1
|
Chen R, Zhuang Y, Wang M, Yu J, Chi D. Transcriptomic Analysis of the Response of the Dioryctria abietella Larva Midgut to Bacillus thuringiensis 2913 Infection. Int J Mol Sci 2024; 25:10921. [PMID: 39456705 PMCID: PMC11507524 DOI: 10.3390/ijms252010921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 10/04/2024] [Accepted: 10/09/2024] [Indexed: 10/28/2024] Open
Abstract
Dioryctria abietella Denis Schiffermuller (Lepidoptera: Pyralidae) is an oligophagous pest that mainly damages Pinaceae plants. Here, we investigated the effects of the Bacillus thuringiensis 2913 strain (Bt 2913), which carries the Cry1Ac, Cry2Ab, and Vip3Aa genes, on the D. abietella midgut transcriptome at 6, 12, and 24 h after infection. In total, 7497 differentially expressed genes (DEGs) were identified from the midgut transcriptome of D. abietella larvae infected with Bt 2913. Among these DEGs, we identified genes possibly involved in Bt 2913-induced perforation of the larval midgut. For example, the DEGs included 67 genes encoding midgut proteases involved in Cry/Vip toxin activation, 74 genes encoding potential receptor proteins that bind to insecticidal proteins, and 19 genes encoding receptor NADH dehydrogenases that may bind to Cry1Ac. Among the three transcriptomes, 88 genes related to metabolic detoxification and 98 genes related to immune defense against Bt 2913 infection were identified. Interestingly, 145 genes related to the 60S ribosomal protein were among the DEGs identified in the three transcriptomes. Furthermore, we performed bioinformatic analysis of zonadhesin, GST, CYP450, and CarE in the D. abietella midgut to determine their possible associations with Bt 2913. On the basis of the results of this analysis, we speculated that trypsin and other serine proteases in the D. abietella larval midgut began to activate Cry/Vip prototoxin at 6 h to 12 h after Bt 2913 ingestion. At 12 h after Bt 2913 ingestion, chymotrypsin was potentially involved in degrading the active core fragment of Vip3Aa toxin, and the detoxification enzymes in the larvae contributed to the metabolic detoxification of the Bt toxin. The ABC transporter and several other receptor-protein-related genes were also downregulated to increase resistance to Bt 2913. However, the upregulation of 60S ribosomal protein and heat shock protein expression weakened the resistance of larvae to Bt 2913, thereby enhancing the expression of NADH dehydrogenase and other receptor proteins that are highly expressed in the larval midgut and bind to activating toxins, including Cry1Ac. At 24 h after Bt 2913 ingestion, many activated toxins were bound to receptor proteins such as APN in the larval midgut, resulting in membrane perforation. Here, we clarified the mechanism of Bt 2913 infection in D. abietella larvae, as well as the larval immune defense response to Bt 2913, which provides a theoretical basis for the subsequent control of D. abietella using B. thuringiensis.
Collapse
Affiliation(s)
| | | | | | | | - Defu Chi
- Key Laboratory for Sustainable Forest Ecosystem Management of Ministry of Education, College of Forestry, Northeast Forestry University, Harbin 150040, China; (R.C.); (Y.Z.); (M.W.); (J.Y.)
| |
Collapse
|
2
|
Geissler AS, Gorodkin J, Seemann SE. Patent data-driven analysis of literature associations with changing innovation trends. Front Res Metr Anal 2024; 9:1432673. [PMID: 39149511 PMCID: PMC11324476 DOI: 10.3389/frma.2024.1432673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 07/10/2024] [Indexed: 08/17/2024] Open
Abstract
Patents are essential for transferring scientific discoveries to meaningful products that benefit societies. While the academic community focuses on the number of citations to rank scholarly works according to their "scientific merit," the number of citations is unrelated to the relevance for patentable innovation. To explore associations between patents and scholarly works in publicly available patent data, we propose to utilize statistical methods that are commonly used in biology to determine gene-disease associations. We illustrate their usage on patents related to biotechnological trends of high relevance for food safety and ecology, namely the CRISPR-based gene editing technology (>60,000 patents) and cyanobacterial biotechnology (>33,000 patents). Innovation trends are found through their unexpected large changes of patent numbers in a time-series analysis. From the total set of scholarly works referenced by all investigated patents (~254,000 publications), we identified ~1,000 scholarly works that are statistical significantly over-represented in the references of patents from changing innovation trends that concern immunology, agricultural plant genomics, and biotechnological engineering methods. The detected associations are consistent with the technical requirements of the respective innovations. In summary, the presented data-driven analysis workflow can identify scholarly works that were required for changes in innovation trends, and, therefore, is of interest for researches that would like to evaluate the relevance of publications beyond the number of citations.
Collapse
Affiliation(s)
- Adrian Sven Geissler
- Center for non-coding RNA in Technology and Health, Department of Veterinary and Animal Sciences, University of Copenhagen, Frederiksberg, Denmark
| | - Jan Gorodkin
- Center for non-coding RNA in Technology and Health, Department of Veterinary and Animal Sciences, University of Copenhagen, Frederiksberg, Denmark
| | - Stefan Ernst Seemann
- Center for non-coding RNA in Technology and Health, Department of Veterinary and Animal Sciences, University of Copenhagen, Frederiksberg, Denmark
| |
Collapse
|
3
|
Ma X, Hu J, Ding C, Portieles R, Xu H, Gao J, Du L, Gao X, Yue Q, Zhao L, Borrás-Hidalgo O. New native Bacillus thuringiensis strains induce high insecticidal action against Culex pipiens pallens larvae and adults. BMC Microbiol 2023; 23:100. [PMID: 37055727 PMCID: PMC10099900 DOI: 10.1186/s12866-023-02842-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Accepted: 03/28/2023] [Indexed: 04/15/2023] Open
Abstract
Mosquitoes of many species are key disease vectors, killing millions of people each year. Bacillus thuringiensis-based insecticide formulations are largely recognized as among the most effective, ecologically safe, and long-lasting methods of managing insect pests. New B. thuringiensis strains with high mosquito control effectiveness were isolated, identified, genetically defined, and physiologically characterized. Eight B. thuringiensis strains were identified and shown to carry endotoxin-producing genes. Using a scanning electron microscope, results revealed typical crystal forms of various shapes in B. thuringiensis strains. Fourteen cry and cyt genes were found in the strains examined. Although the genome of the B. thuringiensis A4 strain had twelve cry and cyt genes, not all of them were expressed, and only a few protein profiles were observed. The larvicidal activity of the eight B. thuringiensis strains was found to be positive (LC50: 1.4-28.5 g/ml and LC95: 15.3-130.3 g/ml). Bioassays in a laboratory environment demonstrated that preparations containing B. thuringiensis spores and crystals were particularly active to mosquito larvae and adults. These new findings show that the novel preparation containing B. thuringiensis A4 spores and crystals mixture might be used to control larval and adult mosquitoes in a sustainable and ecologically friendly manner.
Collapse
Affiliation(s)
- Xinmin Ma
- Joint R and D Center of Biotechnology, RETDA, Yotabio-Engineering Co., Ltd, 99 Shenzhen Road, Rizhao, 276826, Shandong, People's Republic of China
| | - Jianjian Hu
- Joint R and D Center of Biotechnology, RETDA, Yotabio-Engineering Co., Ltd, 99 Shenzhen Road, Rizhao, 276826, Shandong, People's Republic of China
| | - Chengsong Ding
- Joint R and D Center of Biotechnology, RETDA, Yotabio-Engineering Co., Ltd, 99 Shenzhen Road, Rizhao, 276826, Shandong, People's Republic of China
| | - Roxana Portieles
- Joint R and D Center of Biotechnology, RETDA, Yotabio-Engineering Co., Ltd, 99 Shenzhen Road, Rizhao, 276826, Shandong, People's Republic of China
| | - Hongli Xu
- Joint R and D Center of Biotechnology, RETDA, Yotabio-Engineering Co., Ltd, 99 Shenzhen Road, Rizhao, 276826, Shandong, People's Republic of China
| | - Jingyao Gao
- Joint R and D Center of Biotechnology, RETDA, Yotabio-Engineering Co., Ltd, 99 Shenzhen Road, Rizhao, 276826, Shandong, People's Republic of China
| | - Lihua Du
- Joint R and D Center of Biotechnology, RETDA, Yotabio-Engineering Co., Ltd, 99 Shenzhen Road, Rizhao, 276826, Shandong, People's Republic of China
| | - Xiangyou Gao
- Joint R and D Center of Biotechnology, RETDA, Yotabio-Engineering Co., Ltd, 99 Shenzhen Road, Rizhao, 276826, Shandong, People's Republic of China
| | - Qiulin Yue
- State Key Laboratory of Biobased Material and Green Papermaking, Shandong Provincial Key Lab of Microbial Engineering, Qilu University of Technology (Shandong Academic of Science), Jinan, People's Republic of China
| | - Lin Zhao
- State Key Laboratory of Biobased Material and Green Papermaking, Shandong Provincial Key Lab of Microbial Engineering, Qilu University of Technology (Shandong Academic of Science), Jinan, People's Republic of China
| | - Orlando Borrás-Hidalgo
- Joint R and D Center of Biotechnology, RETDA, Yotabio-Engineering Co., Ltd, 99 Shenzhen Road, Rizhao, 276826, Shandong, People's Republic of China.
- State Key Laboratory of Biobased Material and Green Papermaking, Shandong Provincial Key Lab of Microbial Engineering, Qilu University of Technology (Shandong Academic of Science), Jinan, People's Republic of China.
| |
Collapse
|
4
|
Diez-Galán A, Cobos R, Ibañez A, Calvo-Peña C, Coque JJR. Biodegradation of Pine Processionary Caterpillar Silk Is Mediated by Elastase- and Subtilisin-like Proteases. Int J Mol Sci 2022; 23:ijms232315253. [PMID: 36499578 PMCID: PMC9741414 DOI: 10.3390/ijms232315253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 11/30/2022] [Accepted: 12/01/2022] [Indexed: 12/12/2022] Open
Abstract
Pine processionary caterpillar nests are made from raw silk. Fibroin protein is the main component of silk which, in the case of pine processionary caterpillar, has some unusual properties such as a higher resistance to chemical hydrolysis. Isolation of microorganisms naturally present in silk nests led to identification of Bacillus licheniformis and Pseudomonas aeruginosa strains that in a defined minimal medium were able to carry out extensive silk biodegradation. A LasB elastase-like protein from P. aeruginosa was shown to be involved in silk biodegradation. A recombinant form of this protein expressed in Escherichia coli and purified by affinity chromatography was able to efficiently degrade silk in an in vitro assay. However, silk biodegradation by B. licheniformis strain was mediated by a SubC subtilisin-like protease. Homologous expression of a subtilisin Carlsberg encoding gene (subC) allowed faster degradation compared to the biodegradation kinetics of a wildtype B. licheniformis strain. This work led to the identification of new enzymes involved in biodegradation of silk materials, a finding which could lead to possible applications for controlling this pest and perhaps have importance from sanitary and biotechnological points of view.
Collapse
|
5
|
Kouadio JL, Zheng M, Aikins M, Duda D, Duff S, Chen D, Zhang J, Milligan J, Taylor C, Mamanella P, Rydel T, Kessenich C, Panosian T, Yin Y, Moar W, Giddings K, Park Y, Jerga A, Haas J. Structural and functional insights into the first Bacillus thuringiensis vegetative insecticidal protein of the Vpb4 fold, active against western corn rootworm. PLoS One 2021; 16:e0260532. [PMID: 34928980 PMCID: PMC8687597 DOI: 10.1371/journal.pone.0260532] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Accepted: 11/11/2021] [Indexed: 01/09/2023] Open
Abstract
The western corn rootworm (WCR), Diabrotica virgifera virgifera LeConte, is a major maize pest in the United States causing significant economic loss. The emergence of field-evolved resistant WCR to Bacillus thuringiensis (Bt) traits has prompted the need to discover and deploy new insecticidal proteins in transgenic maize. In the current study we determined the crystal structure and mode of action (MOA) of the Vpb4Da2 protein (formerly known as Vip4Da2) from Bt, the first identified insecticidal Vpb4 protein with commercial level control against WCR. The Vpb4Da2 structure exhibits a six-domain architecture mainly comprised of antiparallel β-sheets organized into β-sandwich layers. The amino-terminal domains 1-3 of the protein share structural homology with the protective antigen (PA) PA14 domain and encompass a long β-pore forming loop as in the clostridial binary-toxB module. Domains 5 and 6 at the carboxyl-terminal half of Vpb4Da2 are unique as this extension is not observed in PA or any other structurally-related protein other than Vpb4 homologs. These unique Vpb4 domains adopt the topologies of carbohydrate-binding modules known to participate in receptor-recognition. Functional assessment of Vpb4Da2 suggests that domains 4-6 comprise the WCR receptor binding region and are key in conferring the observed insecticidal activity against WCR. The current structural analysis was complemented by in vitro and in vivo characterizations, including immuno-histochemistry, demonstrating that Vpb4Da2 follows a MOA that is consistent with well-characterized 3-domain Bt insecticidal proteins despite significant structural differences.
Collapse
Affiliation(s)
| | - Meiying Zheng
- Bayer Crop Science, Chesterfield, Missouri, United States of America
| | - Michael Aikins
- Department of Entomology, Kansas State University, Manhattan, Kansas, United States of America
| | - David Duda
- Bayer Crop Science, Chesterfield, Missouri, United States of America
| | - Stephen Duff
- Bayer Crop Science, Chesterfield, Missouri, United States of America
| | - Danqi Chen
- Bayer Crop Science, Chesterfield, Missouri, United States of America
| | - Jun Zhang
- Bayer Crop Science, Chesterfield, Missouri, United States of America
| | - Jason Milligan
- Bayer Crop Science, Chesterfield, Missouri, United States of America
| | - Christina Taylor
- Bayer Crop Science, Chesterfield, Missouri, United States of America
| | | | - Timothy Rydel
- Bayer Crop Science, Chesterfield, Missouri, United States of America
| | - Colton Kessenich
- Bayer Crop Science, Chesterfield, Missouri, United States of America
| | - Timothy Panosian
- Bayer Crop Science, Chesterfield, Missouri, United States of America
| | - Yong Yin
- Bayer Crop Science, Chesterfield, Missouri, United States of America
| | - William Moar
- Bayer Crop Science, Chesterfield, Missouri, United States of America
| | - Kara Giddings
- Bayer Crop Science, Chesterfield, Missouri, United States of America
| | - Yoonseong Park
- Department of Entomology, Kansas State University, Manhattan, Kansas, United States of America
| | - Agoston Jerga
- Bayer Crop Science, Chesterfield, Missouri, United States of America
| | - Jeffrey Haas
- Bayer Crop Science, Chesterfield, Missouri, United States of America
| |
Collapse
|
6
|
Zhang C, Wei J, Naing ZL, Soe ET, Liang G. Endogenous serpin reduces toxicity of Bacillus thuringiensis Cry1Ac against Helicoverpa armigera (Hübner). PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2021; 175:104837. [PMID: 33993962 DOI: 10.1016/j.pestbp.2021.104837] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 12/14/2020] [Accepted: 03/28/2021] [Indexed: 06/12/2023]
Abstract
Bt protoxins are required to convert to a smaller activated form by insect midgut proteases to exert toxicity against insect pests. Serine protease inhibitors (serpins) play a valuable part in gut protease of insect that hamper digestive proteases activity of insects. Whether the insect serpins induced by Bt protoxin affect the insecticidal activity were rare studied. Here, we identified a serpin-e gene from Helicoverpa armigera, which had potential RCL (Reactive Center Loop) region near the C-terminus like other serpin proteins. It widely expressed in different development stages and in various tissues, but highest expressed in fourth-instar larvae and in larval hemolymph. This Haserpin-e could be induced by Cry1Ac protoxin in vivo and inhibit the midgut proteases to activate Cry1Ac in vitro. Importantly, the functional study indicated it could inhibit the process from Cry1Ac protoxin to activated toxin, and led to the reduction of Cry1Ac insecticide activity to cotton bollworm. Based on our results, we proposed that Haserpin-e involved in the toxicity of Cry1Ac to cotton bollworm by blocking the serine protease to activate the protoxin.
Collapse
Affiliation(s)
- Caihong Zhang
- State key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Science, Beijing 100193, PR China
| | - Jizhen Wei
- College of Plant Protection, Henan Agricultural University, Zhengzhou 450002, PR China
| | - Zaw Lin Naing
- State key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Science, Beijing 100193, PR China
| | - Ei Thinzar Soe
- State key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Science, Beijing 100193, PR China
| | - Gemei Liang
- State key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Science, Beijing 100193, PR China.
| |
Collapse
|
7
|
Empey MA, Lefebvre-Raine M, Gutierrez-Villagomez JM, Langlois VS, Trudeau VL. A Review of the Effects of the Biopesticides Bacillus thuringiensis Serotypes israelensis (Bti) and kurstaki (Btk) in Amphibians. ARCHIVES OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2021; 80:789-800. [PMID: 33876257 DOI: 10.1007/s00244-021-00842-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Accepted: 04/01/2021] [Indexed: 06/12/2023]
Abstract
Insecticides are important in agriculture, to reduce human disease, and to decrease the nuisance of biting insects. Despite this, many have the potential for environmental impacts and toxicity in nontarget organisms. We reviewed data on the effects of insecticides based on toxins from Bacillus thuringiensis var. israelensis (Bti) and Bacillus thuringiensis var. kurstaki (Btk) on amphibians. The few peer-reviewed publications that are available for Bti provide variable conclusions, ranging from few observable effects to evidence of acute toxicity at high concentrations. We briefly highlight the current controversies and identify key areas for future investigation.
Collapse
Affiliation(s)
| | - Molly Lefebvre-Raine
- Institut national de la recherche scientifique (INRS), Centre Eau Terre Environnement, Québec City, QC, Canada
| | | | - Valerie S Langlois
- Institut national de la recherche scientifique (INRS), Centre Eau Terre Environnement, Québec City, QC, Canada
| | - Vance L Trudeau
- Department of Biology, University of Ottawa, Ottawa, ON, Canada.
| |
Collapse
|
8
|
Mejias L, Estrada M, Barrena R, Gea T. A novel two-stage aeration strategy for Bacillus thuringiensis biopesticide production from biowaste digestate through solid-state fermentation. Biochem Eng J 2020. [DOI: 10.1016/j.bej.2020.107644] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
9
|
Brühl CA, Després L, Frör O, Patil CD, Poulin B, Tetreau G, Allgeier S. Environmental and socioeconomic effects of mosquito control in Europe using the biocide Bacillus thuringiensis subsp. israelensis (Bti). THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 724:137800. [PMID: 32249002 DOI: 10.1016/j.scitotenv.2020.137800] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 03/06/2020] [Accepted: 03/06/2020] [Indexed: 06/11/2023]
Abstract
Bacillus thuringiensis subsp. israelensis (Bti) has been used in mosquito control programs to reduce nuisance in Europe for decades and is generally considered an environmentally-safe, effective and target-specific biocide. However, the use of Bti is not uncontroversial. Target mosquitoes and affected midges represent an important food source for many aquatic and terrestrial predators and reduction of their populations is likely to result in food-web effects at higher trophic levels. In the context of global biodiversity loss, this appears particularly critical since treated wetlands are often representing conservation areas. In this review, we address the current large-scale use of Bti for mosquito nuisance control in Europe, provide a description of its regulation followed by an overview of the available evidence on the parameters that are essential to evaluate Bti use in mosquito control. Bti accumulation and toxin persistence could result in a chronic expose of mosquito populations ultimately affecting their susceptibility, although observed increase in resistance to Bti in mosquito populations is low due to the four toxins involved. A careful independent monitoring of mosquito susceptibility, using sensitive bioassays, is mandatory to detect resistance development timely. Direct Bti effects were documented for non-target chironomids and other invertebrate groups and are discussed for amphibians. Field studies revealed contrasting results on possible impacts on chironomid abundances. Indirect, food-web effects were rarely studied in the environment. Depending on study design and duration, Bti effects on higher trophic levels were demonstrated or not. Further long-term field studies are needed, especially with observations of bird declines in Bti-treated wetland areas. Socio-economic relevance of mosquito control requires considering nuisance, vector-borne diseases and environmental effects jointly. Existing studies indicate that a majority of the population is concerned regarding potential environmental effects of Bti mosquito control and that they are willing to pay for alternative, more environment-friendly techniques.
Collapse
Affiliation(s)
- Carsten A Brühl
- iES Landau, Institute for Environmental Sciences, University of Koblenz-Landau, D-76829 Landau, Germany.
| | - Laurence Després
- Université Grenoble Alpes, CNRS, Laboratoire d'Ecologie Alpine, F-38000 Grenoble, France
| | - Oliver Frör
- iES Landau, Institute for Environmental Sciences, University of Koblenz-Landau, D-76829 Landau, Germany
| | - Chandrashekhar D Patil
- Centre of Island Research and Environmental Observatory, PSL Université Paris: EPHE-UPVD-CNRS, USR 3278 CRIOBE, Université de Perpignan, F-66860 Perpignan, France
| | - Brigitte Poulin
- Tour du Valat, Research Institute for the Conservation of Mediterranean Wetlands, Le Sambuc, F-13200 Arles, France
| | | | - Stefanie Allgeier
- iES Landau, Institute for Environmental Sciences, University of Koblenz-Landau, D-76829 Landau, Germany
| |
Collapse
|
10
|
Cao X, Jiang H. Building a platform for predicting functions of serine protease-related proteins in Drosophila melanogaster and other insects. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2018; 103:53-69. [PMID: 30367934 PMCID: PMC6358214 DOI: 10.1016/j.ibmb.2018.10.006] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Revised: 10/19/2018] [Accepted: 10/21/2018] [Indexed: 05/15/2023]
Abstract
Serine proteases (SPs) and serine protease homologs (SPHs) play essential roles in insect physiological processes including digestion, defense and development. Studies of insect genomes, transcriptomes and proteomes have generated a vast amount of information on these proteins, dwarfing the biological data acquired from a few model species. The large number and high diversity of homologous sequences makes it a challenge to use the limited functional information for making predictions across a broad taxonomic group of insects. In this work, we have extensively updated the framework of knowledge on the SP-related proteins in Drosophila melanogaster by identifying 52 new SPs/SPHs, classifying the 257 proteins into four groups (CLIP, gut, single- and multi-domain SPs/SPHs), and detecting inherent connections among phylogenetic relationships, genomic locations and expression profiles for 99 of the genes. Information on the existence of specific proteins in eggs, larvae, pupae and adults is presented to facilitate future research. More importantly, we have developed an approach to reveal close homologous or orthologous relationships among SPs/SPHs from D. melanogaster, Anopheles gambiae, Apis mellifera, Manduca sexta, and Tribolium castaneum thus inspiring functional studies in these and other holometabolous insects. This approach is useful for tackling similar problems on large and diverse protein families in other groups of organisms.
Collapse
Affiliation(s)
- Xiaolong Cao
- Department of Entomology and Plant Pathology, Oklahoma State University, Stillwater, OK, 74078, USA
| | - Haobo Jiang
- Department of Entomology and Plant Pathology, Oklahoma State University, Stillwater, OK, 74078, USA.
| |
Collapse
|
11
|
Abdelmalek N, Sellami S, Kallassy-Awad M, Tounsi MF, Mebarkia A, Tounsi S, Rouis S. Influence of Ephestia kuehniella stage larvae on the potency of Bacillus thuringiensis Cry1Aa delta-endotoxin. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2017; 137:91-97. [PMID: 28364809 DOI: 10.1016/j.pestbp.2016.10.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2016] [Revised: 10/13/2016] [Accepted: 10/20/2016] [Indexed: 06/07/2023]
Abstract
The economically important crop pest Ephestia kuehniella was tested at two stages of larval development for susceptibility to Bacillus thuringiensis Cry1Aa toxin. Bioassays showed that toxicity decreased during the development of larvae stage. In fact, Cry1Aa toxins from BNS3-Cry- (pHT-cry1Aa) showed low toxicity against the first-instar larvae (L1) with a LC50 value of about 421.02μg/g of diet and was not toxic against the fifth-instar (L5), comparing to the BLB1 toxins used as positive control which represent a LC50 value of about 56.96 and 84.21μg/g of diet against L1 and L5 instars larvae, respectively. Effects of Cry1Aa toxins were reflected in histopathological observations by the weak destruction of midgut epithelium, slight hypertrophy of epithelial cells, and minor alteration of brush border membrane (BBM) detected mainly in L1 larvae stage comparing to the more extensive damage caused by BLB1 toxins. Interestingly, in vitro proteolysis of Cry1Aa toxins was found to correlate with the difference of toxicity during larval stage development. In fact, the weak proteinase activity detected inside the L1 midgut has led to the persistence of the Cry1Aa active forms (65 and 58kDa) during prolonged incubations, causing the alterations described previously. Three subfamilies of aminopeptidase (APN) receptors were detected in both larvae instars with different intensities and molecular weights (150kDa and 55kDa for APN1, and 90kDa for APN2 and APN4). Remarkably, binding assay using Cry1Aa toxin seems to have no direct correlation with larval stages toxicity differences, since same putative receptors were detected. Understanding the reasons for the clear differences in the effectiveness of Cry1Aa toxins during larval development stages of E. kuehniella is very important for the design of future improvement insecticidal approaches and for the accomplishment of resistance prevention strategies.
Collapse
Affiliation(s)
- Nouha Abdelmalek
- Laboratory of Biopesticides, Centre of Biotechnology of Sfax, University of Sfax, P.O. Box 1177, 3018 Sfax, Tunisia
| | - Sameh Sellami
- Laboratory of Biopesticides, Centre of Biotechnology of Sfax, University of Sfax, P.O. Box 1177, 3018 Sfax, Tunisia
| | | | - Molka Feki Tounsi
- Laboratory of Molecular and Cellular Screening Processes Genomics and Bioinformatics, Centre of Biotechnology of Sfax, University of Sfax, P.O. Box 1177, 3018 Sfax, Tunisia
| | | | - Slim Tounsi
- Laboratory of Biopesticides, Centre of Biotechnology of Sfax, University of Sfax, P.O. Box 1177, 3018 Sfax, Tunisia
| | - Souad Rouis
- Laboratory of Biopesticides, Centre of Biotechnology of Sfax, University of Sfax, P.O. Box 1177, 3018 Sfax, Tunisia.
| |
Collapse
|
12
|
Hernández-Martínez P, Vera-Velasco NM, Escriche B. Unshared binding sites for Bacillus thuringiensis Cry3Aa and Cry3Ca proteins in the weevil Cylas puncticollis (Brentidae). Toxicon 2016; 122:50-53. [PMID: 27662801 PMCID: PMC5090047 DOI: 10.1016/j.toxicon.2016.09.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2016] [Revised: 09/16/2016] [Accepted: 09/17/2016] [Indexed: 11/01/2022]
Abstract
Bacillus thuringiensis Cry3Aa and Cry3Ca proteins have been reported to be toxic against the African sweetpotato pest Cylas puncticollis. In the present work, the binding sites of these proteins in C. puncticollis brush border vesicles suggest the occurrence of different binding sites, but only one of them is shared. Our results suggest that pest resistance mediated by alteration of the shared Cry-receptor binding site might not render both Cry proteins ineffective. N-terminal sequence of Cry3C activated by trypsin or chymotrypsin was identified at 159 and 153 positions, respectively. Cry3Aa and Cry3Ca proteins bound specifically to C. puncticollis BBMV. Cry3Aa and Cry3Ca proteins do not completely compete for the same binding sites.
Collapse
|
13
|
Distribution and Metabolism of Bt-Cry1Ac Toxin in Tissues and Organs of the Cotton Bollworm, Helicoverpa armigera. Toxins (Basel) 2016; 8:toxins8070212. [PMID: 27399776 PMCID: PMC4963845 DOI: 10.3390/toxins8070212] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2016] [Accepted: 06/30/2016] [Indexed: 11/17/2022] Open
Abstract
Crystal (Cry) proteins derived from Bacillus thuringiensis (Bt) have been widely used in transgenic crops due to their toxicity against insect pests. However, the distribution and metabolism of these toxins in insect tissues and organs have remained obscure because the target insects do not ingest much toxin. In this study, several Cry1Ac-resistant strains of Helicoverpa armigera, fed artificial diets containing high doses of Cry1Ac toxin, were used to investigate the distribution and metabolism of Cry1Ac in their bodies. Cry1Ac was only detected in larvae, not in pupae or adults. Also, Cry1Ac passed through the midgut into other tissues, such as the hemolymph and fat body, but did not reach the larval integument. Metabolic tests revealed that Cry1Ac degraded most rapidly in the fat body, followed by the hemolymph, peritrophic membrane and its contents. The toxin was metabolized slowly in the midgut, but was degraded in all locations within 48 h. These findings will improve understanding of the functional mechanism of Bt toxins in target insects and the biotransfer and the bioaccumulation of Bt toxins in arthropod food webs in the Bt crop ecosystem.
Collapse
|
14
|
Rausch MA, Chougule NP, Deist BR, Bonning BC. Modification of Cry4Aa toward Improved Toxin Processing in the Gut of the Pea Aphid, Acyrthosiphon pisum. PLoS One 2016; 11:e0155466. [PMID: 27171411 PMCID: PMC4865192 DOI: 10.1371/journal.pone.0155466] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2016] [Accepted: 04/30/2016] [Indexed: 11/19/2022] Open
Abstract
Aphids are sap-sucking insects (order: Hemiptera) that cause extensive damage to a wide range of agricultural crops. Our goal was to optimize a naturally occurring insecticidal crystalline (Cry) toxins produced by the soil-dwelling bacterium Bacillus thuringiensis for use against the pea aphid, Acyrthosiphon pisum. On the basis that activation of the Cry4Aa toxin is a rate-limiting factor contributing to the relatively low aphicidal activity of this toxin, we introduced cathepsin L and cathepsin B cleavage sites into Cry4Aa for rapid activation in the aphid gut environment. Incubation of modified Cry4Aa and aphid proteases in vitro demonstrated enhanced processing of the toxin into the active form for some of the modified constructs relative to non-modified Cry4Aa. Aphids fed artificial diet with toxin at a final concentration of 125 μg/ml showed enhanced mortality after two days for one of the four modified constructs. Although only modest toxin improvement was achieved by use of this strategy, such specific toxin modifications designed to overcome factors that limit aphid toxicity could be applied toward managing aphid populations via transgenic plant resistance.
Collapse
Affiliation(s)
- Michael A. Rausch
- Department of Entomology, Iowa State University, Ames, Iowa, United States of America
| | - Nanasaheb P. Chougule
- Department of Entomology, Iowa State University, Ames, Iowa, United States of America
| | - Benjamin R. Deist
- Department of Entomology, Iowa State University, Ames, Iowa, United States of America
| | - Bryony C. Bonning
- Department of Entomology, Iowa State University, Ames, Iowa, United States of America
| |
Collapse
|
15
|
Suryawanshi RK, Patil CD, Borase HP, Narkhede CP, Salunke BK, Patil SV. Mosquito larvicidal and pupaecidal potential of prodigiosin from Serratia marcescens and understanding its mechanism of action. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2015; 123:49-55. [PMID: 26267052 DOI: 10.1016/j.pestbp.2015.01.018] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2014] [Revised: 01/27/2015] [Accepted: 01/28/2015] [Indexed: 06/04/2023]
Abstract
Mosquitoes spread lethal diseases like malaria and dengue fever to humans. Considering mosquito vector control as one of the best alternatives to reduce new infections, here we have analyzed the effect of purified pigment prodigiosin extracted from Serratia marcescens (NMCC 75) against larval and pupal stages of Aedes aegypti and Anopheles stephensi mosquitoes. Mosquito larvicidal activities of purified prodigiosin revealed LC50 values of 14 ± 1.2, 15.6 ± 1.48, 18 ± 1.3, 21 ± 0.87 µg/ml against early IInd, IIIrd, IVth instar and pupal stages of Ae. aegypti, respectively. LC50 values for An. stephensi were found to be 19.7 ± 1.12, 24.7 ± 1.47, 26.6 ± 1.67, 32.2 ± 1.79 µg/ml against early IInd, IIIrd, IVth instar and pupae of An. stephensi, respectively. Further investigations toward understanding modes of action revealed variations in the activities of esterases, acetylcholine esterases, phosphatases, proteases and total proteins in the fourth instar larvae of Ae. aegypti indicating intrinsic difference in biochemical features due to prodigiosin treatment. Although there was no inhibition of enzymes like catalase and oxidase but may have profound inhibitory effect on carbonic anhydrase or H(+)-V-ATPase which is indicated by change in the pH of midgut and caeca of mosquito larvae. This reduced pH may be possibly due to the proton pump inhibitory activity of prodigiosin. Pure prodigiosin can prove to be an important molecule for mosquito control at larval and pupal stages of Ae. aegypti and An. stephensi. This is the first report on the mosquito pupaecidal activity of prodigiosin and its possible mechanism of action.
Collapse
Affiliation(s)
- Rahul K Suryawanshi
- School of Life Sciences, North Maharashtra University, Jalgaon 425001, Maharashtra, India
| | - Chandrashekhar D Patil
- School of Life Sciences, North Maharashtra University, Jalgaon 425001, Maharashtra, India
| | - Hemant P Borase
- School of Life Sciences, North Maharashtra University, Jalgaon 425001, Maharashtra, India
| | - Chandrakant P Narkhede
- School of Life Sciences, North Maharashtra University, Jalgaon 425001, Maharashtra, India
| | - Bipinchandra K Salunke
- School of Life Sciences, North Maharashtra University, Jalgaon 425001, Maharashtra, India
| | - Satish V Patil
- School of Life Sciences, North Maharashtra University, Jalgaon 425001, Maharashtra, India.
| |
Collapse
|
16
|
Bt toxin modification for enhanced efficacy. Toxins (Basel) 2014; 6:3005-27. [PMID: 25340556 PMCID: PMC4210883 DOI: 10.3390/toxins6103005] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2014] [Revised: 09/28/2014] [Accepted: 09/29/2014] [Indexed: 11/23/2022] Open
Abstract
Insect-specific toxins derived from Bacillus thuringiensis (Bt) provide a valuable resource for pest suppression. Here we review the different strategies that have been employed to enhance toxicity against specific target species including those that have evolved resistance to Bt, or to modify the host range of Bt crystal (Cry) and cytolytic (Cyt) toxins. These strategies include toxin truncation, modification of protease cleavage sites, domain swapping, site-directed mutagenesis, peptide addition, and phage display screens for mutated toxins with enhanced activity. Toxin optimization provides a useful approach to extend the utility of these proteins for suppression of pests that exhibit low susceptibility to native Bt toxins, and to overcome field resistance.
Collapse
|
17
|
Caccia S, Chakroun M, Vinokurov K, Ferré J. Proteolytic processing of Bacillus thuringiensis Vip3A proteins by two Spodoptera species. JOURNAL OF INSECT PHYSIOLOGY 2014; 67:76-84. [PMID: 24979528 DOI: 10.1016/j.jinsphys.2014.06.008] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2014] [Revised: 06/06/2014] [Accepted: 06/18/2014] [Indexed: 06/03/2023]
Abstract
Vip3 proteins have been described to be secreted by Bacillus thuringiensis during the vegetative growth phase and to display a broad insecticidal spectrum against lepidopteran larvae. Vip3Aa protoxin has been reported to be significantly more toxic to Spodoptera frugiperda than to Spodoptera exigua and differences in the midgut processing have been proposed to be responsible. In contrast, we have found that Vip3Ae is essentially equally toxic against these two species. Proteolysis experiments were performed to study the stability of Vip3A proteins to peptidase digestion and to see whether the differences found could explain differences in toxicity against these two Spodoptera species. It was found that activation of the protoxin form and degradation of the 62kDa band took place at lower concentrations of trypsin when using Vip3Aa than when using Vip3Ae. The opposite effect was observed for chymotrypsin. Vip3Aa and Vip3Ae protoxins were effectively processed by midgut content extracts from the two Spodoptera species and the proteolytic activation did not produce a peptidase resistant core under these in vitro conditions. Digestion experiments performed with S. frugiperda chromatography-purified digestive serine peptidases showed that the degradation of the Vip3A toxins active core is mainly due to the action of cationic chymotrypsin-like peptidase. Although the digestion patterns of Vip3A proteins do not always correlate with toxicity, the peptidase stability of the 62kDa core is in agreement with intraspecific differences of toxicity of the Vip3Aa protein.
Collapse
Affiliation(s)
- Silvia Caccia
- Departamento de Genética, Facultad de CC. Biológicas, Universidad de Valencia, Burjassot, Spain
| | - Maissa Chakroun
- Departamento de Genética, Facultad de CC. Biológicas, Universidad de Valencia, Burjassot, Spain
| | - Konstantin Vinokurov
- Departamento de Genética, Facultad de CC. Biológicas, Universidad de Valencia, Burjassot, Spain
| | - Juan Ferré
- Departamento de Genética, Facultad de CC. Biológicas, Universidad de Valencia, Burjassot, Spain.
| |
Collapse
|
18
|
Devi VS, Sharma HC, Rao PA. Influence of oxalic and malic acids in chickpea leaf exudates on the biological activity of CryIAc towards Helicoverpa armigera. JOURNAL OF INSECT PHYSIOLOGY 2013; 59:394-399. [PMID: 23391855 DOI: 10.1016/j.jinsphys.2013.01.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2012] [Revised: 01/23/2013] [Accepted: 01/23/2013] [Indexed: 06/01/2023]
Abstract
Efforts are being made to express toxin genes from the bacterium, Bacillus thuringiensis (Bt) in chickpea for minimizing the losses due to the pod borer, Helicoverpa armigera. However, there is an apprehension that acidic exudates in chickpea leaves may influence the protoxin-toxin conversion in the insect midgut, and thus, reduce the efficacy of Bt toxins. Therefore, we studied the influence of organic acids (oxalic acid and malic acid) present in the trichome exudates of chickpea on the biological activity and binding of Bt δ-endotoxin Cry1Ac to brush border membrane vesicles (BBMV) of the pod borer, H. armigera. Oxalic and malic acids in combination at concentrations present in chickpea leaves did not influence the biological activity of Bt toxin Cry1Ac towards H. armigera larvae. Amounts of Cry1Ac protein in the midgut of insects reared on diets with organic acids were similar to those reared on artificial diet without the organic acids. However, very high concentrations of the organic acids reduced the amounts of Cry1Ac in the midgut of H. armigera larvae. Organic acids in the artificial diet also increased the excretion of Cry1Ac in the fecal matter. Organic acids reduced the amount of protein in the BBMV of insects reared on diets with Cry1Ac, possibly because of reduced size of the larvae. Oxalic and malic acids at concentrations present in chickpea leaves did not affect the biological activity of Cry1Ac, but it will be desirable to have high levels of expression of Cry1Ac toxin proteins in chickpea for effective control of the pod borer, H. armigera.
Collapse
Affiliation(s)
- V Surekha Devi
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru 502 324, Andhra Pradesh, India
| | | | | |
Collapse
|
19
|
Mahadeva Swamy HM, Asokan R, Mahmood R, Nagesha SN. Molecular Characterization and Genetic Diversity of Insecticidal Crystal Protein Genes in Native Bacillus thuringiensis Isolates. Curr Microbiol 2012. [DOI: 10.1007/s00284-012-0273-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
20
|
Valldor P, Miethling-Graff R, Dockhorn S, Martens R, Tebbe CC. Production of the 14C-labeled insecticidal protein Cry1Ab for soil metabolic studies using a recombinant Escherichia coli in small-scale batch fermentations. Appl Microbiol Biotechnol 2012; 96:221-9. [PMID: 22846901 DOI: 10.1007/s00253-012-4299-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2012] [Revised: 07/10/2012] [Accepted: 07/11/2012] [Indexed: 10/28/2022]
|
21
|
Kariithi HM, Ince IA, Boeren S, Abd-Alla AMM, Parker AG, Aksoy S, Vlak JM, van Oers MM. The salivary secretome of the tsetse fly Glossina pallidipes (Diptera: Glossinidae) infected by salivary gland hypertrophy virus. PLoS Negl Trop Dis 2011; 5:e1371. [PMID: 22132244 PMCID: PMC3222630 DOI: 10.1371/journal.pntd.0001371] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2011] [Accepted: 09/05/2011] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND The competence of the tsetse fly Glossina pallidipes (Diptera; Glossinidae) to acquire salivary gland hypertrophy virus (SGHV), to support virus replication and successfully transmit the virus depends on complex interactions between Glossina and SGHV macromolecules. Critical requisites to SGHV transmission are its replication and secretion of mature virions into the fly's salivary gland (SG) lumen. However, secretion of host proteins is of equal importance for successful transmission and requires cataloging of G. pallidipes secretome proteins from hypertrophied and non-hypertrophied SGs. METHODOLOGY/PRINCIPAL FINDINGS After electrophoretic profiling and in-gel trypsin digestion, saliva proteins were analyzed by nano-LC-MS/MS. MaxQuant/Andromeda search of the MS data against the non-redundant (nr) GenBank database and a G. morsitans morsitans SG EST database, yielded a total of 521 hits, 31 of which were SGHV-encoded. On a false discovery rate limit of 1% and detection threshold of least 2 unique peptides per protein, the analysis resulted in 292 Glossina and 25 SGHV MS-supported proteins. When annotated by the Blast2GO suite, at least one gene ontology (GO) term could be assigned to 89.9% (285/317) of the detected proteins. Five (∼1.8%) Glossina and three (∼12%) SGHV proteins remained without a predicted function after blast searches against the nr database. Sixty-five of the 292 detected Glossina proteins contained an N-terminal signal/secretion peptide sequence. Eight of the SGHV proteins were predicted to be non-structural (NS), and fourteen are known structural (VP) proteins. CONCLUSIONS/SIGNIFICANCE SGHV alters the protein expression pattern in Glossina. The G. pallidipes SG secretome encompasses a spectrum of proteins that may be required during the SGHV infection cycle. These detected proteins have putative interactions with at least 21 of the 25 SGHV-encoded proteins. Our findings opens venues for developing novel SGHV mitigation strategies to block SGHV infections in tsetse production facilities such as using SGHV-specific antibodies and phage display-selected gut epithelia-binding peptides.
Collapse
Affiliation(s)
- Henry M. Kariithi
- Laboratory of Virology, Wageningen University, Wageningen, The Netherlands
- Insect Pest Control Laboratory, Programme of Nuclear Techniques in Food and Agriculture, International Atomic Energy Agency, Vienna, Austria
| | - Ikbal A. Ince
- Laboratory of Virology, Wageningen University, Wageningen, The Netherlands
- Department of Genetics and Bioengineering, Yeditepe University, Istanbul, Turkey
| | - Sjef Boeren
- Laboratory of Biochemistry, Wageningen University, Wageningen, The Netherlands
| | - Adly M. M. Abd-Alla
- Insect Pest Control Laboratory, Programme of Nuclear Techniques in Food and Agriculture, International Atomic Energy Agency, Vienna, Austria
| | - Andrew G. Parker
- Insect Pest Control Laboratory, Programme of Nuclear Techniques in Food and Agriculture, International Atomic Energy Agency, Vienna, Austria
| | - Serap Aksoy
- Yale School of Public Health, New Haven, Connecticut, United States of America
| | - Just M. Vlak
- Laboratory of Virology, Wageningen University, Wageningen, The Netherlands
| | | |
Collapse
|
22
|
Paris M, Tetreau G, Laurent F, Lelu M, Despres L, David JP. Persistence of Bacillus thuringiensis israelensis (Bti) in the environment induces resistance to multiple Bti toxins in mosquitoes. PEST MANAGEMENT SCIENCE 2011; 67:122-128. [PMID: 21162152 DOI: 10.1002/ps.2046] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2010] [Revised: 04/28/2010] [Accepted: 07/20/2010] [Indexed: 05/30/2023]
Abstract
BACKGROUND The simultaneous production of six different toxins by Bacillus thuringiensis israelensis (Bti) is thought to delay the evolution of resistance in treated mosquito populations. Recent studies have shown that Bti can persist and proliferate in the environment, thereby imposing continuous selective pressure on mosquito populations, raising concerns about the long-term effectiveness of this bioinsecticide. In order to evaluate the effect of Bti persistence on the evolution of resistance, the authors selected a laboratory Aedes aegypti L. strain with field-collected leaf litter containing Bti toxins. RESULTS It is shown that resistance to each individual Bti toxin (up to 30-fold) can be obtained after only a few generations of selection. However, the resistance to commercial Bti and to environmental Bti remains low (twofold and 3.4-fold respectively) in the selected strain. Furthermore, some selected individuals exhibited resistance to Cry4B but not to Cry4A, suggesting that two distinct resistance mechanisms are involved in the resistance to these two toxins. CONCLUSION Considering that resistance to Cry toxins might act as a first step to resistance to a complete Bti toxin mixture, the present results highlight the importance of testing each toxin individually in order accurately to monitor Bti toxin resistance evolution in field populations.
Collapse
Affiliation(s)
- Margot Paris
- Laboratoire d'Ecologie Alpine, UMR 5553 CNRS-Université de Grenoble, Grenoble, France
| | | | | | | | | | | |
Collapse
|
23
|
Influence of Mutagenesis of Bacillus thuringiensis Cry1Aa Toxin on Larvicidal Activity. Curr Microbiol 2010; 62:968-73. [DOI: 10.1007/s00284-010-9791-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2010] [Accepted: 09/02/2010] [Indexed: 10/18/2022]
|
24
|
Midgut juice components affect pore formation by the Bacillus thuringiensis insecticidal toxin Cry9Ca. J Invertebr Pathol 2010; 104:203-8. [DOI: 10.1016/j.jip.2010.04.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2010] [Revised: 04/11/2010] [Accepted: 04/14/2010] [Indexed: 11/18/2022]
|
25
|
Brunet JF, Vachon V, Juteau M, Van Rie J, Larouche G, Vincent C, Schwartz JL, Laprade R. Pore-forming properties of the Bacillus thuringiensis toxin Cry9Ca in Manduca sexta brush border membrane vesicles. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2010; 1798:1111-8. [DOI: 10.1016/j.bbamem.2010.02.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2009] [Revised: 01/21/2010] [Accepted: 02/04/2010] [Indexed: 11/16/2022]
|
26
|
Ma XM, Liu XX, Ning X, Zhang B, Han F, Guan XM, Tan YF, Zhang QW. Effects of Bacillus thuringiensis toxin Cry1Ac and Beauveria bassiana on Asiatic corn borer (Lepidoptera: Crambidae). J Invertebr Pathol 2008; 99:123-8. [DOI: 10.1016/j.jip.2008.06.014] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2007] [Revised: 03/03/2008] [Accepted: 06/30/2008] [Indexed: 11/28/2022]
|
27
|
Scheideler SE, Hileman RE, Weber T, Robeson L, Hartnell GF. The in vivo digestive fate of the Cry3Bb1 protein in laying hens fed diets containing MON 863 corn. Poult Sci 2008; 87:1089-97. [PMID: 18492996 DOI: 10.3382/ps.2007-00429] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Two trials were conducted to assess the fate of the Cry3Bb1 protein from YieldGard rootworm corn (MON 863) when fed to laying hens. In the first trial, 2 diets, 1 formulated with MON 863 and 1 with conventional corn, were fed to laying hens (12 replicate cages with 4 hens/cage per treatment) for 8 wk. Daily feed intake (FI), egg production (EP), and BW were measured. Prestudy fecal samples, wk 4 and 8 egg and fecal samples, and hepatic and pectoralis tissue samples were collected from 12 killed hens and were tested for the Cry3Bb1 protein. Corn source had no significant effects on FI, EP, or BW. Feces from hens fed diets containing MON 863 were positive for the Cry3Bb1 protein or proteolytic fragments (1.5 to 4.0 ppm fecal dry matter). The Cry3Bb1 protein could not be determined in eggs due to the presence of an interfering substance in all test and control eggs. No Cry3Bb1 protein was detected in hepatic and pectoralis tissue. In the second trial, the same test and control diets were fed to 12 hens each. Six hens/treatment were sampled after 7 and 28 d. Samples included blood, feces, and digesta (crop, small and large intestine, and ceca). The Cry3Bb1 protein could not be determined in blood due to the presence of an interfering substance in all test and control blood samples. The Cry3Bb1 protein or partially digested fragments, or both, were found in the digesta sampled from all sections of the digestive tract. About 98 to >99% of the dietary Cry3Bb1 protein was digested. Overall, MON 863, when fed to laying hens, had no significant effects on FI, EP, or BW. The Cry3Bb1 protein was extensively digested, similar to that of other dietary proteins, and was not detected in hepatic or muscle tissue.
Collapse
Affiliation(s)
- S E Scheideler
- Department of Animal Science, C206j Animal Sciences, University of Nebraska, Lincoln 68583, USA.
| | | | | | | | | |
Collapse
|
28
|
Jones GW, Wirth MC, Monnerat RG, Berry C. The Cry48Aa-Cry49Aa binary toxin from Bacillus sphaericus exhibits highly restricted target specificity. Environ Microbiol 2008; 10:2418-24. [PMID: 18484999 PMCID: PMC3638318 DOI: 10.1111/j.1462-2920.2008.01667.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The Cry48Aa/Cry49Aa binary toxin of Bacillus sphaericus was recently discovered by its ability to kill Culex quinquefasciatus mosquito larvae through a novel interaction between its two components. We have investigated the target specificity of this toxin and show it to be non-toxic to coleopteran, lepidopteran and other dipteran insects, including closely related Aedes and Anopheles mosquitoes. This represents an unusually restricted target range for crystal toxins from either B. sphaericus or Bacillus thuringiensis. Gut extracts from Culex and Aedes larvae show differential processing of the Cry48Aa protein, with the location of cleavage sites in Culex reflecting those previously shown for the activation of Cry4 toxins in mosquitoes. Pre-activation of Cry48Aa/Cry49Aa with Culex extracts, however, fails to induce toxicity to Aedes larvae. Co-administration of Cry49Aa with Cry4Aa gives higher than predicted toxicity, perhaps suggesting weak synergism against Culex larvae between Cry49Aa and other three-domain Cry toxins.
Collapse
Affiliation(s)
- Gareth W Jones
- Cardiff School of Biosciences, Cardiff University, Museum Avenue, Cardiff CF10 3US, UK
| | | | | | | |
Collapse
|
29
|
Padmaja T, Suneetha N, Sashidhar RB, Sharma HC, Deshpande V, Venkateswerlu G. Degradation of the insecticidal toxin produced by Bacillus thuringiensis var. kurstaki by extracellular proteases produced by Chrysosporium sp. J Appl Microbiol 2008; 104:1171-81. [PMID: 18028364 DOI: 10.1111/j.1365-2672.2007.03644.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Affiliation(s)
- T Padmaja
- Department of Biochemistry, University College of Science, Osmania University, Hyderabad, Andhra Pradesh, India
| | | | | | | | | | | |
Collapse
|
30
|
Prey mediated effects of Bt maize on fitness and digestive physiology of the red spider mite predator Stethorus punctillum Weise (Coleoptera: Coccinellidae). Transgenic Res 2008; 17:943-54. [PMID: 18322817 DOI: 10.1007/s11248-008-9177-4] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2007] [Accepted: 02/13/2008] [Indexed: 10/22/2022]
Abstract
The present study investigated prey-mediated effects of two maize varieties expressing a truncated Cry1Ab, Compa CB (event Bt176) and DKC7565 (event MON810), on the biology of the ladybird Stethorus punctillum. Although immuno-assays demonstrated the presence of Cry1Ab in both prey and predator collected from commercial maize-growing fields, neither transgenic variety had any negative effects on survival of the predator, nor on the developmental time through to adulthood. Furthermore, no subsequent effects on ladybird fecundity were observed. As a prerequisite to studying the interaction of ladybird proteases with Cry1Ab, proteases were characterised using a range of natural and synthetic substrates with diagnostic inhibitors. These results demonstrated that this predator utilises both serine and cysteine proteases for digestion. In vitro studies demonstrated that T. urticae were not able to process or hydrolyze Cry1Ab, suggesting that the toxin passes through the prey to the third trophic level undegraded, thus presumably retaining its insecticidal properties. In contrast, S. punctillum was able to activate the 130 kDa protoxin into the 65 kDa fragment; a fragment of similar size was also obtained with bovine trypsin, which is known to cleave the protoxin to the active form. Thus, despite a potential hazard to the ladybird of Bt-expressing maize (since the predator was both exposed to, and able to proteolytically cleave the toxin, at least in vitro), no deleterious effects were observed.
Collapse
|
31
|
Ayra-Pardo C, Davis P, Ellar DJ. The mutation R423S in the Bacillus thuringiensis hybrid toxin CryAAC slightly increases toxicity for Mamestra brassicae L. J Invertebr Pathol 2007; 95:41-7. [PMID: 17306294 DOI: 10.1016/j.jip.2006.12.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2006] [Revised: 12/10/2006] [Accepted: 12/21/2006] [Indexed: 11/16/2022]
Abstract
Bacillus thuringiensis Cry1Ac toxin is 100 times less toxic than Cry1C to Mamestra brassicae. An R(423)S mutation abolishes Cry1Ac toxin proteolysis in M. brassicae gut juice but does not increase its toxicity to this insect. The CryAAC hybrid toxin (1Ac/1Ac/1Ca) is toxic to M. brassicae but is susceptible to gut protease digestion at the R(423) residue. Accordingly we have investigated the effect of the R(423)S mutation in CryAAC on its toxicity for M. brassicae and Pieris brassicae. Bioassays demonstrated that the R(423)S mutation slightly increased the toxicity of CryAAC for M. brassicae by having a significantly inhibitory effect on the growth of surviving larvae. The mutant hybrid was still highly toxic to P. brassicae. Features of CryAACR(423)S such as, (1) stability in M. brassicae gut juice and (2) crystal solubility were investigated. Computer simulations suggest that a possible major increase in flexibility in the CryAAC loop beta7/beta8 (G(391)-P(397)) caused by the R(423)S substitution could be a reason for the increase in M. brassicae toxicity.
Collapse
Affiliation(s)
- Camilo Ayra-Pardo
- Environmental Biotechnology Laboratory, Centre for Genetic Engineering and Biotechnology (CIGB), Havana 10600, Cuba.
| | | | | |
Collapse
|
32
|
|
33
|
Díaz-Mendoza M, Farinós GP, Castañera P, Hernández-Crespo P, Ortego F. Proteolytic processing of native Cry1Ab toxin by midgut extracts and purified trypsins from the Mediterranean corn borer Sesamia nonagrioides. JOURNAL OF INSECT PHYSIOLOGY 2007; 53:428-35. [PMID: 17336999 DOI: 10.1016/j.jinsphys.2006.12.015] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2006] [Revised: 12/27/2006] [Accepted: 12/27/2006] [Indexed: 05/14/2023]
Abstract
The proteolytic processing of native Cry1Ab toxin by midgut extracts from the Mediterranean corn borer, Sesamia nonagrioides, takes place in successive steps. Several cuts occur until a 74 kDa protein is obtained; this is further digested to give rise to an active form of 69 kDa, which can be again processed to fragments of 67, 66 and 43 kDa. We have shown that three different trypsins (TI, TIIA and TIII) purified from the S. nonagrioides midgut were able to digest Cry1Ab protoxin to obtain the active form of 69 kDa. Interestingly, TI and TIII further hydrolyzed the 69 kDa protein to a fragment of slightly lower molecular mass (67 kDa), while TIIA was able to continue digestion to give fragments of 46 and 43 kDa. These results contrast with those obtained using bovine trypsin, in which the main product of Cry1Ab digestion is a 69 kDa protein. The digestion of the toxin with a "non-trypsin" fraction from S. nonagrioides midgut lumen, mostly containing chymotrypsins and elastases and free of trypsin-like activity, resulted in a different processing pattern, yielding fragments of 79, 77, 71, 69 and 51 kDa. Our results indicate that trypsins and other proteases are involved in the first steps of protoxin processing, but trypsins play the most important role in obtaining the 74 and 69 kDa proteins. All the digestion products, including the proteins of 46 and 43 kDa obtained from the digestion of Cry1Ab by TIIA, were toxic to neonate larvae, indicating that none of the tested proteases contribute to toxin degradation in a significant manner.
Collapse
Affiliation(s)
- Mercedes Díaz-Mendoza
- Dpto. de Biología de Plantas, Centro de Investigaciones Biológicas, CSIC, Ramiro de Maeztu 9, 28040 Madrid, Spain
| | | | | | | | | |
Collapse
|
34
|
Karumbaiah L, Oppert B, Jurat-Fuentes JL, Adang MJ. Analysis of midgut proteinases from Bacillus thuringiensis-susceptible and -resistant Heliothis virescens (Lepidoptera: Noctuidae). Comp Biochem Physiol B Biochem Mol Biol 2007; 146:139-46. [PMID: 17145193 DOI: 10.1016/j.cbpb.2006.10.104] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2006] [Revised: 09/05/2006] [Accepted: 10/10/2006] [Indexed: 11/26/2022]
Abstract
Insects with altered proteinases can avoid intoxication by Bacillus thuringiensis (Bt) toxins. Therefore, proteinase activities from gut extracts of Bt-susceptible (YDK) and -resistant (YHD2-B, CXC and KCBhyb) Heliothis virescens strains were compared. The overall pH of gut extracts from YDK and CXC were statistically similar (9.56 and 9.62, respectively), while the pH of extracts from KCBhyb and YHD2-B were significantly more alkaline (9.81 and 10.0, respectively). Gut extracts from YHD2-B and CXC larvae processed Cry1Ac and Cry2Aa protoxin slower than extracts from YDK larvae, suggesting that differences in proteolysis contribute to resistance in these strains. Casein zymogram analysis of gut extracts revealed both qualitative and quantitative differences in caseinolytic activities among all strains, but the overall caseinolytic activity of YHD2-B gut extract was lower. Kinetic microplate assays with a trypsin substrate (l-BApNA) demonstrated that proteinases in YDK gut extract had increased alkaline pH optima compared to resistant strains YHD2-B, CXC and KCBhyb. Gut extracts from YHD2-B had reduced trypsin-like activity, and activity blots indicated that YHD2-B had lost a trypsin-like proteinase activity. In assays with a chymotrypsin substrate (SAAPFpNA), enzymes from all Bt-resistant strains had increased pH optima, especially those from KCBhyb. Activity blots indicated that CXC had lost a chymotrypsin-like proteinase activity. Because serine proteinases are a critical component of Bt toxin mode of action, these differences may contribute to decreased toxicity in the Bt-resistant strains.
Collapse
|
35
|
Coates BS, Hellmich RL, Lewis LC. Sequence variation in trypsin- and chymotrypsin-like cDNAs from the midgut of Ostrinia nubilalis: methods for allelic differentiation of candidate Bacillus thuringiensis resistance genes. INSECT MOLECULAR BIOLOGY 2006; 15:13-24. [PMID: 16469064 DOI: 10.1111/j.1365-2583.2006.00598.x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Midgut expressed alkaline serine proteases of Lepidoptera function in conversion of Bacillus thuringiensis (Bt) protoxin to active toxin, and reduced level of transcript T23 is associated with Ostrinia nubilalis resistance to Dipel Bt formulations. Three groups of trypsin- (OnT25, OnT23, and OnT3) and two chymotrypsin-like (OnC1 and OnC2) cDNAs were isolated from O. nubilalis midgut tissue. Intraspecific groupings are based on cDNA similarity and peptide phylogeny. Derived serine proteases showed a catalytic triad (His, Asp, and Ser; except transcript OnT23a), three substrate specificity-determining residues, and three paired disulphide bonds. RT-PCR indicated all transcripts are expressed in the midgut. Mendelian-inherited genomic markers for loci OnT23, OnT3 and OnC1 will be useful for association of alleles with bioassayed Bt toxin resistance phenotypes.
Collapse
Affiliation(s)
- B S Coates
- USDA-ARS, Corn Insects and Crop Genetics Research Unit, Iowa State University, Ames, IA 50010, USA.
| | | | | |
Collapse
|
36
|
Slack JM, Lawrence SD. Evidence for proteolytic cleavage of the baculovirus occlusion-derived virion envelope protein P74. J Gen Virol 2005; 86:1637-1643. [PMID: 15914841 DOI: 10.1099/vir.0.80832-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Baculovirus occlusion-derived virions (ODVs) are released from occlusion bodies by the alkaline environment of the insect midgut. The ODV envelope protein P74 is required for oral infectivity. A soluble form of the Autographa californica multiple nucleopolyhedrovirus P74 protein, P74sol, was engineered as part of a chimeric protein with jellyfish green fluorescent protein (GFP). P74sol-GFP was overproduced by the baculovirus expression system and purified away from the wild-type P74. Brush border membrane vesicles (BBMVs) were prepared from the midguts of third-instar Helicoverpa zea larvae. When P74sol-GFP was incubated under alkaline conditions with BBMVs, a P74sol-GFP product with a smaller molecular mass was produced. Immunoblots indicated that the smaller product was generated by N-terminal cleavage of P74. This cleavage was prevented by soybean trypsin inhibitor. Analysis of the peptide sequences of P74 homologues identified a conserved trypsin cleavage site that could generate the observed P74sol-GFP BBMV-specific cleavage product.
Collapse
Affiliation(s)
- Jeffrey M Slack
- USDA/ARS, Insect Biocontrol Laboratory, BARC-West, Bldg 011A, Rm 214, Beltsville, MD 20852-2350, USA
| | - Susan D Lawrence
- USDA/ARS, Insect Biocontrol Laboratory, BARC-West, Bldg 011A, Rm 214, Beltsville, MD 20852-2350, USA
| |
Collapse
|
37
|
Chen FC, Shen LF, Tsai MC, Chak KF. The IspA protease's involvement in the regulation of the sporulation process of Bacillus thuringiensis is revealed by proteomic analysis. Biochem Biophys Res Commun 2004; 312:708-15. [PMID: 14680823 DOI: 10.1016/j.bbrc.2003.10.155] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2003] [Indexed: 11/20/2022]
Abstract
We have observed that the process of sporulation of the ispA-deficient mutant was delayed under phase-contrast microscopy. The protein profiles of the ispA-deficient mutant have been analyzed using two-dimensional gel electrophoresis. The results of a proteomic analysis using MALDI-TOF MS indicated that a sporulation-associated protein, pro- [Formula: see text], was upregulated, while two other sporulation-associated proteins, SpoVD and SpoVR, were downregulated in the ispA-deficient mutant. It has been known that pro- [Formula: see text] is a precursor of [Formula: see text] and is required for gene expression related to the late stage of sporulation. Moreover, SpoVD and SpoVR are known to be involved in the formation of the spore cortex. Based on these observations, we propose that the delay in the sporulation process observed in the ispA-deficient mutant may be due to a failure of [Formula: see text] to signal sporulation. This phenomenon may be further enhanced by insufficient amount of SpoVD and SpoVR for cortex formation. In this study, we have revealed for the first time a possible pathway for the regulation of sporulation-associated proteins via IspA.
Collapse
Affiliation(s)
- Fu-Chu Chen
- Institute of Biochemistry, National Yang Ming University, Shih-Pai, Taipei 11221, Taiwan, R.O.C
| | | | | | | |
Collapse
|
38
|
Bah A, van Frankenhuyzen K, Brousseau R, Masson L. The Bacillus thuringiensis Cry1Aa toxin: effects of trypsin and chymotrypsin site mutations on toxicity and stability. J Invertebr Pathol 2004; 85:120-7. [PMID: 15050842 DOI: 10.1016/j.jip.2004.02.002] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2003] [Accepted: 02/02/2004] [Indexed: 11/20/2022]
Abstract
The objective of the present work was to create an active Cry1Aa toxin showing enhanced resistance to degradation by spruce budworm (Choristoneura fumiferana) midgut proteases by mutating potential chymotrypsin and trypsin sites. Fourteen Cry1Aa mutants were created in an Escherichia coli-Bacillus shuttle vector and expressed in a crystal minus Bacillus thuringiensis host. Using spruce budworm gut juice, commercial bovine trypsin and chymotrypsin we performed protease resistance assays with Cry1Aa wild type and mutant toxins. Although many mutants showed little or no change, several mutants showed a > 2-fold increase (R543S, R566G, and F570S) up to a > 4-fold increase in toxicity (F576S), in bioassay studies against C. fumiferana. The in vitro protease resistance assay results indicated a possible involvement of other gut juice components in toxin overdigestion.
Collapse
Affiliation(s)
- Aliou Bah
- Biotechnology Research Institute, National Research, Council, Montreal, Que., Canada H4P 2R2
| | | | | | | |
Collapse
|
39
|
Romeis J, Dutton A, Bigler F. Bacillus thuringiensis toxin (Cry1Ab) has no direct effect on larvae of the green lacewing Chrysoperla carnea (Stephens) (Neuroptera: Chrysopidae). JOURNAL OF INSECT PHYSIOLOGY 2004; 50:175-183. [PMID: 15019519 DOI: 10.1016/j.jinsphys.2003.11.004] [Citation(s) in RCA: 76] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2003] [Revised: 10/07/2003] [Accepted: 11/06/2003] [Indexed: 05/24/2023]
Abstract
Earlier studies have shown that larvae of the green lacewing predator Chrysoperla carnea are negatively affected when preying on lepidopteran larvae that had been fed with transgenic maize expressing the cry1Ab gene from Bacillus thuringiensis. To test whether the observed effects were directly caused by the Cry1Ab toxin, we have developed a bioassay which allows us to feed high concentrations of the toxin directly to the predator. The results of these feeding studies show no direct toxic effect of Cry1Ab on C. carnea larvae. The amount of toxin ingested by first instar C. carnea in the present study was found to be a factor 10,000 higher than the concentration ingested when feeding on Bt-reared lepidopteran larvae, a treatment that was previously shown to have a negative impact on the predator. In addition, feeding first instar C. carnea with the Cry1Ab toxin did not affect the utilisation of subsequently provided prey. Furthermore, the quality of the prey provided to first instars did not affect the sensitivity of second and third instar C. carnea to the Bt-toxin. The presented results strongly suggest that C. carnea larvae are not sensitive to Cry1Ab and that earlier reported negative effects of Bt-maize were prey-quality mediated rather than direct toxic effects. These results, together with the fact that lepidopteran larvae are not regarded as an important prey for C. carnea in the field, led us to conclude that transgenic maize expressing Cry1Ab poses a negligible risk for this predator.
Collapse
Affiliation(s)
- Jörg Romeis
- Swiss Federal Research Station for Agroecology and Agriculture (FAL), Reckenholzstr. 191, 8046 Zurich, Switzerland.
| | | | | |
Collapse
|
40
|
Miranda R, Zamudio FZ, Bravo A. Processing of Cry1Ab delta-endotoxin from Bacillus thuringiensis by Manduca sexta and Spodoptera frugiperda midgut proteases: role in protoxin activation and toxin inactivation. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2001; 31:1155-1163. [PMID: 11583928 DOI: 10.1016/s0965-1748(01)00061-3] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Activation of Cry protoxins is carried out by midgut proteases. This process is important for toxicity and in some cases for specificity. Commercial proteases have been used for in vitro protoxin activation. In the case of Cry1A protoxins, trypsin digestion generates a toxic fragment of 60-65 kDa. Here, we have analyzed the in vitro and in vivo activation of Cry1Ab. We found differences in the processing of Cry1Ab protoxin by Manduca sexta and Spodoptera frugiperda midgut proteases as compared to trypsin. Midgut juice proteases produced two additional nicks at the N-terminal end removing helices alpha1 and alpha2a to produce a 58 kDa protein. A further cleavage within domain II splits the toxin into two fragments of 30 kDa. The resulting fragments were not separated, but instead coeluted with the 58 kDa monomer, in size-exclusion chromatography. To examine if this processing was involved in the activation or degradation of Cry1Ab toxin, binding, pore formation, and toxicity assays were performed. Pore formation assays showed that midgut juice treatment produced a more active toxin than trypsin treatment. In addition, it was determined that the alpha1 helix is dispensable for Cry1Ab activity. In contrast, the appearance of the 30 kDa fragments correlates with a decrease in pore formation and insecticidal activities. Our results suggest that the cleavage in domain II may be involved in toxin inactivation, and that the 30 kDa fragments are stable intermediates in the degradation pathway.
Collapse
Affiliation(s)
- R Miranda
- Instituto de Biotecnología, Universidad Nacional Autónoma de México, Apdo. Postal 510-3, 62250, Mor., Cuernavaca, Mexico
| | | | | |
Collapse
|