1
|
López-Flores LA, Pérez-Rubio G, Falfán-Valencia R. Distribution of polymorphic variants of CYP2A6 and their involvement in nicotine addiction. EXCLI JOURNAL 2017; 16:174-196. [PMID: 28507465 PMCID: PMC5427481 DOI: 10.17179/excli2016-847] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Accepted: 02/13/2017] [Indexed: 01/08/2023]
Abstract
Tobacco consumption has become a major public health issue, which has motivated studies to identify and understand the biological processes involved in the smoking behavior for prevention and smoking cessation treatments. CYP2A6 has been identified as the main gene that codifies the enzyme that metabolizes nicotine. Many alleles have been identified after the discovery of CYP2A6, suggesting a wide interethnic variability and a diverse smoking behavior of the allele carrying individuals. The main purpose of this review is to update and highlight the effects of the CYP2A6 gene variability related to tobacco consumption reported from diverse human populations. The review further aims to consider CYP2A6 in future studies as a possible genetic marker for the prevention and treatment of nicotine addiction. Therefore, we analyzed several population studies and their importance at addressing and characterizing a population using specific parameters. Our efforts may contribute to a personalized system for detecting, preventing and treating populations at a higher risk of smoking to avoid diseases related to tobacco consumption.
Collapse
|
2
|
Rossini A, de Almeida Simão T, Albano RM, Pinto LFR. CYP2A6 polymorphisms and risk for tobacco-related cancers. Pharmacogenomics 2008; 9:1737-52. [PMID: 19018727 DOI: 10.2217/14622416.9.11.1737] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Tobacco consumption is the main identifiable risk to cancer, contributing to the majority of tumors in upper aerodigestive tissues. The psychoactive compound responsible for tobacco addiction, nicotine and the potent carcinogens present at high concentrations either in cigarette mainstream smoke or in smokeless tobacco products, 4-(methylnitrosamino)-1-(3-pyridyl)-butanone (NNK) and N-nitrosonornicotine (NNN) can be metabolized by CYP2A6. CYP2A6 is expressed in many aerodigestive tissues with high interindividual variability. The CYP2A6 gene is highly polymorphic and CYP2A6 alleles coding for enzymes with altered expression or metabolic capacity produce alterations in nicotine metabolism in vivo and seem to influence smoking behavior. These polymorphisms may change the rate of NNK and NNN activation and, therefore, may influence cancer risk associated with tobacco consumption. However, to date only a few and inconclusive studies have addressed the risk that a given CYP2A6 polymorphism presents for the development of tobacco-related tumors. Most, but not all, show a reduced risk associated with alleles that result in decreased enzyme activity. The overlapping substrate specificity and tissue expression between CYP2A6 and the highly similar CYP2A13 may add to the conflicting results observed. The intricate regulation of CYP2A6 and the variation of structurally different chemical compounds capable of inhibiting CYP2A enzymes also add to the complexity. Finally, the interaction between polymorphisms of genes that code for CYP2A6, CYP2A13 and other potent carcinogen-metabolizing CYP enzymes may help to determine individuals that are at higher risk of developing tumors associated with tobacco consumption.
Collapse
Affiliation(s)
- Ana Rossini
- Universidade do Estado do Rio de Janeiro, Instituto de Biologia Roberto Alcântara Gomes, Departamento de Bioquímica Brazil, Rio de Janeiro, Brazil
| | | | | | | |
Collapse
|
3
|
Rossini A, Lima SS, Rapozo DCM, Faria M, Albano RM, Pinto LFR. CYP2A6 and CYP2E1 polymorphisms in a Brazilian population living in Rio de Janeiro. Braz J Med Biol Res 2006; 39:195-201. [PMID: 16470306 DOI: 10.1590/s0100-879x2006000200005] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Cytochrome P450 (CYP) is a superfamily of enzymes involved in the metabolism of endogenous compounds and xenobiotics. CYP2A6 catalyzes the oxidation of nicotine and the activation of carcinogens such as aflatoxin B1 and nitrosamines. CYP2E1 metabolizes ethanol and other low-molecular weight compounds and can also activate nitrosamines. The CYP2A6 and CYP2E1 genes are polymorphic, altering their catalytic activities and susceptibility to cancer and other diseases. A number of polymorphisms described are ethnic-dependent. In the present study, we determined the genotype and allele frequencies of the main CYP2A6 and CYP2E1 polymorphisms in a group of 289 volunteers recruited at the Central Laboratory of Hospital Universitário Pedro Ernesto. They had been residing in the city of Rio de Janeiro for at least 6 months and were divided into two groups according to skin color (white and non-white). The alleles were determined by allele specific PCR (CYP2A6) or by PCR-RFLP (CYP2E1). The frequencies of the CYP2A6*1B and CYP2A6*2 alleles were 0.29 and 0.02 for white individuals and 0.24 and 0.01 for non-white individuals, respectively. The CYP2A6*5 allele was not found in the population studied. Regarding the CYP2E1*5B allele, we found a frequency of 0.07 in white individuals, which was statistically different (P < 0.05) from that present in non-white individuals (0.03). CYP2E1*6 allele frequency was the same (0.08) in both groups. The frequencies of CYP2A6*1B, CYP2A6*2 and CYP2E1*6 alleles in Brazilians are similar to those found in Caucasians and African-Americans, but the frequency of the CYP2E1*5B allele is higher in Brazilians.
Collapse
Affiliation(s)
- A Rossini
- Departamento de Bioquímica, Instituto de Biologia Roberto Alcântara Gomes, Universidade do Estado do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | | | | | | | | | | |
Collapse
|
4
|
Kim K, Johnson JA, Derendorf H. Differences in drug pharmacokinetics between East Asians and Caucasians and the role of genetic polymorphisms. J Clin Pharmacol 2005; 44:1083-105. [PMID: 15342610 DOI: 10.1177/0091270004268128] [Citation(s) in RCA: 156] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Interethnic variability in pharmacokinetics can cause unexpected outcomes such as therapeutic failure, adverse effects, and toxicity in subjects of different ethnic origin undergoing medical treatment. It is important to realize that both genetic and environmental factors can lead to these differences among ethnic groups. The International Conference on Harmonization (ICH) published a guidance to facilitate the registration of drugs among ICH regions (European Union, Japan, the United States) by recommending a framework for evaluating the impact of ethnic factors on a drug's effect, as well as its efficacy and safety at a particular dosage and dosage regimen. This review focuses on the pharmacokinetic differences between East Asians and Caucasians. Differences in metabolism between East Asians and Caucasians are common, especially in the activity of several phase I enzymes such as CYP2D6 and the CYP2C subfamily. Before drug therapy, identification of either the genotype and/or the phenotype for these enzymes may be of therapeutic value, particularly for drugs with a narrow therapeutic index. Furthermore, these differences are relevant for international drug approval when regulatory agencies must decide if they accept results from clinical trials performed in other parts of the world.
Collapse
Affiliation(s)
- Kiman Kim
- Department of Pharmaceutics, University of Florida, Gainesville, FL 32610, USA
| | | | | |
Collapse
|
5
|
Lindholt JS, Jørgensen B, Klitgaard NA, Henneberg EW. Systemic levels of cotinine and elastase, but not pulmonary function, are associated with the progression of small abdominal aortic aneurysms. Eur J Vasc Endovasc Surg 2003; 26:418-22. [PMID: 14512006 DOI: 10.1016/s1078-5884(03)00177-1] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
OBJECTIVE to study whether smoking and impaired pulmonary function are associated with the expansion of abdominal aortic aneurysms (AAA). METHODS AND MATERIAL seventy-nine men with small (3-5 cm), screen-detected AAA underwent a simple 5-step smoking history, measurement of the forced first second expiratory volume (FEV1), venepuncture and annual ultrasound scan for mean follow-up period of 3.5 years. RESULTS all but one patient had a significantly reduced FEV1 (p<0.05, Mann-Whitney). The FEV1/expected FEV1 ratio (rFEV1) was not related to AAA expansion but was negatively correlated with P-elastase-alpha1-antitrypsin-complexes (P-Elastase). P-Elastase was positively correlated with smoking and S-cotinine. Smoking, S-cotinine, and P-elastase were positively correlated with the mean annual AAA expansion rate but not rFEV1. CONCLUSION in general, patients with AAA have impaired pulmonary function. A simple five step smoking classification is as predictive of AAA-expansion as S-cotinine. Smoking may cause elastase secretion leading to pulmonary and aortic elastin degradation but the lack of association between AAA-expansion and rFEV1 suggest that other mechanisms are important.
Collapse
Affiliation(s)
- J S Lindholt
- Department of Vascular Surgery, Rigshospitalet, University of Copenhagen, Denmark
| | | | | | | |
Collapse
|
6
|
Lewis DFV, Lake BG, Dickins M, Goldfarb PS. Homology modelling of CYP2A6 based on the CYP2C5 crystallographic template: enzyme-substrate interactions and QSARs for binding affinity and inhibition. Toxicol In Vitro 2003; 17:179-90. [PMID: 12650672 DOI: 10.1016/s0887-2333(02)00132-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The results of homology modelling of the human P450 enzyme CYP2A6, based on the CYP2C5 crystallographic template structure are reported. A substantial number of selective substrates of the CYP2A6 enzyme fit the putative active site in a manner that is consistent with their known metabolites. Moreover, the evidence from site-directed mutagenesis experiments is in accordance with the current model, particularly in relation to complementary amino acid contacts within the haem environment. The binding of substrates is rationalized in terms of QSAR analyses and from a consideration of the contributory factors affecting the binding affinity. The latter approach appears to represent a highly correlated (R=0.99) method for estimating the relative strength of enzyme-substrate binding within CYP2A6-selective compounds, albeit within a fairly limited dataset of substrates.
Collapse
Affiliation(s)
- D F V Lewis
- School of Biomedical, Life Sciences, University of Surrey, Guildford, Surrey GU2 7XH, UK.
| | | | | | | |
Collapse
|
7
|
Lewis DFV. Essential requirements for substrate binding affinity and selectivity toward human CYP2 family enzymes. Arch Biochem Biophys 2003; 409:32-44. [PMID: 12464242 DOI: 10.1016/s0003-9861(02)00349-1] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
A detailed analysis of substrate selectivity within the cytochrome P450 2 (CYP2) family is reported. From a consideration of specific interactions between drug substrates for human CYP2 family enzymes and the putative active sites of CYP2A6, CYP2B6, CYP2C8, CYP2C9, CYP2C19, CYP2D6, and CYP2E1, it is likely that the number and disposition of hydrogen bond donor/acceptors and aromatic rings within the various P450 substrate molecules determines their enzyme selectivity and binding affinity, together with directing their preferred routes of metabolism by the CYP2 enzymes concerned. Although many aliphatic residues are present in most P450 active sites, it would appear that their main contribution centers around hydrophobic interactions and desolvation processes accompanying substrate binding. Molecular modeling studies based on the recent CYP2C5 crystal structure appear to show close agreement with site-directed mutagenesis experiments and with information on substrate metabolism and selectivity within the CYP2 family.
Collapse
Affiliation(s)
- David F V Lewis
- Molecular Toxicology Group, School of Biomedical and Life Sciences, University of Surrey, Guildford, UK.
| |
Collapse
|
8
|
Abstract
Human cytochrome P450 2A6 (CYP2A6) has been shown to have large interindividual and interethnic variability in levels of expression and activity. This is thought to be largely due to genetic polymorphisms. In recent years, 13 genetic variants (CYP2A6*1-*11 and the gene duplication, *1 x 2) of CYP2A6 have been identified and a number of these have been shown to result in altered CYP2A6 enzyme activity. For example, there are alleles which result in variants that are in inactive (e.g. due to a gene deletion), have decreased activity (e.g. altered enzyme structure or transcriptional activity) or have increased activity (e.g. due to gene duplications). The resulting interindividual variation in metabolic activity may affect the metabolism of CYP2A6 substrates including nicotine, cotinine (the major metabolite of nicotine), several tobacco-specific procarcinogens, coumarin and many toxins. The frequencies of the CYP2A6 alleles vary considerably among different ethnic populations, which may partially explain the interethnic variability found in CYP2A6-related metabolic activity (e.g. nicotine metabolism), behaviors (i.e. smoking) and disease (i.e. lung cancer). Investigations of the genetic variation of CYP2A6 and its resulting effects on metabolism and health consequences are still fairly early; this review summarizes what is presently known about CYP2A6, its genetic variants and their clinical consequences.
Collapse
Affiliation(s)
- Chun Xu
- Centre for Addiction and Mental Health, University of Toronto, Toronto M5S 1A8, Canada
| | | | | | | |
Collapse
|
9
|
Nakajima M, Kuroiwa Y, Yokoi T. Interindividual differences in nicotine metabolism and genetic polymorphisms of human CYP2A6. Drug Metab Rev 2002; 34:865-77. [PMID: 12487152 DOI: 10.1081/dmr-120015696] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Nicotine is widely consumed throughout the world, and exerts a number of physiological effects. After nicotine is absorbed through the lungs by cigarette smoking, it undergoes extensive metabolism in humans. Nicotine is mainly metabolized to cotinine by cytochrome P450 (CYP) 2A6. CYP2A6 can metabolize some pharmaceutical agents such as halothane, valproic acid, and fadrozole, and activate tobacco-specific nitrosamines. There are large interindividual differences in nicotine metabolism, and it has been found that the interindividual differences are attributed to the genetic polymorphisms of CYP2A6 gene. This review describes the techniques for determination of in vivo nicotine metabolism, characteristics of each human CYP2A6 alleles, and ethnic differences. The relationship between CYP2A6 genetic polymorphism and potency of nicotine metabolism, smoking behavior, and cancer risk are extensively reviewed. Finally, the usefulness of nicotine metabolism for phenotyping of CYP2A6 in individuals and implication of the significance of CYP2A6 genetic polymorphism in a clinical perspective are discussed.
Collapse
Affiliation(s)
- Miki Nakajima
- Division of Drug Metabolism, Faculty of Pharmaceutical Sciences, Kanazawa University, Takara-machi 13-1, Kanazawa 920-0934, Japan.
| | | | | |
Collapse
|
10
|
Daigo S, Takahashi Y, Fujieda M, Ariyoshi N, Yamazaki H, Koizumi W, Tanabe S, Saigenji K, Nagayama S, Ikeda K, Nishioka Y, Kamataki T. A novel mutant allele of the CYP2A6 gene (CYP2A6*11 ) found in a cancer patient who showed poor metabolic phenotype towards tegafur. PHARMACOGENETICS 2002; 12:299-306. [PMID: 12042667 DOI: 10.1097/00008571-200206000-00005] [Citation(s) in RCA: 90] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
In a clinical study, a newly developed anticancer drug, TS-1 capsule, which contained tegafur (FT) and 5-chloro-2,4-dihydroxypyridine, an inhibitor of dihydropyrimidine dehydrogenase, was orally administered to five gastric cancer patients (patients 1-5). The total area under the plasma FT concentration-time curve in patient 1 was four-fold higher than in other patients. Since cytochrome P450 2A6 (CYP2A6) has been reported to metabolize FT to yield 5-fluorouracil (5-FU), it was postulated that the poor metabolic phenotype of patient 1 was caused by mutations of the CYP2A6 gene. Thus, alleles for the CYP2A6 genes derived from patient 1 were completely sequenced. It was found that one allele was CYP2A6*4C, which was a whole deleted allele for the human CYP2A6 gene. The other allele was a novel mutant allele (CYP2A6*11) in which thymine at nucleotide 670 was changed to cytosine. The nucleotide change caused an amino acid change from serine at residue 224 to proline. To examine whether or not the amino acid change affected CYP2A6 activity, we expressed an intact or mutant CYP2A6 together with NADPH-P450 oxidoreductase in Escherichia coli, and compared the capacity of the wild and mutant enzymes to metabolize FT to 5-FU. The Vmax value for FT metabolism by the mutant CYP2A6 was approximately one-half of the value of the intact CYP2A6, although the Km values were nearly the same. From these results, we conclude that the poor metabolic phenotype of patient 1 was caused by the existence of the two mutant alleles, CYP2A6*4C and the new variant CYP2A6*11.
Collapse
Affiliation(s)
- Satoshi Daigo
- Laboratory of Drug Metabolism, Division of Pharmacobiodynamics, Graduate School of Pharmaceutical Sciences, Hokkaido University, Sapporo, Hokkaido, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Tyndale RF, Sellers EM. Genetic variation in CYP2A6-mediated nicotine metabolism alters smoking behavior. Ther Drug Monit 2002; 24:163-71. [PMID: 11805739 DOI: 10.1097/00007691-200202000-00026] [Citation(s) in RCA: 86] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Approximately 50% of the initiation of tobacco dependence is genetically influenced, whereas maintenance of dependent smoking behavior and amount smoked have approximately 70% genetic contribution (1-5). Determining the variation in nicotine's inactivation is important because of nicotine's role in producing tobacco dependence and regulating smoking patterns (6-11). The genetically polymorphic CYP2A6 enzyme is responsible for the majority of the metabolic inactivation of nicotine to cotinine (12-14). Both in vitro and in vivo studies have demonstrated considerable interindividual variation in CYP2A6 activity (15-17). CYP2A6 is genetically polymorphic, individuals carrying inactive CYP2A6 alleles have decreased nicotine metabolism, are less likely to become smokers and if they do, they smoke fewer cigarettes per day (13,18,19). The decrease in smoking behavior was confirmed by measuring carbon monoxide (CO, a measure of smoke inhalation) levels, plasma and urine nicotine and cotinine levels, and cigarette counts (13,18,19). A duplication variant in the CYP2A6 gene locus has been identified which increases nicotine inactivation and increases smoking (19). CYP2A6 can also activate tobacco smoke procarcinogens (e.g. NNK, 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone); current studies are investigating the role of CYP2A6 in risk for lung cancer. Based on these epidemiologic data it was postulated that inhibition of CYP2A6 activity might be useful in a therapeutic context. Kinetic studies in humans indicated that selective CYP2A6 inhibitors decrease the metabolic removal of nicotine. It was also shown that inhibiting CYP2A6 in vivo (phenocopying, or mimicking the genetic defect) in smokers results in decreased smoking, making nicotine orally bioavailable, and the rerouting of procarcinogens to detoxifying pathways (20-22).
Collapse
|
12
|
Hoffman SM, Nelson DR, Keeney DS. Organization, structure and evolution of the CYP2 gene cluster on human chromosome 19. PHARMACOGENETICS 2001; 11:687-98. [PMID: 11692077 DOI: 10.1097/00008571-200111000-00007] [Citation(s) in RCA: 94] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The cytochrome P450 superfamily of mixed-function oxygenases has been extensively studied due to its many critical metabolic roles, and also because it is a fascinating example of gene family evolution. The cluster of genes on human chromosome 19 from the CYP2A, 2B, and 2F subfamilies has been previously described as having a complex organization and many pseudogenes. We describe the discovery of genes from three more CYP2 subfamilies inside the cluster, and assemble a complete map of the region. We comprehensively review the organization, structure, and expression of genes from all six subfamilies. A general hypothesis for the evolution of this complex gene cluster is also presented.
Collapse
Affiliation(s)
- S M Hoffman
- Department of Zoology, Miami University, Oxford, OH 45056, USA.
| | | | | |
Collapse
|
13
|
Smith TJ, Lin YS, Mezzetti M, Bois FY, Kelsey K, Ibrahim J. Genetic and dietary factors affecting human metabolism of 1,3-butadiene. Chem Biol Interact 2001; 135-136:407-28. [PMID: 11397404 DOI: 10.1016/s0009-2797(01)00180-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
The objective of this project was to determine the factors associated with differences in butadiene (BD) inhalation uptake and the rate of metabolism for BD to epoxy butene by monitoring exhaled breath during and after a brief exposure to BD in human volunteers. A total of 133 subjects (equal males and females; four racial groups) provided final data. Volunteers gave informed consent and completed a questionnaire including diet and alcohol use. A venous blood sample was collected for genotyping CYP2E1. Subjects received a 20 min exposure to 2.0 ppm of BD, followed by a 40 min washout period. The total administered dose was 0.6 ppm*h, which is in the range of everyday exposures. Ten, 1 or 2 min exhaled breath samples (five during and five after exposure) were collected using an optimized strategy. BD was determined by GC-FID analysis. Breathing activity (minute ventilation, breath frequency and tidal volume) was measured to estimate alveolar ventilation. After the washout period, 250 mg of chlorzoxazone were administered and urine samples collected for 6 h to measure 2E1 phenotype. The total BD uptake during exposure (inhaled BD minus exhaled) was estimated. A three-compartment PBPK model was fitted to each subject's breath measurements to estimate personal and population model parameters, including in-vivo BD metabolic rate. A hierarchical Bayesian PBPK model was fit by Monte Carlo simulations to estimate model parameters. Regression and ANOVA analyses were performed. Earlier data analysis showed wide ranges for both total uptake BD and metabolic rate. Both varied significantly by sex and age, and showed suggestive differences by race, with Asians having the highest rates. The analyses reported here found no correlation between total BD uptake and metabolic rate. No significant differences were found for oxidation rates by 2E1 genotype or phenotype, but the rates showed trends consistent with reported differences by genotype and phenotype for chlorzoxazone metabolism. No effects on metabolic rate were observed for long-term alcohol consumption, or consumption in the past 24 h. Overall, neither dietary factors nor genetic differences explained much of the wide variability in metabolic rates. Population characteristics, age, sex, and race, were the most important explanatory variables, but a large fraction of the total variability in metabolism remains to be explained.
Collapse
Affiliation(s)
- T J Smith
- Harvard School of Public Health, 665 Huntington Ave, Boston, MA 02115, USA.
| | | | | | | | | | | |
Collapse
|
14
|
Kwon JT, Nakajima M, Chai S, Yom YK, Kim HK, Yamazaki H, Sohn DR, Yamamoto T, Kuroiwa Y, Yokoi T. Nicotine metabolism and CYP2A6 allele frequencies in Koreans. PHARMACOGENETICS 2001; 11:317-23. [PMID: 11434509 DOI: 10.1097/00008571-200106000-00006] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
CYP2A6 is a major catalyst of nicotine metabolism to cotinine. Previously, we demonstrated that the interindividual difference in nicotine metabolism is related to a genetic polymorphism of the CYP2A6 gene in Japanese. To clarify the ethnic differences in nicotine metabolism and frequencies of CYP2A6 alleles, we studied nicotine metabolism and the CYP2A6 genotype in 209 Koreans. The cotinine/nicotine ratio of the plasma concentration 2 h after chewing one piece of nicotine gum was calculated as an index of nicotine metabolism. The genotypes of CYP2A6 gene (CYP2A6*1A, CYP2A6*1B, CYP2A6*2, CYP2A6*3, CYP2A6*4 and CYP2A6*5) were determined by polymerase chain reaction (PCR)-restriction fragment length polymorphism or allele specific (AS)-PCR. There were ethnic differences in the allele frequencies of CYP2A6*1A, CYP2A6*1B, CYP2A6*4 and CYP2A6*5 between Koreans (45.7%, 42.8%, 11.0% and 0.5%, respectively) and Japanese (42.4%, 37.5%, 20.1% and 0%, respectively, our previous data). Similar to the Japanese, no CYP2A6*2 and CYP2A6*3 alleles were found in Koreans. The homozygotes of the CYP2A6*4 allele (four subjects) were completely deficient in cotinine formation, being consistent with the data among Japanese. The heterozygotes of CYP2A6*4 tended to possess a lower metabolic ratio (CYP2A6*1A/CYP2A6*4, 4.79 +/- 3.17; CYP2A6*1B/CYP2A6*4, 7.43 +/- 4.97) than that in subjects without the allele (CYP2A6*1A/CYP2A6*1A, 7.42 +/- 6.56; CYP2A6*1A/CYP2A6*1B, 9.85 +/- 16.12; CYP2A6*1B/CYP2A6*1B, 11.33 +/- 9.33). The subjects who possess the CYP2A6*1B allele appeared to show higher capabilities of cotinine formation. It was confirmed that the interindividual difference in nicotine metabolism was closely related to the genetic polymorphism of CYP2A6. The probit plot of the metabolic ratios in Koreans (8.73 +/- 11.88) was shifted to a higher ratio than that in the Japanese (3.78 +/- 3.09). In each genotype group, the Korean subjects revealed significantly higher metabolic ratios than the Japanese subjects. The ethnic difference in cotinine formation might be due to environmental and/or diet factors as well as genetic factors.
Collapse
Affiliation(s)
- J T Kwon
- Division of Drug Metabolism, Faculty of Pharmaceutical Sciences, Kanazawa University, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Kitagawa K, Kunugita N, Kitagawa M, Kawamoto T. CYP2A6*6, a novel polymorphism in cytochrome p450 2A6, has a single amino acid substitution (R128Q) that inactivates enzymatic activity. J Biol Chem 2001; 276:17830-5. [PMID: 11278503 DOI: 10.1074/jbc.m009432200] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
By using the polymerase chain reaction technique combined with restriction enzyme fragment length polymorphism (PCR-RFLP), a novel polymorphism of CYP2A6, CYP2A6*6, was detected in 0.4% of the Japanese population. To study the enzymatic properties of the CYP2A6.6 protein with a single amino acid substitution of arginine 128 to glutamine, both this isozyme and the CYP2A6.1 protein (wild-type) were produced in insect cells using a baculovirus system. Coumarin 7-hydroxylation, which reflects CYP2A6 activity, was significantly reduced (one-eighth of normal) in cell lysate from CYP2A6*6-transfected Sf9 cells compared with that lysate from CYP2A6*1-transfected cells. To clarify the mechanism of inactivation of the CYP2A6.6 enzyme, the heme content and reduced CO difference spectrum were examined. Although CYP2A6.6 retained about one-half the heme content of CYP2A6.1, the reduced CO-bound Soret peak was completely lost. These results suggest that the inactivation of CYP2A6.6 is mainly due to disordering of the holoprotein structure rather than a failure of heme incorporation.
Collapse
Affiliation(s)
- K Kitagawa
- Department of Environmental Health, University of Occupational and Environmental Health, 1-1 Iseigaoka, Yahatanishi-ku, Kitakyushu 807-8555, Japan
| | | | | | | |
Collapse
|