1
|
Štepihar D, Florke Gee RR, Hoyos Sanchez MC, Fon Tacer K. Cell-specific secretory granule sorting mechanisms: the role of MAGEL2 and retromer in hypothalamic regulated secretion. Front Cell Dev Biol 2023; 11:1243038. [PMID: 37799273 PMCID: PMC10548473 DOI: 10.3389/fcell.2023.1243038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 08/31/2023] [Indexed: 10/07/2023] Open
Abstract
Intracellular protein trafficking and sorting are extremely arduous in endocrine and neuroendocrine cells, which synthesize and secrete on-demand substantial quantities of proteins. To ensure that neuroendocrine secretion operates correctly, each step in the secretion pathways is tightly regulated and coordinated both spatially and temporally. At the trans-Golgi network (TGN), intrinsic structural features of proteins and several sorting mechanisms and distinct signals direct newly synthesized proteins into proper membrane vesicles that enter either constitutive or regulated secretion pathways. Furthermore, this anterograde transport is counterbalanced by retrograde transport, which not only maintains membrane homeostasis but also recycles various proteins that function in the sorting of secretory cargo, formation of transport intermediates, or retrieval of resident proteins of secretory organelles. The retromer complex recycles proteins from the endocytic pathway back to the plasma membrane or TGN and was recently identified as a critical player in regulated secretion in the hypothalamus. Furthermore, melanoma antigen protein L2 (MAGEL2) was discovered to act as a tissue-specific regulator of the retromer-dependent endosomal protein recycling pathway and, by doing so, ensures proper secretory granule formation and maturation. MAGEL2 is a mammalian-specific and maternally imprinted gene implicated in Prader-Willi and Schaaf-Yang neurodevelopmental syndromes. In this review, we will briefly discuss the current understanding of the regulated secretion pathway, encompassing anterograde and retrograde traffic. Although our understanding of the retrograde trafficking and sorting in regulated secretion is not yet complete, we will review recent insights into the molecular role of MAGEL2 in hypothalamic neuroendocrine secretion and how its dysregulation contributes to the symptoms of Prader-Willi and Schaaf-Yang patients. Given that the activation of many secreted proteins occurs after they enter secretory granules, modulation of the sorting efficiency in a tissue-specific manner may represent an evolutionary adaptation to environmental cues.
Collapse
Affiliation(s)
- Denis Štepihar
- School of Veterinary Medicine, Texas Tech University, Amarillo, TX, United States
- Texas Center for Comparative Cancer Research (TC3R), Amarillo, TX, United States
- Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
| | - Rebecca R. Florke Gee
- School of Veterinary Medicine, Texas Tech University, Amarillo, TX, United States
- Texas Center for Comparative Cancer Research (TC3R), Amarillo, TX, United States
| | - Maria Camila Hoyos Sanchez
- School of Veterinary Medicine, Texas Tech University, Amarillo, TX, United States
- Texas Center for Comparative Cancer Research (TC3R), Amarillo, TX, United States
| | - Klementina Fon Tacer
- School of Veterinary Medicine, Texas Tech University, Amarillo, TX, United States
- Texas Center for Comparative Cancer Research (TC3R), Amarillo, TX, United States
| |
Collapse
|
2
|
Nelson ML, Pfeifer JA, Hickey JP, Collins AE, Kalisch BE. Exploring Rosiglitazone's Potential to Treat Alzheimer's Disease through the Modulation of Brain-Derived Neurotrophic Factor. BIOLOGY 2023; 12:1042. [PMID: 37508471 PMCID: PMC10376118 DOI: 10.3390/biology12071042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 06/24/2023] [Accepted: 07/21/2023] [Indexed: 07/30/2023]
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disorder that debilitates over 55 million individuals worldwide. Currently, treatments manage and alleviate its symptoms; however, there is still a need to find a therapy that prevents or halts disease progression. Since AD has been labeled as "type 3 diabetes" due to its similarity in pathological hallmarks, molecular pathways, and comorbidity with type 2 diabetes mellitus (T2DM), there is growing interest in using anti-diabetic drugs for its treatment. Rosiglitazone (RSG) is a peroxisome proliferator-activated receptor-gamma agonist that reduces hyperglycemia and hyperinsulinemia and improves insulin signaling. In cellular and rodent models of T2DM-associated cognitive decline and AD, RSG has been reported to improve cognitive impairment and reverse AD-like pathology; however, results from human clinical trials remain consistently unsuccessful. RSG has also been reported to modulate the expression of brain-derived neurotrophic factor (BDNF), a protein that regulates neuroplasticity and energy homeostasis and is implicated in both AD and T2DM. The present review investigates RSG's limitations and potential therapeutic benefits in pre-clinical models of AD through its modulation of BDNF expression.
Collapse
Affiliation(s)
- Mackayla L Nelson
- Department of Biomedical Sciences and Collaborative Specialization in Neuroscience Program, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Julia A Pfeifer
- Department of Biomedical Sciences and Collaborative Specialization in Neuroscience Program, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Jordan P Hickey
- Department of Biomedical Sciences and Collaborative Specialization in Neuroscience Program, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Andrila E Collins
- Department of Biomedical Sciences and Collaborative Specialization in Neuroscience Program, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Bettina E Kalisch
- Department of Biomedical Sciences and Collaborative Specialization in Neuroscience Program, University of Guelph, Guelph, ON N1G 2W1, Canada
| |
Collapse
|
3
|
Eiden LE, Hernández VS, Jiang SZ, Zhang L. Neuropeptides and small-molecule amine transmitters: cooperative signaling in the nervous system. Cell Mol Life Sci 2022; 79:492. [PMID: 35997826 PMCID: PMC11072502 DOI: 10.1007/s00018-022-04451-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 06/15/2022] [Accepted: 06/23/2022] [Indexed: 12/17/2022]
Abstract
Neuropeptides are expressed in cell-specific patterns throughout mammalian brain. Neuropeptide gene expression has been useful for clustering neurons by phenotype, based on single-cell transcriptomics, and for defining specific functional circuits throughout the brain. How neuropeptides function as first messengers in inter-neuronal communication, in cooperation with classical small-molecule amine transmitters (SMATs) is a current topic of systems neurobiology. Questions include how neuropeptides and SMATs cooperate in neurotransmission at the molecular, cellular and circuit levels; whether neuropeptides and SMATs always co-exist in neurons; where neuropeptides and SMATs are stored in the neuron, released from the neuron and acting, and at which receptors, after release; and how neuropeptides affect 'classical' transmitter function, both directly upon co-release, and indirectly, via long-term regulation of gene transcription and neuronal plasticity. Here, we review an extensive body of data about the distribution of neuropeptides and their receptors, their actions after neuronal release, and their function based on pharmacological and genetic loss- and gain-of-function experiments, that addresses these questions, fundamental to understanding brain function, and development of neuropeptide-based, and potentially combinatorial peptide/SMAT-based, neurotherapeutics.
Collapse
Affiliation(s)
- Lee E Eiden
- Section On Molecular Neuroscience, National Institute of Mental Health, Intramural Research Program, National Institutes of Health, 49 Convent Drive, Room 5A38, Bethesda, MD, 20892, USA.
| | - Vito S Hernández
- Department of Physiology, School of Medicine, National Autonomous University of Mexico, Mexico City, Mexico
| | - Sunny Z Jiang
- Section On Molecular Neuroscience, National Institute of Mental Health, Intramural Research Program, National Institutes of Health, 49 Convent Drive, Room 5A38, Bethesda, MD, 20892, USA
| | - Limei Zhang
- Department of Physiology, School of Medicine, National Autonomous University of Mexico, Mexico City, Mexico.
| |
Collapse
|
4
|
Liu Y, Zhang Y, Sun Y, Ding F. A buried glutamate in the cross-β core renders β-endorphin fibrils reversible. NANOSCALE 2021; 13:19593-19603. [PMID: 34812835 PMCID: PMC8674924 DOI: 10.1039/d1nr05679d] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Functional amyloids are abundant in living organisms from prokaryotes to eukaryotes playing diverse biological roles. In contrast to the irreversible aggregation of most known pathological amyloids, we postulate that naturally-occurring functional amyloids are reversible under evolutionary pressure to be able to modulate the fibrillization process, reuse the composite peptides, or perform their biological functions. β-Endorphin, an endogenous opioid peptide hormone, forms such kinds of reversible amyloid fibrils in secretory granules for efficient storage and returns to the functional state of monomers upon release into the blood. The environmental change between low pH in secretory granules and neutral pH in extracellular spaces is believed to drive the reversible fibrillization of β-endorphin. Here, we investigate the critical role of a buried glutamate, Glu8, in the pH-responsive disassembly of β-endorphin fibrils using all-atom molecular dynamics simulations along with structure-based pKa prediction. The fibril was stable at pH 5.5 or lower with all the buried Glu8 residues protonated and neutrally charged. After switching to neutral pH, the Glu8 residues of peptides at the outer layers of the ordered fibrils became deprotonated due to partial solvent exposure, causing sheet-to-coil conformational changes and subsequent exposure of adjacent Glu8 residues in the inner chains. Via iterative deprotonation of Glu8 and induced structural disruption, all Glu8 residues would be progressively deprotonated. Electrostatic repulsion between deprotonated Glu8 residues along with their high solvation tendency disrupted the hydrogen bonding between the β1 strands and increased the solvent exposure of those otherwise buried residues in the cross-β core. Overall, our computational study reveals that the strategic positioning of ionizable residues into the cross-β core is a potential approach for designing reversible amyloid fibrils as pH-responsive smart bio-nanomaterials.
Collapse
Affiliation(s)
- Yuying Liu
- School of Physical Science and Technology, Ningbo University, Ningbo 315211, China
| | - Yu Zhang
- School of Physical Science and Technology, Ningbo University, Ningbo 315211, China
| | - Yunxiang Sun
- School of Physical Science and Technology, Ningbo University, Ningbo 315211, China
- Department of Physics and Astronomy, Clemson University, Clemson, South Carolina 29634, USA.
| | - Feng Ding
- Department of Physics and Astronomy, Clemson University, Clemson, South Carolina 29634, USA.
| |
Collapse
|
5
|
Brown A, Török M. Functional amyloids in the human body. Bioorg Med Chem Lett 2021; 40:127914. [PMID: 33691165 DOI: 10.1016/j.bmcl.2021.127914] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 02/20/2021] [Accepted: 02/23/2021] [Indexed: 11/18/2022]
Abstract
Amyloids have long been associated with a variety of human degenerative diseases. Discoveries indicate, however, that there are several amyloids that serve functional roles in the human body. These amyloids are involved in a variety of biological processes ranging from storage of peptide hormones to necroptosis of cells. Additionally, there are distinct differences between toxic amyloids and their functional counterparts including kinetics of assembly/disassembly and structural features. This digest article surveys the biological roles of functional amyloids found in the human body, key differences between functional and toxic amyloids, and potential therapeutic applications.
Collapse
Affiliation(s)
- Amy Brown
- Department of Chemistry, University of Massachusetts Boston, 100 Morrissey Blvd., Boston, MA 02125, USA
| | - Marianna Török
- Department of Chemistry, University of Massachusetts Boston, 100 Morrissey Blvd., Boston, MA 02125, USA.
| |
Collapse
|
6
|
Maeda Y, Kudo S, Tsushima K, Sato E, Kubota C, Kayamori A, Bochimoto H, Koga D, Torii S, Gomi H, Watanabe T, Hosaka M. Impaired Processing of Prohormones in Secretogranin III-Null Mice Causes Maladaptation to an Inadequate Diet and Stress. Endocrinology 2018; 159:1213-1227. [PMID: 29281094 DOI: 10.1210/en.2017-00636] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2017] [Accepted: 12/15/2017] [Indexed: 11/19/2022]
Abstract
Secretogranin III (SgIII), a member of the granin family, binds both to another granin, chromogranin A (CgA), and to a cholesterol-rich membrane that is destined for secretory granules (SGs). The knockdown of SgIII in adrenocorticotropic hormone (ACTH)-producing AtT-20 cells largely impairs the regulated secretion of CgA and ACTH. To clarify the physiological roles of SgIII in vivo, we analyzed hormone secretion and SG biogenesis in newly established SgIII-knockout (KO) mice. Although the SgIII-KO mice were viable and fertile and exhibited no overt abnormalities under ordinary rearing conditions, a high-fat/high-sucrose diet caused pronounced obesity in the mice. Furthermore, in the SgIII-KO mice compared with wild-type (WT) mice, the stimulated secretion of active insulin decreased substantially, whereas the storage of proinsulin increased in the islets. The plasma ACTH was also less elevated in the SgIII-KO mice than in the WT mice after chronic restraint stress, whereas the storage level of the precursor proopiomelanocortin in the pituitary gland was somewhat increased. These findings suggest that the lack of SgIII causes maladaptation of endocrine cells to an inadequate diet and stress by impairing the proteolytic conversion of prohormones in SGs, whereas SG biogenesis and the basal secretion of peptide hormones under ordinary conditions are ensured by the compensatory upregulation of other residual granins or factors.
Collapse
Affiliation(s)
- Yoshinori Maeda
- Department of Biotechnology, Laboratory of Molecular Life Sciences, Akita Prefectural University, Akita, Japan
| | - Saki Kudo
- Department of Biotechnology, Laboratory of Molecular Life Sciences, Akita Prefectural University, Akita, Japan
| | - Ken Tsushima
- Department of Biotechnology, Laboratory of Molecular Life Sciences, Akita Prefectural University, Akita, Japan
| | - Eri Sato
- Department of Biotechnology, Laboratory of Molecular Life Sciences, Akita Prefectural University, Akita, Japan
| | - Chisato Kubota
- Biosignal Research Center, Institute for Molecular and Cellular Regulation, Gunma University, Maebashi, Japan
- Research Fellow of Japan Society for the Promotion of Science, Tokyo, Japan
| | - Aika Kayamori
- Department of Biotechnology, Laboratory of Molecular Life Sciences, Akita Prefectural University, Akita, Japan
| | - Hiroki Bochimoto
- Health Care Administration Center, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Japan
| | - Daisuke Koga
- Department of Microscopic Anatomy and Cell Biology, Asahikawa Medical University, Asahikawa, Japan
| | - Seiji Torii
- Biosignal Research Center, Institute for Molecular and Cellular Regulation, Gunma University, Maebashi, Japan
| | - Hiroshi Gomi
- Department of Veterinary Anatomy, College of Bioresource Sciences, Nihon University, Fujisawa, Japan
| | - Tsuyoshi Watanabe
- Department of Microscopic Anatomy and Cell Biology, Asahikawa Medical University, Asahikawa, Japan
| | - Masahiro Hosaka
- Department of Biotechnology, Laboratory of Molecular Life Sciences, Akita Prefectural University, Akita, Japan
| |
Collapse
|
7
|
Hutchinson JA, Burholt S, Hamley IW. Peptide hormones and lipopeptides: from self-assembly to therapeutic applications. J Pept Sci 2017; 23:82-94. [PMID: 28127868 PMCID: PMC5324658 DOI: 10.1002/psc.2954] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Revised: 11/24/2016] [Accepted: 11/27/2016] [Indexed: 12/18/2022]
Abstract
This review describes the properties and activities of lipopeptides and peptide hormones and how the lipidation of peptide hormones could potentially produce therapeutic agents combating some of the most prevalent diseases and conditions. The self-assembly of these types of molecules is outlined, and how this can impact on bioactivity. Peptide hormones specific to the uptake of food and produced in the gastrointestinal tract are discussed in detail. The advantages of lipidated peptide hormones over natural peptide hormones are summarised, in terms of stability and renal clearance, with potential application as therapeutic agents. © 2017 The Authors Journal of Peptide Science published by European Peptide Society and John Wiley & Sons Ltd.
Collapse
Affiliation(s)
- J A Hutchinson
- Department of Chemistry, University of Reading, Whiteknights, Reading, RG6 6AD, UK
| | - S Burholt
- Department of Chemistry, University of Reading, Whiteknights, Reading, RG6 6AD, UK
| | - I W Hamley
- Department of Chemistry, University of Reading, Whiteknights, Reading, RG6 6AD, UK
| |
Collapse
|
8
|
Seuring C, Gath J, Verasdonck J, Cadalbert R, Rivier J, Böckmann A, Meier BH, Riek R. Solid-state NMR sequential assignment of the β-endorphin peptide in its amyloid form. BIOMOLECULAR NMR ASSIGNMENTS 2016; 10:259-268. [PMID: 27165576 DOI: 10.1007/s12104-016-9681-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2016] [Accepted: 04/12/2016] [Indexed: 06/05/2023]
Abstract
Insights into the three-dimensional structure of hormone fibrils are crucial for a detailed understanding of how an amyloid structure allows the storage of hormones in secretory vesicles prior to hormone secretion into the blood stream. As an example for various hormone amyloids, we have studied the endogenous opioid neuropeptide β-endorphin in one of its fibril forms. We have achieved the sequential assignment of the chemical shifts of the backbone and side-chain heavy atoms of the fibril. The secondary chemical shift analysis revealed that the β-endorphin peptide adopts three β-strands in its fibril state. This finding fosters the amyloid nature of a hormone at the atomic level.
Collapse
Affiliation(s)
- Carolin Seuring
- Laboratory of Physical Chemistry, ETH Zürich, Wolfgang-Pauli-Strasse 10, 8093, Zurich, Switzerland
| | - Julia Gath
- Laboratory of Physical Chemistry, ETH Zürich, Wolfgang-Pauli-Strasse 10, 8093, Zurich, Switzerland
| | - Joeri Verasdonck
- Laboratory of Physical Chemistry, ETH Zürich, Wolfgang-Pauli-Strasse 10, 8093, Zurich, Switzerland
| | - Riccardo Cadalbert
- Laboratory of Physical Chemistry, ETH Zürich, Wolfgang-Pauli-Strasse 10, 8093, Zurich, Switzerland
| | - Jean Rivier
- Structural Biology Laboratory, The Salk Institute, 10010 N Torrey Pines Road, La Jolla, CA, 92037, USA
| | - Anja Böckmann
- Institut de Biologie et Chimie des Protéines, UMR 5086 CNRS, Université de Lyon 1, 7 passage du Vercors, 69367, Lyon, France
| | - Beat H Meier
- Laboratory of Physical Chemistry, ETH Zürich, Wolfgang-Pauli-Strasse 10, 8093, Zurich, Switzerland
| | - Roland Riek
- Laboratory of Physical Chemistry, ETH Zürich, Wolfgang-Pauli-Strasse 10, 8093, Zurich, Switzerland.
- Structural Biology Laboratory, The Salk Institute, 10010 N Torrey Pines Road, La Jolla, CA, 92037, USA.
| |
Collapse
|
9
|
Nespovitaya N, Gath J, Barylyuk K, Seuring C, Meier BH, Riek R. Dynamic Assembly and Disassembly of Functional β-Endorphin Amyloid Fibrils. J Am Chem Soc 2016; 138:846-56. [DOI: 10.1021/jacs.5b08694] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Nadezhda Nespovitaya
- Laboratory
of Physical Chemistry, ETH Zurich, Vladimir-Prelog-Weg 2, 8093 Zurich, Switzerland
| | - Julia Gath
- Laboratory
of Physical Chemistry, ETH Zurich, Vladimir-Prelog-Weg 2, 8093 Zurich, Switzerland
| | - Konstantin Barylyuk
- Laboratory
of Organic Chemistry, ETH Zurich, Vladimir-Prelog-Weg 3, 8093 Zurich, Switzerland
| | - Carolin Seuring
- Laboratory
of Physical Chemistry, ETH Zurich, Vladimir-Prelog-Weg 2, 8093 Zurich, Switzerland
| | - Beat H. Meier
- Laboratory
of Physical Chemistry, ETH Zurich, Vladimir-Prelog-Weg 2, 8093 Zurich, Switzerland
| | - Roland Riek
- Laboratory
of Physical Chemistry, ETH Zurich, Vladimir-Prelog-Weg 2, 8093 Zurich, Switzerland
| |
Collapse
|
10
|
Miletta MC, Schöni MH, Kernland K, Mullis PE, Petkovic V. The role of zinc dynamics in growth hormone secretion. Horm Res Paediatr 2014; 80:381-9. [PMID: 24296719 DOI: 10.1159/000355408] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2013] [Accepted: 07/17/2013] [Indexed: 11/19/2022] Open
Abstract
Human growth hormone (GH) causes a variety of physiological and metabolic effects in humans and plays a pivotal role in postnatal growth. In somatotroph cells of the anterior pituitary, GH is stored in concentrated forms in secretory granules to be rapidly released upon GH-releasing hormone stimulation. During the process of secretory granule biogenesis, self-association of GH occurs in the compartments of the early secretory pathway (endoplasmic reticulum and Golgi complex). Since this process is greatly facilitated by the presence of zinc ions, it is of importance to understand the potential role of zinc transporters that participate in the fine-tuning of zinc homeostasis and dynamics, particularly in the early secretory pathway. Thus, the role of zinc transporters in supplying the secretory pathway with the sufficient amount of zinc required for the biogenesis of GH-containing secretory granules is essential for normal secretion. This report, illustrated by a clinical case report on transient neonatal zinc deficiency, focuses on the role of zinc in GH storage in the secretory granules and highlights the role of specific zinc transporters in the early secretory pathway. © 2013 S. Karger AG, Basel.
Collapse
Affiliation(s)
- Maria Consolata Miletta
- Division of Paediatric Endocrinology, Diabetology and Metabolism, Department of Clinical Research, University Children's Hospital, Bern, Switzerland
| | | | | | | | | |
Collapse
|
11
|
Lipovšek S, Janžekovič F, Leitinger G, Rupnik MS. Rab3a ablation related changes in morphology of secretory vesicles in major endocrine pancreatic cells, pituitary melanotroph cells and adrenal gland chromaffin cells in mice. Gen Comp Endocrinol 2013; 185:67-79. [PMID: 23399968 DOI: 10.1016/j.ygcen.2013.01.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2012] [Revised: 01/02/2013] [Accepted: 01/09/2013] [Indexed: 01/21/2023]
Abstract
In this work we have compared the ultrastructural characteristics of major pancreatic endocrine cells, pituitary melanotrophs and adrenal chromaffin cells in the normal mouse strain (wild type, WT) and mice with a known secretory deficit, the Rab3a knockout strain (Rab3a KO). For this purpose, pancreata, pituitary glands and adrenal glands from the Rab3a KO and from the WT mice were analysed, using conventional transmission electron microscopy (TEM). In order to assess the significance of the presence of Rab3a proteins in the relevant cells, we focused primarily on their secretory vesicle morphology and distribution. Our results showed a comparable general morphology in Rab3a KO and WT in all assessed endocrine cell types. In all studied cell types, the distribution of secretory granules along the plasma membrane (number of docked and almost-docked vesicles) was comparable between Rab3a KO and WT mice. Specific differences were found in the diameters of their secretory vesicles, diameters of their electron-dense cores and the presence of autophagic structures in the cells of Rab3A KO mice only. Occasionally, individual electron-dense round vesicles were present inside autophagosome-like structures; these were possibly secretory vesicles or their remnants. The differences found in the diameters of the secretory vesicles confirm the key role of Rab3a proteins in controlling the balance between secretory vesicle biogenesis and degradation, and suggest that the ablation of this protein probably changes the nature of the reservoir of secretory vesicles available for regulated exocytosis.
Collapse
Affiliation(s)
- Saška Lipovšek
- Institute of Physiology, Faculty of Medicine, University of Maribor, Slomškov trg 15, SI-2000 Maribor, Slovenia.
| | | | | | | |
Collapse
|
12
|
Sun M, Watanabe T, Bochimoto H, Sakai Y, Torii S, Takeuchi T, Hosaka M. Multiple sorting systems for secretory granules ensure the regulated secretion of peptide hormones. Traffic 2012; 14:205-18. [PMID: 23171199 DOI: 10.1111/tra.12029] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2012] [Revised: 11/19/2012] [Accepted: 11/21/2012] [Indexed: 01/13/2023]
Abstract
Prior to secretion, regulated peptide hormones are selectively sorted to secretory granules (SGs) at the trans-Golgi network (TGN) in endocrine cells. Secretogranin III (SgIII) appears to facilitate SG sorting process by tethering of protein aggregates containing chromogranin A (CgA) and peptide hormones to the cholesterol-rich SG membrane (SGM). Here, we evaluated the role of SgIII in SG sorting in AtT-20 cells transfected with small interfering RNA targeting SgIII. In the SgIII-knockdown cells, the intracellular retention of CgA was greatly impaired, and only a trace amount of CgA was localized within the vacuoles formed in the TGN, confirming the significance of SgIII in both the tethering of CgA-containing aggregates and the establishment of the proper SG morphology. Although the intracellular retention of proopiomelanocortin (POMC) was considerably impaired in SgIII-knockdown cells, residual adrenocorticotropic hormone (ACTH)/POMC was still localized to some few remaining SGs together with another granin protein, secretogranin II (SgII), and was secreted in a regulated manner. Biochemical analyses indicated that SgII bound directly to the SGM in a cholesterol-dependent manner and was able to retain the aggregated form of POMC, revealing a latent redundancy in the SG sorting and retention mechanisms, that ensures the regulated secretion of bioactive peptides.
Collapse
Affiliation(s)
- Meng Sun
- Department of Molecular Medicine, Institute for Molecular and Cellular Regulation, Gunma University, Maebashi, 371-8512, Japan
| | | | | | | | | | | | | |
Collapse
|
13
|
TBC-8, a putative RAB-2 GAP, regulates dense core vesicle maturation in Caenorhabditis elegans. PLoS Genet 2012; 8:e1002722. [PMID: 22654674 PMCID: PMC3359978 DOI: 10.1371/journal.pgen.1002722] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2011] [Accepted: 04/04/2012] [Indexed: 02/05/2023] Open
Abstract
Dense core vesicles (DCVs) are thought to be generated at the late Golgi apparatus as immature DCVs, which subsequently undergo a maturation process through clathrin-mediated membrane remodeling events. This maturation process is required for efficient processing of neuropeptides within DCVs and for removal of factors that would otherwise interfere with DCV release. Previously, we have shown that the GTPase, RAB-2, and its effector, RIC-19, are involved in DCV maturation in Caenorhabditis elegans motoneurons. In rab-2 mutants, specific cargo is lost from maturing DCVs and missorted into the endosomal/lysosomal degradation route. Cargo loss could be prevented by blocking endosomal delivery. This suggests that RAB-2 is involved in retention of DCV components during the sorting process at the Golgi-endosomal interface. To understand how RAB-2 activity is regulated at the Golgi, we screened for RAB-2-specific GTPase activating proteins (GAPs). We identified a potential RAB-2 GAP, TBC-8, which is exclusively expressed in neurons and which, when depleted, shows similar DCV maturation defects as rab-2 mutants. We could demonstrate that RAB-2 binds to its putative GAP, TBC-8. Interestingly, TBC-8 also binds to the RAB-2 effector, RIC-19. This interaction appears to be conserved as TBC-8 also interacted with the human ortholog of RIC-19, ICA69. Therefore, we propose that a dynamic ON/OFF cycling of RAB-2 at the Golgi induced by the GAP/effector complex is required for proper DCV maturation.
Collapse
|
14
|
Abstract
Amyloids are stable, β-sheet-rich protein/peptides aggregates with 2–15 nm diameter and few micrometers long. It is originally associated with many human diseases such as Alzheimer's, Parkinson's and prion diseases. Amyloids are resistant to enzyme degradation, temperature changes and wide ranges of pH. Although, amyloids are hard and their stiffness is comparable to steel, a constant recycling of monomer occur inside the amyloid fibrils. It grows in a nucleation dependent polymerization manner by recruiting native soluble protein and by converting them to amyloid. These extraordinary physical properties make amyloids attractive for nanotechnological applications. Some amyloid fibrils have also evolved to perform native biological functions (functional amyloid) of the host organism. Functional amyloids are present in mammals such as amyloids of pMel17 and pituitary hormones, where they help in skin pigmentation and hormone storage, respectively. Here, the progress of utilizing amyloid fibrils for nanobiotechnological applications with particular emphasis on the recent studies that amyloid could be utilized for the formulation of peptide/protein drugs depot and how secretory cells uses amyloid for hormone storage will be reviewed.
Collapse
Affiliation(s)
- SAMIR K. MAJI
- Department of Biosciences and Bioengineering, IIT Bombay, Powai, Mumbai 400076, India
| |
Collapse
|
15
|
Vázquez-Martínez R, Díaz-Ruiz A, Almabouada F, Rabanal-Ruiz Y, Gracia-Navarro F, Malagón MM. Revisiting the regulated secretory pathway: from frogs to human. Gen Comp Endocrinol 2012; 175:1-9. [PMID: 21907200 DOI: 10.1016/j.ygcen.2011.08.017] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2011] [Revised: 08/16/2011] [Accepted: 08/20/2011] [Indexed: 01/01/2023]
Abstract
The regulated secretory pathway is a hallmark of endocrine and neuroendocrine cells. This process comprises different sequential steps, including ER-associated protein synthesis, ER-to-Golgi protein transport, Golgi-associated posttranslational modification, sorting and packing of secretory proteins into carrier granules, cytoskeleton-based granule transport towards the plasma membrane and tethering, docking and fusion of granules with specialized releasing zones in the plasma membrane. Each one of these steps is tightly regulated by a large number of factors that function in a spatially and temporarily coordinated fashion. During the past three decades, much effort has been devoted to characterize the precise role of the yet-known proteins participating in the different steps of this process and to identify new regulatory factors in order to obtain a unifying picture of the secretory pathway. In spite of this and given the enormous complexity of the process, certain steps are not fully understood yet and many players remain to be identified. In this review, we offer a summary of the current knowledge on the main molecular mechanisms that govern and ensure the correct release of secretory proteins. In addition, we have integrated the advance on the field made possible by studies carried out in non-mammalian vertebrates, which, although not very numerous, have substantially contributed to acquire a mechanistic understanding of the regulated secretory pathway.
Collapse
Affiliation(s)
- Rafael Vázquez-Martínez
- Department of Cell Biology, Physiology and Immunology, Instituto Maimónides de Investigación Biomédica, University of Córdoba, 14014-Córdoba, Spain.
| | | | | | | | | | | |
Collapse
|
16
|
Díaz-Vera J, Camacho M, Machado JD, Domínguez N, Montesinos MS, Hernández-Fernaud JR, Luján R, Borges R. Chromogranins A and B are key proteins in amine accumulation, but the catecholamine secretory pathway is conserved without them. FASEB J 2011; 26:430-8. [PMID: 21990378 DOI: 10.1096/fj.11-181941] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Chromogranins are the main soluble proteins in the large dense core secretory vesicles (LDCVs) found in aminergic neurons and chromaffin cells. We recently demonstrated that chromogranins A and B each regulate the concentration of adrenaline in chromaffin granules and its exocytosis. Here we have further studied the role played by these proteins by generating mice lacking both chromogranins. Surprisingly, these animals are both viable and fertile. Although chromogranins are thought to be essential for their biogenesis, LDCVs were evident in these mice. These vesicles do have a somewhat atypical appearance and larger size. Despite their increased size, single-cell amperometry recordings from chromaffin cells showed that the amine content in these vesicles is reduced by half. These data demonstrate that although chromogranins regulate the amine concentration in LDCVs, they are not completely essential, and other proteins unrelated to neurosecretion, such as fibrinogen, might compensate for their loss to ensure that vesicles are generated and the secretory pathway conserved.
Collapse
Affiliation(s)
- Jésica Díaz-Vera
- Unidad de Farmacología, Universidad de La Laguna, La Laguna, Tenerife, Spain
| | | | | | | | | | | | | | | |
Collapse
|
17
|
Beers MF, Hawkins A, Shuman H, Zhao M, Newitt JL, Maguire JA, Ding W, Mulugeta S. A novel conserved targeting motif found in ABCA transporters mediates trafficking to early post-Golgi compartments. J Lipid Res 2011; 52:1471-82. [PMID: 21586796 DOI: 10.1194/jlr.m013284] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The ATP binding cassette, class A (ABCA) proteins are homologous polytopic transmembrane transporters that function as lipid pumps at distinct subcellular sites in a variety of cells. Located within the N terminus of these transporters, there exists a highly conserved xLxxKN motif of unknown function. To define its role, human ABCA3 was employed as a primary model representing ABCA transporters, while mouse ABCA1 was utilized to support major findings. Transfection studies showed colocalization of both transporters with surfactant protein C (SP-C), a marker peptide for successful protein targeting to lysosomal-like organelles. In contrast, alanine mutation of xLxxKN resulted in endoplasmic reticulum retention. As proof of principle, swapping xLxxKN for the known lysosomal targeting motif of SP-C resulted in post-Golgi targeting of the SP-C chimera. However, these products failed to reach their terminal processing compartments, suggesting that the xLxxKN motif only serves as a Golgi exit signal. We propose a model whereby an N-terminal signal sequence, xLxxKN, directs ABCA transporters to a post-Golgi vesicular sorting station where additional signals may be required for selective delivery of individual transporters to final subcellular destinations.
Collapse
Affiliation(s)
- Michael F Beers
- Department of Medicine, Pulmonary, Allergy, and Critical Care Division, University of Pennsylvania, Philadelphia, PA, USA
| | | | | | | | | | | | | | | |
Collapse
|
18
|
Zhang Z, Wu Y, Wang Z, Dunning FM, Rehfuss J, Ramanan D, Chapman ER, Jackson MB. Release mode of large and small dense-core vesicles specified by different synaptotagmin isoforms in PC12 cells. Mol Biol Cell 2011; 22:2324-36. [PMID: 21551071 PMCID: PMC3128534 DOI: 10.1091/mbc.e11-02-0159] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Different synaptotagmin isoforms (syt I, VII, and IX) sort to populations of dense-core vesicles with different sizes. These isoforms differ in their sensitivities to divalent cations and trigger different modes of exocytosis. Exocytosis triggered by these isoforms also differs in its sensitivity to inhibition by another isoform, syt IV. Many cells release multiple substances in different proportions according to the specific character of a stimulus. PC12 cells, a model neuroendocrine cell line, express multiple isoforms of the exocytotic Ca2+ sensor synaptotagmin. We show that these isoforms sort to populations of dense-core vesicles that differ in size. These synaptotagmins differ in their Ca2+ sensitivities, their preference for full fusion or kiss-and-run, and their sensitivity to inhibition by synaptotagmin IV. In PC12 cells, vesicles that harbor these different synaptotagmin isoforms can be preferentially triggered to fuse by different forms of stimulation. The mode of fusion is specified by the synaptotagmin isoform activated, and because kiss-and-run exocytosis can filter small molecules through a size-limiting fusion pore, the activation of isoforms that favor kiss-and-run will select smaller molecules over larger molecules packaged in the same vesicle. Thus synaptotagmin isoforms can provide multiple levels of control in the release of different molecules from the same cell.
Collapse
Affiliation(s)
- Zhen Zhang
- Department of Physiology, University of Wisconsin School of Medical and Public Health, Madison, WI 53706, USA
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Vasauskas AA, Hubler TR, Mahanic C, Gibson S, Kahn AG, Scammell JG. Regulation and distribution of squirrel monkey chorionic gonadotropin and secretogranin II in the pituitary. Gen Comp Endocrinol 2011; 170:509-13. [PMID: 21095191 PMCID: PMC3022110 DOI: 10.1016/j.ygcen.2010.11.010] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2010] [Revised: 10/26/2010] [Accepted: 11/12/2010] [Indexed: 01/13/2023]
Abstract
Secretogranin II (SgII) is a member of the granin family of proteins found in neuroendocrine and endocrine cells. The expression and storage of SgII in the pituitary gland of Old World primates and rodents have been linked with those of luteinizing hormone (LH). However, New World primates including squirrel monkeys do not express LH in the pituitary gland, but rather CG is expressed. If CG takes on the luteotropic role of LH in New World primates, SgII may be associated with the expression and storage of CG in the pituitary gland. The goal of this study was to evaluate the regulation and distribution of CG and SgII in the squirrel monkey. A DNA fragment containing approximately 750 bp of squirrel monkey SgII promoter was isolated from genomic DNA and found to contain a cyclic-AMP response element that is also present in the human SgII promoter and important for GnRH responsiveness. The squirrel monkey and human SgII promoters were similarly activated by GnRH in luciferase reporter gene assays in LβT2 cells. Double immunofluorescence microscopy demonstrated close association of SgII and CG in gonadotrophs of squirrel monkey pituitary gland. These results suggest that CG and SgII have a similar intercellular distribution and are coregulated in squirrel monkey pituitary gland.
Collapse
Affiliation(s)
- Audrey A. Vasauskas
- Department of Comparative Medicine, University of South Alabama College of Medicine, Mobile, Alabama 36688
- Department of Pharmacology, University of South Alabama College of Medicine, Mobile, Alabama 36688
| | - Tina R. Hubler
- Department of Biology, University of North Alabama, Florence, Alabama 35632
| | - Christina Mahanic
- Department of Comparative Medicine, University of South Alabama College of Medicine, Mobile, Alabama 36688
- Department of Pharmacology, University of South Alabama College of Medicine, Mobile, Alabama 36688
| | - Susan Gibson
- Department of Comparative Medicine, University of South Alabama College of Medicine, Mobile, Alabama 36688
| | - Andrea G. Kahn
- Department of Pathology, University of South Alabama Medical Center, Mobile, Alabama 36617
| | - Jonathan G. Scammell
- Department of Comparative Medicine, University of South Alabama College of Medicine, Mobile, Alabama 36688
- Department of Pharmacology, University of South Alabama College of Medicine, Mobile, Alabama 36688
- Corresponding author: Jonathan G. Scammell, Ph.D., Department of Comparative Medicine, MSB 992, University of South Alabama, Mobile, Alabama 36688. Telephone: +1 251-460-6239,
| |
Collapse
|
20
|
Le Parc A, Leonil J, Chanat E. AlphaS1-casein, which is essential for efficient ER-to-Golgi casein transport, is also present in a tightly membrane-associated form. BMC Cell Biol 2010; 11:65. [PMID: 20704729 PMCID: PMC2928771 DOI: 10.1186/1471-2121-11-65] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2010] [Accepted: 08/12/2010] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Caseins, the main milk proteins, aggregate in the secretory pathway of mammary epithelial cells into large supramolecular structures, casein micelles. The role of individual caseins in this process and the mesostructure of the casein micelle are poorly known. RESULTS In this study, we investigate primary steps of casein micelle formation in rough endoplasmic reticulum-derived vesicles prepared from rat or goat mammary tissues. The majority of both alphaS1- and beta-casein which are cysteine-containing casein was dimeric in the endoplasmic reticulum. Saponin permeabilisation of microsomal membranes in physico-chemical conditions believed to conserve casein interactions demonstrated that rat immature beta-casein is weakly aggregated in the endoplasmic reticulum. In striking contrast, a large proportion of immature alphaS1-casein was recovered in permeabilised microsomes when incubated in conservative conditions. Furthermore, a substantial amount of alphaS1-casein remained associated with microsomal or post-ER membranes after saponin permeabilisation in non-conservative conditions or carbonate extraction at pH11, all in the presence of DTT. Finally, we show that protein dimerisation via disulfide bond is involved in the interaction of alphaS1-casein with membranes. CONCLUSIONS These experiments reveal for the first time the existence of a membrane-associated form of alphaS1-casein in the endoplasmic reticulum and in more distal compartments of the secretory pathway of mammary epithelial cells. Our data suggest that alphaS1-casein, which is required for efficient export of the other caseins from the endoplasmic reticulum, plays a key role in early steps of casein micelle biogenesis and casein transport in the secretory pathway.
Collapse
Affiliation(s)
- Annabelle Le Parc
- INRA, UR1196 Génomique et Physiologie de la Lactation, Domaine de Vilvert, F-78352 Jouy-en-Josas cedex, France
| | | | | |
Collapse
|
21
|
Regulation of the hypothalamic thyrotropin releasing hormone (TRH) neuron by neuronal and peripheral inputs. Front Neuroendocrinol 2010; 31:134-56. [PMID: 20074584 PMCID: PMC2849853 DOI: 10.1016/j.yfrne.2010.01.001] [Citation(s) in RCA: 109] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2009] [Revised: 12/29/2009] [Accepted: 01/06/2010] [Indexed: 12/29/2022]
Abstract
The hypothalamic-pituitary-thyroid (HPT) axis plays a critical role in mediating changes in metabolism and thermogenesis. Thus, the central regulation of the thyroid axis by Thyrotropin Releasing Hormone (TRH) neurons in the paraventricular nucleus of the hypothalamus (PVN) is of key importance for the normal function of the axis under different physiological conditions including cold stress and changes in nutritional status. Before the TRH peptide becomes biologically active, a series of tightly regulated processes occur including the proper folding of the prohormone for targeting to the secretory pathway, its post-translational processing, and targeting of the processed peptides to the secretory granules near the plasma membrane of the cell ready for secretion. Multiple inputs coming from the periphery or from neurons present in different areas of the brain including the hypothalamus are responsible for the activation or inhibition of the TRH neuron and in turn affect the output of TRH and the set point of the axis.
Collapse
|
22
|
Hosaka M, Watanabe T. Secretogranin III: a bridge between core hormone aggregates and the secretory granule membrane. Endocr J 2010; 57:275-86. [PMID: 20203425 DOI: 10.1507/endocrj.k10e-038] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Secretory granules in endocrine cells selectively store bioactive peptide hormones and amines, which are secreted in a regulated manner upon appropriate stimulation. In addition to bioactive substances, various proteins and lipids characteristic of secretory granules are likely recruited to a restricted space at the trans-Golgi Network (TGN), and the space then matures to the secretory granule. Although experimental findings so far have strongly suggested that aggregation- and receptor-mediated processes are essential for the formation of secretory granules, the putative link between these two processes remains to be clarified. Recently, secretogranin III (SgIII) has been identified as a specific binding protein for chromogranin A (CgA), a representative constituent of the core aggregate within secretory granules, and it was later revealed that SgIII can also bind to the cholesterol-rich membrane domain at the TGN. Based on its multifaceted binding properties, SgIII may act as a central player in the formation of cholesterol-rich membrane platforms. Upon these platforms, essential processes for secretory granule biogenesis coordinately occur; that is, selective recruitment of prohormones, processing and modifying of prohormones, and condensation of mature hormones as an aggregate. This review summarizes the findings and theoretical concepts on the issue to date and then focuses on the putative role of SgIII in secretory granule biogenesis in endocrine cells.
Collapse
Affiliation(s)
- Masahiro Hosaka
- Department of Molecular Medicine, Institute for Molecular and Cellular Regulation, Gunma University, Maebashi, Japan.
| | | |
Collapse
|
23
|
Zhang X, Bao L, Ma GQ. Sorting of neuropeptides and neuropeptide receptors into secretory pathways. Prog Neurobiol 2009; 90:276-83. [PMID: 19853638 DOI: 10.1016/j.pneurobio.2009.10.011] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2009] [Revised: 08/11/2009] [Accepted: 10/09/2009] [Indexed: 01/07/2023]
Abstract
There are two major secretory pathways in neurons, the regulated pathway and the constitutive pathway. Neuropeptides and other regulated secretory proteins are known to be sorted into large dense-core vesicles of the regulated pathway in the trans-Golgi network and are secreted upon stimulus-induced increases in intracellular Ca(2+). The newly synthesized cell surface receptors are usually sorted into microvesicles of the constitutive pathway and inserted into the plasma membrane by spontaneous exocytosis. Small-diameter sensory neurons in dorsal root ganglia and pheochromocytoma cells express neuropeptides (e.g., substance P) and several neuropeptide receptors including opioid receptors. The mu-opioid receptors are delivered to the cell surface through the constitutive pathway, whereas another type of opioid receptor, the delta-opioid receptor, is often found in the membrane of large dense-core vesicles and can be inserted into the plasma membrane when exocytosis occurs. Recent studies show that sequences with opposite electrical polarity within the prohormones of substance P are essential for their sorting into large dense-core vesicles. Moreover, the delta-opioid receptor is sorted into large dense-core vesicles by its interaction with protachykinin, a prohormone of substance P. These findings provide insight into the molecular mechanisms that determine the sorting and trafficking of neuropeptides and neuropeptide receptors in neurons.
Collapse
Affiliation(s)
- Xu Zhang
- Institute of Neuroscience and State Key Laboratory of Neuroscience, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, PR China.
| | | | | |
Collapse
|
24
|
Dominant-negative myosin Va impairs retrograde but not anterograde axonal transport of large dense core vesicles. Cell Mol Neurobiol 2009; 30:369-79. [PMID: 19787448 DOI: 10.1007/s10571-009-9459-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2009] [Accepted: 09/12/2009] [Indexed: 01/05/2023]
Abstract
Axonal transport of peptide and hormone-containing large dense core vesicles (LDCVs) is known to be a microtubule-dependent process. Here, we suggest a role for the actin-based motor protein myosin Va specifically in retrograde axonal transport of LDCVs. Using live-cell imaging of transfected hippocampal neurons grown in culture, we measured the speed, transport direction, and the number of LDCVs that were labeled with ectopically expressed neuropeptide Y fused to EGFP. Upon expression of a dominant-negative tail construct of myosin Va, a general reduction of movement in both dendrites and axons was observed. In axons, it was particularly interesting that the retrograde speed of LDCVs was significantly impaired, although anterograde transport remained unchanged. Moreover, particles labeled with the dominant-negative construct often moved in the retrograde direction but rarely in the anterograde direction. We suggest a model where myosin Va acts as an actin-dependent vesicle motor that facilitates retrograde axonal transport.
Collapse
|
25
|
Identification of rhoptry trafficking determinants and evidence for a novel sorting mechanism in the malaria parasite Plasmodium falciparum. PLoS Pathog 2009; 5:e1000328. [PMID: 19266084 PMCID: PMC2648313 DOI: 10.1371/journal.ppat.1000328] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2008] [Accepted: 02/04/2009] [Indexed: 01/15/2023] Open
Abstract
The rhoptry of the malaria parasite Plasmodium falciparum is an unusual secretory organelle that is thought to be related to secretory lysosomes in higher eukaryotes. Rhoptries contain an extensive collection of proteins that participate in host cell invasion and in the formation of the parasitophorous vacuole, but little is known about sorting signals required for rhoptry protein targeting. Using green fluorescent protein chimeras and in vitro pull-down assays, we performed an analysis of the signals required for trafficking of the rhoptry protein RAP1. We provide evidence that RAP1 is escorted to the rhoptry via an interaction with the glycosylphosphatidyl inositol-anchored rhoptry protein RAMA. Once within the rhoptry, RAP1 contains distinct signals for localisation within a sub-compartment of the organelle and subsequent transfer to the parasitophorous vacuole after invasion. This is the first detailed description of rhoptry trafficking signals in Plasmodium.
Collapse
|
26
|
Abstract
Exocrine, endocrine, and neuroendocrine cells store hormones and neuropeptides in secretory granules (SGs), which undergo regulated exocytosis in response to an appropriate stimulus. These cargo proteins are sorted at the trans-Golgi network into forming immature secretory granules (ISGs). ISGs undergo maturation while they are transported to and within the F-actin-rich cortex. This process includes homotypic fusion of ISGs, acidification of their lumen, processing, and aggregation of cargo proteins as well as removal of excess membrane and missorted cargo. The resulting mature secretory granules (MSGs) are stored in the F-actin-rich cell cortex, perhaps as segregated pools exhibiting specific responses to stimuli for regulated exocytosis. During the last decade our understanding of the maturation of ISGs advanced substantially. The use of biochemical approaches led to the identification of membrane molecules mechanistically involved in this process. Furthermore, live cell imaging in combination with fluorescently tagged marker proteins of SGs provided insights into the dynamics of maturing ISGs, and the functional implications of cytoskeletal elements and motor proteins.
Collapse
|
27
|
Ma GQ, Wang B, Wang HB, Wang Q, Bao L. Short elements with charged amino acids form clusters to sort protachykinin into large dense-core vesicles. Traffic 2008; 9:2165-79. [PMID: 18939957 DOI: 10.1111/j.1600-0854.2008.00836.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The sorting of neuropeptide tachykinins into large dense-core vesicles (LDCVs) is a key step in their regulated secretion from neurons. However, the sorting mechanism for protachykinin has not yet to be clearly resolved. In this study, we report that the clustered short elements with charged amino acids regulate the efficiency of protachykinin sorting into LDCVs. A truncation experiment showed that the propeptide and the mature peptide-containing sequence of protachykinin were sorted into LDCVs. These two regions exhibit a polarized distribution of charged amino acids. The LDCV localization of the propeptide was gradually decreased with an increasing number of neutral amino acids. Furthermore, the short element with four to five amino acids containing two charged residues was found to be a basic unit for LDCV sorting that enables regulated secretion. In the native propeptide sequence, these charged short elements were clustered to enhance the intermolecular aggregation by electrostatic interaction and produce a gradual and additive effect on LDCV sorting. The optimal conditions for intermolecular aggregation of protachykinin were at millimolar Ca(2+) concentrations and pH 5.5-6.0. These results demonstrate that the charged short elements are clustered such that they serve as aggregative signals and regulate the efficiency of protachykinin sorting into LDCVs. These findings reveal a novel mechanism for the sorting of neuropeptides into a regulated secretory pathway.
Collapse
Affiliation(s)
- Guo-Qiang Ma
- Laboratory of Molecular Cell Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 320 Yue Yang Road, Shanghai 200031, China
| | | | | | | | | |
Collapse
|
28
|
Park JJ, Loh YP. How peptide hormone vesicles are transported to the secretion site for exocytosis. Mol Endocrinol 2008; 22:2583-95. [PMID: 18669645 DOI: 10.1210/me.2008-0209] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Post-Golgi transport of peptide hormone-containing vesicles from the site of genesis at the trans-Golgi network to the release site at the plasma membrane is essential for activity-dependent hormone secretion to mediate various endocrinological functions. It is known that these vesicles are transported on microtubules to the proximity of the release site, and they are then loaded onto an actin/myosin system for distal transport through the actin cortex to just below the plasma membrane. The vesicles are then tethered to the plasma membrane, and a subpopulation of them are docked and primed to become the readily releasable pool. Cytoplasmic tails of vesicular transmembrane proteins, as well as many cytosolic proteins including adaptor proteins, motor proteins, and guanosine triphosphatases, are involved in vesicle budding, the anchoring of the vesicles, and the facilitation of movement along the transport systems. In addition, a set of cytosolic proteins is also necessary for tethering/docking of the vesicles to the plasma membrane. Many of these proteins have been identified from different types of (neuro)endocrine cells. Here, we summarize the proteins known to be involved in the mechanisms of sorting various cargo proteins into regulated secretory pathway hormone-containing vesicles, movement of these vesicles along microtubules and actin filaments, and their eventual tethering/docking to the plasma membrane for hormone secretion.
Collapse
Affiliation(s)
- Joshua J Park
- Section on Cellular Neurobiology, National Institute of Child Health and Human Development (NICHD), National Institutes of Health (NIH), Bethesda, Maryland 20892, USA
| | | |
Collapse
|
29
|
Han L, Suda M, Tsuzuki K, Wang R, Ohe Y, Hirai H, Watanabe T, Takeuchi T, Hosaka M. A large form of secretogranin III functions as a sorting receptor for chromogranin A aggregates in PC12 cells. Mol Endocrinol 2008; 22:1935-49. [PMID: 18483175 DOI: 10.1210/me.2008-0006] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Granin-family proteins, including chromogranin A and secretogranin III, are sorted to the secretory granules in neuroendocrine cells. We previously demonstrated that secretogranin III binds chromogranin A and targets it to the secretory granules in pituitary corticotrope-derived AtT-20 cells. However, secretogranin III has not been identified in adrenal chromaffin and PC12 cells, where chromogranin A is correctly sorted to the secretory granules. In this study, low levels of a large and noncleaved secretogranin III have been identified in PC12 cells and rat adrenal glands. Although the secretogranin III expression was limited in PC12 cells, when the FLAG-tagged secretogranin III lacking the secretory granule membrane-binding domain was expressed excessively, hemagglutinin-tagged chromogranin A was unable to target to the secretory granules at the tips and shifted to the constitutive secretory pathway. Secretogranin III was able to bind the aggregated form of chromogranin A, suggesting that a small quantity of secretogranin III is enough to carry a large quantity of chromogranin A. Furthermore, secretogranin III bound adrenomedullin, a major peptide hormone in chromaffin cells. Indeed, small interfering RNA-directed secretogranin III depletion impaired intracellular retention of chromogranin A and adrenomedullin, suggesting that they are constitutively released to the medium. We suggest that the sorting function of secretogranin III for chromogranin A is common in PC12 and chromaffin cells as well as in other endocrine cells, and a small amount of secretogranin III is able to sort chromogranin A aggregates together with adrenomedullin to secretory granules.
Collapse
Affiliation(s)
- Lu Han
- Department of Molecular Medicine, Institute for Molecular and Cellular Regulation, Gunma University, Maebashi 371-8512, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Perello M, Stuart R, Nillni EA. Prothyrotropin-releasing hormone targets its processing products to different vesicles of the secretory pathway. J Biol Chem 2008; 283:19936-47. [PMID: 18474603 DOI: 10.1074/jbc.m800732200] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Prothyrotropin-releasing hormone (pro-TRH) is initially cleaved by the prohormone convertase-1/3 (PC1/3) in the trans-Golgi network generating N- and C-terminal intermediate forms that are then packed into secretory vesicles. However, it is not known whether these peptides are differentially sorted within the secretory pathway. This is of key importance because the processing products of several prohormones fulfill different biological functions. Using AtT20 cells stably transfected with prepro-TRH cDNA, we found that two specific N- and C-terminal peptides were located in different vesicles. Furthermore, the C-terminal pro-TRH-derived peptides were more efficiently released in response to KCl and norepinephrine, a natural secretagogue of TRH. Similar sorting and secretion of N- and C-terminal peptides occurs in vivo. When we blocked the initial proteolytic processing by a mutagenic approach, the differential sorting and secretion of these peptides were prevented. In summary, our data show that pro-TRH-derived peptides are differentially sorted within the secretory pathway and that the initial cleavage in the trans-Golgi network is key to this process. This could be a common mechanism used by neuroendocrine cells to regulate independently the secretion of different bioactive peptides derived from the same gene product.
Collapse
Affiliation(s)
- Mario Perello
- Division of Endocrinology, Department of Medicine, The Warren Alpert Medical School of Brown University/Rhode Island Hospital, Providence, RI 02903, USA
| | | | | |
Collapse
|
31
|
Courel M, Vasquez MS, Hook VY, Mahata SK, Taupenot L. Sorting of the neuroendocrine secretory protein Secretogranin II into the regulated secretory pathway: role of N- and C-terminal alpha-helical domains. J Biol Chem 2008; 283:11807-22. [PMID: 18299326 DOI: 10.1074/jbc.m709832200] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Secretogranin II (SgII) belongs to the granin family of prohormones widely distributed in dense-core secretory granules (DCGs) of endocrine, neuroendocrine, and neuronal cells, including sympathoadrenal chromaffin cells. The mechanisms by which secretory proteins, and granins in particular, are sorted into the regulated secretory pathway are unsettled. We designed a strategy based on novel chimeric forms of human SgII fused to fluorescent (green fluorescent protein) or chemiluminescent (embryonic alkaline phosphatase) reporters to identify trafficking determinants mediating DCG targeting of SgII in sympathoadrenal cells. Three-dimensional deconvolution fluorescence microscopy and secretagogue-stimulated release studies demonstrate that SgII chimeras are correctly targeted to DCGs and released by exocytosis in PC12 and primary chromaffin cells. Results from a Golgi-retained mutant form of SgII suggest that sorting of SgII into DCGs depends on a saturable sorting machinery at the trans-Golgi/trans-Golgi network. Truncation analyses reveal the presence of DCG-targeting signals within both the N- and C-terminal regions of SgII, with the putative alpha-helix-containing SgII-(25-41) and SgII-(334-348) acting as sufficient, independent sorting domains. This study defines sequence features of SgII mediating vesicular targeting in sympathoadrenal cells and suggests a mechanism by which discrete domains of the molecule function in sorting, perhaps by virtue of a particular arrangement in tertiary structure and/or interaction with a specific component of the DCG membrane.
Collapse
Affiliation(s)
- Maïté Courel
- Department of Medicine, University of California at San Diego, La Jolla, California 92093-0838, USA
| | | | | | | | | |
Collapse
|
32
|
Díaz-Flores L, Gutiérrez R, Varela H, Valladares F, Alvarez-Argüelles H, Borges R. Histogenesis and morphofunctional characteristics of chromaffin cells. Acta Physiol (Oxf) 2008; 192:145-63. [PMID: 18021326 DOI: 10.1111/j.1748-1716.2007.01811.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
This article reviews the current status of research about the histogenesis and morphofunctional characteristics of chromaffin cells in the adrenal medulla. First, this study reports the selective migration, transcription and activation factors, and the morphological events of the chromaffin cell precursors during adrenal medulla development. Subsequently, the morphofunctional characteristics of adrenergic and non-adrenergic cells are considered, with particular reference to the characteristics of chromaffin granules and their biological steps, including their formation, traffic (storage, targeting and docking), exocytosis in the strict sense and recapture. Moreover, the relationship of chromaffin cells with other tissue components of the adrenal medulla is also revised, comprising the ganglion cells, sustentacular cells, nerves and connective-vascular tissue.
Collapse
Affiliation(s)
- L Díaz-Flores
- Department of Pathology and Histology, School of Medicine, La Laguna University, Canary Islands, Spain.
| | | | | | | | | | | |
Collapse
|
33
|
Origins of the regulated secretory pathway. THE GOLGI APPARATUS 2008. [PMCID: PMC7121582 DOI: 10.1007/978-3-211-76310-0_30] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Modes of transport of soluble (or luminal) secretory proteins synthesized in the endoplasmic reticulum (ER) could be divided into two groups. The socalled constitutive secretory pathway (CSP) is common to all eukaryotic cells, constantly delivering constitutive soluble secretory proteins (CSSPs) linked to the rate of protein synthesis but largely independent of external stimuli. In regulated secretion, protein is sorted from the Golgi into storage/secretory granules (SGs) whose contents are released when stimuli trigger their final fusion with the plasma membrane (Hannah et al. 1999).
Collapse
|
34
|
Bundgaard JR, Rehfeld JF. Distinct linkage between post-translational processing and differential secretion of progastrin derivatives in endocrine cells. J Biol Chem 2007; 283:4014-21. [PMID: 18057001 DOI: 10.1074/jbc.m707908200] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Prohormones often undergo extensive cellular processing prior to secretion. These post-translational processing events occur in organelles of the constitutive or regulated secretory pathway. The aim of this study was to examine the relationship between post-translational modifications and the secretory pathways taken by peptides derived from progastrin, the prohormone of gastrin, which in vivo is secreted by cells of the pyloric glands and stimulates the release of gastric acid. Targeting progastrin to compartments of the early secretory pathway shows that endoproteolytic processing is initiated in a pre-trans-Golgi network compartment of endocrine but not non-endocrine cells. The resulting N-terminal fragments of progastrin are secreted via the constitutive pathway, whereas endoproteolytically processed C-terminal fragments are secreted via the regulated or constitutive-like pathways. C-terminal fragments derived from progastrin differ in characteristic manners in levels and patterns of carboxyamidation and tyrosine sulfation in accordance with the secretory pathway taken. Point mutations introduced into a sorting motif disrupt these patterns, suggesting that differences in post-translational modifications are attributable to differential intracellular sorting of precursors. The results suggest a two-step sorting mechanism for progastrin leading to differential secretion of processed fragments via different secretory pathways.
Collapse
Affiliation(s)
- Jens R Bundgaard
- Department of Clinical Biochemistry, Rigshospitalet, University of Copenhagen, KB 3014, Copenhagen University Hospital, Blegdamsvej 9, Copenhagen DK-2100, Denmark.
| | | |
Collapse
|
35
|
Lim KC, Tyler CM, Lim ST, Giuliano R, Federoff HJ. Proteolytic processing of proNGF is necessary for mature NGF regulated secretion from neurons. Biochem Biophys Res Commun 2007; 361:599-604. [PMID: 17673176 DOI: 10.1016/j.bbrc.2007.07.039] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2007] [Accepted: 07/10/2007] [Indexed: 01/19/2023]
Abstract
Nerve growth factor mediates neuronal survival, synaptogenesis, and synaptic remodeling. We utilized primary hippocampal cultures to investigate the intrinsic motifs of proNGF that might contribute to its processing and subsequent allocation to a regulated versus constitutive secretory pathway. The addition of a carboxypeptidase E motif to proNGF did not alter the secretion of NGF. However, mutagenesis of proNGF proteolytic processing sites had significant effects on the final NGF product and its secretion. The furin recognition site (R118-S-K-R121) is essential for the proper processing of proNGF to its 13.5kDa mature product and mutating the furin site exposed an alternative processing site resulting in an intermediate NGF product of approximately 22kDa. Finally, inhibiting the processing of proNGF abolished regulated secretion of the resulting NGF product. These experiments demonstrate that hippocampal neurons harbor multiple pathways to process proNGF of which the furin consensus sequence is the preferred processing site.
Collapse
Affiliation(s)
- Kuei-Cheng Lim
- Interdepartmental Graduate Program in Neuroscience, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA
| | | | | | | | | |
Collapse
|
36
|
Periz J, Gill AC, Hunt L, Brown P, Tomley FM. The Microneme Proteins EtMIC4 and EtMIC5 of Eimeria tenella Form a Novel, Ultra-high Molecular Mass Protein Complex That Binds Target Host Cells. J Biol Chem 2007; 282:16891-8. [PMID: 17426025 DOI: 10.1074/jbc.m702407200] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Eimeria tenella, in common with other parasitic protozoa of the phylum Apicomplexa, invades host cells using an actinomyosin-powered "glideosome" complex and requires the secretion of adhesive proteins from the microneme organelles onto the parasite surface. Microneme proteins of E. tenella include EtMIC4, a transmembrane protein that has multiple thrombospondin type I domains and calcium-binding epidermal growth factor-like domains in its extracellular domain, and EtMIC5, a soluble protein composed of 11 tandemly repeated domains that belong to the plasminogen-apple-nematode superfamily. We show here that EtMIC4 and EtMIC5 interact to form an oligomeric, ultrahigh molecular mass protein complex. The complex was purified from lysed parasites by non-denaturing techniques, and the stoichiometry was shown to be [EtMIC4](2):[EtMIC5](1), with an octamer of EtMIC4 bound non-covalently to a tetramer of EtMIC5. The complex is formed within the parasite secretory pathway and is maintained after secretion onto the surface of the parasite. The purified complex binds to a number of epithelial cell lines in culture. Identification and characterization of this complex contributes to an overall understanding of the role of multimolecular protein complexes in specific interactions between pathogens and their hosts during infection.
Collapse
Affiliation(s)
- Javier Periz
- Institute for Animal Health, Compton, Newbury, Berkshire, RG20 7NN United Kingdom
| | | | | | | | | |
Collapse
|
37
|
Ishizuka N, Minami K, Okumachi A, Okuno M, Seino S. Induction by NeuroD of the components required for regulated exocytosis. Biochem Biophys Res Commun 2007; 354:271-7. [PMID: 17217914 DOI: 10.1016/j.bbrc.2006.12.197] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2006] [Accepted: 12/28/2006] [Indexed: 11/17/2022]
Abstract
NeuroD is a transcriptional factor critical in differentiation of neuronal cells, enteroendocrine cells, and pancreatic endocrine cells. However, little is known of its roles in cellular functions. We show here that introduction of NeuroD into human fetal epithelial cell line Intestine 407 cells induces neuron-like morphology. In addition, multiple genes associated with vesicular trafficking and exocytotic machinery, including Sec24D, carboxypeptidase E, myosin Va, SNAP25, syntaxin 1A, Rab, Rims, Munc18-1, and adenylyl cyclase, were up-regulated by NeuroD gene transfer. Moreover, low osmotic pressure-induced exocytosis monitored by FM1-43 was enhanced by overexpression of NeuroD. These results suggest that NeuroD plays an important role in regulated exocytosis by inducing expressions of various components required in the process.
Collapse
Affiliation(s)
- Nobuko Ishizuka
- Department of Experimental Therapeutics, Translational Research Center, Kyoto University Hospital, Kyoto, Japan
| | | | | | | | | |
Collapse
|
38
|
Lichtenberger J, Fromherz P. A cell-semiconductor synapse: transistor recording of vesicle release in chromaffin cells. Biophys J 2006; 92:2262-8. [PMID: 17189317 PMCID: PMC1861798 DOI: 10.1529/biophysj.106.096446] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The release of dense-core vesicles in bovine chromaffin cells is a model for the presynaptic process in neurons. It is usually studied by microamperometry of catecholamines with carbon fibers. Here we introduce transistor recording as a tool to study vesicle release. When we stimulate a chromaffin cell placed on a field-effect transistor, the gate voltage exhibits peaks that correlate with a simultaneously performed amperometric recording. We attribute the transistor signal to a release of protons from the extruded matrix of vesicles that lowers the extracellular pH and changes the electrical surface potential of the gate oxide. The rise time of the transistor signals is similar to that of amperometric responses, whereas their duration is distinctly longer. In a model computation, the rise time is identified with the extrusion of vesicle matrix into the narrow extracellular space between cell and gate oxide, and the decay time is attributed to pH equilibration through slow diffusion in the extruded matrix. Because the transistor recording relies on protons, it can be applied to acidic vesicles with electrochemically inactive hormones or transmitters.
Collapse
Affiliation(s)
- Janosch Lichtenberger
- Department of Membrane and Neurophysics, Max Planck Institute for Biochemistry, Martinsried/Munich, D 82152 Germany
| | | |
Collapse
|
39
|
Abstract
Adrenal chromaffin cells are an important part of the neuroendocrine system and under stressful conditions release catecholamines into the blood, thus regulating many physiological processes. In addition to the catecholamines, chromaffin cells also synthesize a range of peptides, including neuropeptide Y. Although the catecholamines and peptides are both contained within dense core granules, whether they are copackaged is less clear. Here, I investigate whether a single dense core granule can be loaded with both types of transmitter molecules. Using amperometry and FMRFamide tagging, I simultaneously measure the secretion of the catecholamines and a neuropeptide from mouse chromaffin cells in vitro. I find that fusion of a single dense core granule releases both types of transmitters into the extracellular space. Significant amounts of peptide escape from a fusing granule in 1-2 ms: almost as rapidly as the catecholamines. This suggests that the kinetics of peptide secretion might not be as sluggish as sometimes thought.
Collapse
Affiliation(s)
- Matthew D Whim
- Department of Biology, Pennsylvania State University, State College, Pennsylvania 16802, USA.
| |
Collapse
|
40
|
Borgonovo B, Ouwendijk J, Solimena M. Biogenesis of secretory granules. Curr Opin Cell Biol 2006; 18:365-70. [PMID: 16806882 DOI: 10.1016/j.ceb.2006.06.010] [Citation(s) in RCA: 75] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2006] [Accepted: 06/08/2006] [Indexed: 11/22/2022]
Abstract
Secretory granules of neuroendocrine cells store and release peptide hormones and neuropeptides in response to various stimuli. Generation of granules from the Golgi complex involves the aggregation of cargo proteins and their sorting from non-regulated secretory molecules. Recent findings on knockout mice lacking individual granule constituents have challenged the hypothesis that an 'essential' protein for the assembly of these organelles exists, while studies on polypyrimidine tract-binding protein and ICA512/IA-2 have provided insight into the mechanisms for adjusting granule production in relation to stimulation and secretory activity.
Collapse
Affiliation(s)
- Barbara Borgonovo
- Experimental Diabetology, Carl Gustav Carus Medical School, Dresden University of Technology, Fetscherstrasse 74, 01307 Dresden, Germany
| | | | | |
Collapse
|
41
|
Lara-Lemus R, Liu M, Turner MD, Scherer P, Stenbeck G, lyengar P, Arvan P. Lumenal protein sorting to the constitutive secretory pathway of a regulated secretory cell. J Cell Sci 2006; 119:1833-42. [PMID: 16608874 PMCID: PMC2547412 DOI: 10.1242/jcs.02905] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Newly synthesized secretory granule content proteins are delivered via the Golgi complex for storage within mature granules, whereas constitutive secretory proteins are not stored. Most soluble proteins traveling anterograde through the trans-Golgi network are not excluded from entering immature secretory granules, whether or not they have granule-targeting signals. However, the ;sorting-for-entry' hypothesis suggests that soluble lumenal proteins lacking signals enter transport intermediates for the constitutive secretory pathway. We aimed to investigate how these constitutive secretory proteins are sorted. In a pancreatic beta-cell line, we stably expressed two lumenal proteins whose normal sorting information has been deleted: alkaline phosphatase, truncated to eliminate its glycosylphosphatidylinositol membrane anchor (SEAP); and Cab45361, a Golgi lumenal resident, truncated to eliminate its intracellular retention (Cab308Myc). Both truncated proteins are efficiently secreted, but whereas SEAP enters secretory granules, Cab308Myc behaves as a true constitutive marker excluded from granules. Interestingly, upon permeabilization of organelle membranes with saponin, SEAP is extracted as a soluble protein whereas Cab308Myc remains associated with the membrane. These are among the first data to support a model in which association with the lumenal aspect of Golgi and/or post-Golgi membranes can serve as a means for selective sorting of constitutive secretory proteins.
Collapse
Affiliation(s)
- Roberto Lara-Lemus
- Division of Metabolism, Endocrinology and Diabetes, University of Michigan Medical Center, Ann Arbor, Ml 48109, USA
| | - Ming Liu
- Division of Metabolism, Endocrinology and Diabetes, University of Michigan Medical Center, Ann Arbor, Ml 48109, USA
| | - Mark D. Turner
- Centre for Diabetes and Metabolic Medicine, Institute of Cell and Molecular Science, Queen Mary’s School of Medicine and Dentistry, University of London, Whitechapel, London, E1 1BB, UK
| | - Philipp Scherer
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Gudrun Stenbeck
- Bone and Mineral Centre, University College London, London, WC1E 6JJ, UK
| | - Puneeth lyengar
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Peter Arvan
- Division of Metabolism, Endocrinology and Diabetes, University of Michigan Medical Center, Ann Arbor, Ml 48109, USA
| |
Collapse
|
42
|
Hosaka M, Watanabe T, Sakai Y, Kato T, Takeuchi T. Interaction between secretogranin III and carboxypeptidase E facilitates prohormone sorting within secretory granules. J Cell Sci 2006; 118:4785-95. [PMID: 16219686 DOI: 10.1242/jcs.02608] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Secretogranin III (SgIII) and carboxypeptidase E (CPE) bind specifically to cholesterol-rich secretory granule (SG) membranes. We previously showed that SgIII binds chromogranin A (CgA) and targets CgA to the SGs in endocrine cells. We investigated the binding of SgIII and CPE because they frequently localize close to the periphery of SGs, and they bind each other in mouse corticotrope-derived AtT-20 cells. In Cpe fat mouse corticotropes, which have defective CPE, proopiomelanocortin (POMC)-derived adrenocorticotrophin hormone (ACTH)-containing peptides were distributed over the entire surface of the SGs, and displayed a regulated secretion by secretagogues. The Cpe fat pituitary exhibited elevated levels of SgIII and CgA, which suggests that they compensate for a sorting function of CPE for POMC and its intermediates to ACTH. Indeed, both SgIII and CgA were able to bind POMC-derived intermediates. In a competitive pull-down assay, excessive SgIII led to a decrease in CPE-bound POMC-derived intermediate molecules, and SgIII pulled-down by anti-ACTH antibody increased proportionately. We suggest that SgIII and CPE form the separate functional sorting complex by anchoring to cholesterol-rich SG membranes, and POMC-derived peptides are transferred from CPE to SgIII, and subsequently to CgA.
Collapse
Affiliation(s)
- Masahiro Hosaka
- Department of Molecular Medicine, Institute for Molecular and Cellular Regulation, Gunma University, Maebashi 371-8512, Japan
| | | | | | | | | |
Collapse
|
43
|
Wang J, Cawley NX, Voutetakis A, Rodriguez YM, Goldsmith CM, Nieman LK, Hoque ATMS, Frank SJ, Snell CR, Loh YP, Baum BJ. Partial redirection of transgenic human growth hormone secretion from rat salivary glands. Hum Gene Ther 2005; 16:571-83. [PMID: 15916482 DOI: 10.1089/hum.2005.16.571] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Regulated secretory pathway proteins, when delivered as transgenes to salivary glands, are secreted predominantly into saliva. This is not useful for those proteins whose therapeutic function is required systemically, for example, human growth hormone (hGH). One strategy to improve the efficiency of hGH secretion into the bloodstream involves manipulation of existing sorting signals. The C terminus of hGH is highly conserved and contains a domain similar to the regulated pathway sorting domain of pro-opiomelanocortin (POMC). We hypothesized that, similar to POMC, mutation of this domain would divert hGH secretion from the regulated to the constitutive pathway, which in salivary glands leads to the bloodstream. Several mutations were made in the C terminus of the hGH cDNA and tested in vitro. One biologically active mutant containing E174A and E186A substitutions, and with an included C-terminal extension, was studied in greater detail. Compared with wild-type hGH, we found that this mutant hGH accumulated in the Golgi/trans-Golgi network and showed increased basal secretion in AtT20 cells, a model endocrine cell line. Importantly, in vivo, the mutant hGH displayed a relative increase in the proportion of constitutive pathway secretion seen from rat salivary glands, with a significantly lower saliva-versus-serum secretion ratio (p=0.03). Although this mutant is unlikely to be therapeutically beneficial, these results suggest that the final destination of a transgenic secretory protein may be controlled by reengineering its sorting determinants.
Collapse
Affiliation(s)
- Jianghua Wang
- Gene Therapy and Therapeutics Branch, National Institute of Dental and Craniofacial Research, National Institutes of Health, Department of Health and Human Services, Bethesda, MD 20892, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Helle KB. The granin family of uniquely acidic proteins of the diffuse neuroendocrine system: comparative and functional aspects. Biol Rev Camb Philos Soc 2005; 79:769-94. [PMID: 15682870 DOI: 10.1017/s146479310400644x] [Citation(s) in RCA: 107] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The chromogranins A (CgA) and B (CgB) and secretogranin II (SgII) constitute the main members of a family of uniquely acidic secretory proteins in elements of the diffuse neuroendocrine system. These genetically distinct proteins, CgA, CgB, SgII and the less well known secretogranins III-VII are collectively referred to as 'granins' and characterised by numerous pairs of basic amino acids as potential cleavage sites for processing by the co-stored prohormone converting enzymes PC 1/3 and PC2. This review is directed towards comparative and functional aspects of the granins with emphasis on their phylogenetically conserved sequences. Recent developments provide ample evidence of widely different effects and targets for the intact granins and their derived peptides, intracellularly in the directed trafficking of storage components during granule maturation and extracellularly in autocrine, paracrine and endocrine interactions. Most of the effects assigned to the granin derived peptides fit into patterns of direct or indirect inhibitory modulations of major functions. So far, peptides derived from CgA (vasostatins, chromacin, pancreastatin, WE-14, catestatin and parastatin), CgB (secretolytin) and SgII (secretoneurin) are the most likely candidates for granin-derived regulatory peptides, of postulated relevance not only for homeostatic processes, but also for tissue assembly and repair, inflammatory responses and the first line of defence against invading microorganisms.
Collapse
Affiliation(s)
- Karen B Helle
- Department of Biomedicine, Division of Physiology, University of Bergen, Jonas Lies vei 91, 5009 Bergen, Norway.
| |
Collapse
|
45
|
Daull P, Home W, LeBel D. Characterization of the TGN exit routes in AtT20 cells using pancreatic amylase and serum albumin. Eur J Cell Biol 2004; 83:121-30. [PMID: 15202570 DOI: 10.1078/0171-9335-00365] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The AtT20 pituitary cell is the one that was originally used to define the pathways taken by secretory proteins in mammalian cells. It possesses two secretory pathways, the constitutive for immediate secretion and the regulated for accumulation and release under hormonal stimulation. It is in the regulated pathway, most precisely in the immature granule of the regulated pathway, that proteolytic maturation takes place. A pathway that stems from the regulated one, namely the constitutive-like pathway releases proteins present in immature granules that are not destined for accumulation in mature granules. In AtT20 cells proopiomelanocortin the endogenous precursor of the accumulated adrenocorticotropic hormone, is predominantly secreted in a constitutive manner without proteolytic maturation. In order to better understand by which secretory pathway intact proopiomelanocortin is secreted by a cell line possessing a regulated secretory pathway, it was transfected with rat serum albumin (a marker of constitutive secretory proteins), and pancreatic amylase (a marker of regulated proteins). COS cells were also transfected in order to serve as control of release by the constitutive pathway. It was observed that both the basal and stimulated secretions of albumin and proopiomelanocortin from AtT20 cells are identical. In addition, secretagogue stimulation when POMC is in transit in the trans-Golgi network decreases its constitutive secretion by 50%. It was also observed using cell fractionation and 20 degrees C secretion blocks that albumin and proopiomelanocortin are present in the regulated pathway, presumably in the immature granules, and are secreted by the constitutive-like secretory pathway. These observations show that stimulation can increase sorting into the regulated pathway, and confirm the importance of the constitutive-like secretory pathway in the model AtT20 cell line.
Collapse
Affiliation(s)
- Philippe Daull
- Groupe de Recherche sur les Mécanismes de Sécrétion, Faculté des sciences, Université de Sherbrooke, Sherbrooke, Québec J1K 2R1, Canada
| | | | | |
Collapse
|
46
|
Pollák E, Eckert M, Molnár L, Predel R. Differential sorting and packaging of capa-gene related products in an insect. J Comp Neurol 2004; 481:84-95. [PMID: 15558719 DOI: 10.1002/cne.20364] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
A unique costorage of neuropeptides was recently found in the abdominal perisympathetic organs (PSOs) of the American cockroach, Periplaneta americana. Having specific antisera directed against all peptides belonging to this neurosecretory system, we examined the sorting of PSO-peptides in the soma of the median neurosecretory cells of abdominal ganglia by using immunoelectron microscopic double stainings. The data indicate that all six abundant neuropeptides of this neurohormonal system, which includes three capa-gene related products, are primarily incorporated into separate vesicles. These vesicles fuse with each other in the cytoplasm and become translucent on their way to the axon hillock. By means of light microscopy and MALDI-TOF mass spectrometry, an identical population of neuropeptides was found in interneurons of the brain. As revealed by subsequent immunoelectron microscopic analysis, the peptides of these cells are separately packed into dense core vesicles but do not fuse with each other. Thus, hitherto unknown cell-type-specific sorting mechanisms occur in neurosecretory cells and interneurons, respectively.
Collapse
Affiliation(s)
- Edit Pollák
- Research Group of Comparative Anatomy, Department of General Zoology and Neurobiology, University of Pécs, H-7624 Pécs, Hungary
| | | | | | | |
Collapse
|
47
|
Mans BJ, Neitz AW. Molecular crowding as a mechanism for tick secretory granule biogenesis. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2004; 34:1187-1193. [PMID: 15522614 DOI: 10.1016/j.ibmb.2004.07.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2004] [Accepted: 07/29/2004] [Indexed: 05/24/2023]
Abstract
During feeding ticks secrete bioactive components into the host to counter-act its immune and hemostatic defense systems. These bioactive components are stored in secretory granules that are secreted during feeding in an exocrine stimulus-response type of mechanism. All proteins destined for secretion are packaged into these granules during granule biogenesis. Up to date no mechanism for granule biogenesis has been proposed, except to note that biogenesis occurs under conditions of high protein and calcium concentrations in an acidic environment. Previously, the most abundant proteins (TSGPs) found in the salivary glands of the soft tick, Ornithodoros savignyi, were suggested to play a part in granule biogenesis, based on their high abundance. The TSGPs are part of the lipocalin family, of which numerous members have been identified in ticks. We consider here the high concentrations of the TSGPs in salivary glands and what effect this will have on the crowded environment inside the secretory granules. It is shown that the TSGPs occur at concentrations that will lead to molecular crowding of which one result is the non-specific aggregation of components to reduce crowding effects. Aggregation of proteins as a mechanism of granule biogenesis has been proposed before, but not in terms of molecular crowding. We thus propose molecular crowding as the general mechanism of granule biogenesis, in tick secretory granules, but can also be extended to other forms of secretory granules in general.
Collapse
Affiliation(s)
- Ben J Mans
- The Department of Biochemistry, University of Pretoria, Pretoria 0002, South Africa.
| | | |
Collapse
|
48
|
Abstract
Biogenesis of the regulated secretory pathway in the pancreatic beta-cell involves packaging of products, notably proinsulin, into immature secretory granules derived from the trans-Golgi network. Proinsulin is converted to insulin and C-peptide as granules mature. Secretory proteins not entering granules are conveyed by transport intermediates directly to the plasma membrane for constitutive secretion. One of the co-authors, Peter Arvan, has proposed that in addition, small vesicles bud from granules to traffic to the endosomal system. From there, some proteins are secreted by a (post-granular) constitutive-like pathway. He argues that retention in granules is facilitated by condensation, rendering soluble products (notably C-peptide and proinsulin) more available for constitutive-like secretion. Thus he argues that prohormone conversion is potentially important in secretory granule biogenesis. The other co-author, Philippe Halban, argues that the post-granular secretory pathway is not of physiological relevance in primary beta-cells, and contests the importance of proinsulin conversion for retention in granules. Both, however, agree that trafficking from granules to endosomes is important, purging granules of unwanted newly synthesized proteins and allowing their traffic to other destinations. In this Traffic Interchange, the two co-authors attempt to reconcile their differences, leading to a common vision of proinsulin trafficking in primary and transformed cells.
Collapse
Affiliation(s)
- Peter Arvan
- Division of Metabolism, University of Michigan Medical Center, Ann Arbor, MI 48109, USA
| | | |
Collapse
|
49
|
Ngô HM, Yang M, Joiner KA. Are rhoptries in Apicomplexan parasites secretory granules or secretory lysosomal granules? Mol Microbiol 2004; 52:1531-41. [PMID: 15186406 DOI: 10.1111/j.1365-2958.2004.04056.x] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The club-shaped rhoptries in Apicomplexan parasites are one of the most unusual secretory organelles among the eukaryotes, containing unusual lipid and protein cargo that is specialized for intracellular parasitism. Rhoptries have traditionally been viewed strictly as regulated secretory granules. We discuss in this article recent data on the cargo, function and biogenesis of rhoptries in two parasitic model systems, Toxoplasma and Plasmodium. Current findings suggest that rhoptries receive products from both biosynthetic and endocytic pathways and, therefore, they are most analogous to secretory lysosomal granules found in mammalian cells.
Collapse
Affiliation(s)
- Huân M Ngô
- Section of Infectious Diseases, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT 06520-8022, USA
| | | | | |
Collapse
|
50
|
Abstract
Regulated secretion and exocytosis require the selective packaging of regulated secretory proteins in secretory storage organelles and the controlled docking and fusion of these organelles with the plasma membrane. Secretory granule biogenesis involves sorting of secretory proteins and membrane components both at the level of the trans-Golgi network and the immature secretory granule. Sorting is thought to be mediated by selective protein aggregation and the interaction of these proteins with specific membrane domains. There is now considerable interest in the understanding of the complex lipid-protein and protein-protein interactions at the trans-Golgi network and the granule membrane. A role for lipid microdomains and associated sorting receptors in membrane targeting and granule formation is vividly discussed for (neuro)endocrine cells. In exocrine cells, however, little has been known of granule membrane composition and membrane protein function. With the cloning and characterization of granule membrane proteins and their interactions at the inner leaflet of zymogen granules of pancreatic acinar cells, it is now possible to elucidate their function in membrane targeting and sorting of zymogens at the molecular level.
Collapse
Affiliation(s)
- Michael Schrader
- Department of Cell Biology and Cell Pathology, University of Marburg, Robert Koch Str 6, 35037 Marburg, Germany
| |
Collapse
|