87%, respectively. These observations correlated most reliably as indicators for skin sensitization potency. Data suggest that IL-1α and IL-1β may serve as potential biomarkers for skin sensitization and provide an alternative method to animal experiments for prediction of skin sensitization potency and risk assessment.
Collapse
Affiliation(s)
- Min Kook Kim
- a Division of Toxicology, College of Pharmacy , Sungkyunkwan University , Suwon , Gyeonggi-do , South Korea
| | - Kyu-Bong Kim
- b College of Pharmacy , Dankook University , Cheonan , Chungnam , South Korea
| | - Kyungsil Yoon
- c Lung Cancer Branch , Research Institute, National Cancer Center , Goyang , Gyeonggi-do , South Korea
| | - Sam Kacew
- d McLaughlin Centre for Population Health Risk Assessment,University of Ottawa, Ottawa, ON, Canada
| | - Hyung Sik Kim
- a Division of Toxicology, College of Pharmacy , Sungkyunkwan University , Suwon , Gyeonggi-do , South Korea
| | - Byung-Mu Lee
- a Division of Toxicology, College of Pharmacy , Sungkyunkwan University , Suwon , Gyeonggi-do , South Korea
| |
Collapse
|
17
|
Roberts DW, Api AM. Chemical applicability domain of the local lymph node assay (LLNA) for skin sensitisation potency. Part 4. Quantitative correlation of LLNA potency with human potency. Regul Toxicol Pharmacol 2018; 96:76-84. [PMID: 29730445 DOI: 10.1016/j.yrtph.2018.04.022] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Revised: 04/23/2018] [Accepted: 04/27/2018] [Indexed: 11/19/2022]
Abstract
Prediction of skin sensitisation potential and potency by non-animal methods is the target of many active research programmes. Although the aim is to predict sensitisation potential and potency in humans, data from the murine local lymph node assay (LLNA) constitute much the largest source of quantitative data on in vivo skin sensitisation. The LLNA has been the preferred in vivo method for identification of skin sensitising chemicals and as such is potentially valuable as a benchmark for assessment of non-animal approaches. However, in common with all predictive test methods, the LLNA is subject to false positives and false negatives with an overall level of accuracy said variously to be approximately 80% or 90%. It is also necessary to consider the extent to which, for true positives, LLNA potency correlates with human potency. In this paper LLNA potency and human potency are compared so as to express quantitatively the correlation between them, and reasons for non-agreement between LLNA and human potency are analysed. This leads to a better definition of the applicability domain of the LLNA, within which LLNA data can be used confidently to predict human potency and as a benchmark to assess the performance of non-animal approaches.
Collapse
Affiliation(s)
- David W Roberts
- School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Liverpool L3 3AF, United Kingdom.
| | - Anne Marie Api
- Research Institute for Fragrance Materials, Inc., 50 Tice Boulevard, Woodcliff Lake, NJ 07677, United States
| |
Collapse
|
18
|
de Ávila RI, Teixeira GC, Veloso DFMC, Moreira LC, Lima EM, Valadares MC. In vitro assessment of skin sensitization, photosensitization and phototoxicity potential of commercial glyphosate-containing formulations. Toxicol In Vitro 2017; 45:386-392. [PMID: 28389279 DOI: 10.1016/j.tiv.2017.04.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2016] [Revised: 03/29/2017] [Accepted: 04/03/2017] [Indexed: 01/17/2023]
Abstract
This study evaluated the applicability of a modified Direct Peptide Reactivity Assay (DPRA) (OECD N° 442C, 2015) through the 10-fold reduction of reaction volume (micro-DPRA, mDPRA) for skin sensitization evaluation of six commercial glyphosate-containing formulations. In addition, another modification of DPRA was proposed by adding a UVA (5J/cm2) irradiation step, namely photo-mDPRA, to better characterize (photo)sensitizer materials. The phototoxicity profile of pesticides was also evaluated using the 3T3 Neutral Red Uptake Phototoxicity Test (3T3-NRU-PT) (OECD N° 432, 2004). The mDPRA could represent an environmentally acceptable test approach, since it reduces costs and organic waste. Peptide depletion was greater in photo-mDPRA and changed the reactivity class of each test material, in comparison to mDPRA. Thus, the association of mDPRA with photo-mDPRA was better for correctly characterizing human (photo)sensitizer substances and pesticides. In general, cysteine depletion was greater than that of lysine for all materials tested in both mDPRA and photo-mDPRA. Furthermore, while 3T3-NRU-PT is unable to predict (photo)sensitizers, it was capable of correctly identifying the phototoxic potential of the tested agrochemical formulations. In conclusion, mDPRA plus photo-mDPRA and 3T3-NRU-PT seem to be preliminary non-animal test batteries for skin (photo)sensitization/phototoxicity assessment of chemicals, agrochemical formulations and their ingredients.
Collapse
Affiliation(s)
- Renato Ivan de Ávila
- Laboratory of Celullar Toxicology and Pharmacology - FarmaTec, Faculty of Pharmacy, Federal University of Goiás, Goiânia, GO, Brazil
| | - Gabriel Campos Teixeira
- Laboratory of Celullar Toxicology and Pharmacology - FarmaTec, Faculty of Pharmacy, Federal University of Goiás, Goiânia, GO, Brazil
| | | | - Larissa Cleres Moreira
- Laboratory of Celullar Toxicology and Pharmacology - FarmaTec, Faculty of Pharmacy, Federal University of Goiás, Goiânia, GO, Brazil
| | - Eliana Martins Lima
- Laboratory of Pharmaceutical Technology - FarmaTec, Faculty of Pharmacy, Federal University of Goiás, Goiânia, GO, Brazil
| | - Marize Campos Valadares
- Laboratory of Celullar Toxicology and Pharmacology - FarmaTec, Faculty of Pharmacy, Federal University of Goiás, Goiânia, GO, Brazil.
| |
Collapse
|
19
|
Current status of alternative methods for assessing immunotoxicity: A chemical industry perspective. CURRENT OPINION IN TOXICOLOGY 2017. [DOI: 10.1016/j.cotox.2017.06.015] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
20
|
Zhang H, Shi Y, Wang C, Zhao K, Zhang S, Wei L, Dong L, Gu W, Xu Y, Ruan H, Zhi H, Yang X. An improvement of LLNA:DA to assess the skin sensitization potential of chemicals. J Toxicol Sci 2017; 42:129-136. [PMID: 28321039 DOI: 10.2131/jts.42.129] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
We developed a modified local lymph node assay based on ATP (LLNA:DA), termed the Two-Stage LLNA:DA, to further reduce the animal numbers in the identification of sensitizers. In the Two-Stage LLNA:DA procedure, 13 chemicals ranging from non-sensitizers to extreme sensitizers were selected. The first stage used reduced LLNA:DA (rLLNA:DA) to screen out sensitive chemicals. The second stage used LLNA:DA based on OECD 442 (A) to classify those potential sensitizers screened out in the first stage. In the first stage, the SIs of the methyl methacrylate, salicylic acid, methyl salicylate, ethyl salicylate, isopropanol and propanediol were below 1.8 and need not to be tested in the second step. Others continued to be tested by LLNA:DA. In the second stage, sodium lauryl sulphate and xylene were classified as weak sensitizers. a-hexyl cinnamic aldehyde and eugenol were moderate sensitizers. Benzalkonium chloride and glyoxal were strong sensitizers, and phthalic anhydride was an extreme sensitizer. The 9/9, 11/12, 10/11, and 8/13 (positive or negative only) categories of the Two-Stage LLNA:DA were consistent with those from the other methods (LLNA, LLNA:DA, GPMT/BT and HMT/HPTA), suggesting that Two-Stage LLNA:DA have a high coincidence rate with reported data. In conclusion, The Two-Stage LLNA:DA is in line with the "3R" rules, and can be a modification of LLNA:DA but needs more study.
Collapse
Affiliation(s)
- Hongwei Zhang
- Department of Toxicology, National Institute of Environmental Health, Chinese Center for Desease Control and Prevention, China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Roberts DW, Schultz TW, Api AM. Skin Sensitization QMM for HRIPT NOEL Data: Aldehyde Schiff-Base Domain. Chem Res Toxicol 2017; 30:1309-1316. [DOI: 10.1021/acs.chemrestox.7b00050] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- David W. Roberts
- School
of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Liverpool L3 3AF, United Kingdom
| | - Terry W. Schultz
- College
of Veterinary Medicine, The University of Tennessee, 2407 River
Drive, Knoxville, Tennessee 37996, United States
| | - Anne Marie Api
- Research Institute for Fragrance Materials, Inc., 50 Tice Boulevard, Woodcliff
Lake, New Jersey 07677, United States
| |
Collapse
|
22
|
Roberts DW, Aptula A, Api AM. Structure–Potency Relationships for Epoxides in Allergic Contact Dermatitis. Chem Res Toxicol 2017; 30:524-531. [DOI: 10.1021/acs.chemrestox.6b00241] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- David W. Roberts
- School
of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Liverpool L3 3AF, United Kingdom
| | - Aynur Aptula
- Unilever
Safety
and Environmental Assurance Centre, Colworth Science Park, Sharnbrook, Bedford MK44 1LQ, United Kingdom
| | - Anne Marie Api
- Research Institute for Fragrance Materials, Inc., 50 Tice Boulevard, Woodcliff
Lake, New Jersey 07677, United States
| |
Collapse
|
23
|
Avonto C, Rua D, Lasonkar PB, Chittiboyina AG, Khan IA. Identification of a compound isolated from German chamomile (Matricaria chamomilla) with dermal sensitization potential. Toxicol Appl Pharmacol 2017; 318:16-22. [PMID: 28109818 DOI: 10.1016/j.taap.2017.01.009] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Revised: 01/13/2017] [Accepted: 01/18/2017] [Indexed: 11/15/2022]
Abstract
German chamomile is one of the most popular herbal ingredients used in cosmetics and personal care products. Allergic skin reactions following topical application of German chamomile have been occasionally reported, although it is not fully understood which of the chemical constituents is responsible for this adverse effect. In the present work, three candidate sensitizers were isolated from German chamomile based on activity-guided fractionation of chamomile extracts tested using the in vitro KeratinoSens™ assay. The compounds were identified as the polyacetylene tonghaosu (1), and both trans- and cis-glucomethoxycinnamic acids (2 and 3). These three compounds were classified as non- to weakly reactive using in chemico methods; however, aged tonghaosu was found to be more reactive when compared to freshly isolated tonghaosu. The polyacetylene (1) constituent was determined to be chemically unstable, generating a small electrophilic spirolactone, 1,6-dioxaspiro[4.4]non-3-en-2-one (4), upon aging. This small lactone (4) was strongly reactive in both in chemico HTS- and NMR-DCYA methods and further confirmed as a potential skin sensitizer by Local Lymph Node Assay (LLNA).
Collapse
Affiliation(s)
- Cristina Avonto
- National Center for Natural Products Research, Research Institute of Pharmaceutical Sciences, School of Pharmacy, The University of Mississippi, MS 38677, United States
| | - Diego Rua
- The Center for Food Safety and Applied Nutrition, US Food and Drug Administration, College Park, MD 20740, United States
| | - Pradeep B Lasonkar
- National Center for Natural Products Research, Research Institute of Pharmaceutical Sciences, School of Pharmacy, The University of Mississippi, MS 38677, United States
| | - Amar G Chittiboyina
- National Center for Natural Products Research, Research Institute of Pharmaceutical Sciences, School of Pharmacy, The University of Mississippi, MS 38677, United States
| | - Ikhlas A Khan
- National Center for Natural Products Research, Research Institute of Pharmaceutical Sciences, School of Pharmacy, The University of Mississippi, MS 38677, United States; Division of Pharmacognosy, Department of BioMolecular Sciences, School of Pharmacy, The University of Mississippi, MS 38677, United States.
| |
Collapse
|
24
|
Zang Q, Paris M, Lehmann DM, Bell S, Kleinstreuer N, Allen D, Matheson J, Jacobs A, Casey W, Strickland J. Prediction of skin sensitization potency using machine learning approaches. J Appl Toxicol 2017; 37:792-805. [PMID: 28074598 DOI: 10.1002/jat.3424] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2016] [Revised: 10/26/2016] [Accepted: 11/01/2016] [Indexed: 12/31/2022]
Abstract
The replacement of animal use in testing for regulatory classification of skin sensitizers is a priority for US federal agencies that use data from such testing. Machine learning models that classify substances as sensitizers or non-sensitizers without using animal data have been developed and evaluated. Because some regulatory agencies require that sensitizers be further classified into potency categories, we developed statistical models to predict skin sensitization potency for murine local lymph node assay (LLNA) and human outcomes. Input variables for our models included six physicochemical properties and data from three non-animal test methods: direct peptide reactivity assay; human cell line activation test; and KeratinoSens™ assay. Models were built to predict three potency categories using four machine learning approaches and were validated using external test sets and leave-one-out cross-validation. A one-tiered strategy modeled all three categories of response together while a two-tiered strategy modeled sensitizer/non-sensitizer responses and then classified the sensitizers as strong or weak sensitizers. The two-tiered model using the support vector machine with all assay and physicochemical data inputs provided the best performance, yielding accuracy of 88% for prediction of LLNA outcomes (120 substances) and 81% for prediction of human test outcomes (87 substances). The best one-tiered model predicted LLNA outcomes with 78% accuracy and human outcomes with 75% accuracy. By comparison, the LLNA predicts human potency categories with 69% accuracy (60 of 87 substances correctly categorized). These results suggest that computational models using non-animal methods may provide valuable information for assessing skin sensitization potency. Copyright © 2017 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Joanna Matheson
- US Consumer Product Safety Commission, Bethesda, MD, 20814, USA
| | | | - Warren Casey
- NIH/NIEHS/DNTP/NICEATM, Research Triangle Park, NC, 27709, USA
| | | |
Collapse
|
25
|
Chemical applicability domain of the Local Lymph Node Assay (LLNA) for skin sensitization potency. Part 1. Underlying physical organic chemistry principles and the extent to which they are represented in the LLNA validation dataset. Regul Toxicol Pharmacol 2016; 80:247-54. [DOI: 10.1016/j.yrtph.2016.07.007] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2016] [Revised: 07/06/2016] [Accepted: 07/11/2016] [Indexed: 01/08/2023]
|
26
|
Ahn I, Kim TS, Jung ES, Yi JS, Jang WH, Jung KM, Park M, Jung MS, Jeon EY, Yeo KU, Jo JH, Park JE, Kim CY, Park YC, Seong WK, Lee AY, Chun YJ, Jeong TC, Jeung EB, Lim KM, Bae S, Sohn S, Heo Y. Performance standard-based validation study for local lymph node assay: 5-bromo-2-deoxyuridine-flow cytometry method. Regul Toxicol Pharmacol 2016; 80:183-94. [DOI: 10.1016/j.yrtph.2016.06.009] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2016] [Revised: 06/10/2016] [Accepted: 06/12/2016] [Indexed: 11/15/2022]
|
27
|
Strickland J, Zang Q, Kleinstreuer N, Paris M, Lehmann DM, Choksi N, Matheson J, Jacobs A, Lowit A, Allen D, Casey W. Integrated decision strategies for skin sensitization hazard. J Appl Toxicol 2016; 36:1150-62. [PMID: 26851134 PMCID: PMC4945438 DOI: 10.1002/jat.3281] [Citation(s) in RCA: 75] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2015] [Revised: 11/10/2015] [Accepted: 12/02/2015] [Indexed: 11/10/2022]
Abstract
One of the top priorities of the Interagency Coordinating Committee for the Validation of Alternative Methods (ICCVAM) is the identification and evaluation of non-animal alternatives for skin sensitization testing. Although skin sensitization is a complex process, the key biological events of the process have been well characterized in an adverse outcome pathway (AOP) proposed by the Organisation for Economic Co-operation and Development (OECD). Accordingly, ICCVAM is working to develop integrated decision strategies based on the AOP using in vitro, in chemico and in silico information. Data were compiled for 120 substances tested in the murine local lymph node assay (LLNA), direct peptide reactivity assay (DPRA), human cell line activation test (h-CLAT) and KeratinoSens assay. Data for six physicochemical properties, which may affect skin penetration, were also collected, and skin sensitization read-across predictions were performed using OECD QSAR Toolbox. All data were combined into a variety of potential integrated decision strategies to predict LLNA outcomes using a training set of 94 substances and an external test set of 26 substances. Fifty-four models were built using multiple combinations of machine learning approaches and predictor variables. The seven models with the highest accuracy (89-96% for the test set and 96-99% for the training set) for predicting LLNA outcomes used a support vector machine (SVM) approach with different combinations of predictor variables. The performance statistics of the SVM models were higher than any of the non-animal tests alone and higher than simple test battery approaches using these methods. These data suggest that computational approaches are promising tools to effectively integrate data sources to identify potential skin sensitizers without animal testing. Published 2016. This article has been contributed to by US Government employees and their work is in the public domain in the USA.
Collapse
Affiliation(s)
| | - Qingda Zang
- ILS, Research Triangle Park, North Carolina, 27709, USA
| | | | - Michael Paris
- ILS, Research Triangle Park, North Carolina, 27709, USA
| | - David M Lehmann
- EPA/NHEERL/EPHD/CIB, Research Triangle Park, North Carolina, 27709, USA
| | - Neepa Choksi
- ILS, Research Triangle Park, North Carolina, 27709, USA
| | - Joanna Matheson
- U.S. Consumer Product Safety Commission, Bethesda, Maryland, 20814, USA
| | | | - Anna Lowit
- EPA/OCSPP/OPP/HED, Washington, District of Columbia, 20460, USA
| | - David Allen
- ILS, Research Triangle Park, North Carolina, 27709, USA
| | - Warren Casey
- NIH/NIEHS/DNTP/NICEATM, Research Triangle Park, North Carolina, 27709, USA
| |
Collapse
|
28
|
Strickland J, Zang Q, Paris M, Lehmann DM, Allen D, Choksi N, Matheson J, Jacobs A, Casey W, Kleinstreuer N. Multivariate models for prediction of human skin sensitization hazard. J Appl Toxicol 2016; 37:347-360. [PMID: 27480324 DOI: 10.1002/jat.3366] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Revised: 06/21/2016] [Accepted: 06/21/2016] [Indexed: 11/07/2022]
Abstract
One of the Interagency Coordinating Committee on the Validation of Alternative Method's (ICCVAM) top priorities is the development and evaluation of non-animal approaches to identify potential skin sensitizers. The complexity of biological events necessary to produce skin sensitization suggests that no single alternative method will replace the currently accepted animal tests. ICCVAM is evaluating an integrated approach to testing and assessment based on the adverse outcome pathway for skin sensitization that uses machine learning approaches to predict human skin sensitization hazard. We combined data from three in chemico or in vitro assays - the direct peptide reactivity assay (DPRA), human cell line activation test (h-CLAT) and KeratinoSens™ assay - six physicochemical properties and an in silico read-across prediction of skin sensitization hazard into 12 variable groups. The variable groups were evaluated using two machine learning approaches, logistic regression and support vector machine, to predict human skin sensitization hazard. Models were trained on 72 substances and tested on an external set of 24 substances. The six models (three logistic regression and three support vector machine) with the highest accuracy (92%) used: (1) DPRA, h-CLAT and read-across; (2) DPRA, h-CLAT, read-across and KeratinoSens; or (3) DPRA, h-CLAT, read-across, KeratinoSens and log P. The models performed better at predicting human skin sensitization hazard than the murine local lymph node assay (accuracy 88%), any of the alternative methods alone (accuracy 63-79%) or test batteries combining data from the individual methods (accuracy 75%). These results suggest that computational methods are promising tools to identify effectively the potential human skin sensitizers without animal testing. Published 2016. This article has been contributed to by US Government employees and their work is in the public domain in the USA.
Collapse
Affiliation(s)
| | | | | | - David M Lehmann
- US Environmental Protection Agency, Research Triangle Park, NC, 27709, USA
| | | | | | - Joanna Matheson
- US Consumer Product Safety Commission, Rockville, MD, 20850, USA
| | - Abigail Jacobs
- US Food and Drug Administration, Silver Spring, MD, 20993, USA
| | - Warren Casey
- National Institutes of Environmental Health Sciences, Research Triangle Park, NC, 27709, USA
| | - Nicole Kleinstreuer
- National Institutes of Environmental Health Sciences, Research Triangle Park, NC, 27709, USA
| |
Collapse
|
29
|
Wong CL, Lam AL, Smith MT, Ghassabian S. Evaluation of a High-Throughput Peptide Reactivity Format Assay for Assessment of the Skin Sensitization Potential of Chemicals. Front Pharmacol 2016; 7:53. [PMID: 27014067 PMCID: PMC4789461 DOI: 10.3389/fphar.2016.00053] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2015] [Accepted: 02/26/2016] [Indexed: 11/13/2022] Open
Abstract
The direct peptide reactivity assay (DPRA) is a validated method for in vitro assessment of the skin sensitization potential of chemicals. In the present work, we describe a peptide reactivity assay using 96-well plate format and systematically identified the optimal assay conditions for accurate and reproducible classification of chemicals with known sensitizing capacity. The aim of the research is to ensure that the analytical component of the peptide reactivity assay is robust, accurate, and reproducible in accordance with criteria that are used for the validation of bioanalytical methods. Analytical performance was evaluated using quality control samples (QCs; heptapeptides at low, medium, and high concentrations) and incubation of control chemicals (chemicals with known sensitization capacity, weak, moderate, strong, extreme, and non-sensitizers) with each of three synthetic heptapeptides, viz Cor1-C420 (Ac-NKKCDLF), cysteine- (Ac-RFAACAA), and lysine- (Ac-RFAAKAA) containing heptapeptides. The optimal incubation temperature for all three heptapeptides was 25°C. Apparent heptapeptide depletion was affected by vial material composition. Incubation of test chemicals with Cor1-C420, showed that peptide depletion was unchanged in polypropylene vials over 3-days storage in an autosampler but this was not the case for borosilicate glass vials. For cysteine-containing heptapeptide, the concentration was not stable by day 3 post-incubation in borosilicate glass vials. Although the lysine-containing heptapeptide concentration was unchanged in both polypropylene and borosilicate glass vials, the apparent extent of lysine-containing heptapeptide depletion by ethyl acrylate, differed between polypropylene (24.7%) and glass (47.3%) vials. Additionally, the peptide-chemical complexes for Cor1-C420-cinnamaldehyde and cysteine-containing heptapeptide-2, 4-dinitrochlorobenzene were partially reversible during 3-days of autosampler storage. These observations further highlight the difficulty in adapting in vitro methods to high-throughput format for screening the skin sensitization potential of large numbers of chemicals whilst ensuring that the data produced are both accurate and reproducible.
Collapse
Affiliation(s)
- Chin Lin Wong
- Centre for Integrated Preclinical Drug Development, The University of QueenslandSt Lucia, QLD, Australia; School of Pharmacy, The University of QueenslandWoolloongabba, QLD, Australia
| | - Ai-Leen Lam
- Centre for Integrated Preclinical Drug Development, The University of Queensland St Lucia, QLD, Australia
| | - Maree T Smith
- Centre for Integrated Preclinical Drug Development, The University of QueenslandSt Lucia, QLD, Australia; School of Pharmacy, The University of QueenslandWoolloongabba, QLD, Australia
| | - Sussan Ghassabian
- Centre for Integrated Preclinical Drug Development, The University of Queensland St Lucia, QLD, Australia
| |
Collapse
|
30
|
Abstract
Skin sensitization associated with allergic contact dermatitis is a common health problem and is an important consideration for toxicologists in safety assessment. Historically, in vivo predictive tests have been used with good success to identify substances that have the potential to induce skin sensitization, and these tests formed the basis of safety evaluation. These original tests are now being replaced gradually either by in vitro assays or by further refinements of in vivo methods such as the local lymph node assay. Human data have also been available to inform classification decisions for some substances and have been used by risk managers to introduce measures for exposure reduction. However, humans encounter hazards in the context of exposure rather than in the form of intrinsic hazards per se, and so in this article, we have examined critically the extent to which human data have been used to refine classification decisions and safety evaluations. We have also evaluated information on the burden of human allergic skin disease and used this to address the question of whether, and to what extent, the identification and evaluation of skin sensitization hazards has led to an improvement of public and/or occupational health.
Collapse
Affiliation(s)
| | - IR White
- Department of Cutaneous Allergy, St John’s Institute of Dermatology, St Thomas’ Hospital, London, UK
| | - JP McFadden
- Department of Cutaneous Allergy, St John’s Institute of Dermatology, St Thomas’ Hospital, London, UK
| | - I Kimber
- Faculty of Life Sciences, The University of Manchester, Manchester, UK
| |
Collapse
|
31
|
Maeda Y, Hirosaki H, Yakata N, Takeyoshi M. Comparison of outcomes obtained in murine local lymph node assays using CBA/J or CBA/Ca mice. J Appl Toxicol 2015; 36:1011-4. [DOI: 10.1002/jat.3250] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2015] [Revised: 09/02/2015] [Accepted: 09/05/2015] [Indexed: 11/11/2022]
Affiliation(s)
- Yosuke Maeda
- Chemicals Assessment and Research Center; Chemicals Evaluation and Research Institute (CERI); 1600, Shimotakano, Sugito-machi Kitakatsushika-gun Saitama 345-0043 Japan
| | - Haruka Hirosaki
- Chemicals Assessment and Research Center; Chemicals Evaluation and Research Institute (CERI); 1600, Shimotakano, Sugito-machi Kitakatsushika-gun Saitama 345-0043 Japan
| | - Naoaki Yakata
- Chemicals Assessment and Research Center; Chemicals Evaluation and Research Institute (CERI); 1600, Shimotakano, Sugito-machi Kitakatsushika-gun Saitama 345-0043 Japan
| | - Masahiro Takeyoshi
- Chemicals Assessment and Research Center; Chemicals Evaluation and Research Institute (CERI); 1600, Shimotakano, Sugito-machi Kitakatsushika-gun Saitama 345-0043 Japan
| |
Collapse
|
32
|
Evaluation of Phototoxic and Skin Sensitization Potentials of PLA 2 -Free Bee Venom. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2015; 2015:157367. [PMID: 26347784 PMCID: PMC4546966 DOI: 10.1155/2015/157367] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/27/2015] [Accepted: 07/13/2015] [Indexed: 11/24/2022]
Abstract
Bee venom (BV) from honey bee (Apis mellifera L.) has been used in oriental medicine and cosmetic ingredients because of its diverse pharmacological activities. In many studies, among BV components, phospholipase A2 (PLA2) is known as a major player in BV-induced allergic reaction. Therefore, we removed PLA2 from BV using ultrafiltration and then investigated in vitro phototoxicity and in vivo skin sensitization of PLA2-free BV (PBV) in comparison with regular BV. The 3T3 neutral red uptake phototoxicity assay can be appropriated to identify the phototoxic effect of a test substance upon the exposure of ultraviolet A. Chlorpromazine, a positive control, showed high levels of photoirritation factor and mean photo effect values, while BV and PBV had less of these values. Local lymph node assay is an alternative method to evaluate skin sensitization potential of chemicals. BALB/c mice were treated with p-phenylenediamine (PPD, positive control), BV, or PBV. In all of PPD concentrations, stimulation indexes (SI) as sensitizing potential of chemicals were ≥1.6, determined to be sensitizer, while SI levels of BV and PBV were below 1.6. Thus, based on these findings, we propose that both BV and PBV are nonphototoxic compounds and nonsensitizers.
Collapse
|
33
|
Settivari RS, Gehen SC, Amado RA, Visconti NR, Boverhof DR, Carney EW. Application of the KeratinoSens™ assay for assessing the skin sensitization potential of agrochemical active ingredients and formulations. Regul Toxicol Pharmacol 2015; 72:350-60. [DOI: 10.1016/j.yrtph.2015.05.006] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2015] [Revised: 04/11/2015] [Accepted: 05/06/2015] [Indexed: 11/28/2022]
|
34
|
Abstract
Dermal exposure to chemicals may result in allergic or irritant contact dermatitis. In this study, we performed ex vivo local lymph node assay: bromodeoxyuridine-enzyme-linked immunosorbent assay (LLNA: BrdU-ELISA) to compare the differences between irritation and sensitization potency of some chemicals in terms of the 3 end points: lymphocyte proliferation, cytokine profiles (interleukin 2 [IL-2], interferon-γ (IFN-γ), IL-4, IL-5, IL-1, and tumor necrosis factor α [TNF-α]), and ear swelling. Different concentrations of the following well-known sensitizers and irritant chemicals were applied to mice: dinitrochlorobenzene, eugenol, isoeugenol, sodium lauryl sulfate (SLS), and croton oil. According to the lymph node results; the auricular lymph node weights and lymph node cell counts increased after application of both sensitizers and irritants in high concentrations. On the other hand, according to lymph node cell proliferation results, there was a 3-fold increase in proliferation of lymph node cells (stimulation index) for sensitizer chemicals and SLS in the applied concentrations; however, there was not a 3-fold increase for croton oil and negative control. The SLS gave a false-positive response. Cytokine analysis demonstrated that 4 cytokines including IL-2, IFN-γ, IL-4, and IL-5 were released in lymph node cell cultures, with a clear dose trend for sensitizers whereas only TNF-α was released in response to irritants. Taken together, our results suggest that the ex vivo LLNA: BrdU-ELISA method can be useful for discriminating irritants and allergens.
Collapse
Affiliation(s)
| | - Ozge Cemiloglu Ulker
- Department of Toxicology, Faculty of Pharmacy, Ankara University, Ankara, Turkey
| | - Asuman Karakaya
- Department of Toxicology, Faculty of Pharmacy, Ankara University, Ankara, Turkey
| |
Collapse
|
35
|
Yamashita K, Shinoda S, Hagiwara S, Miyazaki H, Itagaki H. Unsaturated fatty acids show clear elicitation responses in a modified local lymph node assay with an elicitation phase, and test positive in the direct peptide reactivity assay. J Toxicol Sci 2015; 40:843-53. [DOI: 10.2131/jts.40.843] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Affiliation(s)
- Kunihiko Yamashita
- Corporate Research Center, Daicel Corporation
- Faculty of Engineering, Dept. of Materials Science and Engineering, Yokohama National University
| | | | - Saori Hagiwara
- Yoshimi Laboratories, Drug Safety Testing Center Co., Ltd
| | | | - Hiroshi Itagaki
- Faculty of Engineering, Dept. of Materials Science and Engineering, Yokohama National University
| |
Collapse
|
36
|
Yamashita K, Shinoda S, Hagiwara S, Itagaki H. Further development of LLNA:DAE method as stand-alone skin-sensitization testing method and applied for evaluation of relative skin-sensitizing potency between chemicals. J Toxicol Sci 2015; 40:137-50. [DOI: 10.2131/jts.40.137] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Affiliation(s)
- Kunihiko Yamashita
- Faculty of Engineering, Dept. of Materials Science and Engineering, Yokohama National University
- Corporate Research Center, Daicel Corporation
| | | | - Saori Hagiwara
- Yoshimi Laboratories, Drug Safety Testing Center Co., Ltd
| | - Hiroshi Itagaki
- Faculty of Engineering, Dept. of Materials Science and Engineering, Yokohama National University
| |
Collapse
|
37
|
Ulker OC, Kaymak Y, Karakaya A. Investigation of Allergenicity of Some Cosmetic Mixtures by Using ex vivo Local Lymph Node Assay-BrdU Endpoints. Int Arch Allergy Immunol 2014; 164:301-7. [DOI: 10.1159/000366102] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2014] [Accepted: 07/23/2014] [Indexed: 11/19/2022] Open
|
38
|
Ramirez T, Mehling A, Kolle SN, Wruck CJ, Teubner W, Eltze T, Aumann A, Urbisch D, van Ravenzwaay B, Landsiedel R. LuSens: a keratinocyte based ARE reporter gene assay for use in integrated testing strategies for skin sensitization hazard identification. Toxicol In Vitro 2014; 28:1482-97. [PMID: 25172300 DOI: 10.1016/j.tiv.2014.08.002] [Citation(s) in RCA: 90] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2014] [Revised: 08/07/2014] [Accepted: 08/10/2014] [Indexed: 10/24/2022]
Abstract
Allergic contact dermatitis can develop following repeated exposure to allergenic substances. To date, hazard identification is still based on animal studies as non-animal alternatives have not yet gained global regulatory acceptance. Several non-animal methods addressing key-steps of the adverse outcome pathway (OECD, 2012) will most likely be needed to fully address this effect. Among the initial cellular events is the activation of keratinocytes and currently only one method, the KeratinoSens™, has been formally validated to address this event. In this study, a further method, the LuSens assay, that uses a human keratinocyte cell line harbouring a reporter gene construct composed of the antioxidant response element (ARE) of the rat NADPH:quinone oxidoreductase 1 gene and the luciferase gene. The assay was validated in house using a selection of 74 substances which included the LLNA performance standards. The predictivity of the LuSens assay for skin sensitization hazard identification was comparable to other non-animal methods, in particular to the KeratinoSens™. When used as part of a testing battery based on the OECD adverse outcome pathway for skin sensitization, a combination of the LuSens assay, the DPRA and a dendritic cell line activation test attained predictivities similar to that of the LLNA.
Collapse
|
39
|
Fage SW, Faurschou A, Thyssen JP. Copper hypersensitivity. Contact Dermatitis 2014; 71:191-201. [DOI: 10.1111/cod.12273] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2014] [Revised: 05/13/2014] [Accepted: 05/20/2014] [Indexed: 11/29/2022]
Affiliation(s)
- Simon W. Fage
- Department of Dermato-Allergology; National Allergy Research Centre, Copenhagen University Hospital Gentofte; 2900 Hellerup Denmark
| | - Annesofie Faurschou
- Department of Dermato-Allergology; National Allergy Research Centre, Copenhagen University Hospital Gentofte; 2900 Hellerup Denmark
| | - Jacob P. Thyssen
- Department of Dermato-Allergology; National Allergy Research Centre, Copenhagen University Hospital Gentofte; 2900 Hellerup Denmark
| |
Collapse
|
40
|
Pemberton MA, Lohmann BS. Risk Assessment of residual monomer migrating from acrylic polymers and causing Allergic Contact Dermatitis during normal handling and use. Regul Toxicol Pharmacol 2014; 69:467-75. [PMID: 24859074 DOI: 10.1016/j.yrtph.2014.05.013] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2014] [Revised: 05/07/2014] [Accepted: 05/08/2014] [Indexed: 11/24/2022]
Abstract
Acrylic, Poly Methyl Methacrylate (PMMA) based polymers are found in many industrial, professional and consumer products and are of low toxicity, but do contain very low levels of residual monomers and process chemicals that can leach out during handling and use. Methyl Methacrylate, the principle monomer is of low toxicity, but is a recognized weak skin sensitizer. The risk of induction of contact allergy in consumers was determined using a method based upon the Exposure-based Quantitative Risk Assessment approach developed for fragrance ingredients. The No Expected Sensitization Induction Level (NESIL) was based on the threshold to induction of sensitization (EC3) in the Local Lymph Node Assay (LLNA) since no Human Repeat Insult Patch Test (HRIPT) data were available. Categorical estimation of Consumer Exposure Level was substituted with a worst case assumption based upon the quantitative determination of MMA monomer migration into simulants. Application of default and Chemical-Specific Adjustment Factors results in a Risk Characterization Ratio (RCR) of 10,000 and a high Margin of Safety for induction of Allergic Contact Dermatitis (ACD) in consumers handling polymers under conservative exposure conditions. Although there are no data available to derive a RCR for elicitation of ACD it is likely to be lower than that for induction.
Collapse
|
41
|
de Groot AC. Side-effects of henna and semi-permanent 'black henna' tattoos: a full review. Contact Dermatitis 2014; 69:1-25. [PMID: 23782354 DOI: 10.1111/cod.12074] [Citation(s) in RCA: 96] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2013] [Revised: 02/06/2013] [Accepted: 02/09/2013] [Indexed: 11/29/2022]
Abstract
Henna, the dried and powdered leaf of Lawsonia inermis, is widely used as a dye for the skin, hair, and nails, and as an expression of body art, especially in Islamic and Hindu cultures. As it stains the skin reddish-brown, it is also called red henna. Black henna is the combination of red henna with p-phenylenediamine (PPD), and is used for temporary 'black henna tattoos'. This article provides a full review of the side-effects of topical application of red and black henna, both cutaneous (allergic and non-allergic) and systemic. Red henna appears to be generally safe, with rare instances of contact allergy and type I hypersensitivity reactions. In children with glucose-6-phosphate dehydrogenase deficiency, topical application of henna may cause life-threatening haemolysis. Black henna tattoos will induce contact allergy to its ingredient PPD at an estimated frequency of 2.5%. Once sensitized, the patients may experience allergic contact dermatitis from the use of hair dyes containing PPD. There are often cross-reactions to other hair dyes, dyes used in textiles, local anaesthetics, and rubber chemicals. The sensitization of children to PPD may have important consequences for health and later career prospects. Systemic toxicity of black henna has been reported in certain African countries.
Collapse
|
42
|
Mekenyan O, Patlewicz G, Kuseva C, Popova I, Mehmed A, Kotov S, Zhechev T, Pavlov T, Temelkov S, Roberts DW. A mechanistic approach to modeling respiratory sensitization. Chem Res Toxicol 2014; 27:219-39. [PMID: 24422459 DOI: 10.1021/tx400345b] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Chemical respiratory sensitization is an important occupational health problem which may lead to severely incapacitated human health, yet there are currently no validated or widely accepted models for identifying and characterizing the potential of a chemical to induce respiratory sensitization. This is in part due to the ongoing uncertainty about the immunological mechanisms through which respiratory sensitization may be acquired. Despite the lack of test method, regulations such as REACH still require an assessment of respiratory sensitization for risk assessment and/or for the purposes of classification and labeling. The REACH guidance describes an integrated evaluation strategy to characterize what information sources could be available to facilitate such an assessment. The components of this include a consideration of well-established structural alerts and existing data (whether it be derived from read-across, (quantitative) structure-activity relationships ((Q)SAR), in vivo studies etc.). There has been some progress in developing SARs as well as a handful of empirical QSARs. More recently, efforts have been focused on exploring whether the reaction chemistry mechanistic domains first characterized for skin sensitization are relevant for respiratory sensitization and to what extent modifications or refinements are needed to rationalize the differences between the two end points as far as their chemistry is concerned. This study has built upon the adverse outcome pathway (AOP) for skin sensitization that was developed and published by the OECD in 2012. We have structured a workflow to characterize the initiating events that are relevant in driving respiratory sensitization. OASIS pipeline technology was used to encode these events as components in a software platform to enable a prediction of respiratory sensitization potential to be made for new untested chemicals. This prediction platform could be useful in the assessment of respiratory sensitization potential or for grouping chemicals for subsequent read-across.
Collapse
Affiliation(s)
- Ovanes Mekenyan
- Laboratory of Mathematical Chemistry, University "Prof As Zlatarov" , 1 Yakim Street, Bourgas, Bulgaria
| | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Yamashita K, Shinoda S, Hagiwara S, Itagaki H. Development of LLNA:DAE: a new local lymph node assay that includes the elicitation phase, discriminates borderline-positive chemicals, and is useful for cross-sensitization testing. J Toxicol Sci 2014; 39:147-61. [DOI: 10.2131/jts.39.147] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Affiliation(s)
- Kunihiko Yamashita
- Corporate Research Center, Daicel Corporation
- Faculty of Engineering, Dept. of Materials Science and Engineering, Yokohama National University
| | | | - Saori Hagiwara
- Yoshimi Laboratories, Drug Safety Testing Center Co., Ltd
| | - Hiroshi Itagaki
- Faculty of Engineering, Dept. of Materials Science and Engineering, Yokohama National University
| |
Collapse
|
44
|
Nandy A, Kar S, Roy K. Development and validation of regression-based QSAR models for quantification of contributions of molecular fragments to skin sensitization potency of diverse organic chemicals. SAR AND QSAR IN ENVIRONMENTAL RESEARCH 2013; 24:1009-1023. [PMID: 23988224 DOI: 10.1080/1062936x.2013.821422] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
In our present work, we have developed regression-based QSAR models for skin sensitization potential of 51 diverse organic chemicals. The objective behind the present work is to determine the influence of different molecular features on the skin sensitizing potential of chemicals. Among several models developed, the two best ones are discussed to unveil specific information regarding the contribution of different structural and physicochemical features towards the property of skin sensitization. The QSAR models suggested that aromatic compounds are more skin sensitizing than aliphatic ones, but in the case of carbonyl compounds, aliphatic ones are more skin sensitizing than aromatic ones. Other descriptors such as LUMO and <2-Atype_H-47> signify the importance of the electrophilic and hydrophilic character respectively of the molecules for showing skin sensitizing property. Another two descriptors, <Dipole-mag-2.72> and (3)χC also exert significant contributions towards the skin sensitization potential of the chemicals. Further, it is observed that the nitrogen atoms (nN), triple bonds (nTB) and also the fragment Al-C(=X)-Al (Atype_C38) are responsible for skin sensitizing property. All the above information provides additional support for further research involving identification of the skin sensitization potential of new chemicals.
Collapse
Affiliation(s)
- A Nandy
- a Drug Theoretics and Cheminformatics Laboratory, Department of Pharmaceutical Technology , Jadavpur University , Kolkata , India
| | | | | |
Collapse
|
45
|
Nandy A, Kar S, Roy K. Development of classification- and regression-based QSAR models andin silicoscreening of skin sensitisation potential of diverse organic chemicals. MOLECULAR SIMULATION 2013. [DOI: 10.1080/08927022.2013.801076] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
46
|
Wright ZM, Basketter PA, Blaikie L, Cooper KJ, Warbrick EV, Dearman RJ, Kimber I. Vehicle effects on skin sensitizing potency of four chemicals: assessment using the local lymph node assay. Int J Cosmet Sci 2012; 23:75-83. [PMID: 18498452 DOI: 10.1046/j.1467-2494.2001.00066.x] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The murine local lymph node assay (LLNA) can be used to determine the relative skin sensitizing potency of chemicals via interpolation of the quantitative dose response data generated. Using this approach we have demonstrated previously that the vehicle matrix in which a chemical allergen is encountered on the skin can have a significant influence on sensitizing potency. Estimates of relative potency are calculated from LLNA dose responses as a function of the mathematically derived EC3 value, this being the concentration estimated to induce a stimulation index (SI) of 3. To investigate further the influence of application vehicle on sensitizing potency, the LLNA has been used to examine the activity of four recognized human contact allergens: isoeugenol and cinnamic aldehyde, two fragrance chemicals; 3-dimethylaminopropylamine (a sensitizing impurity of cocamidopropyl betaine, a surfactant used in shower gel) and dibromodicyanobutane (the sensitizing component of Euxyl K 400, a preservative used in cosmetics). The four chemicals were applied in each of seven different vehicles (acetone: olive oil [4 : 1]; dimethylsulphoxide; methylethylketone; dimethyl formamide; propylene glycol; and both 50 : 50 and 90 : 10 mixtures of ethanol and water). It was found that the vehicle in which a chemical is presented to the epidermis can have a marked effect on sensitizing activity. EC3 values ranged from 0.9 to 4.9% for isoeugenol, from 0.5 to 1.7% for cinnamic aldehyde, from 1.7 to > 10% for dimethylaminopropylamine and from 0.4 to 6.4% for dibromodicyanobutane. These data confirm that the vehicle in which a chemical is encountered on the skin has an important influence on the relative skin sensitizing potency of chemicals and may have a significant impact on the acquisition of allergic contact dermatitis. The data also demonstrate the utility of the LLNA as a method for the prediction of these effects and thus for the development of more accurate risk assessments.
Collapse
Affiliation(s)
- Z M Wright
- SEAC Toxicology Unit, Unilever Research, Colworth House, Sharnbrook, Bedfordshire MK44 1LQ, U.K
| | | | | | | | | | | | | |
Collapse
|
47
|
Enoch SJ, Schultz TW, Cronin MTD. The definition of the applicability domain relevant to skin sensitization for the aromatic nucleophilic substitution mechanism. SAR AND QSAR IN ENVIRONMENTAL RESEARCH 2012; 23:649-663. [PMID: 22647056 DOI: 10.1080/1062936x.2012.679691] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
This study outlines how a glutathione reactivity assay (so-called in chemico data) can be used to define the applicability domain for the nucleophilic aromatic substitution (S(N)Ar) reaction for benzenes. This reaction is one of the six mechanistic domains that have been shown to be important in toxicological endpoints in which the ability to bind covalently to a protein is a key molecular initiating event. This study has analysed the experimental data, allowing a clear and interpretable structure-activity relationship to be developed for the S(N)Ar domain. The applicability domain has resulted in a series of structural alerts. The definition of the applicability domain for the S(N)Ar reaction and the resulting structural alerts are likely to be beneficial in the development of computational tools for category formation and read-across. The study concludes with how this information can be used in the development of adverse outcome pathways.
Collapse
Affiliation(s)
- S J Enoch
- School of Pharmacy and Chemistry, Liverpool John Moores University, Liverpool, England
| | | | | |
Collapse
|
48
|
Development and validation of a new in vitro assay designed to measure contact allergen-triggered oxidative stress in dendritic cells. J Dermatol Sci 2012; 68:73-81. [PMID: 22974541 DOI: 10.1016/j.jdermsci.2012.08.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2012] [Revised: 08/10/2012] [Accepted: 08/14/2012] [Indexed: 11/23/2022]
Abstract
BACKGROUND Selected contact allergens are known to induce phenotypic and functional maturation of dendritic cells (DCs). Such changes occurring in DCs have been employed as assay readouts to predict skin-sensitizing potentials of small chemicals. OBJECTIVE To respond to the urgent needs for reliable in vitro tests to identify contact allergens, we sought to develop a DC-based assay designed to detect early change(s) induced by sensitizers. METHODS Signature gene expression profiles of skin sensitization were determined by GeneChip and quantitative RT-PCR analyses of RNA samples harvested from mouse skin and XS106 DC line after exposure to dinitrofluorobenzene (DNFB). Production of reactive oxygen species (ROS) was examined indirectly by measuring the level of oxidative stress-XS106 DCs were labeled with a fluorescent dye, CM-H(2)DCFDA, exposed to test chemicals, and then examined for fluorescence signals by flow cytometer. RESULTS DNFB induced abundant mRNA expression of several redox regulatory genes in both mouse skin and XS106DCs. Expression of these genes was inducible by hydrogen peroxide and blocked by a ROS inhibitor, diphenyleneiodonium. Rapid and significant ROS production was induced by 25 of the 28 tested skin sensitizers, but only by 3 of the 21 tested skin irritants. CONCLUSIONS Our small-scale validation study demonstrates the practical utility of our DC-based ROS production assay to detect structurally diverse contact allergens with varying sensitizing potencies. It is tempting to speculate that ROS production in DCs may represent an early event during the sensitization phase.
Collapse
|
49
|
Przybylak KR, Madden JC, Cronin MTD, Hewitt M. Assessing toxicological data quality: basic principles, existing schemes and current limitations. SAR AND QSAR IN ENVIRONMENTAL RESEARCH 2012; 23:435-459. [PMID: 22507180 DOI: 10.1080/1062936x.2012.664825] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Existing toxicological data may be used for a variety of purposes such as hazard and risk assessment or toxicity prediction. The potential use of such data is, in part, dependent upon their quality. Consideration of data quality is of key importance with respect to the application of chemicals legislation such as REACH. Whether data are being used to make regulatory decisions or build computational models, the quality of the output is reflected by the quality of the data employed. Therefore, the need to assess data quality is an important requirement for making a decision or prediction with an appropriate level of confidence. This study considers the biological and chemical factors that may impact upon toxicological data quality and discusses the assessment of data quality. Four general quality criteria are introduced and existing data quality assessment schemes are discussed. Two case study datasets of skin sensitization data are assessed for quality providing a comparison of existing assessment methods. This study also discusses the limitations and difficulties encountered during quality assessment, including the use of differing quality schemes and the global versus chemical-specific assessments of quality. Finally, a number of recommendations are made to aid future data quality assessments.
Collapse
Affiliation(s)
- K R Przybylak
- School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Liverpool, UK
| | | | | | | |
Collapse
|
50
|
Jahn S, Faber H, Zazzeroni R, Karst U. Electrochemistry/mass spectrometry as a tool in the investigation of the potent skin sensitizer p-phenylenediamine and its reactivity toward nucleophiles. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2012; 26:1453-1464. [PMID: 22592989 DOI: 10.1002/rcm.6249] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
RATIONALE Although para-phenylenediamine (PPD) is known to cause severe allergic contact dermatitis in consequence of autoxidation and/or skin metabolism pathways, it is commonly utilized as an ingredient in permanent hair dyes. The aim of this work was to simultaneously accelerate the autoxidation process and to simulate the metabolic activation of PPD using a purely instrumental system. METHODS Electrochemistry (EC) in combination with electrospray ionization mass spectrometry (ESI-MS) was used in this study to assess the skin-sensitizing potential of PPD. Online and offline coupled EC/ESI-MS experiments were carried out and the emerging oxidation products were investigated. In a second approach, these primary species were allowed to react with the nucleophiles glutathione (GSH), cysteine (Cys), potassium cyanide (KCN) and lysine (Lys) in order to evaluate their reactivity. RESULTS The reactive p-phenylene quinone diimine (PPQD), which can form upon autoxidation and/or skin metabolism of PPD, was effectively generated in a simple EC cell next to further oxidation products, including the trimeric product Bandrowski's Base (BB). Conjugation with GSH and Cys was successfully proven, but no adducts with KCN or Lys were observed. Furthermore, the application of different concentration ratios between PPD and nucleophile was shown to play a crucial role concerning the type of oxidation products and adducts being formed. CONCLUSIONS It was found that EC/MS is a well-suited approach for the targeted generation of reactive haptens such as PPQD while avoiding detection problems due to the complexity of matrices encountered when conducting conventional in vitro or in vivo experiments.
Collapse
Affiliation(s)
- Sandra Jahn
- University of Münster, Institute of Inorganic and Analytical Chemistry and NRW Graduate School of Chemistry, Corrensstr. 30, 48149 Münster, Germany
| | | | | | | |
Collapse
|