1
|
Feist WN, Luna SE, Ben-Efraim K, Filsinger Interrante MV, Amorin A, Johnston NM, Bruun TUJ, Utz A, Ghanim HY, Lesch BJ, McLaughlin TM, Dudek AM, Porteus MH. Multilayered HIV-1 resistance in HSPCs through CCR5 Knockout and B cell secretion of HIV-inhibiting antibodies. Nat Commun 2025; 16:3103. [PMID: 40164595 PMCID: PMC11958643 DOI: 10.1038/s41467-025-58371-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 03/19/2025] [Indexed: 04/02/2025] Open
Abstract
Allogeneic transplantation of CCR5 null hematopoietic stem and progenitor cells (HSPCs) is the only known cure for HIV-1 infection. However, this treatment is limited because of the rarity of CCR5-null matched donors, the morbidities associated with allogeneic transplantation, and the prevalence of HIV-1 strains resistant to CCR5 knockout (KO) alone. Here, we propose a one-time therapy through autologous transplantation of HSPCs genetically engineered ex vivo to produce both CCR5 KO cells and long-term secretion of potent HIV-1 inhibiting antibodies from B cell progeny. CRISPR-Cas9-engineered HSPCs engraft and reconstitute multiple hematopoietic lineages in vivo and can be engineered to express multiple antibodies simultaneously (in pre-clinical models). Human B cells engineered to express each antibody secrete neutralizing concentrations capable of inhibiting HIV-1 pseudovirus infection in vitro. This work lays the foundation for a potential one-time functional cure for HIV-1 through combining the long-term delivery of therapeutic antibodies against HIV-1 and the known efficacy of CCR5 KO HSPC transplantation.
Collapse
Affiliation(s)
- William N Feist
- Institute for Stem Cell Biology & Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, USA
- Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, USA
| | - Sofia E Luna
- Institute for Stem Cell Biology & Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, USA
- Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, USA
- Stanford Medical Scientist Training Program, Stanford University School of Medicine, Stanford, CA, USA
| | - Kaya Ben-Efraim
- Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, USA
| | - Maria V Filsinger Interrante
- Stanford Medical Scientist Training Program, Stanford University School of Medicine, Stanford, CA, USA
- Stanford Biophysics Program, Stanford University School of Medicine, Stanford, CA, USA
- Stanford ChEM-H, Stanford University, Stanford, CA, USA
| | - Alvaro Amorin
- Institute for Stem Cell Biology & Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, USA
- Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, USA
- Stanford Medical Scientist Training Program, Stanford University School of Medicine, Stanford, CA, USA
| | - Nicole M Johnston
- Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, USA
| | - Theodora U J Bruun
- Stanford ChEM-H, Stanford University, Stanford, CA, USA
- Department of Biochemistry, Stanford University School of Medicine, Stanford, CA, USA
| | - Ashley Utz
- Stanford Medical Scientist Training Program, Stanford University School of Medicine, Stanford, CA, USA
- Stanford Biophysics Program, Stanford University School of Medicine, Stanford, CA, USA
| | - Hana Y Ghanim
- Institute for Stem Cell Biology & Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, USA
- Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, USA
| | - Benjamin J Lesch
- Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, USA
- Department of Surgery, University of California, San Francisco, San Francisco, CA, USA
- Eli and Edythe Broad Center for Regeneration Medicine, University of California, San Francisco, San Francisco, CA, USA
| | | | - Amanda M Dudek
- Institute for Stem Cell Biology & Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, USA.
- Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, USA.
| | - Matthew H Porteus
- Institute for Stem Cell Biology & Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, USA.
- Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, USA.
| |
Collapse
|
2
|
Feist WN, Luna SE, Ben-Efraim K, Filsinger Interrante MV, Amorin NA, Johnston NM, Bruun TUJ, Ghanim HY, Lesch BJ, Dudek AM, Porteus MH. Combining Cell-Intrinsic and -Extrinsic Resistance to HIV-1 By Engineering Hematopoietic Stem Cells for CCR5 Knockout and B Cell Secretion of Therapeutic Antibodies. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.08.583956. [PMID: 38496600 PMCID: PMC10942466 DOI: 10.1101/2024.03.08.583956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/19/2024]
Abstract
Autologous transplantation of CCR5 null hematopoietic stem and progenitor cells (HSPCs) is the only known cure for HIV-1 infection. However, this treatment is limited because of the rarity of CCR5 -null matched donors, the morbidities associated with allogeneic transplantation, and the prevalence of HIV-1 strains resistant to CCR5 knockout (KO) alone. Here, we propose a one-time therapy through autologous transplantation of HSPCs genetically engineered ex vivo to produce both CCR5 KO cells and long-term secretion of potent HIV-1 inhibiting antibodies from B cell progeny. CRISPR-Cas9-engineered HSPCs maintain engraftment capacity and multi-lineage potential in vivo and can be engineered to express multiple antibodies simultaneously. Human B cells engineered to express each antibody secrete neutralizing concentrations capable of inhibiting HIV-1 pseudovirus infection in vitro . This work lays the groundwork for a potential one-time functional cure for HIV-1 through combining the long-term delivery of therapeutic antibodies against HIV-1 and the known efficacy of CCR5 KO HSPC transplantation.
Collapse
|
3
|
Feng J, Xu H, Cinquina A, Wu Z, Zhang W, Sun L, Chen Q, Tian L, Song L, Pinz KG, Wada M, Jiang X, Hanes WM, Ma Y, Zhang H. Treatment of aggressive T-cell lymphoma/leukemia with anti-CD4 CAR T cells. Front Immunol 2022; 13:997482. [PMID: 36172388 PMCID: PMC9511023 DOI: 10.3389/fimmu.2022.997482] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Accepted: 08/23/2022] [Indexed: 11/13/2022] Open
Abstract
T-cell lymphomas are aggressive lymphomas that often resist current therapy options or present with relapsed disease, making the development of more effective treatment regimens clinically important. Previously, we have shown that CD4 CAR can effectively target T-cell malignancies in preclinical studies. As IL-15 has been shown to strengthen the anti-tumor response, we have modified CD4 CAR to secrete an IL-15/IL-15sushi complex. These CD4-IL15/IL15sushi CAR T cells and NK92 cells efficiently eliminated CD4+ leukemic cell lines in co-culture assays. Additionally, CD4-IL15/IL15sushi CAR out-performed CD4 CAR in in vivo models, demonstrating a benefit to IL-15/IL-15sushi inclusion. In a Phase I clinical trial, CD4-IL15/IL15sushi CAR T cells were tested for safety in three patients with different T-cell lymphomas. Infusion of CD4-IL15/IL15sushi CAR T cells was well-tolerated by the patients without significant adverse effects and led to the remission of their lymphomas. Additionally, infusion led to the depletion of CD4+ Treg cells and expansion of CD3+CD8+ T cells and NK cells. These results suggest that CD4-IL15/IL15sushi CAR T cells may be a safe and effective treatment for patients with relapsed or refractory T-cell lymphomas, where new treatment options are needed.
Collapse
Affiliation(s)
- Jia Feng
- Department of Hematology, Peking University Shenzhen Hospital, Shenzhen, China
| | - Haichan Xu
- Department of Hematology, Peking University Shenzhen Hospital, Shenzhen, China
| | - Andrew Cinquina
- iCell Gene Therapeutics LLC, Research & Development Division, Long Island High Technology Incubator, Stony Brook, NY, United States
| | - Zehua Wu
- Department of Hematology, Peking University Shenzhen Hospital, Shenzhen, China
| | - Wenli Zhang
- Department of Hematology, Peking University Shenzhen Hospital, Shenzhen, China
| | - Lihua Sun
- Department of Hematology, Peking University Shenzhen Hospital, Shenzhen, China
| | - Qi Chen
- Department of Hematology, Peking University Shenzhen Hospital, Shenzhen, China
| | - Lei Tian
- Department of Hematology, Peking University Third Hospital, Beijing, China
| | - Le Song
- Department of Nuclear Medicine, Peking University Third Hospital, Beijing, China
| | - Kevin G. Pinz
- iCell Gene Therapeutics LLC, Research & Development Division, Long Island High Technology Incubator, Stony Brook, NY, United States
| | - Masayuki Wada
- iCell Gene Therapeutics LLC, Research & Development Division, Long Island High Technology Incubator, Stony Brook, NY, United States
| | - Xun Jiang
- iCell Gene Therapeutics LLC, Research & Development Division, Long Island High Technology Incubator, Stony Brook, NY, United States
| | - William M. Hanes
- iCell Gene Therapeutics LLC, Research & Development Division, Long Island High Technology Incubator, Stony Brook, NY, United States
| | - Yupo Ma
- iCell Gene Therapeutics LLC, Research & Development Division, Long Island High Technology Incubator, Stony Brook, NY, United States
- *Correspondence: Hongyu Zhang, ; Yupo Ma,
| | - Hongyu Zhang
- Department of Hematology, Peking University Shenzhen Hospital, Shenzhen, China
- *Correspondence: Hongyu Zhang, ; Yupo Ma,
| |
Collapse
|
4
|
Yan H, Wu T, Chen Y, Jin H, Li L, Zhu Y, Chong H, He Y. Design of a Bispecific HIV Entry Inhibitor Targeting the Cell Receptor CD4 and Viral Fusion Protein Gp41. Front Cell Infect Microbiol 2022; 12:916487. [PMID: 35711654 PMCID: PMC9197378 DOI: 10.3389/fcimb.2022.916487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Accepted: 04/26/2022] [Indexed: 11/13/2022] Open
Abstract
Given the high variability and drug-resistance problem by human immunodeficiency virus type 1 (HIV-1), the development of bispecific or multi-specific inhibitors targeting different steps of HIV entry is highly appreciated. We previously generated a very potent short-peptide-based HIV fusion inhibitor 2P23. In this study, we designed and characterized a bifunctional inhibitor termed 2P23-iMab by genetically conjugating 2P23 to the single-chain variable fragment (scFv) of ibalizumab (iMab), a newly approved antibody drug targeting the cell receptor CD4. As anticipated, 2P23-iMab could bind to the cell membrane through CD4 anchoring and inhibit HIV-1 infection as well as viral Env-mediated cell-cell fusion efficiently. When tested against a large panel of HIV-1 pseudoviruses with different subtypes and phenotypes, 2P23-iMab exhibited dramatically improved inhibitory activity than the parental inhibitors; especially, it potently inhibited the viruses not being susceptible to iMab. Moreover, 2P23-iMab had a dramatically increased potency in inhibiting two panels of HIV-1 mutants that are resistant to T-20 or 2P23 and the infections of HIV-2 and simian immunodeficiency virus (SIV). In conclusion, our studies have provided new insights into the design of novel bispecific HIV entry inhibitors with highly potent and broad-spectrum antiviral activity.
Collapse
Affiliation(s)
- Hongxia Yan
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.,Center for AIDS Research, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Tong Wu
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.,Center for AIDS Research, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yue Chen
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.,Center for AIDS Research, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Hongliang Jin
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.,Center for AIDS Research, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Li Li
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yuanmei Zhu
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.,Center for AIDS Research, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Huihui Chong
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.,Center for AIDS Research, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yuxian He
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.,Center for AIDS Research, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
5
|
Prestimulation of CD2 confers resistance to HIV-1 latent infection in blood resting CD4 T cells. iScience 2021; 24:103305. [PMID: 34765923 PMCID: PMC8571718 DOI: 10.1016/j.isci.2021.103305] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 07/08/2021] [Accepted: 10/15/2021] [Indexed: 12/23/2022] Open
Abstract
HIV-1 infects blood CD4 T cells through the use of CD4 and CXCR4 or CCR5 receptors, which can be targeted through blocking viral binding to CD4/CXCR4/CCR5 or virus-cell fusion. Here we describe a novel mechanism by which HIV-1 nuclear entry can also be blocked through targeting a non-entry receptor, CD2. Cluster of differentiation 2 (CD2) is an adhesion molecule highly expressed on human blood CD4, particularly, memory CD4 T cells. We found that CD2 ligation with its cell-free ligand LFA-3 or anti-CD2 antibodies rendered blood resting CD4 T cells highly resistant to HIV-1 infection. We further demonstrate that mechanistically, CD2 binding initiates competitive signaling leading to cofilin activation and localized actin polymerization around CD2, which spatially inhibits HIV-1-initiated local actin polymerization needed for viral nuclear migration. Our study identifies CD2 as a novel target to block HIV-1 infection of blood resting T cells. CD2 is highly expressed on human blood CD4 T cells, particularly memory T cells Prestimulation of CD2 rendered resting T cells highly resistant to HIV infection CD2 signaling activates cofilin and actin polymerization blocking HIV nuclear entry CD2 may serve as a novel target to inhibit HIV-1 infection of blood resting T cells
Collapse
|
6
|
Gathe JC, Hardwicke RL, Garcia F, Weinheimer S, Lewis ST, Cash RB. Efficacy, Pharmacokinetics, and Safety Over 48 Weeks With Ibalizumab-Based Therapy in Treatment-Experienced Adults Infected With HIV-1: A Phase 2a Study. J Acquir Immune Defic Syndr 2021; 86:482-489. [PMID: 33427765 PMCID: PMC7899216 DOI: 10.1097/qai.0000000000002591] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Accepted: 11/17/2020] [Indexed: 12/01/2022]
Abstract
ABSTRACT Ibalizumab, a humanized monoclonal antibody targeting CD4, blocks HIV-1 entry into cells and is the first Food and Drug Adminstration-approved long-acting agent for HIV-1 treatment. In this phase 2a study, 82 HIV-infected adults failing antiretroviral therapy were assigned an individually optimized background regimen (OBR) and randomized 1:1:1 to arm A (15 mg/kg ibalizumab q2wk), arm B (10 mg/kg weekly for 9 weeks, then q2wk), or placebo. Subjects with an inadequate response at week 16 were permitted to cross over to a new OBR plus 15 mg/kg ibalizumab q2wk. At week 16, viral load (VL) reduction was significantly greater than placebo (0.26 log10) in arms A (1.07 log10; P = 0.002) and B (1.33 log10; P < 0.001); CD4+ T cell counts increased significantly in arm A. After week 16, 11/27 (arm B) and 19/27 (placebo) subjects crossed over to OBR plus 15 mg/kg ibalizumab; 8/28 in arm A initiated a new OBR. Ibalizumab treatment resulted in VL reduction at week 24 (-0.77 and -1.19 log10 for arms A and B, respectively, versus -0.32 log10 for placebo) and 48 weeks (-0.54 and -0.77 versus -0.22 log10). Compared with placebo, VL differences were statistically significant for arm B at week 24 (P = 0.001) and week 48 (P = 0.027). CD4+ T cell counts increased significantly by week 48 in both arm A and arm B, relative to placebo. No ibalizumab-related serious adverse events were reported. The durable antiviral activity and tolerability of ibalizumab support its use in treating individuals harboring multidrug-resistant HIV-1.
Collapse
Affiliation(s)
| | - Robin L. Hardwicke
- University of Texas, John P and Katherine G McGovern Medical School, Houston, TX
| | | | | | | | | |
Collapse
|
7
|
Abstract
PURPOSE OF REVIEW Combination antiretroviral therapy (cART) has had dramatic effects on morbidity and mortality for persons living with HIV (PLWH). Despite significant progress in treatment efficacy, tolerability, and reducing pill burden, new agents are needed to address issues of resistance, drug-drug interactions, end organ disease, and adherence. This review covers novel ART agents recently approved or in development. RECENT FINDINGS Capsid inhibitors (CAI) demonstrate high potency and potential for extended-duration dosing in pre-clinical trials. While previous maturation inhibitors (MI) were hampered by issues of drug resistance, a recent phase IIa trial for a second-generation MI demonstrated promising antiviral activity. A phase I trial to evaluate a transdermal implant of islatravir, a nucleoside reverse transcriptase translocation inhibitor (NRTTI), maintained concentrations above the target pharmacokinetic threshold at 12 weeks. The attachment inhibitor fostemsavir is available in the USA for compassionate use in multi-drug-resistant (MDR) HIV. New antiretroviral agents show promise for both extended-duration dosing and MDR HIV.
Collapse
Affiliation(s)
- Mary C Cambou
- David Geffen School of Medicine, University of California, Los Angeles, CA, USA.
| | - Raphael J Landovitz
- David Geffen School of Medicine, University of California, Los Angeles, CA, USA
- UCLA Center for Clinical AIDS Research & Education (CARE), Division of Infectious Diseases, University of California, Los Angeles, CA, USA
| |
Collapse
|
8
|
Ganta KK, Chaubey B. Mitochondrial dysfunctions in HIV infection and antiviral drug treatment. Expert Opin Drug Metab Toxicol 2019; 15:1043-1052. [PMID: 31715109 DOI: 10.1080/17425255.2019.1692814] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2019] [Accepted: 11/11/2019] [Indexed: 01/23/2023]
Abstract
Introduction: With the introduction of highly active anti-retroviral therapy (HAART), treatment of HIV infection has improved radically, shifting the concept of HIV disease from a highly mortal epidemic to a chronic illness which needs systematic management. However, HAART does not target the integrated proviral DNA. Hence, prolonged use of antiviral drugs is needed for sustaining life. As a consequence, severe side effects emerge. Several parameters involve in causing these adverse effects. Mitochondrial dysfunctions were pointed as common factor among them. It is, therefore, necessary to critically examine mitochondrial dysfunction in order to understand the side effects.Areas covered: There are many events involved in causing drug-induced side-effects; in this review, we only highlight mitochondrial dysfunctions as one of the events. We present up-to-date findings on mitochondrial dysfunction caused by HIV infection and antiviral drug treatment. Both in vivo and in vitro studies on mitochondrial dysfunction like change in morphology, membrane depolarization, mitophagy, mitochondrial DNA depletion, and intrinsic apoptosis have been discussed.Expert opinion: Mitochondrial dysfunction is associated with severe complications that often lead to discontinuation or change in treatment regimen. Prior knowledge of side effects of antiviral drugs would help in better management and future research should focus to avoid mitochondrial targeting of antiviral drugs while maintaining their antiviral properties.
Collapse
Affiliation(s)
- Krishna Kumar Ganta
- Functional Genomics Lab, Centre for Advanced Study, Department of Botany, University of Calcutta, Kolkata, India
| | - Binay Chaubey
- Functional Genomics Lab, Centre for Advanced Study, Department of Botany, University of Calcutta, Kolkata, India
| |
Collapse
|
9
|
Huang YM, Alharbi NS, Sun B, Shantharam CS, Rakesh KP, Qin HL. Synthetic routes and structure-activity relationships (SAR) of anti-HIV agents: A key review. Eur J Med Chem 2019; 181:111566. [PMID: 31401538 DOI: 10.1016/j.ejmech.2019.111566] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Revised: 07/25/2019] [Accepted: 07/26/2019] [Indexed: 01/05/2023]
Abstract
The worldwide increase of AIDS, an epidemic infection in constant development has an essential and still requires potent antiretroviral chemotherapeutic agents for reducing the integer of deaths caused by HIV. Thus, there is an urgent need for new anti-HIV drug candidates with increased strength, new targets, superior pharmacokinetic properties, and compact side effects. From this viewpoint, we first review present strategies of anti-HIV drug innovation and the synthesis of heterocyclic or natural compound as anti-HIV agents for facilitating the development of more influential and successful anti-HIV agents.
Collapse
Affiliation(s)
- Yu-Mei Huang
- Department of Pharmaceutical Engineering, School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, 205 Luoshi Road, Wuhan, 430070, PR China
| | - Njud S Alharbi
- Biotechnology Research Group, Deportment of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Bing Sun
- Department of Pharmaceutical Engineering, School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, 205 Luoshi Road, Wuhan, 430070, PR China.
| | - C S Shantharam
- Department of Chemistry, Pooja Bhagavath Memorial Mahajana Education Centre, Mysuru, 570016, Karnataka, India
| | - K P Rakesh
- Department of Pharmaceutical Engineering, School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, 205 Luoshi Road, Wuhan, 430070, PR China.
| | - Hua-Li Qin
- Department of Pharmaceutical Engineering, School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, 205 Luoshi Road, Wuhan, 430070, PR China.
| |
Collapse
|
10
|
Emu B, Fessel J, Schrader S, Kumar P, Richmond G, Win S, Weinheimer S, Marsolais C, Lewis S. Phase 3 Study of Ibalizumab for Multidrug-Resistant HIV-1. N Engl J Med 2018; 379:645-654. [PMID: 30110589 DOI: 10.1056/nejmoa1711460] [Citation(s) in RCA: 157] [Impact Index Per Article: 22.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
BACKGROUND Ibalizumab, a humanized IgG4 monoclonal antibody, blocks the entry of human immunodeficiency virus type 1 (HIV-1) by noncompetitive binding to CD4. METHODS In this single-group, open-label, phase 3 study, we enrolled 40 adults with multidrug-resistant (MDR) HIV-1 infection in whom multiple antiretroviral therapies had failed. All the patients had a viral load of more than 1000 copies of HIV-1 RNA per milliliter. After a 7-day control period in which patients continued to receive their current therapy, a loading dose of 2000 mg of ibalizumab was infused; the viral load was quantified 7 days later. Through week 25 of the study, patients received 800 mg of ibalizumab every 14 days, combined with an individually optimized background regimen including at least one fully active agent. The primary end point was the proportion of patients with a decrease in viral load of at least 0.5 log10 copies per milliliter from baseline (day 7) to day 14. RESULTS A total of 31 patients completed the study. The mean baseline viral load was 4.5 log10 copies per milliliter, and the mean CD4 count was 150 per microliter. Of the 40 patients in the intention-to-treat population, 33 (83%) had a decrease in viral load of at least 0.5 log10 copies per milliliter from baseline (P<0.001 for the comparison with the control period). The mean viral-load decrease was 1.1 log10 copies per milliliter. During the control period, 1 patient, who received the optimized background regimen prematurely, had a decrease in viral load of 0.5 log10 copies per milliliter. At week 25, patients who had received ibalizumab plus an optimized background regimen had a mean decrease of 1.6 log10 copies per milliliter from baseline; 43% of the patients had a viral load of less than 50 copies per milliliter, and 50% had a viral load of less than 200 copies per milliliter. Among 10 patients who had virologic failure or rebound, in vitro testing identified 9 who had a lower degree of susceptibility to ibalizumab than at baseline. The most common adverse event was diarrhea (in 20% of patients). Four patients died from causes related to underlying illnesses; 1 had a serious adverse event (the immune reconstitution inflammatory syndrome) that was deemed to be related to ibalizumab therapy. CONCLUSIONS In patients with MDR HIV-1 infection who had advanced disease and limited treatment options, ibalizumab had significant antiviral activity during a 25-week study. Evidence of the emergence of diminished ibalizumab susceptibility was observed in vitro in patients who had virologic failure. (Funded by the Orphan Products Clinical Trials Grants Program of the Food and Drug Administration and TaiMed Biologics; TMB-301 ClinicalTrials.gov number, NCT02475629 .).
Collapse
Affiliation(s)
- Brinda Emu
- From the Yale School of Medicine, New Haven, CT (B.E.); Kaiser Foundation Research Institute (J.F.) and Quest Clinical Research (S. Win), San Francisco; Schrader Clinic, Houston (S.S.); Georgetown University, Washington, DC (P.K.); Nova Southeastern University, Ft. Lauderdale, FL, and Florida International University, Miami (G.R.); TaiMed Biologics, Irvine, CA (S. Weinheimer, S.L.); and Theratechnologies, Montreal (C.M.)
| | - Jeffrey Fessel
- From the Yale School of Medicine, New Haven, CT (B.E.); Kaiser Foundation Research Institute (J.F.) and Quest Clinical Research (S. Win), San Francisco; Schrader Clinic, Houston (S.S.); Georgetown University, Washington, DC (P.K.); Nova Southeastern University, Ft. Lauderdale, FL, and Florida International University, Miami (G.R.); TaiMed Biologics, Irvine, CA (S. Weinheimer, S.L.); and Theratechnologies, Montreal (C.M.)
| | - Shannon Schrader
- From the Yale School of Medicine, New Haven, CT (B.E.); Kaiser Foundation Research Institute (J.F.) and Quest Clinical Research (S. Win), San Francisco; Schrader Clinic, Houston (S.S.); Georgetown University, Washington, DC (P.K.); Nova Southeastern University, Ft. Lauderdale, FL, and Florida International University, Miami (G.R.); TaiMed Biologics, Irvine, CA (S. Weinheimer, S.L.); and Theratechnologies, Montreal (C.M.)
| | - Princy Kumar
- From the Yale School of Medicine, New Haven, CT (B.E.); Kaiser Foundation Research Institute (J.F.) and Quest Clinical Research (S. Win), San Francisco; Schrader Clinic, Houston (S.S.); Georgetown University, Washington, DC (P.K.); Nova Southeastern University, Ft. Lauderdale, FL, and Florida International University, Miami (G.R.); TaiMed Biologics, Irvine, CA (S. Weinheimer, S.L.); and Theratechnologies, Montreal (C.M.)
| | - Gary Richmond
- From the Yale School of Medicine, New Haven, CT (B.E.); Kaiser Foundation Research Institute (J.F.) and Quest Clinical Research (S. Win), San Francisco; Schrader Clinic, Houston (S.S.); Georgetown University, Washington, DC (P.K.); Nova Southeastern University, Ft. Lauderdale, FL, and Florida International University, Miami (G.R.); TaiMed Biologics, Irvine, CA (S. Weinheimer, S.L.); and Theratechnologies, Montreal (C.M.)
| | - Sandra Win
- From the Yale School of Medicine, New Haven, CT (B.E.); Kaiser Foundation Research Institute (J.F.) and Quest Clinical Research (S. Win), San Francisco; Schrader Clinic, Houston (S.S.); Georgetown University, Washington, DC (P.K.); Nova Southeastern University, Ft. Lauderdale, FL, and Florida International University, Miami (G.R.); TaiMed Biologics, Irvine, CA (S. Weinheimer, S.L.); and Theratechnologies, Montreal (C.M.)
| | - Steven Weinheimer
- From the Yale School of Medicine, New Haven, CT (B.E.); Kaiser Foundation Research Institute (J.F.) and Quest Clinical Research (S. Win), San Francisco; Schrader Clinic, Houston (S.S.); Georgetown University, Washington, DC (P.K.); Nova Southeastern University, Ft. Lauderdale, FL, and Florida International University, Miami (G.R.); TaiMed Biologics, Irvine, CA (S. Weinheimer, S.L.); and Theratechnologies, Montreal (C.M.)
| | - Christian Marsolais
- From the Yale School of Medicine, New Haven, CT (B.E.); Kaiser Foundation Research Institute (J.F.) and Quest Clinical Research (S. Win), San Francisco; Schrader Clinic, Houston (S.S.); Georgetown University, Washington, DC (P.K.); Nova Southeastern University, Ft. Lauderdale, FL, and Florida International University, Miami (G.R.); TaiMed Biologics, Irvine, CA (S. Weinheimer, S.L.); and Theratechnologies, Montreal (C.M.)
| | - Stanley Lewis
- From the Yale School of Medicine, New Haven, CT (B.E.); Kaiser Foundation Research Institute (J.F.) and Quest Clinical Research (S. Win), San Francisco; Schrader Clinic, Houston (S.S.); Georgetown University, Washington, DC (P.K.); Nova Southeastern University, Ft. Lauderdale, FL, and Florida International University, Miami (G.R.); TaiMed Biologics, Irvine, CA (S. Weinheimer, S.L.); and Theratechnologies, Montreal (C.M.)
| |
Collapse
|
11
|
Distinct HIV-1 Neutralization Potency Profiles of Ibalizumab-Based Bispecific Antibodies. J Acquir Immune Defic Syndr 2017; 73:365-373. [PMID: 27792681 DOI: 10.1097/qai.0000000000001119] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
BACKGROUND Preexposure prophylaxis using antiretroviral agents has been shown to effectively prevent human immunodeficiency virus type 1 (HIV-1) acquisition in high-risk populations. However, the efficacy of these regimens is highly variable, which is thought to be largely due to the varying degrees of adherence to a daily intervention in the populations. Passive immunization using broadly neutralizing antibodies (bNAbs) against HIV-1, with their relatively long half-life and favorable safety profile, could provide an alternative to daily preexposure prophylaxis. However, most bNAbs have a limited breadth, only neutralizing 70%-90% of all HIV-1 strains. METHODS To overcome the problem of limited antiviral breadth, we proposed that targeting human CD4 and HIV-1 envelope proteins simultaneously may improve virus-neutralization breadth and potency. Therefore, we constructed bispecific antibodies (biAbs) using single-chain variable fragments of anti-gp120 bNAbs fused to ibalizumab (iMab), a humanized monoclonal antibody that binds human CD4, the primary receptor for HIV-1. RESULTS Some of our biAbs neutralized 100% of HIV-1 strains tested in vitro at clinically achievable concentrations. Distinct neutralization patterns were observed in this panel of biAbs. Those biAbs with specificity for the CD4-binding site on gp120 demonstrated 100% breadth, as well as slightly improved potency compared with iMab. In contrast, biAbs with specificity for the V1-V2 apex epitope or the V3-glycan epitope on gp120 demonstrated dramatically improved potency; some showed limited gain in neutralization breadth, whereas others (eg, PGT128-LM52 and 123-iMab) improved to 100% breadth. CONCLUSION Our data suggest that this panel of iMab-based biAbs could be used to probe the parameters for potent HIV-1 neutralization. Moreover, a few of these biAbs warrant further studies and possibly clinical development.
Collapse
|
12
|
Preclinical targeting of human T-cell malignancies using CD4-specific chimeric antigen receptor (CAR)-engineered T cells. Leukemia 2015; 30:701-7. [PMID: 26526988 DOI: 10.1038/leu.2015.311] [Citation(s) in RCA: 86] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2015] [Accepted: 10/26/2015] [Indexed: 12/21/2022]
Abstract
Peripheral T-cell lymphomas (PTCLs) are aggressive lymphomas with no effective upfront standard treatment and ineffective options in relapsed disease, resulting in poorer clinical outcomes as compared with B-cell lymphomas. The adoptive transfer of T cells engineered to express chimeric antigen receptors (CARs) is a promising new approach for treatment of hematological malignancies. However, preclinical reports of targeting T-cell lymphoma with CARs are almost non-existent. Here we have designed a CAR, CD4CAR, which redirects the antigen specificity of CD8+ cytotoxic T cells to CD4-expressing cells. CD4CAR T cells derived from human peripheral blood mononuclear cells and cord blood effectively redirected T-cell specificity against CD4+ cells in vitro. CD4CAR T cells efficiently eliminated a CD4+ leukemic cell line and primary CD4+ PTCL patient samples in co-culture assays. Notably, CD4CAR T cells maintained a central memory stem cell-like phenotype (CD8+CD45RO+CD62L+) under standard culture conditions. Furthermore, in aggressive orthotropic T-cell lymphoma models, CD4CAR T cells efficiently suppressed the growth of lymphoma cells while also significantly prolonging mouse survival. Combined, these studies demonstrate that CD4CAR-expressing CD8+ T cells are efficacious in ablating malignant CD4+ populations, with potential use as a bridge to transplant or stand-alone therapy for the treatment of PTCLs.
Collapse
|
13
|
Protein/peptide-based entry/fusion inhibitors as anti-HIV therapies: challenges and future direction. Rev Med Virol 2015; 26:4-20. [DOI: 10.1002/rmv.1853] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2015] [Revised: 07/02/2015] [Accepted: 07/15/2015] [Indexed: 11/07/2022]
|
14
|
Inhibitory Effect of Individual or Combinations of Broadly Neutralizing Antibodies and Antiviral Reagents against Cell-Free and Cell-to-Cell HIV-1 Transmission. J Virol 2015; 89:7813-28. [PMID: 25995259 DOI: 10.1128/jvi.00783-15] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2015] [Accepted: 05/11/2015] [Indexed: 12/18/2022] Open
Abstract
UNLABELLED To date, most therapeutic and vaccine candidates for human immunodeficiency virus type 1 (HIV-1) are evaluated preclinically for efficacy against cell-free viral challenges. However, cell-associated HIV-1 is suggested to be a major contributor to sexual transmission by mucosal routes. To determine if neutralizing antibodies or inhibitors block cell-free and cell-associated virus transmission of diverse HIV-1 strains with different efficiencies, we tested 12 different antibodies and five inhibitors against four green fluorescent protein (GFP)-labeled HIV-1 envelope (Env) variants from transmitted/founder (T/F) or chronic infection isolates. We evaluated antibody/inhibitor-mediated virus neutralization using either TZM-bl target cells, in which infectivity was determined by virus-driven luciferase expression, or A3R5 lymphoblastoid target cells, in which infectivity was evaluated by GFP expression. In both the TZM-bl and A3R5 assays, cell-free virus or infected CD4+ lymphocytes were used as targets for neutralization. We further hypothesized that the combined use of specific neutralizing antibodies targeting HIV-1 Env would more effectively prevent cell-associated virus transmission than the use of individual antibodies. The tested antibody combinations included two gp120-directed antibodies, VRC01 and PG9, or VRC01 with the gp41-directed antibody 10E8. Our results demonstrated that cell-associated virus was less sensitive to neutralizing antibodies and inhibitors, particularly using the A3R5 neutralization assay, and the potencies of these neutralizing agents differed among Env variants. A combination of different neutralizing antibodies that target specific sites on gp120 led to a significant reduction in cell-associated virus transmission. These assays will help identify ideal combinations of broadly neutralizing antibodies to use for passive preventive antibody administration and further characterize targets for the most effective neutralizing antibodies/inhibitors. IMPORTANCE Prevention of the transmission of human immunodeficiency virus type 1 (HIV-1) remains a prominent goal of HIV research. The relative contribution of HIV-1 within an infected cell versus cell-free HIV-1 to virus transmission remains debated. It has been suggested that cell-associated virus is more efficient at transmitting HIV-1 and more difficult to neutralize than cell-free virus. Several broadly neutralizing antibodies and retroviral inhibitors are currently being studied as potential therapies against HIV-1 transmission. The present study demonstrates a decrease in neutralizing antibody and inhibitor efficiencies against cell-associated compared to cell-free HIV-1 transmission among different strains of HIV-1. We also observed a significant reduction in virus transmission using a combination of two different neutralizing antibodies that target specific sites on the outermost region of HIV-1, the virus envelope. Therefore, our findings support the use of antibody combinations against both cell-free and cell-associated virus in future candidate therapy regimens.
Collapse
|
15
|
Insight into the modified Ibalizumab-human CD4 receptor interactions: using a computational binding free energy approach. J Comput Aided Mol Des 2014; 29:69-78. [PMID: 25342515 DOI: 10.1007/s10822-014-9805-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2014] [Accepted: 10/17/2014] [Indexed: 12/19/2022]
Abstract
Antibody drugs are very useful tools for the treatment of many chronic diseases. Recently, however, patients and doctors have encountered the problem of drug resistance. How to improve the affinity of antibody drugs has therefore become a pressing issue. Ibalizumab is a humanized monoclonal antibody that binds human CD4, the primary receptor for human immunodeficiency virus type 1. This study investigates the mutation residues of the complementarity determining regions of Ibalizumab. We propose using the wild and mutations of Ibalizumab-human CD4 receptor complex structures, molecular dynamics techniques, alanine-scanning mutagenesis calculations and solvated interaction energies methods to predict the binding free energy of the Ibalizumab-human CD4 receptor complex structures. This work found that revealed three key positions (31th, 32th and 33th in HCDR-1) of the residues may play an important role in Ibalizumab-human CD4 receptor complex interactions. Therefore, bioengineering substitutions of the three key positions and increasing number of intermolecular interactions (HCDR-1 of Ibalizumab/human CD4 receptor) might improve the binding affinities of this complex structure.
Collapse
|
16
|
Song R, Oren DA, Franco D, Seaman MS, Ho DD. Strategic addition of an N-linked glycan to a monoclonal antibody improves its HIV-1-neutralizing activity. Nat Biotechnol 2013; 31:1047-52. [PMID: 24097413 PMCID: PMC3825789 DOI: 10.1038/nbt.2677] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2013] [Accepted: 07/30/2013] [Indexed: 02/07/2023]
Abstract
Ibalizumab is a humanized monoclonal antibody that binds human CD4—a key receptor for HIV—and blocks HIV-1 infection. However, HIV-1 strains with mutations resulting in loss of an N-linked glycan from the V5 loop of the envelope protein gp120 are resistant to ibalizumab. Previous structural analysis suggests that this glycan fills a void between the gp120 V5 loop and the ibalizumab L chain, perhaps causing steric hindrance that disrupts viral entry. If this void contributes to HIV-1 resistance to ibalizumab, we reasoned that ‘refilling’ it by engineering an N-linked glycan into the ibalizumab L chain at a position spatially proximal to gp120 V5 may restore susceptibility to ibalizumab. Indeed, one such ibalizumab variant neutralized 100% of 118 tested diverse HIV-1 strains in vitro, including ten strains resistant to parental ibalizumab. These findings demonstrate that the strategic placement of a glycan in the variable region of a monoclonal antibody can substantially enhance its activity.
Collapse
Affiliation(s)
- Ruijiang Song
- Aaron Diamond AIDS Research Center, The Rockefeller University, New York, New York, USA
| | | | | | | | | |
Collapse
|
17
|
Liu X, Ou YC, Zhang J, Ahene A, Clark D, Hsieh SC, Cooper M, Ji C. Pharmacokinetics and Pharmacodynamics of CD4-Anchoring Bi-Functional Fusion Inhibitor in Monkeys. Pharm Res 2013; 31:809-18. [DOI: 10.1007/s11095-013-1203-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2013] [Accepted: 09/12/2013] [Indexed: 01/26/2023]
|
18
|
Abstract
The human immunodeficiency virus (HIV) enters cells through a series of molecular interactions between the HIV envelope protein and cellular receptors, thus providing many opportunities to block infection. Entry inhibitors are currently being used in the clinic, and many more are under development. Unfortunately, as is the case for other classes of antiretroviral drugs that target later steps in the viral life cycle, HIV can become resistant to entry inhibitors. In contrast to inhibitors that block viral enzymes in intracellular compartments, entry inhibitors interfere with the function of the highly variable envelope glycoprotein as it continuously adapts to changing immune pressure and available target cells in the extracellular environment. Consequently, pathways and mechanisms of resistance for entry inhibitors are varied and often involve mutations across the envelope gene. This review provides a broad overview of entry inhibitor resistance mechanisms that inform our understanding of HIV entry and the design of new inhibitors and vaccines.
Collapse
Affiliation(s)
- Christopher J De Feo
- Office of Vaccine Research and Review, Center for Biologics Evaluation and Research, US Food and Drug Administration, 8800 Rockville Pike, Bethesda, MD 20892, USA.
| | | |
Collapse
|
19
|
Henrich TJ, Kuritzkes DR. HIV-1 entry inhibitors: recent development and clinical use. Curr Opin Virol 2013; 3:51-7. [PMID: 23290628 DOI: 10.1016/j.coviro.2012.12.002] [Citation(s) in RCA: 92] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2012] [Revised: 11/21/2012] [Accepted: 12/05/2012] [Indexed: 11/26/2022]
Abstract
PURPOSE OF REVIEW This review provides an overview of HIV-1 entry inhibitors, with a focus on drugs in the later stages of clinical development. RECENT FINDINGS Entry of HIV-1 into target cells involves viral attachment, co-receptor binding, and fusion. Antiretroviral drugs that interact with each step in the entry process have been developed, but only two are currently approved for clinical use. The small molecule attachment inhibitor BMS-663068 has shown potent antiviral activity in early phase studies, and phase 2b trials are currently underway. The postattachment inhibitor ibalizumab has shown antiviral activity in phase 1 and 2 trials; further studies, including subcutaneous delivery of drug to healthy individuals, are anticipated. The CCR5 antagonist maraviroc is approved for use in treatment-naïve and treatment-experienced patients. Cenicriviroc, a small-molecule CCR5 antagonist that also has activity as a CCR2 antagonist, has entered phase 2b studies. No CXCR4 antagonists are currently in clinical trials, but once daily, next-generation injectable peptide fusion inhibitors have entered human trials. Both maraviroc and ibalizumab are being studied for prevention of HIV-1 transmission and/or for use in nucleoside reverse transcriptase inhibitor-sparing antiretroviral regimens. SUMMARY Inhibition of HIV-1 entry continues to be a promising target for antiretroviral drug development.
Collapse
Affiliation(s)
- Timothy J Henrich
- Division of Infectious Diseases, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA.
| | | |
Collapse
|
20
|
Chen W, Dimitrov DS. Monoclonal antibody-based candidate therapeutics against HIV type 1. AIDS Res Hum Retroviruses 2012; 28:425-34. [PMID: 21827278 DOI: 10.1089/aid.2011.0226] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Treatment of HIV-1 infection has been highly successful with small molecule drugs. However, resistance still develops. In addition, long-term use can lead to toxicity with unpredictable effects on health. Finally, current drugs do not lead to HIV-1 eradication. The presence of the virus leads to chronic inflammation, which can result in increased morbidity and mortality after prolonged periods of infection. Monoclonal antibodies (mAbs) have been highly successful during the past two decades for therapy of many diseases, primarily cancers and immune disorders. They are relatively safe, especially human mAbs that have evolved in humans at high concentrations to fight diseases and long-term use may not lead to toxicities. Several broadly neutralizing mAbs (bnmAbs) against HIV-1 can protect animals but are not effective when used for therapy of an established infection. We have hypothesized that HIV-1 has evolved strategies to effectively escape neutralization by full-size antibodies in natural infections but not by smaller antibody fragments. Therefore, a promising direction of research is to discover and exploit antibody fragments as potential candidate therapeutics against HIV-1. Here we review several bnmAbs and engineered antibody domains (eAds), their in vitro and in vivo antiviral efficacy, mechanisms used by HIV-1 to escape them, and strategies that could be effective to develop more powerful mAb-based HIV-1 therapeutics.
Collapse
Affiliation(s)
- Weizao Chen
- Protein Interactions Group, Center for Cancer Research Nanobiology Program, National Cancer Institute (NCI)-Frederick, National Institutes of Health (NIH), Frederick, Maryland
| | - Dimiter S. Dimitrov
- Protein Interactions Group, Center for Cancer Research Nanobiology Program, National Cancer Institute (NCI)-Frederick, National Institutes of Health (NIH), Frederick, Maryland
| |
Collapse
|
21
|
Fessel WJ, Anderson B, Follansbee SE, Winters MA, Lewis ST, Weinheimer SP, Petropoulos CJ, Shafer RW. The efficacy of an anti-CD4 monoclonal antibody for HIV-1 treatment. Antiviral Res 2011; 92:484-7. [PMID: 22001594 DOI: 10.1016/j.antiviral.2011.09.010] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2011] [Revised: 08/18/2011] [Accepted: 09/28/2011] [Indexed: 11/26/2022]
Abstract
The availability of 24 antiretroviral (ARV) drugs within six distinct drug classes has transformed HIV-1 infection (AIDS) into a treatable chronic disease. However, the ability of HIV-1 to develop resistance to multiple classes continues to present challenges to the treatment of many ARV treatment-experienced patients. In this case report, we describe the response to ibalizumab, an investigational CD4-binding monoclonal antibody (mAb), in a patient with advanced immunodeficiency and high-level five-class antiretroviral resistance. After starting an ibalizumab-based salvage regimen, the patient had an approximately 4.0 log(10) reduction in viral load. An inadvertently missed infusion at week 32 led to the rapid loss of virologic response and decreased susceptibility to the remainder of the patient's salvage therapy regimen. Following the reinstitution of ibalizumab, phenotypic and genotypic resistance to ibalizumab was detected. Nonetheless, plasma HIV-1 RNA levels stabilized at ∼2.0 log(10) copies/ml below pre-ibalizumab levels. Continued ARV drug development may yield additional clinical and public health benefits. This report illustrates the promise of mAbs for HIV-1 therapy in highly treatment-experienced patients. Therapeutic mAbs may also have a role in pre-exposure prophylaxis in high-risk uninfected populations and may facilitate directly observed therapy (DOT) if two or more synergistic long acting agents become available.
Collapse
Affiliation(s)
- W Jeffrey Fessel
- Kaiser Permanente Medical Care Program - Northern California, San Francisco, 94118, United States.
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Burastero SE, Frigerio B, Lopalco L, Sironi F, Breda D, Longhi R, Scarlatti G, Canevari S, Figini M, Lusso P. Broad-spectrum inhibition of HIV-1 by a monoclonal antibody directed against a gp120-induced epitope of CD4. PLoS One 2011; 6:e22081. [PMID: 21818294 PMCID: PMC3139607 DOI: 10.1371/journal.pone.0022081] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2011] [Accepted: 06/15/2011] [Indexed: 12/05/2022] Open
Abstract
To penetrate susceptible cells, HIV-1 sequentially interacts with two highly conserved cellular receptors, CD4 and a chemokine receptor like CCR5 or CXCR4. Monoclonal antibodies (MAbs) directed against such receptors are currently under clinical investigation as potential preventive or therapeutic agents. We immunized Balb/c mice with molecular complexes of the native, trimeric HIV-1 envelope (Env) bound to a soluble form of the human CD4 receptor. Sera from immunized mice were found to contain gp120-CD4 complex-enhanced antibodies and showed broad-spectrum HIV-1-inhibitory activity. A proportion of MAbs derived from these mice preferentially recognized complex-enhanced epitopes. In particular, a CD4-specific MAb designated DB81 (IgG1Κ) was found to preferentially bind to a complex-enhanced epitope on the D2 domain of human CD4. MAb DB81 also recognized chimpanzee CD4, but not baboon or macaque CD4, which exhibit sequence divergence in the D2 domain. Functionally, MAb DB81 displayed broad HIV-1-inhibitory activity, but it did not exert suppressive effects on T-cell activation in vitro. The variable regions of the heavy and light chains of MAb DB81 were sequenced. Due to its broad-spectrum anti-HIV-1 activity and lack of immunosuppressive effects, a humanized derivative of MAb DB81 could provide a useful complement to current preventive or therapeutic strategies against HIV-1.
Collapse
Affiliation(s)
- Samuele E Burastero
- Department of Immunology, Transplantation and Infectious Diseases, San Raffaele Scientific Institute, Milan, Italy.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Kim JM, Han SH. Immunotherapeutic restoration in HIV-infected individuals. Immunotherapy 2011; 3:247-67. [PMID: 21322762 DOI: 10.2217/imt.10.91] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
While the development of combined active antiretroviral therapy (cART) has dramatically improved life expectancies and quality of life in HIV-infected individuals, long-term clinical problems, such as metabolic complications, remain important constraints of life-long cART. Complete immune restoration using only cART is normally unattainable even in cases of sufficient plasma viral suppression. The need for immunologic adjuncts that complement cART remains, because while cART alone may result in the complete recovery of peripheral net CD4+ T lymphocytes, it may not affect the reservoir of HIV-infected cells. Here, we review current immunotherapies for HIV infection, with a particular emphasis on recent advances in cytokine therapies, therapeutic immunization, monoclonal antibodies, immune-modulating drugs, nanotechnology-based approaches and radioimmunotherapy.
Collapse
Affiliation(s)
- June Myung Kim
- Department of Internal Medicine & AIDS Research Institute, Yonsei University College of Medicine, 250 Seongsanno, Seodaemun-gu, Seoul 120-752, Korea.
| | | |
Collapse
|
24
|
Freeman MM, Seaman MS, Rits-Volloch S, Hong X, Kao CY, Ho DD, Chen B. Crystal structure of HIV-1 primary receptor CD4 in complex with a potent antiviral antibody. Structure 2010; 18:1632-41. [PMID: 21134642 PMCID: PMC3005625 DOI: 10.1016/j.str.2010.09.017] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2010] [Revised: 09/07/2010] [Accepted: 09/29/2010] [Indexed: 10/18/2022]
Abstract
Ibalizumab is a humanized, anti-CD4 monoclonal antibody. It potently blocks HIV-1 infection and targets an epitope in the second domain of CD4 without interfering with immune functions mediated by interaction of CD4 with major histocompatibility complex (MHC) class II molecules. We report here the crystal structure of ibalizumab Fab fragment in complex with the first two domains (D1-D2) of CD4 at 2.2 Å resolution. Ibalizumab grips CD4 primarily by the BC-loop (residues 121-125) of D2, sitting on the opposite side of gp120 and MHC-II binding sites. No major conformational change in CD4 accompanies binding to ibalizumab. Both monovalent and bivalent forms of ibalizumab effectively block viral infection, suggesting that it does not need to crosslink CD4 to exert antiviral activity. While gp120-induced structural rearrangements in CD4 are probably minimal, CD4 structural rigidity is dispensable for ibalizumab inhibition. These results could guide CD4-based immunogen design and lead to a better understanding of HIV-1 entry.
Collapse
MESH Headings
- Animals
- Antibodies, Monoclonal/chemistry
- Antibodies, Monoclonal/metabolism
- Antibodies, Viral/chemistry
- Antibodies, Viral/metabolism
- Antigen-Antibody Complex/chemistry
- Antiviral Agents/chemistry
- Antiviral Agents/metabolism
- CD4 Antigens/chemistry
- CD4 Antigens/immunology
- CD4 Antigens/metabolism
- Crystallography, X-Ray
- HIV Envelope Protein gp120/chemistry
- HIV Envelope Protein gp120/immunology
- HIV Envelope Protein gp120/metabolism
- HIV-1/metabolism
- Humans
- Mice
- Models, Biological
- Models, Molecular
- Protein Structure, Quaternary
- Protein Structure, Secondary
- Receptors, Virus/chemistry
- Receptors, Virus/immunology
- Receptors, Virus/metabolism
Collapse
Affiliation(s)
- Michael M. Freeman
- Division of Molecular Medicine, Children’s Hospital, and Department of Pediatrics, Harvard Medical School, 3 Blackfan Circle, Boston, MA 02115, USA
| | - Michael S. Seaman
- Division of Viral Pathogenesis, Beth Israel Deaconess Medical Center, 3 Blackfan Circle, Boston, MA, 02115, USA
| | - Sophia Rits-Volloch
- Division of Molecular Medicine, Children’s Hospital, and Department of Pediatrics, Harvard Medical School, 3 Blackfan Circle, Boston, MA 02115, USA
| | - Xinguo Hong
- National Synchrotron Light Source, Brookhaven National Laboratory, Upton, NY 11973, USA
| | - Chia-Ying Kao
- Aaron Diamond AIDS Research Center, The Rockefeller University, 455 First Avenue, New York, NY 10016, USA
| | - David D. Ho
- Aaron Diamond AIDS Research Center, The Rockefeller University, 455 First Avenue, New York, NY 10016, USA
| | - Bing Chen
- Division of Molecular Medicine, Children’s Hospital, and Department of Pediatrics, Harvard Medical School, 3 Blackfan Circle, Boston, MA 02115, USA
| |
Collapse
|
25
|
Hamatake M, Komano J, Urano E, Maeda F, Nagatsuka Y, Takekoshi M. Inhibition of HIV replication by a CD4-reactive Fab of an IgM clone isolated from a healthy HIV-seronegative individual. Eur J Immunol 2010; 40:1504-9. [PMID: 20162549 DOI: 10.1002/eji.200939479] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
HIV replication is restricted by some anti-CD4 mouse mAb in vitro and in vivo. However, a human monoclonal anti-CD4 Ab has not been isolated. We screened EBV-transformed peripheral B cells from 12 adult donors for CD4-reactive Ab production followed by functional reconstitution of Fab genes. Three independent IgM Fab clones reactive specifically to CD4 were isolated from a healthy HIV-seronegative adult (approximately 0.0013% of the peripheral B cells). The germ line combinations for the VH and VL genes were VH3-33/L6, VH3-33/L12, and VH4-4/L12, respectively, accompanied by somatic hypermutations. Genetic analysis revealed a preference for V-gene usage to develop CD4-reactive Ab. Notably, one of the CD4-reactive clones, HO538-213, with an 1 x 10(-8) M dissociation constant (Kd) to recombinant human CD4, limited the replication of R5-tropic and X4-tropic HIV-1 strains at 1-2.5 microg/mL in primary mononuclear cells. This is the first clonal genetic analysis of human monoclonal CD4-reactive Ab. A mAb against CD4 isolated from a healthy individual could be useful in the intervention of HIV/AIDS.
Collapse
Affiliation(s)
- Makiko Hamatake
- AIDS Research Center, National Institute of Infectious Diseases, Tokyo, Japan
| | | | | | | | | | | |
Collapse
|
26
|
Epitope mapping of ibalizumab, a humanized anti-CD4 monoclonal antibody with anti-HIV-1 activity in infected patients. J Virol 2010; 84:6935-42. [PMID: 20463063 DOI: 10.1128/jvi.00453-10] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Ibalizumab is a humanized monoclonal antibody that binds human CD4, the primary receptor for human immunodeficiency virus type 1 (HIV-1). With its unique specificity for domain 2 of CD4, this antibody potently and broadly blocks HIV-1 infection in vitro by inhibiting a postbinding step required for viral entry but without interfering with major histocompatibility complex class II (MHC-II)-mediated immune function. In clinical trials, ibalizumab has demonstrated anti-HIV-1 activity in patients without causing immunosuppression. Thus, a characterization of the ibalizumab epitope was conducted in an attempt to gain insight into the underlying mechanism of its antiviral activity as well as its safety profile. By studying mouse/human chimeric CD4 molecules and site-directed point mutants of CD4, amino acids L96, P121, P122, and Q163 in domain 2 were found to be important for ibalizumab binding, with E77 and S79 in domain 1 also contributing. All these residues appear to cluster on the interface between domains 1 and 2 of human CD4 on a surface opposite the site where gp120 and the MHC-II molecule bind on domain 1. Separately, the epitope of M-T441, a weakly neutralizing mouse monoclonal antibody that competes with ibalizumab, was localized entirely within domain 2 on residues 123 to 125 and 138 to 140. The results reported herein not only provide an appreciation for why ibalizumab has not had significant adverse immunological consequences in infected patients to date but also raise possible steric hindrance mechanisms by which this antibody blocks HIV-1 entry into a CD4-positive cell.
Collapse
|
27
|
McKinnell JA, Saag MS. Novel drug classes: entry inhibitors [enfuvirtide, chemokine (C-C motif) receptor 5 antagonists]. Curr Opin HIV AIDS 2010; 4:513-7. [PMID: 20048719 DOI: 10.1097/coh.0b013e328331d3d0] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
PURPOSE OF REVIEW To provide an update on viral entry inhibitors focusing on recently published clinical trials, the routine clinical use of these medications, and future drug candidates. RECENT FINDINGS Clinical trials and cohort studies support the efficacy of both enfuvirtide and maraviroc in the management of treatment-experienced patients. In clinical practice, tolerability issues, particularly injection site reactions, have limited the clinical use of enfuvirtide. Providers should be aware of the need for tropism determination and dosing requirements for maraviroc. The novel chemokine (C-C motif) receptor 5-blocking agent, vicriviroc, has shown promise and is currently in phase III clinical development. SUMMARY The rapid pace of scientific discovery and pharmaceutical development has led to the release of several novel and well tolerated antiretroviral agents, with activity against resistant isolates. Entry inhibitors remain a critical therapeutic option for treatment-experienced patients. Providers need to be familiar with these agents, and future drug development should be encouraged.
Collapse
Affiliation(s)
- James A McKinnell
- Department of Medicine, Division of Infectious Diseases, University of Alabama at Birmingham, Birmingham, Alabama 35294-0006, USA
| | | |
Collapse
|
28
|
Burastero SE, Figini M, Frigerio B, Lusso P, Mollica L, Lopalco L. Protective versus pathogenic anti-CD4 immunity: insights from the study of natural resistance to HIV infection. J Transl Med 2009; 7:101. [PMID: 19943950 PMCID: PMC2789051 DOI: 10.1186/1479-5876-7-101] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2009] [Accepted: 11/28/2009] [Indexed: 12/11/2022] Open
Abstract
HIV-1 exposure causes several dramatic unbalances in the immune system homeostasis. Here, we will focus on the paradox whereby CD4 specific autoimmune responses, which are expected to contribute to the catastrophic loss of most part of the T helper lymphocyte subset in infected patients, may display the characteristics of an unconventional protective immunity in individuals naturally resistant to HIV-1 infection. Reference to differences in fine epitope mapping of these two oppositely polarized outcomes will be presented, with particular reference to partially or totally CD4-gp120 complex-specific antibodies. The fine tuning of the anti-self immune response to the HIV-1 receptor may determine whether viral exposure will result in infection or, alternatively, protective immunity. Along this line, an efficacious anti-HIV strategy can rely on the active (i.e., through immunization) or passive targeting of cryptic epitopes of the CD4-gp120 complex, including those harboured within the CD4 molecule. Such epitopes are expected to be safe from genetic drift and thus allow for broad spectrum of efficacy. Moreover, since these epitopes are not routinely exposed in uninfected individuals, they are expected to become targets of neutralizing antibodies or other specifically designed molecules only after viral exposure, with a predictable low impact in terms of potentially harmful anti-CD4 self-reactivity. The experimentum naturae of naturally resistant individuals indicates a strategy to design innovative strategies to neutralize HIV-1 by acting on the sharp edge between harmful and protective self-reactivity.
Collapse
Affiliation(s)
- Samuele E Burastero
- Unit of Clinical and Molecular Allergy, Division of Immunology, Infectious Diseases and Transplants, San Raffaele Scientific Institute, Milan, 20132, Italy.
| | | | | | | | | | | |
Collapse
|
29
|
Abstract
PURPOSE OF REVIEW To provide an overview of HIV-1 entry inhibitors, with a focus on chemokine receptor antagonists. RECENT FINDINGS Entry of HIV-1 into target cells is an ordered multistep process involving attachment, co-receptor binding, and fusion. Inhibitors of each step have been identified and shown to have antiviral activity in clinical trials. Phase 1-2 trials of monoclonal antibodies and small-molecule attachment inhibitors have demonstrated activity in HIV-1-infected patients, but none has progressed to later-phase clinical trials. The postattachment inhibitor ibalizumab has shown activity in phase 1 and 2 trials; further studies are anticipated. The CCR5 antagonists maraviroc (now been approved for clinical use) and vicriviroc (in phase 3 trials) have shown significant benefit in controlled trials in treatment-experienced patients; additional CCR5 antagonists are in various stages of clinical development. Targeting CXCR4 has proven to be more challenging. Although proof of concept has been demonstrated in phase 1-2 trials of two compounds, neither proved suitable for chronic administration. Little progress has been reported in developing longer acting or orally bioavailable fusion inhibitors. SUMMARY A CCR5 antagonist and a fusion inhibitor are approved for use as HIV-1 entry inhibitors. Development of drugs targeting other steps in HIV-1 entry is ongoing.
Collapse
Affiliation(s)
- Daniel R Kuritzkes
- Section of Retroviral Therapeutics, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02139, USA.
| |
Collapse
|
30
|
Ji C, Kopetzki E, Jekle A, Stubenrauch KG, Liu X, Zhang J, Rao E, Schlothauer T, Fischer S, Cammack N, Heilek G, Ries S, Sankuratri S. CD4-anchoring HIV-1 Fusion Inhibitor with Enhanced Potency and in Vivo Stability. J Biol Chem 2009; 284:5175-85. [DOI: 10.1074/jbc.m808745200] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
|
31
|
Schweizer A, Rusert P, Berlinger L, Ruprecht CR, Mann A, Corthésy S, Turville SG, Aravantinou M, Fischer M, Robbiani M, Amstutz P, Trkola A. CD4-specific designed ankyrin repeat proteins are novel potent HIV entry inhibitors with unique characteristics. PLoS Pathog 2008; 4:e1000109. [PMID: 18654624 PMCID: PMC2453315 DOI: 10.1371/journal.ppat.1000109] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2008] [Accepted: 06/24/2008] [Indexed: 11/18/2022] Open
Abstract
Here, we describe the generation of a novel type of HIV entry inhibitor using the recently developed Designed Ankyrin Repeat Protein (DARPin) technology. DARPin proteins specific for human CD4 were selected from a DARPin DNA library using ribosome display. Selected pool members interacted specifically with CD4 and competed with gp120 for binding to CD4. DARPin proteins derived in the initial selection series inhibited HIV in a dose-dependent manner, but showed a relatively high variability in their capacity to block replication of patient isolates on primary CD4 T cells. In consequence, a second series of CD4-specific DARPins with improved affinity for CD4 was generated. These 2nd series DARPins potently inhibit infection of genetically divergent (subtype B and C) HIV isolates in the low nanomolar range, independent of coreceptor usage. Importantly, the actions of the CD4 binding DARPins were highly specific: no effect on cell viability or activation, CD4 memory cell function, or interference with CD4-independent virus entry was observed. These novel CD4 targeting molecules described here combine the unique characteristics of DARPins-high physical stability, specificity and low production costs-with the capacity to potently block HIV entry, rendering them promising candidates for microbicide development.
Collapse
Affiliation(s)
- Andreas Schweizer
- Division of Infectious Diseases, University Hospital Zurich, Zurich, Switzerland
| | - Peter Rusert
- Division of Infectious Diseases, University Hospital Zurich, Zurich, Switzerland
| | - Livia Berlinger
- Division of Infectious Diseases, University Hospital Zurich, Zurich, Switzerland
| | - Claudia R. Ruprecht
- Division of Infectious Diseases, University Hospital Zurich, Zurich, Switzerland
| | - Axel Mann
- Division of Infectious Diseases, University Hospital Zurich, Zurich, Switzerland
| | - Stéphanie Corthésy
- Division of Infectious Diseases, University Hospital Zurich, Zurich, Switzerland
| | - Stuart G. Turville
- Center for Biomedical Research, Population Council, New York, New York, United States of America
| | - Meropi Aravantinou
- Center for Biomedical Research, Population Council, New York, New York, United States of America
| | - Marek Fischer
- Division of Infectious Diseases, University Hospital Zurich, Zurich, Switzerland
| | - Melissa Robbiani
- Center for Biomedical Research, Population Council, New York, New York, United States of America
| | | | - Alexandra Trkola
- Division of Infectious Diseases, University Hospital Zurich, Zurich, Switzerland
| |
Collapse
|
32
|
Huber M, Olson WC, Trkola A. Antibodies for HIV treatment and prevention: window of opportunity? Curr Top Microbiol Immunol 2007; 317:39-66. [PMID: 17990789 DOI: 10.1007/978-3-540-72146-8_2] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/07/2023]
Abstract
Monoclonal antibodies are routinely used as therapeutics in a number of disease settings and have thus also been explored as potential treatment for human immunodeficiency virus (HIV)-1 infection. Antibodies targeting viral antigens, and those directed to the cellular receptors, have been considered for use in prevention and therapy. For virus-targeted antibodies, attention has focused primarily on their neutralizing activity, but such antibodies also have the potential to exert antiviral effects via effector functions, such as antibody-dependent cellular cytotoxicity (ADCC), opsonization, or complement activation. Anti-cell antibodies act through occlusion or down-modulation of the viral receptors with notable impact in vivo, as recent trials have shown. This review summarizes the diverse specificities and modes of action of therapeutic antibodies against HIV-1 infection. Successes, challenges, and future opportunities of harnessing antibodies for therapy of HIV-1 infection are discussed.
Collapse
Affiliation(s)
- M Huber
- Division of Infectious Diseases, University Hospital Zurich, Rämistrasse 100, 8091 Zurich, Switzerland
| | | | | |
Collapse
|
33
|
New targets in antiretroviral therapy 2006. Curr Opin HIV AIDS 2006; 1:437-41. [PMID: 19372844 DOI: 10.1097/01.coh.0000239857.53108.ca] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
PURPOSE OF REVIEW Novel antiretroviral therapies that utilize new viral and cellular targets are needed to increase the range of treatment options for individuals living with HIV. Several novel therapies are now proceeding through clinical trials, and clinical and safety information is starting to accumulate. RECENT FINDINGS The review outlines progress to date and important considerations for the drugs that are furthest along in clinical development from the following new classes of anti-HIV therapy: co-receptor inhibitors (maraviroc, vicriviroc and AMD-070), integrase inhibitors (MK-0518 and GS-9137), maturation inhibitors (PA-457), and entry inhibitors (TNX-355). The focus is on novel drugs for which initial data are available from studies in both healthy volunteers and studies involving HIV-infected participants. SUMMARY Although the drugs reviewed may potentially provide important new options for existing antiretroviral treatment regimens, much information regarding the safety, efficacy and positioning of the drugs remains to be determined. As further clinical trial information accumulates, it will be important for HIV clinicians to monitor the progress of these novel therapies.
Collapse
|
34
|
Zhang XQ, Sorensen M, Fung M, Schooley RT. Synergistic in vitro antiretroviral activity of a humanized monoclonal anti-CD4 antibody (TNX-355) and enfuvirtide (T-20). Antimicrob Agents Chemother 2006; 50:2231-3. [PMID: 16723592 PMCID: PMC1479151 DOI: 10.1128/aac.00761-05] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Recently, antiretroviral agents directed at several steps involved in viral entry have been shown to reduce viral replication in vitro and in vivo. We have demonstrated a high level of in vitro synergistic antiretroviral activity for two entry inhibitors that are directed at sequential steps in the entry process.
Collapse
|
35
|
Troadec S, Bès C, Chentouf M, Nguyen B, Briant L, Jacquet C, Chebli K, Pugnière M, Roquet F, Cerutti M, Chardès T. Biological activities on T lymphocytes of a baculovirus-expressed chimeric recombinant IgG1 antibody with specificity for the CDR3-like loop on the D1 domain of the CD4 molecule. Clin Immunol 2006; 119:38-50. [PMID: 16426893 DOI: 10.1016/j.clim.2005.11.013] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2005] [Revised: 11/14/2005] [Accepted: 11/22/2005] [Indexed: 12/16/2022]
Abstract
A baculovirus-expressed chimeric recombinant IgG1 (rIgG1) antibody, with Cgamma1 and Ckappa human constant domains, was derived from the murine monoclonal antibody (mAb) 13B8.2, which is specific for the CDR3-like loop of the CD4 molecule and which inhibits HIV-1 replication. Chimeric rIgG1 antibody 13B8.2 blocked, in a dose-dependent manner, antigen presentation through inhibition of subsequent IL-2 secretion by stimulated T cells. The one-way mixed lymphocyte reaction was abrogated by previous addition of baculovirus-produced rIgG1 13B8.2 in the T-cell culture. Anti-proliferative activity of rIgG1 was demonstrated on CD3-activated CD4+ T lymphocytes from healthy donors, such effect being associated with reduced IL-2 secretion of activated T cells. On the other hand, no proliferation inhibition was observed on CD4+ T lymphocytes activated with phorbol ester plus ionomycin, suggesting that rIgG1 13B8.2 preferentially acts on a proximal TCR-induced signaling pathway. Treatment of DBA1/J human CD4-transgenic mice with 100 microg of recombinant antibody for three consecutive days led to in vivo recovery of rIgG1 antibody 13B8.2 both coated on murine T lymphocytes and free in mouse serum, without CD4 depletion or down-modulation. These findings predict that the baculovirus-expressed chimeric rIgG1 anti-CD4 antibody 13B8.2 is a promising candidate for immunotherapy.
Collapse
Affiliation(s)
- Samuel Troadec
- CNRS UMR 5160, Centre de Pharmacologie et Biotechnologie pour la Santé, Faculté de Pharmacie, 15 Avenue Charles Flahault, BP 14491, 34093 Montpellier Cedex 5, France
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Vermeire K, Schols D. Anti-HIV agents targeting the interaction of gp120 with the cellular CD4 receptor. Expert Opin Investig Drugs 2005; 14:1199-212. [PMID: 16185162 DOI: 10.1517/13543784.14.10.1199] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Perhaps one of the most effective approaches to prevent and inhibit viral infections is to block host cell receptors that are used by viruses to gain cell entry. Major advances have been made over the past decade in the understanding of the molecular mechanism of HIV entry into target cells. A crucial step in this entry process is the interaction of the external HIV envelope glycoprotein, gp120, with the cellular CD4 receptor molecule. This binding step represents a potential target for new antiviral agents, and current efforts to develop safe and effective HIV entry inhibitors are focused on natural ligands and/or monoclonal antibodies that interfere with gp120/CD4 interaction. Also, small synthetic compounds obtained either by high-throughput screening of large compound libraries or by structure-guided rational design have recently entered the antiretroviral arena. In this review, the anti-HIV activity of novel entry inhibitors targeting gp120/CD4 interaction is outlined, and special attention is given to the cyclotriazadisulfonamide compounds, which are the most specific CD4-targeted antiviral drugs described so far.
Collapse
Affiliation(s)
- Kurt Vermeire
- Rega Institute for Medical Research, Katholieke Universiteit Leuven, Minderbroedersstraat 10, B-3000 Leuven, Belgium.
| | | |
Collapse
|
37
|
Abstract
Issues, such as complexity, tolerability, and drug resistance and cross-resistance, limit the effectiveness of current antiretroviral regimens and make the continued development of newer agents important, despite the availability of 20 approved drugs for the treatment of HIV infection. Many new compounds are in development in existing classes: nucleoside and nucleotide analogue reverse transcriptase inhibitors (eg, D-d4FC and SPD754), non-nucleoside analogue reverse transcriptase inhibitors (eg, capravirine and TMC125), and protease inhibitors (eg, tipranavir and TMC114). In addition, newer classes of antiretroviral drugs, such as HIV entry inhibitors (eg, TNX-355, SCH 417690, UK-427,857, AMD 11070), that target the first step in the HIV life cycle are under development. Continued improvement in the treatment of HIV infection will result from the availability of convenient, well-tolerated, and affordable drugs with potent and durable antiretroviral activity.
Collapse
Affiliation(s)
- Kristen Marks
- Weill Medical College of Cornell University, Cornell Clinical Trials Unit, New York, NY 10021, USA
| | | |
Collapse
|
38
|
Castagna A, Biswas P, Beretta A, Lazzarin A. The appealing story of HIV entry inhibitors : from discovery of biological mechanisms to drug development. Drugs 2005; 65:879-904. [PMID: 15892586 DOI: 10.2165/00003495-200565070-00001] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Current therapeutic intervention in HIV infection relies upon 20 different drugs. Despite the impressive efficacy shown by these drugs, we are confronted with an unexpected frequency of adverse effects, such as mitochondrial toxicity and lipodystrophy, and resistance, not only to individual drugs but to entire drug classes.Thus, there is now a great need for new antiretroviral drugs with reduced toxicity, increased activity against drug-resistant viruses and a greater capacity to reach tissue sanctuaries of the virus. Two different HIV molecules have been selected as targets of drug inhibition so far: reverse transcriptase and protease. Drugs that target the interactions between the HIV envelope and the cellular receptor complex are a 'new entry' into the scenario of HIV therapy and have recently raised great interest because of their activity against multidrug-resistant viruses. There are several compounds that are at different developmental stages in the pipeline to counter HIV entry, among them: (i) the attachment inhibitor dextrin-2-sulfate; (ii) the inhibitors of the glycoprotein (gp) 120/CD4 interaction PRO 542, TNX 355 and BMS 488043; (iii) the co-receptor inhibitors subdivided in those targeting CCR5 (SCH 417690 [SCH D], UK 427857 GW 873140, PRO 140, TAK 220, AMD 887) and those targeting CXCR4 (AMD 070, KRH 2731); and (iv) the fusion inhibitors enfuvirtide (T-20) and tifuvirtide (T-1249). The story of the first of these drugs, enfuvirtide, which has successfully completed phase III clinical trials, has been approved by the US FDA and by the European Medicines Agency, and is now commercially available worldwide, is an example of how the knowledge of basic molecular mechanisms can rapidly translate into the development of clinically effective molecules.
Collapse
Affiliation(s)
- Antonella Castagna
- Clinic of Infectious Diseases, San Raffaele Scientific Institute, Milan, Italy
| | | | | | | |
Collapse
|
39
|
Abstract
Until recently, the concept of antibodies as in vivo therapeutics was still considered to be an exceedingly ambitious goal. However, in 2003, the situation has been completely transformed, with 14 FDA-approved monclonal antibodies (mAbs), 70 in late stage clinical (Phase II+) trials and > 1000 in preclinical development. The driving force behind this reversal in fortune has been advances in antibody engineering and the emergence of novel discovery techniques which overcame stability and immunogenicity issues that had blighted previous clinical trials of murine antibodies. For indications as diverse as inflammation, cancer and infectious disease, it is clear that unique properties of antibodies make them safe, effective and versatile therapeutics. These drugs can be used to neutralise pathogens, toxins and endogenous mediators of pathology. As cell targeting reagents, antibodies can be used to modulate cytoplasmic cascades or to 'tag' specific cells for complement- or effector-mediated lysis. Antibodies can also be modified to deliver toxic or modulatory payloads (small molecules, radionuclides and enzymes) and engineered to bind multiple epitopes (bispecifics) or even to have novel catalytic activity (abzymes). The modular structure of immunoglobulins and the availability of antibody fragment libraries also make it possible to produce variable-domain therapeutics (Fab, single-chain and domain antibodies). Although exhibiting less favourable kinetics in vivo, these fragments are simple to express and have an increased tissue penetration, making them especially useful as neutralising agents or in the delivery of payload. The number of approved antibodies is expected to increase arithmetically in the near term, as the platform is adopted as a valid alternative to small molecule discovery. This review provides an introduction to the antibody discovery process and discusses the past, present and future applications of therapeutic antibodies, with reference to several FDA-approved precedents.
Collapse
Affiliation(s)
- L H Stockwin
- Domantis Limited, Granta Park, Abington, Cambridge, CB1 6GS, UK
| | | |
Collapse
|
40
|
Marks K, Gulick RM. New Antiretroviral Agents for the Treatment of HIV Infection. Curr Infect Dis Rep 2004; 6:333-339. [PMID: 15265463 DOI: 10.1007/s11908-004-0056-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Issues, such as complexity, tolerability, and drug resistance and cross-resistance, limit the effectiveness of current antiretroviral regimens and make the continued development of newer agents important, despite the availability of 20 approved drugs for the treatment of HIV infection. Many new compounds are in development in existing classes: nucleoside and nucleotide analogue reverse transcriptase inhibitors (eg, D-d4FC and SPD754), non-nucleoside analogue reverse transcriptase inhibitors (eg, capravirine and TMC125), and protease inhibitors (eg, tipranavir and TMC114). In addition, newer classes of antiretroviral drugs, such as HIV entry inhibitors (eg, TNX-355, SCH 417690, UK-427,857, AMD 11070), that target the first step in the HIV life cycle are under development. Continued improvement in the treatment of HIV infection will result from the availability of convenient, well-tolerated, and affordable drugs with potent and durable antiretroviral activity.
Collapse
Affiliation(s)
- Kristen Marks
- Weill Medical College of Cornell University, Cornell Clinical Trials Unit, Box 566, 525 East 68th Street, New York, NY 10021, USA.
| | | |
Collapse
|
41
|
Reimann KA, Khunkhun R, Lin W, Gordon W, Fung M. A humanized, nondepleting anti-CD4 antibody that blocks virus entry inhibits virus replication in rhesus monkeys chronically infected with simian immunodeficiency virus. AIDS Res Hum Retroviruses 2002; 18:747-55. [PMID: 12167266 DOI: 10.1089/08892220260139486] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Therapeutic approaches that interfere with viral entry hold promise in preventing or treating HIV infection. Hu5A8, a humanized monoclonal antibody against CD4, was previously shown to inhibit HIV and SIV replication in vitro and was safely administered to rhesus monkeys without depleting CD4(+) T cells. This antibody completely suppressed replication of six different SIVmac 251 primary isolates in vitro. Twice weekly administration of 3-mg/kg doses of hu5A8 for 2 to 4 weeks to SIV-infected rhesus monkeys resulted in sustained plasma antibody levels of > or =20 microg/ml during treatment and 5- to 50-fold decreases in plasma viremia, although suppression of viral replication was transient. Two of three treated monkeys developed antibody responses against the administered monoclonal antibody. Loss of antiviral effect was not temporally associated with anti-hu5A8 antibody responses or due to activation of CD4(+) T cells by hu5A8. However, SIV isolated after hu5A8 treatment was approximately 5-fold more resistant to suppression by hu5A8 than SIV isolates obtained from the same monkeys before treatment. The rapid development of resistance may have resulted from SIV variants that infect cells by a CD4-independent mechanism. These results support the overall concept of anti-CD4 monoclonal antibody treatment to suppress AIDS virus replication in vivo while demonstrating important issues as to its clinical feasibility.
Collapse
Affiliation(s)
- Keith A Reimann
- Division of Viral Pathogenesis, Beth Israel Deaconess Medical Center, Research East 113, 330 Brookline Avenue, Boston, MA 02215, USA.
| | | | | | | | | |
Collapse
|