1
|
Ledvina HE, Whiteley AT. Conservation and similarity of bacterial and eukaryotic innate immunity. Nat Rev Microbiol 2024; 22:420-434. [PMID: 38418927 PMCID: PMC11389603 DOI: 10.1038/s41579-024-01017-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/24/2024] [Indexed: 03/02/2024]
Abstract
Pathogens are ubiquitous and a constant threat to their hosts, which has led to the evolution of sophisticated immune systems in bacteria, archaea and eukaryotes. Bacterial immune systems encode an astoundingly large array of antiviral (antiphage) systems, and recent investigations have identified unexpected similarities between the immune systems of bacteria and animals. In this Review, we discuss advances in our understanding of the bacterial innate immune system and highlight the components, strategies and pathogen restriction mechanisms conserved between bacteria and eukaryotes. We summarize evidence for the hypothesis that components of the human immune system originated in bacteria, where they first evolved to defend against phages. Further, we discuss shared mechanisms that pathogens use to overcome host immune pathways and unexpected similarities between bacterial immune systems and interbacterial antagonism. Understanding the shared evolutionary path of immune components across domains of life and the successful strategies that organisms have arrived at to restrict their pathogens will enable future development of therapeutics that activate the human immune system for the precise treatment of disease.
Collapse
Affiliation(s)
- Hannah E Ledvina
- Department of Biochemistry, University of Colorado Boulder, Boulder, CO, USA
| | - Aaron T Whiteley
- Department of Biochemistry, University of Colorado Boulder, Boulder, CO, USA.
| |
Collapse
|
2
|
Yang L, Jia S, Sun S, Wang L, Zhao B, Zhang M, Yin Y, Yang M, Fulano AM, Shen X, Pan J, Wang Y. A pyocin-like T6SS effector mediates bacterial competition in Yersinia pseudotuberculosis. Microbiol Spectr 2024; 12:e0427823. [PMID: 38712967 PMCID: PMC11237486 DOI: 10.1128/spectrum.04278-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 04/18/2024] [Indexed: 05/08/2024] Open
Abstract
Within the realm of Gram-negative bacteria, bacteriocins are secreted almost everywhere, and the most representative are colicin and pyocin, which are secreted by Escherichia coli and Pseudomonas aeruginosa, respectively. Signal peptides at the amino terminus of bacteriocins or ABC transporters can secrete bacteriocins, which then enter bacteria through cell membrane receptors and exert toxicity. In general, the bactericidal spectrum is usually narrow, killing only the kin or closely related species. Our previous research indicates that YPK_0952 is an effector of the third Type VI secretion system (T6SS-3) in Yersinia pseudotuberculosis. Next, we sought to determine its identity and characterize its toxicity. We found that YPK_0952 (a pyocin-like effector) can achieve intra-species and inter-species competitive advantages through both contact-dependent and contact-independent mechanisms mediated by the T6SS-3 while enhancing the intestinal colonization capacity of Y. pseudotuberculosis. We further identified YPK_0952 as a DNase dependent on Mg2+, Ni2+, Mn2+, and Co2+ bivalent metal ions, and the homologous immune protein YPK_0953 can inhibit its activity. In summary, YPK_0952 exerts toxicity by degrading nucleic acids from competing cells, and YPK_0953 prevents self-attack in Y. pseudotuberculosis.IMPORTANCEBacteriocins secreted by Gram-negative bacteria generally enter cells through specific interactions on the cell surface, resulting in a narrow bactericidal spectrum. First, we identified a new pyocin-like effector protein, YPK_0952, in the third Type VI secretion system (T6SS-3) of Yersinia pseudotuberculosis. YPK_0952 is secreted by T6SS-3 and can exert DNase activity through contact-dependent and contact-independent entry into nearby cells of the same and other species (e.g., Escherichia coli) to help Y. pseudotuberculosis to exert a competitive advantage and promote intestinal colonization. This discovery lays the foundation for an in-depth study of the different effector protein types within the T6SS and their complexity in competing interactions. At the same time, this study provides a new development for the toolbox of toxin/immune pairs for studying Gram-negative bacteriocin translocation.
Collapse
Affiliation(s)
- Leilei Yang
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, China
| | - Shuangkai Jia
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, China
| | - Sihuai Sun
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, China
| | - Lei Wang
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, China
| | - Bobo Zhao
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, China
| | - Mengsi Zhang
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, China
| | - Yanling Yin
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, China
- College of Life Sciences, Tarim University, Alar, Xinjiang, China
| | - Mingming Yang
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, China
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, China
| | - Alex M. Fulano
- Department of Plant Science and Crop Protection, University of Nairobi, Nairobi, Kenya
| | - Xihui Shen
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, China
- College of Life Sciences, Tarim University, Alar, Xinjiang, China
| | - Junfeng Pan
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, China
| | - Yao Wang
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, China
| |
Collapse
|
3
|
Matanza XM, Clements A. Pathogenicity and virulence of Shigella sonnei: A highly drug-resistant pathogen of increasing prevalence. Virulence 2023; 14:2280838. [PMID: 37994877 PMCID: PMC10732612 DOI: 10.1080/21505594.2023.2280838] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 11/01/2023] [Indexed: 11/24/2023] Open
Abstract
Shigella spp. are the causative agent of shigellosis (or bacillary dysentery), a diarrhoeal disease characterized for the bacterial invasion of gut epithelial cells. Among the 4 species included in the genus, Shigella flexneri is principally responsible for the disease in the developing world while Shigella sonnei is the main causative agent in high-income countries. Remarkably, as more countries improve their socioeconomic conditions, we observe an increase in the relative prevalence of S. sonnei. To date, the reasons behind this change in aetiology depending on economic growth are not understood. S. flexneri has been widely used as a model to study the pathogenesis of the genus, but as more research data are collected, important discrepancies with S. sonnei have come to light. In comparison to S. flexneri, S. sonnei can be differentiated in numerous aspects; it presents a characteristic O-antigen identical to that of one serogroup of the environmental bacterium Plesiomonas shigelloides, a group 4 capsule, antibacterial mechanisms to outcompete and displace gut commensal bacteria, and a poorer adaptation to an intracellular lifestyle. In addition, the World Health Organization (WHO) have recognized the significant threat posed by antibiotic-resistant strains of S. sonnei, demanding new approaches. This review gathers knowledge on what is known about S. sonnei within the context of other Shigella spp. and aims to open the door for future research on understanding the increasing spread of this pathogen.
Collapse
Affiliation(s)
- Xosé M. Matanza
- Centre for Bacterial Resistance Biology, Department of Life Sciences, Imperial College London, London, UK
| | - Abigail Clements
- Centre for Bacterial Resistance Biology, Department of Life Sciences, Imperial College London, London, UK
| |
Collapse
|
4
|
Håkonsholm F, Hetland MAK, Löhr IH, Lunestad BT, Marathe NP. Co-localization of clinically relevant antibiotic- and heavy metal resistance genes on plasmids in Klebsiella pneumoniae from marine bivalves. Microbiologyopen 2023; 12:e1368. [PMID: 37642489 PMCID: PMC10356976 DOI: 10.1002/mbo3.1368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 06/06/2023] [Accepted: 06/14/2023] [Indexed: 08/31/2023] Open
Abstract
Klebsiella pneumoniae is an opportunistic pathogen frequently associated with antibiotic resistance and present in a wide range of environments, including marine habitats. However, little is known about the development, persistence, and spread of antibiotic resistance in such environments. This study aimed to obtain the complete genome sequences of antibiotic-resistant K. pneumoniae isolated from marine bivalves in order to determine the genetic context of antibiotic- and heavy metal resistance genes in these isolates. Five antibiotic-resistant K. pneumoniae isolates, of which four also carried heavy metal resistance genes, were selected for complete genome sequencing using the Illumina MiSeq platform and the Oxford Nanopore Technologies GridION device. Conjugation experiments were conducted to examine the transfer potential of selected plasmids. The average length of the complete genomes was 5.48 Mbp with a mean chromosome size of 5.27 Mbp. Seven plasmids were detected in the antibiotic-resistant isolates. Three IncFIB, one IncFIB/IncFII, and one IncFIB/IncHIB plasmid, respectively, carried antibiotic resistance genes such as qnrS1, aph(6)-Id and aph(3')-Ia, aadA1, and aadA2. Four of these plasmids also carried genes encoding resistance to copper (pco), silver (sil), and arsenic (ars). One plasmid carrying tet(D) and blaSHV-1 as well as pco, sil, and ars genes was transferred to Escherichia coli by conjugation. We show the co-occurrence of antibiotic- and heavy metal resistance genes on a conjugative IncFIB plasmid from K. pneumoniae from marine bivalves. Our study highlights the importance of the marine environment and seafood as a possible dissemination route for antimicrobial resistance and provides insights into the potential for co-selection of antibiotic resistance genes by heavy metals.
Collapse
Affiliation(s)
- Fredrik Håkonsholm
- Institute of Marine ResearchBergenNorway
- Department of Medical Biology, Faculty of Health SciencesUniversity of Tromsø—The Arctic University of NorwayTromsøNorway
| | - Marit A. K. Hetland
- Department of Medical MicrobiologyStavanger University HospitalStavangerNorway
- Department of Biological Sciences, Faculty of Mathematics and Natural SciencesUniversity of BergenBergenNorway
| | - Iren H. Löhr
- Department of Medical MicrobiologyStavanger University HospitalStavangerNorway
- Department of Clinical Science, Faculty of MedicineUniversity of BergenBergenNorway
| | | | | |
Collapse
|
5
|
Jha S, Anand S. Development and Control of Biofilms: Novel Strategies Using Natural Antimicrobials. MEMBRANES 2023; 13:579. [PMID: 37367783 DOI: 10.3390/membranes13060579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 05/30/2023] [Accepted: 05/31/2023] [Indexed: 06/28/2023]
Abstract
Separation membranes have a wide application in the food industry, for instance, in the clarification/fractionation of milk, the concentration/separation of selected components, and wastewater treatment. They provide a large area for bacteria to attach and colonize. When a product comes into contact with a membrane, it initiates bacterial attachment/colonization and eventually forms biofilms. Several cleaning and sanitation protocols are currently utilized in the industry; however, the heavy fouling of the membrane over a prolonged duration affects the overall cleaning efficiency. In view of this, alternative approaches are being developed. Therefore, the objective of this review is to describe the novel strategies for controlling membrane biofilms such as enzyme-based cleaner, naturally produced antimicrobials of microbial origin, and preventing biofilm development using quorum interruption. Additionally, it aims to report the constitutive microflora of the membrane and the development of the predominance of resistant strains over prolonged usage. The emergence of predominance could be associated with several factors, of which, the release of antimicrobial peptides by selective strains is a prominent factor. Therefore, naturally produced antimicrobials of microbial origin could thus provide a promising approach to control biofilms. Such an intervention strategy could be implemented by developing a bio-sanitizer exhibiting antimicrobial activity against resistant biofilms.
Collapse
Affiliation(s)
- Sheetal Jha
- Dairy and Food Science Department, South Dakota State University, Brookings, SD 57007, USA
| | - Sanjeev Anand
- Dairy and Food Science Department, South Dakota State University, Brookings, SD 57007, USA
| |
Collapse
|
6
|
Gallet A, Halary S, Duval C, Huet H, Duperron S, Marie B. Disruption of fish gut microbiota composition and holobiont's metabolome during a simulated Microcystis aeruginosa (Cyanobacteria) bloom. MICROBIOME 2023; 11:108. [PMID: 37194081 DOI: 10.1186/s40168-023-01558-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Accepted: 04/26/2023] [Indexed: 05/18/2023]
Abstract
BACKGROUND Cyanobacterial blooms are one of the most common stressors encountered by metazoans living in freshwater lentic systems such as lakes and ponds. Blooms reportedly impair fish health, notably through oxygen depletion and production of bioactive compounds including cyanotoxins. However, in the times of the "microbiome revolution", it is surprising that so little is still known regarding the influence of blooms on fish microbiota. In this study, an experimental approach is used to demonstrate that blooms affect fish microbiome composition and functions, as well as the metabolome of holobionts. To this end, the model teleost Oryzias latipes is exposed to simulated Microcystis aeruginosa blooms of various intensities in a microcosm setting, and the response of bacterial gut communities is evaluated in terms of composition and metabolome profiling. Metagenome-encoded functions are compared after 28 days between control individuals and those exposed to highest bloom level. RESULTS The gut bacterial community of O. latipes exhibits marked responses to the presence of M. aeruginosa blooms in a dose-dependent manner. Notably, abundant gut-associated Firmicutes almost disappear, while potential opportunists increase. The holobiont's gut metabolome displays major changes, while functions encoded in the metagenome of bacterial partners are more marginally affected. Bacterial communities tend to return to original composition after the end of the bloom and remain sensitive in case of a second bloom, reflecting a highly reactive gut community. CONCLUSION Gut-associated bacterial communities and holobiont functioning are affected by both short and long exposure to M. aeruginosa, and show evidence of post-bloom resilience. These findings point to the significance of bloom events to fish health and fitness, including survival and reproduction, through microbiome-related effects. In the context of increasingly frequent and intense blooms worldwide, potential outcomes relevant to conservation biology as well as aquaculture warrant further investigation. Video Abstract.
Collapse
Affiliation(s)
- Alison Gallet
- UMR7245 Molécules de Communication et Adaptation des Micro-organismes, Muséum National d'Histoire Naturelle, CNRS, Paris, France
| | - Sébastien Halary
- UMR7245 Molécules de Communication et Adaptation des Micro-organismes, Muséum National d'Histoire Naturelle, CNRS, Paris, France
| | - Charlotte Duval
- UMR7245 Molécules de Communication et Adaptation des Micro-organismes, Muséum National d'Histoire Naturelle, CNRS, Paris, France
| | - Hélène Huet
- UMR1161 Virologie, École Nationale Vétérinaire d'Alfort, INRA - ANSES - ENVA, Maisons-Alfort, France
| | - Sébastien Duperron
- UMR7245 Molécules de Communication et Adaptation des Micro-organismes, Muséum National d'Histoire Naturelle, CNRS, Paris, France.
- Institut Universitaire de France, Paris, France.
| | - Benjamin Marie
- UMR7245 Molécules de Communication et Adaptation des Micro-organismes, Muséum National d'Histoire Naturelle, CNRS, Paris, France.
| |
Collapse
|
7
|
Smith WPJ, Wucher BR, Nadell CD, Foster KR. Bacterial defences: mechanisms, evolution and antimicrobial resistance. Nat Rev Microbiol 2023:10.1038/s41579-023-00877-3. [PMID: 37095190 DOI: 10.1038/s41579-023-00877-3] [Citation(s) in RCA: 86] [Impact Index Per Article: 43.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/27/2023] [Indexed: 04/26/2023]
Abstract
Throughout their evolutionary history, bacteria have faced diverse threats from other microorganisms, including competing bacteria, bacteriophages and predators. In response to these threats, they have evolved sophisticated defence mechanisms that today also protect bacteria against antibiotics and other therapies. In this Review, we explore the protective strategies of bacteria, including the mechanisms, evolution and clinical implications of these ancient defences. We also review the countermeasures that attackers have evolved to overcome bacterial defences. We argue that understanding how bacteria defend themselves in nature is important for the development of new therapies and for minimizing resistance evolution.
Collapse
Affiliation(s)
- William P J Smith
- Division of Genomics, Infection and Evolution, University of Manchester, Manchester, UK.
- Department of Biology, University of Oxford, Oxford, UK.
- Department of Biochemistry, University of Oxford, Oxford, UK.
| | - Benjamin R Wucher
- Department of Biological sciences, Dartmouth College, Hanover, NH, USA
| | - Carey D Nadell
- Department of Biological sciences, Dartmouth College, Hanover, NH, USA
| | - Kevin R Foster
- Department of Biology, University of Oxford, Oxford, UK.
- Department of Biochemistry, University of Oxford, Oxford, UK.
| |
Collapse
|
8
|
Yang S, Wang Y, Liu Y, Jia K, Zhang Z, Dong Q. Cereulide and Emetic Bacillus cereus: Characterizations, Impacts and Public Precautions. Foods 2023; 12:833. [PMID: 36832907 PMCID: PMC9956921 DOI: 10.3390/foods12040833] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 02/10/2023] [Accepted: 02/12/2023] [Indexed: 02/18/2023] Open
Abstract
Cereulide, which can be produced by Bacillus cereus, is strongly associated with emetic-type food poisoning outbreaks. It is an extremely stable emetic toxin, which is unlikely to be inactivated by food processing. Considering the high toxicity of cereulide, its related hazards raise public concerns. A better understanding of the impact of B. cereus and cereulide is urgently needed to prevent contamination and toxin production, thereby protecting public health. Over the last decade, a wide range of research has been conducted regarding B. cereus and cereulide. Despite this, summarized information highlighting precautions at the public level involving the food industry, consumers and regulators is lacking. Therefore, the aim of the current review is to summarize the available data describing the characterizations and impacts of emetic B. cereus and cereulide; based on this information, precautions at the public level are proposed.
Collapse
Affiliation(s)
| | | | | | | | | | - Qingli Dong
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Jungong Road No. 334, Yangpu District, Shanghai 200093, China
| |
Collapse
|
9
|
Qi F, Kreth J. Methods to Study Antagonistic Activities Among Oral Bacteria. Methods Mol Biol 2023; 2588:171-186. [PMID: 36418688 DOI: 10.1007/978-1-0716-2780-8_11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Most bacteria in nature exist in multispecies communities known as biofilms. In the natural habitat where resources (nutrient, space, etc.) are usually limited, individual species must compete or collaborate with other neighboring species in order to perpetuate in the multispecies community. The human oral cavity is colonized by >700 microbial species known as the indigenous microbiota. This indigenous flora normally maintains an ecological balance through antagonistic as well as mutualistic interspecies interactions. However, environmental perturbation may disrupt this balance, leading to overgrowth of pathogenic species which could in turn initiate diseases such as dental caries (tooth decay) and periodontitis (gum disease). Understanding the mechanisms of diversity maintenance may help developing novel approaches to manage these "polymicrobial diseases". In this chapter, we will focus on a well-characterized form of biochemical warfare: bacteriocins produced by Streptococcus mutans, a primary dental caries pathogen, and hydrogen peroxide (H2O2) produced by several oral commensal streptococci. We will describe detailed methodologies on the competition assay, isolation, purification, and characterization of bacteriocins.
Collapse
Affiliation(s)
- Fengxia Qi
- University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Jens Kreth
- School of Dentistry, Oregon Health & Science University, Portland, OR, USA.
| |
Collapse
|
10
|
Mining Biosynthetic Gene Clusters in Carnobacterium maltaromaticum by Interference Competition Network and Genome Analysis. Microorganisms 2022; 10:microorganisms10091794. [PMID: 36144396 PMCID: PMC9504619 DOI: 10.3390/microorganisms10091794] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 08/28/2022] [Accepted: 09/02/2022] [Indexed: 11/28/2022] Open
Abstract
Carnobacterium maltaromaticum is a non-starter lactic acid bacterium (LAB) of interest in the dairy industry for biopreservation. This study investigated the interference competition network and the specialized metabolites biosynthetic gene clusters (BGCs) content in this LAB in order to explore the relationship between the antimicrobial properties and the genome content. Network analysis revealed that the potency of inhibition tended to increase when the inhibition spectrum broadened, but also that several strains exhibited a high potency and narrow spectrum of inhibition. The C. maltaromaticum strains with potent anti-L. monocytogenes were characterized by high potency and a wide intraspecific spectrum. Genome mining of 29 strains revealed the presence of 12 bacteriocin BGCs: four of class I and eight of class II, among which seven belong to class IIa and one to class IIc. Overall, eight bacteriocins and one nonribosomal peptide synthetase and polyketide synthase (NRPS-PKS) BGCs were newly described. The comparison of the antimicrobial properties resulting from the analysis of the network and the BGC genome content allowed us to delineate candidate BGCs responsible for anti-L. monocytogenes and anti-C. maltaromaticum activity. However, it also highlighted that genome analysis is not suitable in the current state of the databases for the prediction of genes involved in the antimicrobial activity of strains with a narrow anti-C. maltaromaticum activity.
Collapse
|
11
|
Fokt H, Cleto S, Oliveira H, Araújo D, Castro J, Cerca N, Vieira MJ, Almeida C. Bacteriocin Production by Escherichia coli during Biofilm Development. Foods 2022; 11:foods11172652. [PMID: 36076837 PMCID: PMC9455227 DOI: 10.3390/foods11172652] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 08/12/2022] [Accepted: 08/30/2022] [Indexed: 12/01/2022] Open
Abstract
Escherichia coli is a highly versatile bacterium ranging from commensal to intestinal pathogen, and is an important foodborne pathogen. E. coli species are able to prosper in multispecies biofilms and secrete bacteriocins that are only toxic to species/strains closely related to the producer strain. In this study, 20 distinct E. coli strains were characterized for several properties that confer competitive advantages against closer microorganisms by assessing the biofilm-forming capacity, the production of antimicrobial molecules, and the production of siderophores. Furthermore, primer sets for E. coli bacteriocins–colicins were designed and genes were amplified, allowing us to observe that colicins were widely distributed among the pathogenic E. coli strains. Their production in the planktonic phase or single-species biofilms was uncommon. Only two E. coli strains out of nine biofilm-forming were able to inhibit the growth of other E. coli strains. There is evidence of larger amounts of colicin being produced in the late stages of E. coli biofilm growth. The decrease in bacterial biomass after 12 h of incubation indicates active type I colicin production, whose release normally requires E. coli cell lysis. Almost all E. coli strains were siderophore-producing, which may be related to the resistance to colicin as these two molecules may use the same transporter system. Moreover, E. coli CECT 504 was able to coexist with Salmonella enterica in dual-species biofilms, but Shigella dysenteriae was selectively excluded, correlating with high expression levels of colicin (E, B, and M) genes observed by real-time PCR.
Collapse
Affiliation(s)
- Hanna Fokt
- Centre of Biological Engineering (CEB), Campus de Gualtar, University of Minho, 4710-057 Braga, Portugal
| | - Sara Cleto
- Centre of Biological Engineering (CEB), Campus de Gualtar, University of Minho, 4710-057 Braga, Portugal
| | - Hugo Oliveira
- Centre of Biological Engineering (CEB), Campus de Gualtar, University of Minho, 4710-057 Braga, Portugal
- LABBELS–Associate Laboratory, 4710-057 Braga, Portugal
| | - Daniela Araújo
- INIAV, IP-National Institute for Agrarian and Veterinary Research, Rua dos Lagidos, Lugar da Madalena, 4485-655 Vila do Conde, Portugal
| | - Joana Castro
- INIAV, IP-National Institute for Agrarian and Veterinary Research, Rua dos Lagidos, Lugar da Madalena, 4485-655 Vila do Conde, Portugal
| | - Nuno Cerca
- Centre of Biological Engineering (CEB), Campus de Gualtar, University of Minho, 4710-057 Braga, Portugal
- LABBELS–Associate Laboratory, 4710-057 Braga, Portugal
| | - Maria João Vieira
- Centre of Biological Engineering (CEB), Campus de Gualtar, University of Minho, 4710-057 Braga, Portugal
- LABBELS–Associate Laboratory, 4710-057 Braga, Portugal
| | - Carina Almeida
- Centre of Biological Engineering (CEB), Campus de Gualtar, University of Minho, 4710-057 Braga, Portugal
- LABBELS–Associate Laboratory, 4710-057 Braga, Portugal
- INIAV, IP-National Institute for Agrarian and Veterinary Research, Rua dos Lagidos, Lugar da Madalena, 4485-655 Vila do Conde, Portugal
- LEPABE-Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
- Correspondence: ; Tel.: +351-252-660-600
| |
Collapse
|
12
|
Darbandi A, Asadi A, Mahdizade Ari M, Ohadi E, Talebi M, Halaj Zadeh M, Darb Emamie A, Ghanavati R, Kakanj M. Bacteriocins: Properties and potential use as antimicrobials. J Clin Lab Anal 2021; 36:e24093. [PMID: 34851542 PMCID: PMC8761470 DOI: 10.1002/jcla.24093] [Citation(s) in RCA: 126] [Impact Index Per Article: 31.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 10/03/2021] [Accepted: 10/24/2021] [Indexed: 12/12/2022] Open
Abstract
A variety of bacteriocins originate from lactic acid bacteria, which have recently been modified by scientists. Many strains of lactic acid bacteria related to food groups could produce bacteriocins or antibacterial proteins highly effective against foodborne pathogens such as Staphylococcus aureus, Pseudomonas fluorescens, P. aeruginosa, Salmonella typhi, Shigella flexneri, Listeria monocytogenes, Escherichia coli O157:H7, and Clostridium botulinum. A wide range of bacteria belonging primarily to the genera Bifidobacterium and Lactobacillus have been characterized with different health‐promoting attributes. Extensive studies and in‐depth understanding of these antimicrobials mechanisms of action could enable scientists to determine their production in specific probiotic lactic acid bacteria, as they are potentially crucial for the final preservation of functional foods or for medicinal applications. In this review study, the structure, classification, mode of operation, safety, and antibacterial properties of bacteriocins as well as their effect on foodborne pathogens and antibiotic‐resistant bacteria were extensively studied.
Collapse
Affiliation(s)
- Atieh Darbandi
- Department of Microbiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.,Microbial Biotechnology Research Centre, Iran University of Medical Sciences, Tehran, Iran
| | - Arezoo Asadi
- Department of Microbiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.,Microbial Biotechnology Research Centre, Iran University of Medical Sciences, Tehran, Iran
| | - Marzieh Mahdizade Ari
- Department of Microbiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.,Microbial Biotechnology Research Centre, Iran University of Medical Sciences, Tehran, Iran
| | - Elnaz Ohadi
- Department of Microbiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.,Microbial Biotechnology Research Centre, Iran University of Medical Sciences, Tehran, Iran
| | - Malihe Talebi
- Department of Microbiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.,Microbial Biotechnology Research Centre, Iran University of Medical Sciences, Tehran, Iran
| | - Masoume Halaj Zadeh
- Department of Microbiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.,Microbial Biotechnology Research Centre, Iran University of Medical Sciences, Tehran, Iran
| | - Amir Darb Emamie
- Department of Pathobiology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Maryam Kakanj
- Food and Drug Laboratory Research Center, Food and Drug Administration, MOH&ME, Tehran, Iran
| |
Collapse
|
13
|
Distribution of bacteriocin genes in the lineages of Lactiplantibacillus plantarum. Sci Rep 2021; 11:20063. [PMID: 34625657 PMCID: PMC8501086 DOI: 10.1038/s41598-021-99683-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Accepted: 09/28/2021] [Indexed: 11/29/2022] Open
Abstract
Lactiplantibacillus plantarum, previously named “Lactobacillus plantarum,” is found in a wide variety of environments exhibiting a high level of intraspecies genetic diversity. To investigate the strain diversity, we performed comparative genomic analyses of the 54 complete genome sequences. The results revealed that L. plantarum subsp. plantarum was split into three lineages, A, B and C. Of the genes beneficial for probiotic activity, only those associated with the biosynthesis of plantaricin (Pln), an L. plantarum-specific bacteriocin, were found to be significantly different among the lineages. The genes related to the biosynthesis of plnE/F were conserved throughout the three lineages, whereas the outgroups did not possess any Pln-producing genes. In lineage C, the deepest and ancestral type branch, plnE/F genes, were well conserved. In lineage B, loss of gene function was observed due to mobile elements in the pln loci. In lineage A, most strains were predicted to produce more than one type of Pln by possessing diverse Pln-encoding genes. These results showed the presence of functional diversity arising from the trifurcating evolution in L. plantarum subsp. plantarum and demonstrated that Pln is an indicator for differentiating the three lineages.
Collapse
|
14
|
Early development of the skin microbiome: therapeutic opportunities. Pediatr Res 2021; 90:731-737. [PMID: 32919387 PMCID: PMC7952468 DOI: 10.1038/s41390-020-01146-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 07/23/2020] [Accepted: 08/16/2020] [Indexed: 02/06/2023]
Abstract
As human skin hosts a diverse microbiota in health and disease, there is an emerging consensus that dysregulated interactions between host and microbiome may contribute to chronic inflammatory disease of the skin. Neonatal skin is a unique habitat, structurally similar to the adult but with a different profile of metabolic substrates, environmental stressors, and immune activity. The surface is colonized within moments of birth with a bias toward maternal strains. Initial colonists are outcompeted as environmental exposures increase and host skin matures. Nonetheless, early life microbial acquisitions may have long-lasting effects on health through modulation of host immunity and competitive interactions between bacteria. Microbial ecology and its influence on health have been of interest to dermatologists for >50 years, and an explosion of recent interest in the microbiome has prompted ongoing investigations of several microbial therapeutics for dermatological disease. In this review, we consider how recent insight into the host and microbial factors driving development of the skin microbiome in early life offers new opportunities for therapeutic intervention. IMPACT: Advancement in understanding molecular mechanisms of bacterial competition opens new avenues of investigation into dermatological disease. Primary development of the skin microbiome is determined by immunological features of the cutaneous habitat. Understanding coordinated microbial and immunological development in the pediatric patient requires a multidisciplinary synthesis of primary literature.
Collapse
|
15
|
Zeng XY, Li M. Looking into key bacterial proteins involved in gut dysbiosis. World J Methodol 2021; 11:130-143. [PMID: 34322365 PMCID: PMC8299906 DOI: 10.5662/wjm.v11.i4.130] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 05/11/2021] [Accepted: 06/16/2021] [Indexed: 02/06/2023] Open
Abstract
The gastrointestinal microbiota plays a pivotal role in health and has been linked to many diseases. With the rapid accumulation of pyrosequencing data of the bacterial composition, the causal-effect relationship between specific dysbiosis features and diseases is now being explored. The aim of this review is to describe the key functional bacterial proteins and antigens in the context of dysbiosis related-diseases. We subjectively classify the key functional proteins into two categories: Primary key proteins and secondary key proteins. The primary key proteins mainly act by themselves and include biofilm inhibitors, toxin degraders, oncogene degraders, adipose metabolism modulators, anti-inflammatory peptides, bacteriocins, host cell regulators, adhesion and invasion molecules, and intestinal barrier regulators. The secondary key proteins mainly act by eliciting host immune responses and include flagellin, outer membrane proteins, and other autoantibody-related antigens. Knowledge of key bacterial proteins is limited compared to the rich microbiome data. Understanding and focusing on these key proteins will pave the way for future mechanistic level cause-effect studies of gut dysbiosis and diseases.
Collapse
Affiliation(s)
- Xin-Yu Zeng
- Department of Gastroenterology, Qilu Hospital of Shandong University, Jinan 250012, Shandong Province, China
- Laboratory of Translational Gastroenterology, Qilu Hospital of Shandong University, Jinan 250012, Shandong Province, China
| | - Ming Li
- Department of Gastroenterology, Qilu Hospital of Shandong University, Jinan 250012, Shandong Province, China
- Laboratory of Translational Gastroenterology, Qilu Hospital of Shandong University, Jinan 250012, Shandong Province, China
- Robot Engineering Laboratory for Precise Diagnosis and Therapy of GI Tumors, Qilu Hospital of Shandong University, Jinan 250012, Shandong Province, China
| |
Collapse
|
16
|
Kobayashi K. Diverse LXG toxin and antitoxin systems specifically mediate intraspecies competition in Bacillus subtilis biofilms. PLoS Genet 2021; 17:e1009682. [PMID: 34280190 PMCID: PMC8321402 DOI: 10.1371/journal.pgen.1009682] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 07/29/2021] [Accepted: 06/25/2021] [Indexed: 12/14/2022] Open
Abstract
Biofilms are multispecies communities, in which bacteria constantly compete with one another for resources and niches. Bacteria produce many antibiotics and toxins for competition. However, since biofilm cells exhibit increased tolerance to antimicrobials, their roles in biofilms remain controversial. Here, we showed that Bacillus subtilis produces multiple diverse polymorphic toxins, called LXG toxins, that contain N-terminal LXG delivery domains and diverse C-terminal toxin domains. Each B. subtilis strain possesses a distinct set of LXG toxin–antitoxin genes, the number and variation of which is sufficient to distinguish each strain. The B. subtilis strain NCIB3610 possesses six LXG toxin–antitoxin operons on its chromosome, and five of the toxins functioned as DNase. In competition assays, deletion mutants of any of the six LXG toxin–antitoxin operons were outcompeted by the wild-type strain. This phenotype was suppressed when the antitoxins were ectopically expressed in the deletion mutants. The fitness defect of the mutants was only observed in solid media that supported biofilm formation. Biofilm matrix polymers, exopolysaccharides and TasA protein polymers were required for LXG toxin function. These results indicate that LXG toxin-antitoxin systems specifically mediate intercellular competition between B. subtilis strains in biofilms. Mutual antagonism between some LXG toxin producers drove the spatial segregation of two strains in a biofilm, indicating that LXG toxins not only mediate competition in biofilms, but may also help to avoid warfare between strains in biofilms. LXG toxins from strain NCIB3610 were effective against some natural isolates, and thus LXG toxin–antitoxin systems have ecological impact. B. subtilis possesses another polymorphic toxin, WapA. WapA had toxic effects under planktonic growth conditions but not under biofilm conditions because exopolysaccharides and TasA protein polymers inhibited WapA function. These results indicate that B. subtilis uses two types of polymorphic toxins for competition, depending on the growth mode. Biofilms are surface-associated multispecies communities, in which bacteria are protected by self-produced extracellular polymeric substances. In biofilms, bacteria constantly engage in intra- and interspecies competition. To minimize exploitation by competitors, bacteria produce a variety of antibiotics and toxins for competition. However, since biofilm cells exhibit increased tolerance to antimicrobials, the function of antibiotics and toxins in biofilms remains controversial. Therefore, the mechanisms underlying bacterial competition in biofilms remain to be investigated. We found that the soil bacterium B. subtilis produces polymorphic toxins, termed LXG toxins. LXG toxins are highly diversified among B. subtilis strains, and each B. subtilis strain possesses three to nine different LXG toxins. LXG toxins specifically mediate intraspecies competition in biofilms. Competition between some LXG toxin producers resulted in the spatial segregation of strains in biofilms, indicating that LXG toxins not only mediate competition, but also help to minimize warfare in biofilms. LXG toxins were effective against natural isolates of B. subtilis, suggesting that LXG toxin–antitoxin systems have ecological impact. Our results provide new insights into how bacteria survive competition in biofilms.
Collapse
Affiliation(s)
- Kazuo Kobayashi
- Division of Biological Science, Department of Science and Technology, Nara Institute of Science & Technology, Ikoma, Nara, Japan
- * E-mail:
| |
Collapse
|
17
|
Neveling DP, Dicks LMT. Probiotics: an Antibiotic Replacement Strategy for Healthy Broilers and Productive Rearing. Probiotics Antimicrob Proteins 2021; 13:1-11. [PMID: 32556932 DOI: 10.1007/s12602-020-09640-z] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Pathogens develop resistance to antibiotics at a rate much faster than the discovery of new antimicrobial compounds. Reports of multidrug-resistant bacteria isolated from broilers, and the possibility that these strains may spread diseases amongst humans, prompted many European countries to ban the inclusion of antibiotics in feed. Probiotics added to broiler feed controlled a number of bacterial infections. A combination of Enterococcus faecium, Pediococcus acidilactici, Bacillus animalis, Lactobacillus salivarius and Lactobacillus reuteri decreased the colonisation of Campylobacter jejuni and Salmonella Enteritidis in the gastro-intestinal tract (GIT) of broilers, whereas Bacillus subtilis improved feed conversion, intestinal morphology, stimulated the immune system and inhibited the colonisation of Campylobacter jejuni, Escherichia coli and Salmonella Minnesota. Lactobacillus salivarius and Pediococcus parvulus improved weight gain, bone characteristics, intestinal morphology and immune response, and decreased the colonisation of S. Enteritidis. Lactobacillus crispatus, L. salivarius, Lactobacillus gallinarum, Lactobacillus johnsonii, Enterococcus faecalis and Bacillus amyloliquefaciens decreased the Salmonella count and led to an increase in lysozyme and T lymphocytes. Probiotics may also improve feed digestion through production of phytases, lipases, amylases and proteases or stimulate the GIT to secrete digestive enzymes. Some strains increase the nutritional value of feed by production of vitamins, exopolysaccharides and antioxidants. Bacteriocins, if produced, regulate pathogen numbers in the GIT and keep pro-inflammatory and anti-inflammatory reactions in balance.
Collapse
Affiliation(s)
- Deon P Neveling
- Department of Microbiology, Stellenbosch University, Private Bag X1, Matieland, Stellenbosch, 7602, South Africa
| | - Leon M T Dicks
- Department of Microbiology, Stellenbosch University, Private Bag X1, Matieland, Stellenbosch, 7602, South Africa.
| |
Collapse
|
18
|
Madi-Moussa D, Coucheney F, Drider D. Expression of five class II bacteriocins with activity against Escherichia coli in Lacticaseibacillus paracasei CNCM I-5369, and in a heterologous host. BIOTECHNOLOGY REPORTS (AMSTERDAM, NETHERLANDS) 2021; 30:e00632. [PMID: 34136365 PMCID: PMC8181189 DOI: 10.1016/j.btre.2021.e00632] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/20/2021] [Revised: 05/16/2021] [Accepted: 05/17/2021] [Indexed: 02/06/2023]
Abstract
Five open reading frames viz orf010, orf12, orf023, orf030 and orf038 coding class II bacteriocins in Lacticaseibacillus paracasei CNCM I-5369 strain previously isolated from an Algerian dairy product, were found to be expressed after 24 h of growth. The strain has also shown anti-E. coli activity in a narrow pH range between 4.5 and 5. Then, expression and purification of these bacteriocins was conducted in the heterologous host E. coli. This strategy enabled us to purify the peptide encoded by orf030 in large quantities, in contrast to other peptides that were produced but required to be released from the insoluble fraction following 4 M urea and desalting treatments. All peptides heterologously produced were characterized by MALDI TOF Mass spectrometry and successfully tested for their anti-E. coli activity. Furthermore, in silico transcriptional analysis was determined by Findterm tool and with Bagel4 software permitted to locate potential promoters and co-transcription events.
Collapse
Affiliation(s)
- Désiré Madi-Moussa
- UMR Transfrontalière BioEcoAgro1158, Univ. Lille, INRAE, Univ. Liège, UPJV, YNCREA, Univ. Artois, Univ. Littoral Côte d’Opale, ICV – Institut Charles Viollette, F-59000 Lille, France
| | - Françoise Coucheney
- UMR Transfrontalière BioEcoAgro1158, Univ. Lille, INRAE, Univ. Liège, UPJV, YNCREA, Univ. Artois, Univ. Littoral Côte d’Opale, ICV – Institut Charles Viollette, F-59000 Lille, France
| | - Djamel Drider
- UMR Transfrontalière BioEcoAgro1158, Univ. Lille, INRAE, Univ. Liège, UPJV, YNCREA, Univ. Artois, Univ. Littoral Côte d’Opale, ICV – Institut Charles Viollette, F-59000 Lille, France
| |
Collapse
|
19
|
Wu J, Qu W, Lai Q, Pei S, Zhang T, Zhuang Y, Chan Z, Zeng R. Vibrio ziniensis sp. nov., isolated from mangrove sediments. Int J Syst Evol Microbiol 2021; 71. [PMID: 33887169 DOI: 10.1099/ijsem.0.004777] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A novel Gram-staining-negative, catalase- and oxidase-positive, facultatively anaerobic and rod-shaped motile bacterial strain, designated as ZWAL4003T, was isolated from mangrove sediments of the Zini Mangrove Forest, Zhangzhou City, PR China. Phylogenetic analysis based on its 16S rRNA gene sequence indicated that ZWAL4003T was grouped into a separated branch with Vibrio plantisponsor MSSRF60T (97.38% nucleotide sequence identity) and Vibrio diazotrophicus NBRC 103148T (97.27%). The major cellular fatty acids were C14 : 0 (12.6%), C16 : 0 (17.6%), and summed feature 3 (C16 : 1ω6c /C16 : 1 ω7c, 45.6%). Its genome had a length of 4650556 bp with 42.8% DNA G+C content, and contained genes involved in the biosynthesis of bacteriocin, β-lactone, resorcinol, N-acyl amino acid, and arylpolyene. The in silico DNA-DNA hybridization and average nucleotide identity values for whole-genome sequence comparisons between ZWAL4003T and V. plantisponsor LMG 24470T were clearly below the thresholds used for the delineation of a novel species. The morphological and chemotaxonomic characteristics and the genotypic data of ZWAL4003T indicated that it represented a novel species of the genus Vibrio. Its proposed name is Vibrio ziniensis sp. nov., and the type strain is ZWAL4003T (=KCTC 72971T=MCCC 1A17474T).
Collapse
Affiliation(s)
- Jie Wu
- Technical Innovation Center for Utilization of Marine Biological Resources, Ministry of Natural Resources, Xiamen, PR China.,Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, PR China
| | - Wu Qu
- Marine Science and Technology College, Zhejiang Ocean University, Zhoushan, PR China
| | - Qiliang Lai
- Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, PR China
| | - Shengxiang Pei
- Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, PR China
| | - Tianyou Zhang
- Technical Innovation Center for Utilization of Marine Biological Resources, Ministry of Natural Resources, Xiamen, PR China.,Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, PR China
| | - Yan Zhuang
- Technical Innovation Center for Utilization of Marine Biological Resources, Ministry of Natural Resources, Xiamen, PR China.,Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, PR China
| | - Zhuhua Chan
- Technical Innovation Center for Utilization of Marine Biological Resources, Ministry of Natural Resources, Xiamen, PR China.,Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, PR China
| | - Runying Zeng
- Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, PR China.,Technical Innovation Center for Utilization of Marine Biological Resources, Ministry of Natural Resources, Xiamen, PR China.,Southern Marine Science and Engineering Guangdong Laboratory, Zhuhai, PR China
| |
Collapse
|
20
|
Walsh L, Johnson CN, Hill C, Ross RP. Efficacy of Phage- and Bacteriocin-Based Therapies in Combatting Nosocomial MRSA Infections. Front Mol Biosci 2021; 8:654038. [PMID: 33996906 PMCID: PMC8116899 DOI: 10.3389/fmolb.2021.654038] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Accepted: 04/07/2021] [Indexed: 12/21/2022] Open
Abstract
Staphylococcus aureus is a pathogen commonly found in nosocomial environments where infections can easily spread - especially given the reduced immune response of patients and large overlap between personnel in charge of their care. Although antibiotics are available to treat nosocomial infections, the increased occurrence of antibiotic resistance has rendered many treatments ineffective. Such is the case for methicillin resistant S. aureus (MRSA), which has continued to be a threat to public health since its emergence. For this reason, alternative treatment technologies utilizing antimicrobials such as bacteriocins, bacteriophages (phages) and phage endolysins are being developed. These antimicrobials provide an advantage over antibiotics in that many have narrow inhibition spectra, enabling treatments to be selected based on the target (pathogenic) bacterium while allowing for survival of commensal bacteria and thus avoiding collateral damage to the microbiome. Bacterial resistance to these treatments occurs less frequently than with antibiotics, particularly in circumstances where combinatory antimicrobial therapies are used. Phage therapy has been well established in Eastern Europe as an effective treatment against bacterial infections. While there are no Randomized Clinical Trials (RCTs) to our knowledge examining phage treatment of S. aureus infections that have completed all trial phases, numerous clinical trials are underway, and several commercial phage preparations are currently available to treat S. aureus infections. Bacteriocins have primarily been used in the food industry for bio-preservation applications. However, the idea of repurposing bacteriocins for human health is an attractive one considering their efficacy against many bacterial pathogens. There are concerns about the ability of bacteriocins to survive the gastrointestinal tract given their proteinaceous nature, however, this obstacle may be overcome by altering the administration route of the therapy through encapsulation, or by bioengineering protease-resistant variants. Obstacles such as enzymatic digestion are less of an issue for topical/local administration, for example, application to the surface of the skin. Bacteriocins have also shown impressive synergistic effects when used in conjunction with other antimicrobials, including antibiotics, which may allow antibiotic-based therapies to be used more sparingly with less resistance development. This review provides an updated account of known bacteriocins, phages and phage endolysins which have demonstrated an impressive ability to kill S. aureus strains. In particular, examples of antimicrobials with the ability to target MRSA strains and their subsequent use in a clinical setting are outlined.
Collapse
Affiliation(s)
- Lauren Walsh
- School of Microbiology, University College Cork, Cork, Ireland.,APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - Crystal N Johnson
- School of Microbiology, University College Cork, Cork, Ireland.,APC Microbiome Ireland, University College Cork, Cork, Ireland.,Teagasc Food Research Centre, Moorepark, Cork, Ireland
| | - Colin Hill
- School of Microbiology, University College Cork, Cork, Ireland.,APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - R Paul Ross
- School of Microbiology, University College Cork, Cork, Ireland.,APC Microbiome Ireland, University College Cork, Cork, Ireland.,Teagasc Food Research Centre, Moorepark, Cork, Ireland
| |
Collapse
|
21
|
Brandão-Dias PFP, Rosi EJ, Shogren AJ, Tank JL, Fischer DT, Egan SP. Fate of Environmental Proteins (eProteins) from Genetically Engineered Crops in Streams is Controlled by Water pH and Ecosystem Metabolism. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:4688-4697. [PMID: 33755442 DOI: 10.1021/acs.est.0c05731] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Environmental proteins (eProteins), such as Cry proteins associated with genetically engineered (GE) organisms, are present in ecosystems worldwide, but only rarely reach concentrations with detectable ecosystem-level impacts. Despite their ubiquity, the degradation and fate of Cry and other eProteins are mostly unknown. Here, we report the results of an experiment where we added Cry proteins leached from GE Bt maize to a suite of 19 recirculating experimental streams. We found that Cry exhibited a biphasic degradation with an initial phase of rapid and variable degradation within 1 h, followed by a slow and steady phase of degradation with traces of protein persisting after 48 h. The initial degradation was correlated with heterotrophic respiration and water column dissolved oxygen, confirming a previously documented association with stream metabolism. However, protein degradation persisted even with no biofilm and was faster at a more acidic pH, suggesting that water chemistry is also a critical factor in both degradation and subsequent detection. We suggest that Cry, as well as other eProteins, will have a rapid degradation caused by denaturation of proteins and pH changes, which confirms that the detection of Cry proteins in natural streams must be the result of steady and consistent leaching into the environment.
Collapse
Affiliation(s)
- Pedro F P Brandão-Dias
- Department of BioSciences, Rice University, 6100 Main Street, Houston, Texas 77005, United States
| | - Emma J Rosi
- Cary Institute of Ecosystem Studies, Millbrook, New York 12545, United States
| | - Arial J Shogren
- Department of Earth & Environmental Sciences, Michigan State University, East Lansing, Michigan 48823, United States
| | - Jennifer L Tank
- Department of Biological Sciences, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - David T Fischer
- Cary Institute of Ecosystem Studies, Millbrook, New York 12545, United States
| | - Scott P Egan
- Department of BioSciences, Rice University, 6100 Main Street, Houston, Texas 77005, United States
| |
Collapse
|
22
|
Qiao Y, Qiu Z, Tian F, Yu L, Zhao J, Zhang H, Zhai Q, Chen W. Pediococcus acidilactici Strains Improve Constipation Symptoms and Regulate Intestinal Flora in Mice. Front Cell Infect Microbiol 2021; 11:655258. [PMID: 33816357 PMCID: PMC8012752 DOI: 10.3389/fcimb.2021.655258] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Accepted: 02/23/2021] [Indexed: 01/03/2023] Open
Abstract
Constipation is a prevalent gastrointestinal disorder that seriously reduces the quality of life. Clinical studies have shown that a great change or severe imbalance occurs in the intestinal microbiota of people with constipation. This study explored whether bacteriocin-producing and non-bacteriocin-producing Pediococcus acidilactici strains resulted in differences in the alleviation of constipation and changes in the fecal flora in BALB/c mice. The constipation-related indicators, gastrointestinal regulatory peptides and gut microbiota were identified to evaluate their alleviating effects and underlying mechanisms. The time to the first black-stool defecation and the gastrointestinal transit rate in constipated mice were found to be somewhat improved by four P. acidilactici strains (P > 0.05). Moreover, there were significant differences in the level of most gastrointestinal regulatory peptides in the serum, as well as in the composition and abundance of intestinal microbiota in different groups (P < 0.05). At the phylum level, the relative abundance of Firmicutes was significantly increased, but those of Bacteroidetes and Proteobacteria were significantly reduced after the administration of four P. acidilactici strains for 14 d (P < 0.05). The levels of Bacteroides and genera from Enterobacteriaceae were significantly decreased, whereas Bifidobacterium and Lactobacillus were upregulated when bacteriocin-producing P. acidilactici CCFM18 and CCFM28 strains were provided in the diet (P < 0.05). The results indicated that although constipation-related symptoms were alleviated to only a limited degree, the administration of four P. acidilactici strains effectively regulated the gut flora and provided a potential health benefit to the host, especially the bacteriocin-producing P. acidilactici strains.
Collapse
Affiliation(s)
- Yiteng Qiao
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China.,School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Zhichang Qiu
- College of Food Science and Engineering, Shandong Agricultural University, Tai'an, China
| | - Fengwei Tian
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China.,School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Leilei Yu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China.,School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Jianxin Zhao
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China.,School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Hao Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China.,School of Food Science and Technology, Jiangnan University, Wuxi, China.,National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, China.,Wuxi Translational Medicine Research Center, Jiangsu Translational Medicine, Research Institute Wuxi Branch, Wuxi, China
| | - Qixiao Zhai
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China.,School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Wei Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China.,School of Food Science and Technology, Jiangnan University, Wuxi, China.,National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, China
| |
Collapse
|
23
|
Xu R, Adam L, Chapados J, Soliman A, Daayf F, Tambong JT. MinION Nanopore-based detection of Clavibacter nebraskensis, the corn Goss's wilt pathogen, and bacteriomic profiling of necrotic lesions of naturally-infected leaf samples. PLoS One 2021; 16:e0245333. [PMID: 33481876 PMCID: PMC7822522 DOI: 10.1371/journal.pone.0245333] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Accepted: 12/28/2020] [Indexed: 01/17/2023] Open
Abstract
The Goss’s bacterial wilt pathogen, Clavibacter nebraskensis, of corn is a candidate A1 quarantine organism; and its recent re-emergence and spread in the USA and Canada is a potential biothreat to the crop. We developed and tested an amplicon-based Nanopore detection system for C. nebraskensis (Cn), targeting a purine permease gene. The sensitivity (1 pg) of this system in mock bacterial communities (MBCs) spiked with serially diluted DNA of C. nebraskensis NCPPB 2581T is comparable to that of real-time PCR. Average Nanopore reads increased exponentially from 125 (1pg) to about 6000 reads (1000 pg) after a 3-hr run-time, with 99.0% of the reads accurately assigned to C. nebraskensis. Three run-times were used to process control MBCs, Cn-spiked MBCs, diseased and healthy leaf samples. The mean Nanopore reads doubled as the run-time is increased from 3 to 6 hrs while from 6 to 12 hrs, a 20% increment was recorded in all treatments. Cn-spiked MBCs and diseased corn leaf samples averaged read counts of 5,100, 11,000 and 14,000 for the respective run-times, with 99.8% of the reads taxonomically identified as C. nebraskensis. The control MBCs and healthy leaf samples had 47 and 14 Nanopore reads, respectively. 16S rRNA bacteriomic profiles showed that Sphingomonas (22.7%) and Clavibacter (21.2%) were dominant in diseased samples while Pseudomonas had only 3.5% relative abundance. In non-symptomatic leaf samples, however, Pseudomonas (20.0%) was dominant with Clavibacter at 0.08% relative abundance. This discrepancy in Pseudomonas abundance in the samples was corroborated by qPCR using EvaGreen chemistry. Our work outlines a new useful tool for diagnosis of the Goss’s bacterial wilt disease; and provides the first insight on Pseudomonas community dynamics in necrotic leaf lesions.
Collapse
Affiliation(s)
- Renlin Xu
- Ottawa Research and Development Centre, Agriculture and Agri-Food Canada, Ottawa, Ontario, Canada
| | - Lorne Adam
- Department of Plant Science, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Julie Chapados
- Ottawa Research and Development Centre, Agriculture and Agri-Food Canada, Ottawa, Ontario, Canada
| | - Atta Soliman
- Department of Plant Science, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Fouad Daayf
- Department of Plant Science, University of Manitoba, Winnipeg, Manitoba, Canada
| | - James T. Tambong
- Ottawa Research and Development Centre, Agriculture and Agri-Food Canada, Ottawa, Ontario, Canada
- Department of Plant Science, University of Manitoba, Winnipeg, Manitoba, Canada
- * E-mail:
| |
Collapse
|
24
|
Mojesky AA, Remold SK. Spatial structure maintains diversity of pyocin inhibition in household Pseudomonas aeruginosa. Proc Biol Sci 2020; 287:20201706. [PMID: 33143580 PMCID: PMC7735282 DOI: 10.1098/rspb.2020.1706] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Nearly all bacteria produce narrow-spectrum antibiotics called bacteriocins. Studies have shown that bacteriocins can mediate microbial interactions, but the mechanisms underlying patterns of inhibition are less well understood. We assembled a spatially structured collection of isolates of Pseudomonas aeruginosa from bathroom and kitchen sink drains in nine households. Growth inhibition of these P. aeruginosa by bacteriocins, known as pyocins in this species, was measured using pairwise inhibition assays. Carbon source usage of these isolates was measured, and genetic distance was estimated using multilocus sequencing. We found that as the distance between sites of isolation increased, there was a significantly higher probability of inhibition, and that pyocin inhibition and susceptibility vary greatly among isolates collected from different houses. We also detected support for other mechanisms influencing diversity: inhibition outcomes were influenced by the type of drain from which isolates were collected, and while we found no indication that carbon source utilization influences inhibition, inhibition was favoured at an intermediate genetic distance. Overall, these results suggest that the combined effects of dispersal limitation among sites and competitive exclusion within them maintain diversity in pyocin inhibition and susceptibility phenotypes, and that additional processes such as local adaptation and effects of phylogenetic distance could further contribute to spatial variability.
Collapse
Affiliation(s)
- Aubrey A Mojesky
- Department of Biology, University of Louisville, Louisville, KY, USA
| | - Susanna K Remold
- Department of Biology, University of Louisville, Louisville, KY, USA.,Department of Biological Sciences, University of Massachusetts, Lowell, MA, USA
| |
Collapse
|
25
|
Ya’u Sabo Ajingi, Nujarin Jongruja. Antimicrobial Peptide Engineering: Rational Design, Synthesis, and Synergistic Effect. RUSSIAN JOURNAL OF BIOORGANIC CHEMISTRY 2020. [DOI: 10.1134/s1068162020040044] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
26
|
Bosák J, Hrala M, Micenková L, Šmajs D. Non-antibiotic antibacterial peptides and proteins of Escherichia coli: efficacy and potency of bacteriocins. Expert Rev Anti Infect Ther 2020; 19:309-322. [PMID: 32856960 DOI: 10.1080/14787210.2020.1816824] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
INTRODUCTION The emergence and spread of antibiotic resistance among pathogenic bacteria drives the search for alternative antimicrobial therapies. Bacteriocins represent a potential alternative to antibiotic treatment. In contrast to antibiotics, bacteriocins are peptides or proteins that have relatively narrow spectra of antibacterial activities and are produced by a wide range of bacterial species. Bacteriocins of Escherichia coli are historically classified as microcins and colicins, and, until now, more than 30 different bacteriocin types have been identified and characterized. AREAS COVERED We performed bibliographical searches of online databases to review the literature regarding bacteriocins produced by E. coli with respect to their occurrence, bacteriocin role in bacterial colonization and pathogenicity, and application of their antimicrobial effect. EXPERT OPINION The potential use of bacteriocins for applications in human and animal medicine and the food industry includes (i) the use of bacteriocin-producing probiotic strains, (ii) recombinant production in plants and application in food, and (iii) application of purified bacteriocins.
Collapse
Affiliation(s)
- Juraj Bosák
- Department of Biology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Matěj Hrala
- Department of Biology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Lenka Micenková
- Research Centre for Toxic Compounds in the Environment, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - David Šmajs
- Department of Biology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| |
Collapse
|
27
|
Huang Y, Flint SH, Palmer JS. Bacillus cereus spores and toxins – The potential role of biofilms. Food Microbiol 2020; 90:103493. [DOI: 10.1016/j.fm.2020.103493] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Revised: 03/18/2020] [Accepted: 03/20/2020] [Indexed: 01/19/2023]
|
28
|
Hussein WE, Huang E, Ozturk I, Somogyi Á, Yang X, Liu B, Yousef AE. Genome-Guided Mass Spectrometry Expedited the Discovery of Paraplantaricin TC318, a Lantibiotic Produced by Lactobacillus paraplantarum Strain Isolated From Cheese. Front Microbiol 2020; 11:1381. [PMID: 32760356 PMCID: PMC7372301 DOI: 10.3389/fmicb.2020.01381] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Accepted: 05/28/2020] [Indexed: 11/13/2022] Open
Abstract
The quest for potent alternatives to the currently used antimicrobials is urged by health professionals, considering the rapid rise in resistance to preservatives and antibiotics among pathogens. The current study was initiated to search for novel and effective bacteriocins from food microbes, preferably lactic acid bacteria (LAB), for potential use as preservatives. Advances in genome-guided mass spectrometry (MS) were implemented to expedite identifying and elucidating the structure of the recovered antimicrobial agent. A LAB strain, OSY-TC318, was isolated from a Turkish cheese, and the crude extract of the cultured strain inhibited the growth of various pathogenic and spoilage bacteria such as Bacillus cereus, Clostridium sporogenes, Enterococcus faecalis, Listeria monocytogenes, Salmonella enterica ser. Typhimurium, and Staphylococcus aureus. The antimicrobial producer was identified as Lactobacillus paraplantarum using MS biotyping and genomic analysis. Additionally, L. paraplantarum OSY-TC318 was distinguished from closely related strains using comparative genomic analysis. Based on in silico analysis, the genome of the new strain contained a complete lantibiotic biosynthetic gene cluster, encoding a novel lantibiotic that was designated as paraplantaricin TC318. The bioinformatic analysis of the gene cluster led to the prediction of the biosynthetic pathway, amino acid sequence, and theoretical molecular mass of paraplantaricin TC318. To verify the genomic analysis predictions, paraplantaricin TC318 was purified from the producer cellular crude extract using liquid chromatography, followed by structural elucidation using Fourier transform ion cyclotron resonance MS analysis. This genome-guided MS analysis revealed that the molecular mass of paraplantaricin TC318 is 2,263.900 Da, its chemical formula is C106H133N27O22S4, and its primary sequence is F-K-S-W-S-L-C-T-F-G-C-G-H-T-G-S-F-N-S-F-C-C. This lantibiotic, which differs from mutacin 1140 at positions 9, 12, 13, and 20, is considered a new member of the epidermin group in class I lantibiotics. In conclusion, the study revealed a new L. paraplantarum strain producing a novel lantibiotic that is potentially useful in food and medical applications.
Collapse
Affiliation(s)
- Walaa E Hussein
- Department of Food Science and Technology, The Ohio State University, Columbus, OH, United States.,Department of Microbiology and Immunology, National Research Center, Giza, Egypt
| | - En Huang
- Department of Environmental and Occupational Health, University of Arkansas for Medical Sciences, Little Rock, AR, United States
| | - Ismet Ozturk
- Faculty of Fine Arts, Department of Gastronomy and Culinary Arts, Istanbul Arel University, Istanbul, Turkey
| | - Árpád Somogyi
- Campus Chemical Instrument Center, Mass Spectrometry and Proteomics Facility, The Ohio State University, Columbus, OH, United States
| | - Xu Yang
- Nutrition and Food Science Department, California State Polytechnic University Pomona, Pomona, CA, United States
| | - Baosheng Liu
- College of Animal Science Technology, Jiangxi Agricultural University, Nanchang, China
| | - Ahmed E Yousef
- Department of Food Science and Technology, The Ohio State University, Columbus, OH, United States.,Department of Microbiology, The Ohio State University, Columbus, OH, United States
| |
Collapse
|
29
|
Evolutionary Stabilization of Cooperative Toxin Production through a Bacterium-Plasmid-Phage Interplay. mBio 2020; 11:mBio.00912-20. [PMID: 32694140 PMCID: PMC7374059 DOI: 10.1128/mbio.00912-20] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Colicins are toxins produced and released by Enterobacteriaceae to kill competitors in the gut. While group A colicins employ a division of labor strategy to liberate the toxin into the environment via colicin-specific lysis, group B colicin systems lack cognate lysis genes. In Salmonella enterica serovar Typhimurium (S. Tm), the group B colicin Ib (ColIb) is released by temperate phage-mediated bacteriolysis. Phage-mediated ColIb release promotes S. Tm fitness against competing Escherichia coli It remained unclear how prophage-mediated lysis is realized in a clonal population of ColIb producers and if prophages contribute to evolutionary stability of toxin release in S. Tm. Here, we show that prophage-mediated lysis occurs in an S. Tm subpopulation only, thereby introducing phenotypic heterogeneity to the system. We established a mathematical model to study the dynamic interplay of S. Tm, ColIb, and a temperate phage in the presence of a competing species. Using this model, we studied long-term evolution of phage lysis rates in a fluctuating infection scenario. This revealed that phage lysis evolves as bet-hedging strategy that maximizes phage spread, regardless of whether colicin is present or not. We conclude that the ColIb system, lacking its own lysis gene, is making use of the evolutionary stable phage strategy to be released. Prophage lysis genes are highly prevalent in nontyphoidal Salmonella genomes. This suggests that the release of ColIb by temperate phages is widespread. In conclusion, our findings shed new light on the evolution and ecology of group B colicin systems.IMPORTANCE Bacteria are excellent model organisms to study mechanisms of social evolution. The production of public goods, e.g., toxin release by cell lysis in clonal bacterial populations, is a frequently studied example of cooperative behavior. Here, we analyze evolutionary stabilization of toxin release by the enteric pathogen Salmonella The release of colicin Ib (ColIb), which is used by Salmonella to gain an edge against competing microbiota following infection, is coupled to bacterial lysis mediated by temperate phages. Here, we show that phage-dependent lysis and subsequent release of colicin and phage particles occurs only in part of the ColIb-expressing Salmonella population. This phenotypic heterogeneity in lysis, which represents an essential step in the temperate phage life cycle, has evolved as a bet-hedging strategy under fluctuating environments such as the gastrointestinal tract. Our findings suggest that prophages can thereby evolutionarily stabilize costly toxin release in bacterial populations.
Collapse
|
30
|
Sharma A, Singh P, Sarmah BK, Nandi SP. Quorum sensing: its role in microbial social networking. Res Microbiol 2020; 171:159-164. [PMID: 32592751 DOI: 10.1016/j.resmic.2020.06.003] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Revised: 06/15/2020] [Accepted: 06/16/2020] [Indexed: 10/24/2022]
Abstract
Twentieth century observed a huge paradigm shift in the field of sociobiology, which moved from social intelligence of animals to microbes. Quorum Sensing Molecules (QSMs) are the small chemical molecules, which establish the mode of communication among microbes, and is called Quorum Sensing (QS). These molecules are crucial for determining the decisions of large groups of cells, which is a density-dependent process. Thus, this mechanism draws a very thin line between bacteria that are actually prokaryotes and clustered bacteria mimicking eukaryotes. This review discusses about the designs of microbial communication networks, and the role of QS in plant-microbe interaction.
Collapse
Affiliation(s)
- Angkita Sharma
- Amity Institute of Biotechnology, Amity University, Noida, 201313, Uttar Pradesh, India.
| | - Pooja Singh
- Amity Institute of Biotechnology, Amity University, Noida, 201313, Uttar Pradesh, India.
| | - Bidyut Kr Sarmah
- DBT-AAU Centre, Assam Agricultural University, Jorhat, 785013, Assam, India.
| | - Shoma Paul Nandi
- Amity Institute of Biotechnology, Amity University, Noida, 201313, Uttar Pradesh, India.
| |
Collapse
|
31
|
Kandel PP, Baltrus DA, Hockett KL. Pseudomonas Can Survive Tailocin Killing via Persistence-Like and Heterogenous Resistance Mechanisms. J Bacteriol 2020; 202:e00142-20. [PMID: 32312747 PMCID: PMC7283598 DOI: 10.1128/jb.00142-20] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Accepted: 04/16/2020] [Indexed: 12/14/2022] Open
Abstract
Phage tail-like bacteriocins (tailocins) are bacterially produced protein toxins that mediate competitive interactions between cocolonizing bacteria. Both theoretical and experimental research has shown there are intransitive interactions between bacteriocin-producing, bacteriocin-sensitive, and bacteriocin-resistant populations, whereby producers outcompete sensitive cells, sensitive cells outcompete resistant cells, and resistant cells outcompete producers. These so-called rock-paper-scissors dynamics explain how all three populations occupy the same environment, without one driving the others extinct. Using Pseudomonas syringae as a model, we demonstrate that otherwise sensitive cells survive bacteriocin exposure through a physiological mechanism. This mechanism allows cells to survive bacteriocin killing without acquiring resistance. We show that a significant fraction of the target cells that survive a lethal dose of tailocin did not exhibit any detectable increase in survival during a subsequent exposure. Tailocin persister cells were more prevalent in stationary- rather than log-phase cultures. Of the fraction of cells that gained detectable resistance, there was a range from complete (insensitive) to incomplete (partially sensitive) resistance. By using genomic sequencing and genetic engineering, we showed that a mutation in a hypothetical gene containing 8 to 10 transmembrane domains causes tailocin high persistence and that genes of various glycosyltransferases cause incomplete and complete tailocin resistance. Importantly, of the several classes of mutations, only those causing complete tailocin resistance compromised host fitness. This result indicates that bacteria likely utilize persistence to survive bacteriocin-mediated killing without suffering the costs associated with resistance. This research provides important insight into how bacteria can escape the trap of fitness trade-offs associated with gaining de novo tailocin resistance.IMPORTANCE Bacteriocins are bacterially produced protein toxins that are proposed as antibiotic alternatives. However, a deeper understanding of the responses of target bacteria to bacteriocin exposure is lacking. Here, we show that target cells of Pseudomonas syringae survive lethal bacteriocin exposure through both physiological persistence and genetic resistance mechanisms. Cells that are not growing rapidly rely primarily on persistence, whereas those growing rapidly are more likely to survive via resistance. We identified various mutations in lipopolysaccharide biogenesis-related regions involved in tailocin persistence and resistance. By assessing host fitness of various classes of mutants, we showed that persistence and subtle resistance are mechanisms P. syringae uses to survive competition and preserve host fitness. These results have important implications for developing bacteriocins as alternative therapeutic agents.
Collapse
Affiliation(s)
- Prem P Kandel
- Department of Plant Pathology and Environmental Microbiology, Pennsylvania State University, University Park, Pennsylvania, USA
| | - David A Baltrus
- School of Plant Sciences, University of Arizona, Tucson, Arizona, USA
| | - Kevin L Hockett
- Department of Plant Pathology and Environmental Microbiology, Pennsylvania State University, University Park, Pennsylvania, USA
- The Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, Pennsylvania, USA
| |
Collapse
|
32
|
Marutani-Hert M, Hert AP, Tudor-Nelson SM, Preston JF, Minsavage GV, Stall RE, Roberts PD, Timilsina S, Hurlbert JC, Jones JB. Characterization of three novel genetic loci encoding bacteriocins associated with Xanthomonas perforans. PLoS One 2020; 15:e0233301. [PMID: 32469926 PMCID: PMC7259588 DOI: 10.1371/journal.pone.0233301] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Accepted: 05/02/2020] [Indexed: 11/18/2022] Open
Abstract
Bacterial spot is a destructive disease of tomato in Florida that prior to the early 1990s was caused by Xanthomonas euvesicatoria. X. perforans was first identified in Florida in 1991 and by 2006 was the only xanthomonad associated with bacterial spot disease in tomato. The ability of an X. perforans strain to outcompete X. euvesicatoria both in vitro and in vivo was at least in part associated with the production of three bacteriocins designated Bcn-A, Bcn-B, and Bcn-C. The objective of this study was to characterize the genetic determinants of these bacteriocins. Bcn-A activity was confined to one locus consisting of five ORFs of which three (ORFA, ORF2 and ORF4) were required for bacteriocin activity. The fifth ORF is predicted to encode an immunity protein to Bcn-A based on in vitro and in vivo assays. The first ORF encodes Bcn-A, a 1,398 amino acid protein, which bioinformatic analysis predicts to be a member of the RHS family of toxins. Based on results of homology modeling, we hypothesize that the amino terminus of Bcn-A interacts with a protein in the outer membrane of X. euvesicatoria. The carboxy terminus of the protein may interact with an as yet unknown protein(s) and puncture the X. euvesicatoria membrane, thereby delivering the accessory proteins into the target and causing cell death. Bcn-A appears to be activated upon secretion based on cell fractionation assays. The other two loci were each shown to be single ORFs encoding Bcn-B and Bcn-C. Both gene products possess homology toward known proteases. Proteinase activity for both Bcn-B and Bcn-C was confirmed using a milk agar assay. Bcn-B is predicted to be an ArgC-like serine protease, which was confirmed by PMSF inhibition of proteolytic activity, whereas Bcn-C has greater than 50% amino acid sequence identity to two zinc metalloproteases.
Collapse
Affiliation(s)
- Mizuri Marutani-Hert
- Department of Plant Pathology, University of Florida, Gainesville, Florida, United States of America
| | - Aaron P. Hert
- Department of Plant Pathology, University of Florida, Gainesville, Florida, United States of America
| | - Simone M. Tudor-Nelson
- Department of Plant Pathology, University of Florida, Gainesville, Florida, United States of America
| | - James F. Preston
- Microbiology and Cell Sciences, University of Florida, Gainesville, Florida, United States of America
| | - Gerald V. Minsavage
- Department of Plant Pathology, University of Florida, Gainesville, Florida, United States of America
| | - Robert E. Stall
- Department of Plant Pathology, University of Florida, Gainesville, Florida, United States of America
| | - Pamela D. Roberts
- Southwest Florida Research and Education Center, University of Florida, Immokalee, Florida, United States of America
| | - Sujan Timilsina
- Department of Plant Pathology, University of Florida, Gainesville, Florida, United States of America
- * E-mail: (JBJ); (JCH); (ST)
| | - Jason C. Hurlbert
- College of Arts and Sciences, Winthrop University, Rock Hill, South Carolina, United States of America
- * E-mail: (JBJ); (JCH); (ST)
| | - Jeffrey B. Jones
- Department of Plant Pathology, University of Florida, Gainesville, Florida, United States of America
- * E-mail: (JBJ); (JCH); (ST)
| |
Collapse
|
33
|
The evolution of the type VI secretion system as a disintegration weapon. PLoS Biol 2020; 18:e3000720. [PMID: 32453732 PMCID: PMC7274471 DOI: 10.1371/journal.pbio.3000720] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 06/05/2020] [Accepted: 04/30/2020] [Indexed: 12/22/2022] Open
Abstract
The type VI secretion system (T6SS) is a nanomachine used by many bacteria to drive a toxin-laden needle into other bacterial cells. Although the potential to influence bacterial competition is clear, the fitness impacts of wielding a T6SS are not well understood. Here we present a new agent-based model that enables detailed study of the evolutionary costs and benefits of T6SS weaponry during competition with other bacteria. Our model identifies a key problem with the T6SS. Because of its short range, T6SS activity becomes self-limiting, as dead cells accumulate in its way, forming “corpse barriers” that block further attacks. However, further exploration with the model presented a solution to this problem: if injected toxins can quickly lyse target cells in addition to killing them, the T6SS becomes a much more effective weapon. We tested this prediction with single-cell analysis of combat between T6SS-wielding Acinetobacter baylyi and T6SS-sensitive Escherichia coli. As predicted, delivery of lytic toxins is highly effective, whereas nonlytic toxins leave large patches of E. coli alive. We then analyzed hundreds of bacterial species using published genomic data, which suggest that the great majority of T6SS-wielding species do indeed use lytic toxins, indicative of a general principle underlying weapon evolution. Our work suggests that, in the T6SS, bacteria have evolved a disintegration weapon whose effectiveness often rests upon the ability to break up competitors. Understanding the evolutionary function of bacterial weapons can help in the design of probiotics that can both establish well and eliminate problem species. Bacteria attack each other with poison-tipped spears. This study combines theory and experiments to show that these spears (Type VI Secretion Systems) have evolved to break their targets apart with lytic toxins, as this then clears the way to rapidly stab new victims.
Collapse
|
34
|
Chervy M, Barnich N, Denizot J. Adherent-Invasive E. coli: Update on the Lifestyle of a Troublemaker in Crohn's Disease. Int J Mol Sci 2020; 21:E3734. [PMID: 32466328 PMCID: PMC7279240 DOI: 10.3390/ijms21103734] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 05/22/2020] [Accepted: 05/24/2020] [Indexed: 12/12/2022] Open
Abstract
Besides genetic polymorphisms and environmental factors, the intestinal microbiota is an important factor in the etiology of Crohn's disease (CD). Among microbiota alterations, a particular pathotype of Escherichia coli involved in the pathogenesis of CD abnormally colonizes the intestinal mucosa of patients: the adherent-invasive Escherichia coli (AIEC) pathobiont bacteria, which have the abilities to adhere to and to invade intestinal epithelial cells (IECs), as well as to survive and replicate within macrophages. AIEC have been the subject of many studies in recent years to unveil some genes linked to AIEC virulence and to understand the impact of AIEC infection on the gut and consequently their involvement in CD. In this review, we describe the lifestyle of AIEC bacteria within the intestine, from the interaction with intestinal epithelial and immune cells with an emphasis on environmental and genetic factors favoring their implantation, to their lifestyle in the intestinal lumen. Finally, we discuss AIEC-targeting strategies such as the use of FimH antagonists, bacteriophages, or antibiotics, which could constitute therapeutic options to prevent and limit AIEC colonization in CD patients.
Collapse
Affiliation(s)
- Mélissa Chervy
- Université Clermont Auvergne, Inserm U1071, USC-INRAE 2018, Microbes, Intestin, Inflammation et Susceptibilité de l’Hôte (M2iSH), 63001 Clermont-Ferrand, France; (M.C.); (N.B.)
| | - Nicolas Barnich
- Université Clermont Auvergne, Inserm U1071, USC-INRAE 2018, Microbes, Intestin, Inflammation et Susceptibilité de l’Hôte (M2iSH), 63001 Clermont-Ferrand, France; (M.C.); (N.B.)
- Institut Universitaire de Technologie, Génie Biologique, 63172 Aubière, France
| | - Jérémy Denizot
- Université Clermont Auvergne, Inserm U1071, USC-INRAE 2018, Microbes, Intestin, Inflammation et Susceptibilité de l’Hôte (M2iSH), 63001 Clermont-Ferrand, France; (M.C.); (N.B.)
- Institut Universitaire de Technologie, Génie Biologique, 63172 Aubière, France
| |
Collapse
|
35
|
Genome analysis of a wild rumen bacterium Enterobacter aerogenes LU2 - a novel bio-based succinic acid producer. Sci Rep 2020; 10:1986. [PMID: 32029880 PMCID: PMC7005296 DOI: 10.1038/s41598-020-58929-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Accepted: 01/22/2020] [Indexed: 01/09/2023] Open
Abstract
Enterobacter aerogenes LU2 was isolated from cow rumen and recognized as a potential succinic acid producer in our previous study. Here, we present the first complete genome sequence of this new, wild strain and report its basic genetic features from a biotechnological perspective. The MinION single-molecule nanopore sequencer supported by the Illumina MiSeq platform yielded a circular 5,062,651 bp chromosome with a GC content of 55% that lacked plasmids. A total of 4,986 genes, including 4,741 protein-coding genes, 22 rRNA-, 86 tRNA-, and 10 ncRNA-encoding genes and 127 pseudogenes, were predicted. The genome features of the studied strain and other Enterobacteriaceae strains were compared. Functional studies on the genome content, metabolic pathways, growth, and carbon transport and utilization were performed. The genomic analysis indicates that succinic acid can be produced by the LU2 strain through the reductive branch of the tricarboxylic acid cycle (TCA) and the glyoxylate pathway. Antibiotic resistance genes were determined, and the potential for bacteriocin production was verified. Furthermore, one intact prophage region of length ~31,9 kb, 47 genomic islands (GIs) and many insertion sequences (ISs) as well as tandem repeats (TRs) were identified. No clustered regularly interspaced short palindromic repeats (CRISPRs) were found. Finally, comparative genome analysis with well-known succinic acid producers was conducted. The genome sequence illustrates that the LU2 strain has several desirable traits, which confirm its potential to be a highly efficient platform for the production of bulk chemicals.
Collapse
|
36
|
Liu Q, Yu Z, Tian F, Zhao J, Zhang H, Zhai Q, Chen W. Surface components and metabolites of probiotics for regulation of intestinal epithelial barrier. Microb Cell Fact 2020; 19:23. [PMID: 32024520 PMCID: PMC7003451 DOI: 10.1186/s12934-020-1289-4] [Citation(s) in RCA: 223] [Impact Index Per Article: 44.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2019] [Accepted: 01/20/2020] [Indexed: 12/11/2022] Open
Abstract
The gut microbiota can significantly affect the function of the intestinal barrier. Some intestinal probiotics (such as Lactobacillus, Bifidobacteria, a few Escherichia coli strains, and a new generation of probiotics including Bacteroides thetaiotaomicron and Akkermansia muciniphila) can maintain intestinal epithelial homeostasis and promote health. This review first summarizes probiotics' regulation of the intestinal epithelium via their surface compounds. Surface layer proteins, flagella, pili and capsular polysaccharides constitute microbial-associated molecular patterns and specifically bind to pattern recognition receptors, which can regulate signaling pathways to produce cytokines or inhibit apoptosis, thereby attenuating inflammation and enhancing the function of the gut epithelium. The review also explains the effects of metabolites (such as secreted proteins, organic acids, indole, extracellular vesicles and bacteriocins) of probiotics on host receptors and the mechanisms by which these metabolites regulate gut epithelial barrier function. Previous reviews summarized the role of the surface macromolecules or metabolites of gut microbes (including both probiotics and pathogens) in human health. However, these reviews were mostly focused on the interactions between these substances and the intestinal mucosal immune system. In the current review, we only focused on probiotics and discussed the molecular interaction between these bacteria and the gut epithelial barrier.
Collapse
Affiliation(s)
- Qing Liu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, Jiangsu, People's Republic of China
- School of Food Science and Technology, Jiangnan University, Wuxi, 214122, Jiangsu, China
| | - Zhiming Yu
- Wuxi People's Hospital Affiliated to Nanjing Medical University, Wuxi, 214023, Jiangsu, People's Republic of China
| | - Fengwei Tian
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, Jiangsu, People's Republic of China
- School of Food Science and Technology, Jiangnan University, Wuxi, 214122, Jiangsu, China
| | - Jianxin Zhao
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, Jiangsu, People's Republic of China
- School of Food Science and Technology, Jiangnan University, Wuxi, 214122, Jiangsu, China
| | - Hao Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, Jiangsu, People's Republic of China
- School of Food Science and Technology, Jiangnan University, Wuxi, 214122, Jiangsu, China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, 214122, Jiangsu, China
- (Yangzhou) Institute of Food Biotechnology, Jiangnan University, Yangzhou, 225004, China
- International Joint Research Laboratory for Probiotics at Jiangnan University, Wuxi, 214122, Jiangsu, China
| | - Qixiao Zhai
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, Jiangsu, People's Republic of China.
- School of Food Science and Technology, Jiangnan University, Wuxi, 214122, Jiangsu, China.
- Wuxi Translational Medicine Research Center and Jiangsu Translational Medicine Research Institute Wuxi Branch, Wuxi, China.
| | - Wei Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, Jiangsu, People's Republic of China
- School of Food Science and Technology, Jiangnan University, Wuxi, 214122, Jiangsu, China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, 214122, Jiangsu, China
- Beijing Innovation Centre of Food Nutrition and Human Health, Beijing Technology and Business University (BTBU), Beijing, 100048, People's Republic of China
| |
Collapse
|
37
|
Reanalysis of Lactobacillus paracasei Lbs2 Strain and Large-Scale Comparative Genomics Places Many Strains into Their Correct Taxonomic Position. Microorganisms 2019; 7:microorganisms7110487. [PMID: 31731444 PMCID: PMC6920896 DOI: 10.3390/microorganisms7110487] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2019] [Revised: 10/08/2019] [Accepted: 10/14/2019] [Indexed: 12/11/2022] Open
Abstract
Lactobacillus paracasei are diverse Gram-positive bacteria that are very closely related to Lactobacillus casei, belonging to the Lactobacillus casei group. Due to extreme genome similarities between L. casei and L. paracasei, many strains have been cross placed in the other group. We had earlier sequenced and analyzed the genome of Lactobacillus paracasei Lbs2, but mistakenly identified it as L. casei. We re-analyzed Lbs2 reads into a 2.5 MB genome that is 91.28% complete with 0.8% contamination, which is now suitably placed under L. paracasei based on Average Nucleotide Identity and Average Amino Acid Identity. We took 74 sequenced genomes of L. paracasei from GenBank with assembly sizes ranging from 2.3 to 3.3 MB and genome completeness between 88% and 100% for comparison. The pan-genome of 75 L. paracasei strains hold 15,945 gene families (21,5232 genes), while the core genome contained about 8.4% of the total genes (243 gene families with 18,225 genes) of pan-genome. Phylogenomic analysis based on core gene families revealed that the Lbs2 strain has a closer relationship with L. paracasei subsp. tolerans DSM20258. Finally, the in-silico analysis of the L. paracasei Lbs2 genome revealed an important pathway that could underpin the production of thiamin, which may contribute to the host energy metabolism.
Collapse
|
38
|
Javůrková VG, Kreisinger J, Procházka P, Požgayová M, Ševčíková K, Brlík V, Adamík P, Heneberg P, Porkert J. Unveiled feather microcosm: feather microbiota of passerine birds is closely associated with host species identity and bacteriocin-producing bacteria. THE ISME JOURNAL 2019; 13:2363-2376. [PMID: 31127178 PMCID: PMC6775979 DOI: 10.1038/s41396-019-0438-4] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Revised: 04/12/2019] [Accepted: 05/03/2019] [Indexed: 11/12/2022]
Abstract
The functional relevance of microbiota is a key aspect for understanding host-microbiota interactions. Mammalian skin harbours a complex consortium of beneficial microorganisms known to provide health and immune-boosting advantages. As yet, however, little is known about functional microbial communities on avian feathers, including their co-evolution with the host and factors determining feather microbiota (FM) diversity. Using 16S rRNA profiling, we investigated how host species identity, phylogeny and geographic origin determine FM in free-living passerine birds. Moreover, we estimated the relative abundance of bacteriocin-producing bacteria (BPB) and keratinolytic feather damaging bacteria (FDB) and evaluated the ability of BPB to affect FM diversity and relative abundance of FDB. Host species identity was associated with feather bacterial communities more strongly than host geographic origin. FM functional properties differed in terms of estimated BPB and FDB relative abundance, with both showing interspecific variation. FM diversity was negatively associated with BPB relative abundance across species, whereas BPB and FDB relative abundance was positively correlated. This study provides the first thorough evaluation of antimicrobial peptides-producing bacterial communities inhabiting the feather integument, including their likely potential to mediate niche-competition and to be associated with functional species-specific feather microbiota in avian hosts.
Collapse
Affiliation(s)
- Veronika Gvoždíková Javůrková
- Faculty of Agrobiology, Food and Natural Resources, Department of Animal Science, Czech University of Life Sciences, Kamýcká 129, 165 00, Prague-Suchdol, Czech Republic.
- Institute of Vertebrate Biology, Czech Academy of Sciences, Květná 8, 603 65, Brno, Czech Republic.
| | - Jakub Kreisinger
- Faculty of Science, Department of Zoology, Charles University, Viničná 7, 128 44, Prague, Czech Republic
| | - Petr Procházka
- Institute of Vertebrate Biology, Czech Academy of Sciences, Květná 8, 603 65, Brno, Czech Republic
| | - Milica Požgayová
- Institute of Vertebrate Biology, Czech Academy of Sciences, Květná 8, 603 65, Brno, Czech Republic
| | - Kateřina Ševčíková
- Faculty of Science, Department of Zoology, Palacký University, 17. listopadu 50, 771 46, Olomouc, Czech Republic
| | - Vojtěch Brlík
- Institute of Vertebrate Biology, Czech Academy of Sciences, Květná 8, 603 65, Brno, Czech Republic
| | - Peter Adamík
- Faculty of Science, Department of Zoology, Palacký University, 17. listopadu 50, 771 46, Olomouc, Czech Republic
| | - Petr Heneberg
- Third Faculty of Medicine, Charles University, Ruská 87, 100 00, Prague, Czech Republic
| | - Jiří Porkert
- Home address: Gočárova třída 542/12, 500 02, Hradec Králové, Czech Republic
| |
Collapse
|
39
|
Doekes HM, de Boer RJ, Hermsen R. Toxin production spontaneously becomes regulated by local cell density in evolving bacterial populations. PLoS Comput Biol 2019; 15:e1007333. [PMID: 31469819 PMCID: PMC6742444 DOI: 10.1371/journal.pcbi.1007333] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Revised: 09/12/2019] [Accepted: 08/14/2019] [Indexed: 11/18/2022] Open
Abstract
The production of anticompetitor toxins is widespread among bacteria. Because production of such toxins is costly, it is typically regulated. In particular, many toxins are produced only when the local cell density is high. It is unclear which selection pressures shaped the evolution of density-dependent regulation of toxin production. Here, we study the evolution of toxin production, resistance and the response to a cell-density cue in a model of an evolving bacterial population with spatial structure. We present results for two growth regimes: (i) an undisturbed, fixed habitat in which only small fluctuations of cell density occur, and (ii) a serial-transfer regime with large fluctuations in cell density. We find that density-dependent toxin production can evolve under both regimes. However, the selection pressures driving the evolution of regulation differ. In the fixed habitat, regulation evolves because it allows cells to produce toxin only when opportunities for reproduction are highly limited (because of a high local cell density), and the effective fitness costs of toxin production are hence low. Under serial transfers, regulation evolves because it allows cells to switch from a fast-growing non-toxic phenotype when colonising a new habitat, to a slower-growing competitive toxic phenotype when the cell density increases. Colonies of such regulating cells rapidly expand into unoccupied space because their edges consist of fast-growing, non-toxin-producing cells, but are also combative because cells at the interfaces with competing colonies do produce toxin. Because under the two growth regimes different types of regulation evolve, our results underscore the importance of growth conditions in the evolution of social behaviour in bacteria. Bacteria live in microbial communities, in which they compete with many other microbes for nutrients and space. In this competitive environment, almost all known bacterial strains produce toxins that impair or kill other bacteria. This chemical warfare is thought to be one of the major factors shaping microbial diversity. Many toxins are produced only if the local density of bacteria is high. To achieve this, bacteria respond to cell-density cues: signalling molecules or other indicators of the presence of other cells. Here, we use a computational model to study the evolution of density-based regulation of toxin production in bacterial populations. We show that such regulation can arise under various growth conditions, and analyse the selection pressures driving its evolution. In particular, we find that if bacteria regularly need to colonise a new habitat, density-based regulation allows them to express a fast-growing, non-toxic phenotype when expanding into uncolonised territory, and a slower-growing, toxin-producing phenotype when competing with other strains. Colonies of regulating cells show a typical structure, with cells of the fast-growing, sensitive phenotype at their expanding edges, and toxin-producing cells in the colony interior and at interfaces between colonies.
Collapse
Affiliation(s)
- Hilje M. Doekes
- Theoretical Biology, Department of Biology, Utrecht University, Utrecht, the Netherlands
- * E-mail:
| | - Rob J. de Boer
- Theoretical Biology, Department of Biology, Utrecht University, Utrecht, the Netherlands
| | - Rutger Hermsen
- Theoretical Biology, Department of Biology, Utrecht University, Utrecht, the Netherlands
| |
Collapse
|
40
|
Müller J, Spriewald S, Stecher B, Stadler E, Fuchs TM. Evolutionary Stability of Salmonella Competition with the Gut Microbiota: How the Environment Fosters Heterogeneity in Exploitative and Interference Competition. J Mol Biol 2019; 431:4732-4748. [PMID: 31260689 DOI: 10.1016/j.jmb.2019.06.027] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Revised: 06/19/2019] [Accepted: 06/19/2019] [Indexed: 11/27/2022]
Abstract
Following ingestion, gastrointestinal pathogens compete against the gastrointestinal microbiota and overcome host immune defenses in order to cause infections. Besides employing direct killing mechanisms, the commensal microbiota occupies metabolic niches to outcompete invading pathogens. Salmonella enterica serovar Typhimurium (S. Typhimurium) uses several strategies to successfully colonize the gut and establish infection, of which an increasing number is based on phenotypic heterogeneity within the S. Typhimurium population. The utilization of myo-inositol (MI) and the production of colicin confer a selective advantage over the microbiota in terms of exploitative and interference competition, respectively. In this review, we summarize the genetic basis underlying bistability of MI catabolism and colicin production. As demonstrated by single-cell analyses, a stochastic switch in the expression of the genes responsible for colicin production and MI degradation constitutes the heterogeneity of the two phenotypes. Both genetic systems are tightly regulated to avoid their expression under non-appropriate conditions and possible detrimental effects on bacterial fitness. Moreover, evolutionary mechanisms underlying formation and stability of these phenotypes in S. Typhimurium are discussed. We propose that both MI catabolism and colicin production create a bet-hedging strategy, which provides an adaptive benefit for S. Typhimurium in the fluctuating environment of the mammalian gut.
Collapse
Affiliation(s)
- Johannes Müller
- Technische Universität München, Centre for Mathematical Sciences, Boltzmannstr. 3, 85747 Garching, Germany; Institute for Computational Biology, Helmholtz Center Munich, 85764 Neuherberg, Germany
| | - Stefanie Spriewald
- Max von Pettenkofer-Institute, LMU Munich, Pettenkoferstr. 9a, 80336 Munich, Germany
| | - Bärbel Stecher
- Max von Pettenkofer-Institute, LMU Munich, Pettenkoferstr. 9a, 80336 Munich, Germany
| | - Eva Stadler
- Technische Universität München, Centre for Mathematical Sciences, Boltzmannstr. 3, 85747 Garching, Germany
| | - Thilo M Fuchs
- Friedrich-Loeffler-Institut, Institut für Molekulare Pathogenese, Naumburger Str. 96a, 07743 Jena, Germany.
| |
Collapse
|
41
|
Manzoor A, Tayyeb A. Functional probiotic attributes and gene encoding plantaracin among variant Lactobacillus Plantarum strains. Microb Pathog 2019; 131:22-32. [DOI: 10.1016/j.micpath.2019.03.016] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2018] [Revised: 02/17/2019] [Accepted: 03/13/2019] [Indexed: 12/20/2022]
|
42
|
Ciezki K, Wesener S, Jaber D, Mirza S, Forst S. ngrA-dependent natural products are required for interspecies competition and virulence in the insect pathogenic bacterium Xenorhabdus szentirmaii. MICROBIOLOGY-SGM 2019; 165:538-553. [PMID: 30938671 DOI: 10.1099/mic.0.000793] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Xenorhabdus species are symbionts of entomopathogenic nematodes and pathogens of susceptible insects. Nematodes enter insect hosts and perforate the midgut to invade the haemocoel where Xenorhabdus bacteria are released transitioning to their pathogenic stage. During nematode invasion microbes from the insect gut translocate into the haemocoel. Different species of nematodes carrying specific strains of Xenorhabdus can also invade the same insect. Xenorhabdus species thereby compete for nutrients and space with both related strains and non-related gut microbes. While Xenorhabdus species produce diverse antimicrobial compounds in complex media, their functions in insect hosts are not well understood. We show that Xenorhabdus szentirmaii produced ngrA-dependent antibiotics that were active against both gut-derived microbes and Xenorhabdus nematophila whereas antibiotics of X. nematophila were not active against X. szentirmaii. X. nematophila growth was inhibited in co-cultures with wild-type X. szentirmaii in medium that mimics insect haemolymph. An antibiotic-deficient strain of X. szentirmaii was created by inactivating the ngrA gene that encodes the enzyme that attaches the 4' phosphopantetheinyl moiety to non-ribosomal peptide synthetases involved in antibiotic biosynthesis. X. nematophila growth was not inhibited in co-cultures with the ngrA strain. The growth of X. nematophila was suppressed in Manduca sexta co-injected with wild-type X. szentirmaii and X. nematophila. In contrast, growth of X. nematophila was not suppressed in M. sexta co-injected with the ngrA strain. Two unique compounds were detected by MALDI-TOF MS analysis in haemolymph infected with the wild-type but not with the ngrA strain. Finally, killing of M. sexta was delayed in insects infected with the ngrA strain. These findings indicate that in the insect host X. szentirmaii produces ngrA-dependent products involved in both interspecies competition and virulence.
Collapse
Affiliation(s)
- Kristin Ciezki
- Department of Biological Sciences, University of Wisconsin, Milwaukee, WI, USA
| | - Shane Wesener
- Department of Biological Sciences, University of Wisconsin, Milwaukee, WI, USA
| | - Danny Jaber
- Department of Biological Sciences, University of Wisconsin, Milwaukee, WI, USA
| | - Shama Mirza
- Shimadzu Laboratory for Advanced and Applied Analytical Chemistry, University of Wisconsin, Milwaukee, WI, USA
| | - Steven Forst
- Department of Biological Sciences, University of Wisconsin, Milwaukee, WI, USA
| |
Collapse
|
43
|
Sharp C, Boinett C, Cain A, Housden NG, Kumar S, Turner K, Parkhill J, Kleanthous C. O-Antigen-Dependent Colicin Insensitivity of Uropathogenic Escherichia coli. J Bacteriol 2019; 201:e00545-18. [PMID: 30510143 PMCID: PMC6351738 DOI: 10.1128/jb.00545-18] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Accepted: 11/05/2018] [Indexed: 11/20/2022] Open
Abstract
The outer membrane of Gram-negative bacteria presents a significant barrier for molecules entering the cell. Nevertheless, colicins, which are antimicrobial proteins secreted by Escherichia coli, can target other E. coli cells by binding to cell surface receptor proteins and activating their import, resulting in cell death. Previous studies have documented high rates of nonspecific resistance (insensitivity) of various E. coli strains toward colicins that is independent of colicin-specific immunity and is instead associated with lipopolysaccharide (LPS) in the outer membrane. This observation poses a contradiction: why do E. coli strains have colicin-expressing plasmids, which are energetically costly to retain, if cells around them are likely to be naturally insensitive to the colicin they produce? Here, using a combination of transposon sequencing and phenotypic microarrays, we show that colicin insensitivity of uropathogenic E. coli sequence type 131 (ST131) is dependent on the production of its O-antigen but that minor changes in growth conditions render the organism sensitive toward colicins. The reintroduction of O-antigen into E. coli K-12 demonstrated that it is the density of O-antigen that is the dominant factor governing colicin insensitivity. We also show, by microscopy of fluorescently labelled colicins, that growth conditions affect the degree of occlusion by O-antigen of outer membrane receptors but not the clustered organization of receptors. The result of our study demonstrate that environmental conditions play a critical role in sensitizing E. coli toward colicins and that O-antigen in LPS is central to this role.IMPORTANCEEscherichia coli infections can be a major health burden, especially with the organism becoming increasingly resistant to "last-resort" antibiotics such as carbapenems. Although colicins are potent narrow-spectrum antimicrobials with potential as future antibiotics, high levels of naturally occurring colicin insensitivity have been documented which could limit their efficacy. We identify O-antigen-dependent colicin insensitivity in a clinically relevant uropathogenic E. coli strain and show that this insensitivity can be circumvented by minor changes to growth conditions. The results of our study suggest that colicin insensitivity among E. coli organisms has been greatly overestimated, and as a consequence, colicins could in fact be effective species-specific antimicrobials targeting pathogenic E. coli such as uropathogenic E. coli (UPEC).
Collapse
Affiliation(s)
- Connor Sharp
- Department of Biochemistry, University of Oxford, Oxford, United Kingdom
| | | | - Amy Cain
- Wellcome Sanger Institute, Hinxton, United Kingdom
- Macquarie University, Sydney, Australia
| | - Nicholas G Housden
- Department of Biochemistry, University of Oxford, Oxford, United Kingdom
| | - Sandip Kumar
- Department of Biochemistry, University of Oxford, Oxford, United Kingdom
| | - Keith Turner
- Quadram Institute Bioscience, Norwich, United Kingdom
| | | | - Colin Kleanthous
- Department of Biochemistry, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
44
|
Raabis S, Li W, Cersosimo L. Effects and immune responses of probiotic treatment in ruminants. Vet Immunol Immunopathol 2019; 208:58-66. [PMID: 30712793 PMCID: PMC6526955 DOI: 10.1016/j.vetimm.2018.12.006] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Revised: 10/25/2018] [Accepted: 12/30/2018] [Indexed: 02/07/2023]
Abstract
Gut microbial colonization and establishment are vital to ruminant health and production. This review article focuses on current knowledge and methods used to understand and manipulate the gut microbial community in ruminant animals, with a special focus on probiotics treatment. This review highlights the most promising of studies in this area, including gut microbial colonization and establishment, effect of gastrointestinal tract microbial community on host mucosal innate immune function, impact of feeding strategies on gut microbial community, current probiotic treatments in ruminants, methods to manipulate the gut microbiota and associated antimicrobial compounds, and models and cell lines used in understanding the host immune response to probiotic treatments. As a lot of work in this area was done in humans and mice, this review article also includes up-to-date knowledge from relevant studies in human and mouse models. This review is a useful resource for scientists working in the areas of ruminant nutrition and health, and to researchers investigating the microbial ecology and its relation to animal health.
Collapse
Affiliation(s)
- Sarah Raabis
- School of Veterinary Medicine, University of Wisconsin-Madison, United States
| | - Wenli Li
- Dairy Forage Research Center, Agricultural Research Service, USDA, 1925 Linden Drive, Madison, WI, 53706, United States.
| | - Laura Cersosimo
- University of Florida, Department of Animal Sciences, Gainesville, FL, United States
| |
Collapse
|
45
|
Gutiérrez R, Cohen C, Flatau R, Marcos-Hadad E, Garrido M, Halle S, Nachum-Biala Y, Covo S, Hawlena H, Harrus S. Untangling the knots: Co-infection and diversity ofBartonellafrom wild gerbils and their associated fleas. Mol Ecol 2018; 27:4787-4807. [DOI: 10.1111/mec.14906] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Revised: 08/31/2018] [Accepted: 10/02/2018] [Indexed: 01/17/2023]
Affiliation(s)
- Ricardo Gutiérrez
- Koret School of Veterinary Medicine; The Hebrew University of Jerusalem; Rehovot Israel
| | - Carmit Cohen
- Mitrani Department of Desert Ecology; Jacob Blaustein Institutes for Desert Research; Ben-Gurion University of the Negev; Midreshet Ben-Gurion Israel
| | - Ron Flatau
- Mitrani Department of Desert Ecology; Jacob Blaustein Institutes for Desert Research; Ben-Gurion University of the Negev; Midreshet Ben-Gurion Israel
| | - Evgeniya Marcos-Hadad
- Department of Plant Pathology and Microbiology; Robert H. Smith Faculty of Agriculture; The Hebrew University of Jerusalem; Rehovot Israel
| | - Mario Garrido
- Mitrani Department of Desert Ecology; Jacob Blaustein Institutes for Desert Research; Ben-Gurion University of the Negev; Midreshet Ben-Gurion Israel
| | - Snir Halle
- Mitrani Department of Desert Ecology; Jacob Blaustein Institutes for Desert Research; Ben-Gurion University of the Negev; Midreshet Ben-Gurion Israel
| | - Yaarit Nachum-Biala
- Koret School of Veterinary Medicine; The Hebrew University of Jerusalem; Rehovot Israel
| | - Shay Covo
- Department of Plant Pathology and Microbiology; Robert H. Smith Faculty of Agriculture; The Hebrew University of Jerusalem; Rehovot Israel
| | - Hadas Hawlena
- Mitrani Department of Desert Ecology; Jacob Blaustein Institutes for Desert Research; Ben-Gurion University of the Negev; Midreshet Ben-Gurion Israel
| | - Shimon Harrus
- Koret School of Veterinary Medicine; The Hebrew University of Jerusalem; Rehovot Israel
| |
Collapse
|
46
|
The first report of antifungal lipopeptide production by a Bacillus subtilis subsp. inaquosorum strain. Microbiol Res 2018; 216:40-46. [DOI: 10.1016/j.micres.2018.08.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Revised: 06/17/2018] [Accepted: 08/01/2018] [Indexed: 12/18/2022]
|
47
|
Li Z, Quan G, Jiang X, Yang Y, Ding X, Zhang D, Wang X, Hardwidge PR, Ren W, Zhu G. Effects of Metabolites Derived From Gut Microbiota and Hosts on Pathogens. Front Cell Infect Microbiol 2018; 8:314. [PMID: 30276161 PMCID: PMC6152485 DOI: 10.3389/fcimb.2018.00314] [Citation(s) in RCA: 107] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Accepted: 08/16/2018] [Indexed: 12/13/2022] Open
Abstract
Intestinal metabolites participate in various physiological processes, including energy metabolism, cell-to-cell communication, and host immunity. These metabolites mainly originate from gut microbiota and hosts. Although many host metabolites are dominant in intestines, such as free fatty acids, amino acids and vitamins, the metabolites derived from gut microbiota are also essential for intestinal homeostasis. In addition, some metabolites are only generated and released by gut microbiota, such as bacteriocins, short-chain fatty acids, and quorum-sensing autoinducers. In this review, we summarize recent studies regarding the crosstalk between pathogens and metabolites from different sources, including the influence on bacterial development and the activation/inhibition of immune responses of hosts. All of these functions would affect the colonization of and infection by pathogens. This review provides clear ideas and directions for further exploring the regulatory mechanisms and effects of metabolites on pathogens.
Collapse
Affiliation(s)
- Zhendong Li
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Jiangsu Co-innovation Center for Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine Yangzhou University, Yangzhou, China
| | - Guomei Quan
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Jiangsu Co-innovation Center for Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine Yangzhou University, Yangzhou, China
| | - Xinyi Jiang
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Jiangsu Co-innovation Center for Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine Yangzhou University, Yangzhou, China
| | - Yang Yang
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Jiangsu Co-innovation Center for Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine Yangzhou University, Yangzhou, China
| | - Xueyan Ding
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Jiangsu Co-innovation Center for Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine Yangzhou University, Yangzhou, China
| | - Dong Zhang
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Jiangsu Co-innovation Center for Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine Yangzhou University, Yangzhou, China
| | - Xiuqing Wang
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Jiangsu Co-innovation Center for Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine Yangzhou University, Yangzhou, China
| | - Philip R Hardwidge
- College of Veterinary Medicine, Kansas State University Manhattan, KS, United States
| | - Wenkai Ren
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, Subtropical Institute of Animal Nutrition and Feed, College of Animal Science, South China Agricultural University Guangzhou, Guangdong, China
| | - Guoqiang Zhu
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Jiangsu Co-innovation Center for Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine Yangzhou University, Yangzhou, China
| |
Collapse
|
48
|
Bhattacharya A, Pak HT, Bashey F. Plastic responses to competition: Does bacteriocin production increase in the presence of nonself competitors? Ecol Evol 2018; 8:6880-6888. [PMID: 30073052 PMCID: PMC6065276 DOI: 10.1002/ece3.4203] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Revised: 03/15/2018] [Accepted: 04/17/2018] [Indexed: 11/07/2022] Open
Abstract
Anticompetitor traits such as the production of allelopathic toxins can confer significant competitive benefits but are often costly to produce. Evolution of these traits may be facilitated by environment-specific induction; however, the extent to which costly anticompetitor traits are induced by competitors is not well explored. Here, we addressed this question using bacteriocins, which are highly specific, proteinaceous anticompetitor toxins, produced by most lineages of bacteria and archaea. We tested the prediction that bacteriocin production is phenotypically plastic and induced by the presence of competitors by examining bacteriocin production in the presence and absence of nonself competitors over the course of growth of a producing strain. Our results show that bacteriocin production is detectable only at high cell densities, when competition for resources is high. However, the amount of bacteriocin activity was not significantly different in the presence vs. the absence of nonself competitors. These results suggest that bacteriocin production is either (a) canalized, constitutively produced by a fixed frequency of cells in the population or (b) induced by generic cues of competition, rather than specific self/nonself discrimination. Such a nonspecific response to competition could be favored in the natural environment where competition is ubiquitous.
Collapse
Affiliation(s)
| | | | - Farrah Bashey
- Department of BiologyIndiana UniversityBloomingtonIndiana
| |
Collapse
|
49
|
Wu Y, Guo W, Zhao J, Ding L, Chen X. Isolation and identification of a novel LCI like antibacterial protein from Bacillus sp. MD-5 reveals its potential application in controlling Staphylococcus aureus in food industry. Food Control 2018. [DOI: 10.1016/j.foodcont.2018.01.026] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
|
50
|
Nascimento F, Vicente C, Cock P, Tavares M, Rossi M, Hasegawa K, Mota M. From plants to nematodes: Serratia grimesii BXF1 genome reveals an adaptation to the modulation of multi-species interactions. Microb Genom 2018; 4. [PMID: 29781797 PMCID: PMC6113876 DOI: 10.1099/mgen.0.000178] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Serratia grimesii BXF1 is a bacterium with the ability to modulate the development of several eukaryotic hosts. Strain BXF1 was isolated from the pinewood nematode, Bursaphelenchus xylophilus, the causative agent of pine wilt disease affecting pine forests worldwide. This bacterium potentiates Bursaphelenchus xylophilus reproduction, acts as a beneficial pine endophyte, and possesses fungal and bacterial antagonistic activities, further indicating a complex role in a wide range of trophic relationships. In this work, we describe and analyse the genome sequence of strain BXF1, and discuss several important aspects of its ecological role. Genome analysis indicates the presence of several genes related to the observed production of antagonistic traits, plant growth regulation and the modulation of nematode development. Moreover, most of the BXF1 genes are involved in environmental and genetic information processing, which is consistent with its ability to sense and colonize several niches. The results obtained in this study provide the basis to a better understanding of the role and evolution of strain BXF1 as a mediator of interactions between organisms involved in a complex disease system. These results may also bring new insights into general Serratia and Enterobacteriaceae evolution towards multitrophic interactions.
Collapse
Affiliation(s)
- Francisco Nascimento
- 2Information and Computer Sciences, James Hutton Institute, Invergowrie, Dundee DD2 5DA, UK.,1Nemalab/ICAAM - Instituto de Ciências Agrárias e Ambientais Mediterrânicas, Departamento de Biologia, Universidade de Évora, Núcleo da Mitra, Ap. 94, 7002-554 Évora, Portugal
| | - Cláudia Vicente
- 1Nemalab/ICAAM - Instituto de Ciências Agrárias e Ambientais Mediterrânicas, Departamento de Biologia, Universidade de Évora, Núcleo da Mitra, Ap. 94, 7002-554 Évora, Portugal.,3Department of Environmental Biology, College of Bioscience and Biotechnology, Chubu University, 1200 Matsumoto, Kasugai, Aichi 487-8501, Japan
| | - Peter Cock
- 2Information and Computer Sciences, James Hutton Institute, Invergowrie, Dundee DD2 5DA, UK
| | - Maria Tavares
- 4Departamento de Microbiologia, Laboratório de Bioprocessos, Universidade Federal de Santa Catarina, Florianópolis SC 88040-900, Brazil
| | - Márcio Rossi
- 4Departamento de Microbiologia, Laboratório de Bioprocessos, Universidade Federal de Santa Catarina, Florianópolis SC 88040-900, Brazil
| | - Koichi Hasegawa
- 3Department of Environmental Biology, College of Bioscience and Biotechnology, Chubu University, 1200 Matsumoto, Kasugai, Aichi 487-8501, Japan
| | - Manuel Mota
- 1Nemalab/ICAAM - Instituto de Ciências Agrárias e Ambientais Mediterrânicas, Departamento de Biologia, Universidade de Évora, Núcleo da Mitra, Ap. 94, 7002-554 Évora, Portugal.,5Departamento Ciências da Vida, EPCV Universidade Lusófona de Humanidades e Tecnologias, C. Grande 376, Lisboa, 1749-024, Portugal
| |
Collapse
|