1
|
Anviksha A, Reddy MS. Comprehensive Biotechnological Strategies for Podophyllotoxin Production from Plant and Microbial Sources. PLANTA MEDICA 2025. [PMID: 39689888 DOI: 10.1055/a-2504-3069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2024]
Abstract
Podophyllotoxin is derived from plant sources and exhibits strong anticancer activity. However, limited natural availability and environmental impacts from traditional extraction methods drive the search for alternative production approaches. This review explores diverse strategies for sustainable podophyllotoxin synthesis, including biosynthesis, semi-synthesis, and biotransformation. Biosynthetic methods involve metabolic pathway engineering in plant or microbial cells, enabling increased yields by manipulating precursor availability and gene expression. Semi-synthetic approaches modify podophyllotoxin precursors or intermediates to enhance therapeutic effects, with derivatives like etoposide and teniposide showing clinical efficacy. Biotransformation, utilising organisms such as endophytic fungi or human hepatic enzymes, enables the transformation of substrates like deoxypodophyllotoxin into podophyllotoxin or its derivatives, yielding compounds with reduced environmental impact and improved purity. The anticancer efficacy of podophyllotoxin and its derivatives stems from multiple mechanisms. These compounds disrupt cell mitosis by inhibiting microtubule assembly, impairing nucleoside transport, and blocking topoisomerase II activity, leading to DNA cleavage and cancer cell apoptosis. Podophyllotoxin and its derivatives also exhibit anti-angiogenesis and anti-metastatic effects through signalling pathway modulation. Notably, derivatives like deoxypodophyllotoxin utilise advanced delivery systems, enhancing targeted efficacy and reducing side effects. Given the varied mechanisms and growing therapeutic applications, optimising biotransformation and delivery techniques remains essential for advancing podophyllotoxin-based therapies. This comprehensive review underscores the compound's potential as a robust anticancer agent and the need for continued research to maximise its production and clinical effectiveness.
Collapse
Affiliation(s)
- Anviksha Anviksha
- Department of Biotechnology, Thapar Institute of Engineering and Technology, Patiala, Punjab, India
| | | |
Collapse
|
2
|
Sadri A. Is Target-Based Drug Discovery Efficient? Discovery and "Off-Target" Mechanisms of All Drugs. J Med Chem 2023; 66:12651-12677. [PMID: 37672650 DOI: 10.1021/acs.jmedchem.2c01737] [Citation(s) in RCA: 37] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/08/2023]
Abstract
Target-based drug discovery is the dominant paradigm of drug discovery; however, a comprehensive evaluation of its real-world efficiency is lacking. Here, a manual systematic review of about 32000 articles and patents dating back to 150 years ago demonstrates its apparent inefficiency. Analyzing the origins of all approved drugs reveals that, despite several decades of dominance, only 9.4% of small-molecule drugs have been discovered through "target-based" assays. Moreover, the therapeutic effects of even this minimal share cannot be solely attributed and reduced to their purported targets, as they depend on numerous off-target mechanisms unconsciously incorporated by phenotypic observations. The data suggest that reductionist target-based drug discovery may be a cause of the productivity crisis in drug discovery. An evidence-based approach to enhance efficiency seems to be prioritizing, in selecting and optimizing molecules, higher-level phenotypic observations that are closer to the sought-after therapeutic effects using tools like artificial intelligence and machine learning.
Collapse
Affiliation(s)
- Arash Sadri
- Lyceum Scientific Charity, Tehran, Iran, 1415893697
- Interdisciplinary Neuroscience Research Program (INRP), Students' Scientific Research Center, Tehran University of Medical Sciences, Tehran, Iran, 1417755331
- Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran, 1417614411
| |
Collapse
|
3
|
Xu Y, He Z, Chen L, Wang H. A recent antitumor story of podophyllotoxin derivatives targeting tubulin: an update (2017-2022). Drug Discov Today 2023:103640. [PMID: 37236524 DOI: 10.1016/j.drudis.2023.103640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 05/17/2023] [Accepted: 05/19/2023] [Indexed: 05/28/2023]
Abstract
So far, numerous tubulin-targeted podophyllotoxin congeners were designed and synthesized to overcome the poor water-solubility and improve the pharmaceutical characteristics. However, few studies are dedicated to exploring the interaction of tubulin with the downstream signal transduction pathways, which is important for gaining insight into the role of tubulin in the anticancer action of podophyllotoxin-based conjugates. In this review, we described a detailed account of all the advances on tubulin targeting-podophyllotoxin derivatives from 2017 and 2022 with in depth knowledge about their antitumor action and potential molecular signaling pathways directly involved in tubulin depolymerization, aiming to help researchers design and develop better anticancer drugs derived from podophyllotoxin. Moreover, we also discussed the associated challenges and future opportunities in this field. Short teaser Recent reviews summarized podophyllotoxin-based analogues, with interaction between tubulin and signal pathways being rarely involved. This review comprehensively sum up how podophyllotoxin derivatives targeting tubulin exert their antitumor action via potential molecular signaling pathways.
Collapse
Affiliation(s)
- Yuqin Xu
- School of Public Health, Nanchang University, 461 Ba Yi Avenue, Nanchang, Jiangxi 330006, P. R. of China; Jiangxi Provincial Key Laboratory of Preventive Medicine, Nanchang University, 461 Ba Yi Avenue, Nanchang, Jiangxi 330006, P. R. China
| | - Zihan He
- School of Public Health, Nanchang University, 461 Ba Yi Avenue, Nanchang, Jiangxi 330006, P. R. of China; Jiangxi Provincial Key Laboratory of Preventive Medicine, Nanchang University, 461 Ba Yi Avenue, Nanchang, Jiangxi 330006, P. R. China
| | - Li Chen
- Hubei Provincial Center for Disease Control and Prevention, 35 Zhuo Daoquan North Road, Wuhan, Hubei 430079, P. R. China
| | - Huai Wang
- School of Public Health, Nanchang University, 461 Ba Yi Avenue, Nanchang, Jiangxi 330006, P. R. of China; Jiangxi Provincial Key Laboratory of Preventive Medicine, Nanchang University, 461 Ba Yi Avenue, Nanchang, Jiangxi 330006, P. R. China.
| |
Collapse
|
4
|
Festersen L, Czekelius C. Photocatalytic Cascade Cyclization of Aryl Haloalkynyl Ketones Forming Cyclopenta[ b]naphthalene Derivatives. Org Lett 2023; 25:3553-3558. [PMID: 37154431 DOI: 10.1021/acs.orglett.3c01197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
An efficient metal-free, photoredox-mediated cascade cyclization of aryl 1-haloalk-5-ynyl ketones has been developed. Using catalytic amounts of eosin Y (EY) and EtNMe2 as a reductive quencher, various aryl 1-haloalk-5-ynyl ketones have been transformed into the corresponding cyclization products in up to 98% yield. As a result, synthetic access to differently α-functionalized cyclopenta[b]naphthones and direct construction of cyclopenta[b]naphtholes has been developed.
Collapse
Affiliation(s)
- Lea Festersen
- Institute of Organic Chemistry and Macromolecular Chemistry, Heinrich-Heine-Universität Düsseldorf, Universitätsstr. 1, 40255 Düsseldorf, Germany
| | - Constantin Czekelius
- Institute of Organic Chemistry and Macromolecular Chemistry, Heinrich-Heine-Universität Düsseldorf, Universitätsstr. 1, 40255 Düsseldorf, Germany
| |
Collapse
|
5
|
Podophyllotoxin and its derivatives: Potential anticancer agents of natural origin in cancer chemotherapy. Biomed Pharmacother 2023; 158:114145. [PMID: 36586242 DOI: 10.1016/j.biopha.2022.114145] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Revised: 12/16/2022] [Accepted: 12/21/2022] [Indexed: 12/31/2022] Open
Abstract
The use of plant secondary metabolites has gained considerable attention among clinicians in the prevention and treatment of cancer. A secondary metabolite isolated mainly from the roots and rhizomes of Podophyllum species (Berberidaceae) is aryltetralin lignan - podophyllotoxin (PTOX). The purpose of this review is to discuss the therapeutic properties of PTOX as an important anticancer compound of natural origin. The relevant information regarding the antitumor mechanisms of podophyllotoxin and its derivatives were collected and analyzed from scientific databases. The results of the analysis showed PTOX exhibits potent cytotoxic activity; however, it cannot be used in its pure form due to its toxicity and generation of many side effects. Therefore, it practically remains clinically unusable. Currently, high effort is focused on attempts to synthesize analogs of PTOX that have better properties for therapeutic use e.g. etoposide (VP-16), teniposide, etopophos. PTOX derivatives are used as anticancer drugs which are showing additional immunosuppressive, antiviral, antioxidant, hypolipemic, and anti-inflammatory effects. In this review, attention is paid to the high potential of the usefulness of in vitro cultures of P. peltatum which can be a valuable source of lignans, including PTOX. In conclusion, the preclinical pharmacological studies in vitro and in vivo confirm the anticancer and chemotherapeutic potential of PTOX and its derivatives. In the future, clinical studies on human subjects are needed to certify the antitumor effects and the anticancer mechanisms to be certified and analyzed in more detail and to validate the experimental pharmacological preclinical studies.
Collapse
|
6
|
Leng J, Zhao Y, Sheng P, Xia Y, Chen T, Zhao S, Xie S, Yan X, Wang X, Yin Y, Kong L. Discovery of Novel N-Heterocyclic-Fused Deoxypodophyllotoxin Analogues as Tubulin Polymerization Inhibitors Targeting the Colchicine-Binding Site for Cancer Treatment. J Med Chem 2022; 65:16774-16800. [PMID: 36471625 DOI: 10.1021/acs.jmedchem.2c01595] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Natural products are a major source of anticancer agents and play critical roles in anticancer drug development. Inspired by the complexity-to-diversity strategy, novel deoxypodophyllotoxin (DPT) analogues were designed and synthesized. Among them, compound C3 exhibited the potent antiproliferative activity against four human cancer cell lines with IC50 values in the low nanomolar range. Additionally, it showed marked activity against paclitaxel-resistant MCF-7 cells and A549 cells. Moreover, compound C3 can inhibit tubulin polymerization by targeting the colchicine-binding site of tubulin. Further study revealed that compound C3 could arrest cancer cells in the G2/M phase and disrupt the angiogenesis in human umbilical vein endothelial cells. Meanwhile, C3 remarkably inhibited cancer cell motility and migration, as well as considerably inhibited tumor growth in MCF-7 and MCF-7/TxR xenograft model without obvious toxicity. Collectively, these results indicated that compound C3 may be a promising tubulin polymerization inhibitor development for cancer treatment.
Collapse
Affiliation(s)
- Jiafu Leng
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, People's Republic of China
| | - Yongjun Zhao
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, People's Republic of China
| | - Ping Sheng
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, People's Republic of China
| | - Yuanzheng Xia
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, People's Republic of China
| | - Tingting Chen
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, People's Republic of China
| | - Shifang Zhao
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, People's Republic of China
| | - Shanshan Xie
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, People's Republic of China
| | - Xiangyu Yan
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, People's Republic of China
| | - Xiaobing Wang
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, People's Republic of China
| | - Yong Yin
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, People's Republic of China
| | - Lingyi Kong
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, People's Republic of China
| |
Collapse
|
7
|
Asma ST, Acaroz U, Imre K, Morar A, Shah SRA, Hussain SZ, Arslan-Acaroz D, Demirbas H, Hajrulai-Musliu Z, Istanbullugil FR, Soleimanzadeh A, Morozov D, Zhu K, Herman V, Ayad A, Athanassiou C, Ince S. Natural Products/Bioactive Compounds as a Source of Anticancer Drugs. Cancers (Basel) 2022; 14:6203. [PMID: 36551687 PMCID: PMC9777303 DOI: 10.3390/cancers14246203] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 12/08/2022] [Accepted: 12/12/2022] [Indexed: 12/23/2022] Open
Abstract
Cancer is one of the major deadly diseases globally. The alarming rise in the mortality rate due to this disease attracks attention towards discovering potent anticancer agents to overcome its mortality rate. The discovery of novel and effective anticancer agents from natural sources has been the main point of interest in pharmaceutical research because of attractive natural therapeutic agents with an immense chemical diversity in species of animals, plants, and microorganisms. More than 60% of contemporary anticancer drugs, in one form or another, have originated from natural sources. Plants and microbial species are chosen based on their composition, ecology, phytochemical, and ethnopharmacological properties. Plants and their derivatives have played a significant role in producing effective anticancer agents. Some plant derivatives include vincristine, vinblastine, irinotecan, topotecan, etoposide, podophyllotoxin, and paclitaxel. Based on their particular activity, a number of other plant-derived bioactive compounds are in the clinical development phase against cancer, such as gimatecan, elomotecan, etc. Additionally, the conjugation of natural compounds with anti-cancerous drugs, or some polymeric carriers particularly targeted to epitopes on the site of interest to tumors, can generate effective targeted treatment therapies. Cognizance from such pharmaceutical research studies would yield alternative drug development strategies through natural sources which could be economical, more reliable, and safe to use.
Collapse
Affiliation(s)
- Syeda Tasmia Asma
- Department of Food Hygiene and Technology, Faculty of Veterinary Medicine, Afyon Kocatepe University, Afyonkarahisar 03200, Turkey
| | - Ulas Acaroz
- Department of Food Hygiene and Technology, Faculty of Veterinary Medicine, Afyon Kocatepe University, Afyonkarahisar 03200, Turkey
- ACR Bio Food and Biochemistry Research and Development, Afyonkarahisar 03200, Turkey
| | - Kálmán Imre
- Department of Animal Production and Veterinary Public Health, Faculty of Veterinary Medicine, University of Life Sciences “King Mihai I” from Timișoara, 300645 Timisoara, Romania
| | - Adriana Morar
- Department of Animal Production and Veterinary Public Health, Faculty of Veterinary Medicine, University of Life Sciences “King Mihai I” from Timișoara, 300645 Timisoara, Romania
| | - Syed Rizwan Ali Shah
- Department of Animal Nutrition and Nutritional Diseases, Faculty of Veterinary Medicine, Afyon Kocatepe University, Afyonkarahisar 03200, Turkey
| | - Syed Zajif Hussain
- Department of Chemistry and Chemical Engineering, SBA School of Science & Engineering (SBASSE), Lahore University of Management Sciences (LUMS), Lahore 54792, Pakistan
| | - Damla Arslan-Acaroz
- ACR Bio Food and Biochemistry Research and Development, Afyonkarahisar 03200, Turkey
- Department of Biochemistry, Faculty of Veterinary Medicine, Afyon Kocatepe University, Afyonkarahisar 03200, Turkey
| | - Hayri Demirbas
- Department of Neurology, Faculty of Medicine, Afyonkarahisar Health Sciences University, Afyonkarahisar 03030, Turkey
| | - Zehra Hajrulai-Musliu
- Department of Chemistry, Faculty of Veterinary Medicine, Ss. Cyril and Methodius University of Skopje, 1000 Skopje, North Macedonia
| | - Fatih Ramazan Istanbullugil
- Department of Chemistry and Technology, Faculty of Veterinary Medicine, Kyrgyz-Turkish Manas University, Bishkek KG-720038, Kyrgyzstan
| | - Ali Soleimanzadeh
- Department of Theriogenology, Faculty of Veterinary Medicine, Urmia University, Urmia 5756151818, Iran
| | - Dmitry Morozov
- Department of Epizootology and Infectious Diseases, Vitebsk State Academy of Veterinary Medicine, 210026 Vitebsk, Belarus
| | - Kui Zhu
- National Center for Veterinary Drug Safety Evaluation, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Viorel Herman
- Department of Infectious Disease and Preventive Medicine, Faculty of Veterinary Medicine, University of Life Sciences “King Mihai I” from Timișoara, 300645 Timisoara, Romania
| | - Abdelhanine Ayad
- Department of Physical Biology and Chemistry, Faculty of Nature and Life Sciences, Université de Bejaia, Bejaia 06000, Algeria
| | - Christos Athanassiou
- Laboratory of Entomology and Agriculture Zoology, Department of Agriculture, Crop Production and Rural Environment, University of Thessaly, 38446 Volos, Greece
| | - Sinan Ince
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Afyon Kocatepe University, Afyonkarahisar 03200, Turkey
| |
Collapse
|
8
|
Nguyen HT, Nguyen Thi QG, Nguyen Thi TH, Thi PH, Le-Nhat-Thuy G, Dang Thi TA, Le-Quang B, Pham-The H, Van Nguyen T. Synthesis and biological activity, and molecular modelling studies of potent cytotoxic podophyllotoxin-naphthoquinone compounds. RSC Adv 2022; 12:22004-22019. [PMID: 36043070 PMCID: PMC9361925 DOI: 10.1039/d2ra03312g] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Accepted: 07/27/2022] [Indexed: 12/20/2022] Open
Abstract
A new approach for the synthesis of podophyllotoxin-naphthoquinone compounds using microwave-assisted three-component reactions is reported in this study. Novel podophyllotoxin-naphthoquinone derivatives with modification on ring E were synthesized. All the synthetic compounds were assessed in terms of their cytotoxicity profile against four cancer cell lines (KB, HepG2, A549, and MCF7), and noncancerous Hek-293 cell lines. Notably, treatment of SK-LU-1 cells with compounds 5a and 5b resulted in G2/M phase arrest of the cell cycle, caspase-3/7 activation, and apoptosis. Additionally, molecular docking studies were performed and showed important interaction of two compounds against residues in the colchicine-binding-site of tubulin as well. Taken together, compounds 5a and 5b were identified as potent anticancer agents. A new approach for the synthesis of podophyllotoxin-naphthoquinone compounds using microwave-assisted three-component reactions is reported in this study.![]()
Collapse
Affiliation(s)
- Ha Thanh Nguyen
- Graduate University of Science and Technology, Vietnam Academy of Science and Technology (VAST) 18 Hoang Quoc Viet Cau Giay Hanoi Vietnam .,Institute of Chemistry, Vietnam Academy of Science and Technology (VAST) 18 Hoang Quoc Viet Cau Giay Hanoi Vietnam
| | - Quynh Giang Nguyen Thi
- Graduate University of Science and Technology, Vietnam Academy of Science and Technology (VAST) 18 Hoang Quoc Viet Cau Giay Hanoi Vietnam .,Institute of Chemistry, Vietnam Academy of Science and Technology (VAST) 18 Hoang Quoc Viet Cau Giay Hanoi Vietnam
| | - Thu Ha Nguyen Thi
- Graduate University of Science and Technology, Vietnam Academy of Science and Technology (VAST) 18 Hoang Quoc Viet Cau Giay Hanoi Vietnam .,Institute of Chemistry, Vietnam Academy of Science and Technology (VAST) 18 Hoang Quoc Viet Cau Giay Hanoi Vietnam
| | - Phuong Hoang Thi
- Institute of Chemistry, Vietnam Academy of Science and Technology (VAST) 18 Hoang Quoc Viet Cau Giay Hanoi Vietnam
| | - Giang Le-Nhat-Thuy
- Graduate University of Science and Technology, Vietnam Academy of Science and Technology (VAST) 18 Hoang Quoc Viet Cau Giay Hanoi Vietnam .,Institute of Chemistry, Vietnam Academy of Science and Technology (VAST) 18 Hoang Quoc Viet Cau Giay Hanoi Vietnam
| | - Tuyet Anh Dang Thi
- Graduate University of Science and Technology, Vietnam Academy of Science and Technology (VAST) 18 Hoang Quoc Viet Cau Giay Hanoi Vietnam .,Institute of Chemistry, Vietnam Academy of Science and Technology (VAST) 18 Hoang Quoc Viet Cau Giay Hanoi Vietnam
| | - Bao Le-Quang
- Hanoi Unviversity of Pharmacy 13-15 Le Thanh Tong Hoan Kiem Hanoi Vietnam
| | - Hai Pham-The
- Hanoi Unviversity of Pharmacy 13-15 Le Thanh Tong Hoan Kiem Hanoi Vietnam
| | - Tuyen Van Nguyen
- Graduate University of Science and Technology, Vietnam Academy of Science and Technology (VAST) 18 Hoang Quoc Viet Cau Giay Hanoi Vietnam .,Institute of Chemistry, Vietnam Academy of Science and Technology (VAST) 18 Hoang Quoc Viet Cau Giay Hanoi Vietnam
| |
Collapse
|
9
|
Silva JG, de Miranda AS, Ismail FMD, Barbosa LCA. Synthesis and medicinal chemistry of tetronamides: Promising agrochemicals and antitumoral compounds. Bioorg Med Chem 2022; 67:116815. [PMID: 35598527 DOI: 10.1016/j.bmc.2022.116815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 05/06/2022] [Accepted: 05/09/2022] [Indexed: 11/30/2022]
Abstract
Butenolides and tetronic acids occupy a prominent position in synthetic chemistry due to their ubiquitous distribution in nature. This has stimulated investigations firstly in the synthesis of such systems and, laterly, the interest has turned to the understanding of the quantum structure of such systems, allowing a deeper understanding of the mechanism and reactivity of this cyclic scaffold. In contrast, tetronamides, which consist of compounds bearing a 4-aminofuran-2(5H)-one backbone, are relatively rare in nature and synthetic routes to such compounds are poorly explored. This review highlights both the importance of the tetronamide scaffold in medicinal chemistry and the most relevant recondite synthetic strategies for obtaining compounds of this class.
Collapse
Affiliation(s)
- Júnio G Silva
- Department of Chemistry, Universidade Federal de Minas Gerais, Av. Pres. Antônio Carlos, 6627, Campus Pampulha, CEP 31270-901 Belo Horizonte, MG, Brazil
| | - Amanda S de Miranda
- Department of Chemistry, Universidade Federal de Minas Gerais, Av. Pres. Antônio Carlos, 6627, Campus Pampulha, CEP 31270-901 Belo Horizonte, MG, Brazil
| | - Fyaz M D Ismail
- Centre for Natural Product Discovery (CNPD), School of Pharmacy & Biomolecular Sciences, Byrom Street, Liverpool John Moores University, Liverpool L3 3AF, UK
| | - Luiz C A Barbosa
- Department of Chemistry, Universidade Federal de Minas Gerais, Av. Pres. Antônio Carlos, 6627, Campus Pampulha, CEP 31270-901 Belo Horizonte, MG, Brazil.
| |
Collapse
|
10
|
Shen S, Tong Y, Luo Y, Huang L, Gao W. Biosynthesis, total synthesis, and pharmacological activities of aryltetralin-type lignan podophyllotoxin and its derivatives. Nat Prod Rep 2022; 39:1856-1875. [PMID: 35913409 DOI: 10.1039/d2np00028h] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Covering: up to 2022Podophyllotoxin (PTOX, 1), a kind of aryltetralin-type lignan, was first discovered in the plant Podophyllum peltatum and its structure was clarified by W. Borsche and J. Niemann in 1932. Due to its potent anti-cancer and anti-viral activities, it is considered one of the molecules most likely to be developed into modern drugs. With the increasing market demand and insufficient storage of natural resources, it is crucial to expand the sources of PTOXs. The original extraction method from plants has gradually failed to meet the requirements, and the biosynthesis and total synthesis have become the forward-looking alternatives. As key enzymes in the biosynthetic pathway of PTOXs and their catalytic mechanisms being constantly revealed, it is possible to realize the heterogeneous biosynthesis of PTOXs in the future. Chemical and chemoenzymatic synthesis also provide schemes for strictly controlling the asymmetric configuration of the tetracyclic core. Currently, the pharmacological activities of some PTOX derivatives have been extensively studied, laying the foundation for clinical candidate drugs. This review focuses primarily on the latest research progress in the biosynthesis, total synthesis, and pharmacological activities of PTOX and its derivatives, providing a more comprehensive understanding of these widely used compounds and supporting the future search for clinical applications.
Collapse
Affiliation(s)
- Siyu Shen
- School of Traditional Chinese Medicine, Capital Medical University, Beijing, 100069, China. .,Beijing Shijitan Hospital, Capital Medical University, Beijing 100038, China
| | - Yuru Tong
- School of Pharmaceutical Sciences, Capital Medical University, Beijing, 100069, China
| | - Yunfeng Luo
- School of Traditional Chinese Medicine, Capital Medical University, Beijing, 100069, China.
| | - Luqi Huang
- State Key Laboratory Breeding Base of Dao-di Herbs, National Resource Center for Chinese Materia Medica, Chinese Academy of Chinese Medical Sciences, Beijing 100700, China.
| | - Wei Gao
- School of Traditional Chinese Medicine, Capital Medical University, Beijing, 100069, China. .,Beijing Shijitan Hospital, Capital Medical University, Beijing 100038, China
| |
Collapse
|
11
|
Sureja DK, Shah AP, Gajjar ND, Jadeja SB, Bodiwala KB, Dhameliya TM. In-silico Computational Investigations of AntiViral Lignan Derivatives as Potent Inhibitors of SARS CoV-2. ChemistrySelect 2022; 7:e202202069. [PMID: 35942360 PMCID: PMC9349937 DOI: 10.1002/slct.202202069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Accepted: 07/05/2022] [Indexed: 11/11/2022]
Abstract
Due to alarming outbreak of pandemic COVID-19 in recent times, there is a strong need to discover and identify new antiviral agents acting against SARS CoV-2. Among natural products, lignan derivatives have been found effective against several viral strains including SARS CoV-2. Total of twenty-seven reported antiviral lignan derivatives of plant origin have been selected for computational studies to identify the potent inhibitors of SARS CoV-2. Molecular docking study has been carried out in order to predict and describe molecular interaction between active site of enzyme and lignan derivatives. Out of identified hits, clemastatin B and erythro-strebluslignanol G demonstrated stronger binding and high affinity with all selected proteins. Molecular dynamics simulation studies of clemastin B and savinin against promising targets of SARS CoV-2 have revealed their inhibitory potential against SARS CoV-2. In fine, in-silico computational studies have provided initial breakthrough in design and discovery of potential SARS CoV-2 inhibitors.
Collapse
Affiliation(s)
- Dipen K. Sureja
- Department of Pharmaceutical Chemistry and Quality AssuranceL. M. College of Pharmacy, NavrangpuraAhmedabad380009, GujaratIndia
| | - Ashish P. Shah
- Department of Pharmacy, Sumandeep VidyapeethVadodara391760, GujaratIndia
| | - Normi D. Gajjar
- Department of Pharmaceutical Chemistry and Quality AssuranceL. M. College of Pharmacy, NavrangpuraAhmedabad380009, GujaratIndia
| | - Shwetaba B. Jadeja
- Department of Pharmaceutical Chemistry and Quality AssuranceL. M. College of Pharmacy, NavrangpuraAhmedabad380009, GujaratIndia
| | - Kunjan B. Bodiwala
- Department of Pharmaceutical Chemistry and Quality AssuranceL. M. College of Pharmacy, NavrangpuraAhmedabad380009, GujaratIndia
| | - Tejas M. Dhameliya
- Department of Pharmaceutical Chemistry and Quality AssuranceL. M. College of Pharmacy, NavrangpuraAhmedabad380009, GujaratIndia
| |
Collapse
|
12
|
Zhang X, Yang T, Jin X, Lin K, Dai X, Gao T, Huang G, Fan M, Ma L, Liu Z, Cao J. Synthesis and biological evaluation of cytotoxic activity of novel podophyllotoxin derivatives incorporating piperazinyl-cinnamic amide moieties. Bioorg Chem 2022; 123:105761. [DOI: 10.1016/j.bioorg.2022.105761] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 03/17/2022] [Accepted: 03/21/2022] [Indexed: 12/28/2022]
|
13
|
Gouw AM, Kumar V, Resendez A, Alvina FB, Liu NS, Margulis K, Tong L, Zare RN, Malhotra SV, Felsher DW. Azapodophyllotoxin Causes Lymphoma and Kidney Cancer Regression by Disrupting Tubulin and Monoglycerols. ACS Med Chem Lett 2022; 13:615-622. [PMID: 35450373 PMCID: PMC9014495 DOI: 10.1021/acsmedchemlett.1c00673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 03/18/2022] [Indexed: 11/28/2022] Open
Abstract
A natural compound screen identified several anticancer compounds, among which azapodophyllotoxin (AZP) was found to be the most potent. AZP caused decreased viability of both mouse and human lymphoma and renal cell cancer (RCC) tumor-derived cell lines. Novel AZP derivatives were synthesized and screened identifying compound NSC750212 to inhibit the growth of both lymphoma and RCC both in vitro and in vivo. A nanoimmunoassay was used to assess the NSC750212 mode of action in vivo. On the basis of the structure of AZP and its mode of action, AZP disrupts tubulin polymerization. Through desorption electrospray ionization mass spectrometry imaging, NSC750212 was found to inhibit lipid metabolism. NSC750212 suppresses monoglycerol metabolism depleting lipids and thereby inhibits tumor growth. The dual mode of tubulin polymerization disruption and monoglycerol metabolism inhibition makes NSC750212 a potent small molecule against lymphoma and RCC.
Collapse
Affiliation(s)
- Arvin M. Gouw
- Department of Medicine, Division of Oncology, Stanford University School of Medicine, Stanford, California 94305, United States
| | - Vineet Kumar
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford University, Stanford, California 94305, United States
| | - Angel Resendez
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford University, Stanford, California 94305, United States
| | - Fidelia B. Alvina
- Department of Medicine, Division of Oncology, Stanford University School of Medicine, Stanford, California 94305, United States
| | - Natalie S. Liu
- Department of Medicine, Division of Oncology, Stanford University School of Medicine, Stanford, California 94305, United States
| | - Katherine Margulis
- Department of Chemistry, School of Humanities and Sciences, Stanford University, Stanford, California 94305, United States
| | - Ling Tong
- Department of Medicine, Division of Oncology, Stanford University School of Medicine, Stanford, California 94305, United States
| | - Richard N. Zare
- Department of Chemistry, School of Humanities and Sciences, Stanford University, Stanford, California 94305, United States
| | - Sanjay V. Malhotra
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford University, Stanford, California 94305, United States
- Department of Cell, Developmental and Cancer Biology, Oregon health and Science University, Portland, Oregon 97201, United States
- Center for Experimental Therapeutics, Knight Cancer Institute, Oregon health and Science University, Portland, Oregon 97201, United States
| | - Dean W. Felsher
- Department of Medicine, Division of Oncology, Stanford University School of Medicine, Stanford, California 94305, United States
| |
Collapse
|
14
|
Reynolds RG, Nguyen HQA, Reddel JCT, Thomson RJ. Recent strategies and tactics for the enantioselective total syntheses of cyclolignan natural products. Nat Prod Rep 2022; 39:670-702. [PMID: 34664594 PMCID: PMC8957534 DOI: 10.1039/d1np00057h] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Covering: 2000 to 2021Lignan natural products are found in many different plant species and possess numerous useful biological properties, such as anti-inflammatory, antiviral, antioxidant, antibacterial, and antitumor activities. Their utility in both traditional and conventional medicine, coupled with their structural diversity has made them popular synthetic targets over many decades. This review specifically addresses the cyclolignan subclass of the family, which possess both a C8-C8' and a C2-C7' linkage between two different phenylpropene units. We present a comprehensive overview of the diverse strategies employed by chemists to achieve enantioselective total syntheses of cyclolignans covering: 2000 to 2021.
Collapse
Affiliation(s)
- Rebekah G Reynolds
- Department of Chemistry, Northwestern University, 2145 Sheridan Rd, Evanston, IL 60208, USA.
| | - Huong Quynh Anh Nguyen
- Department of Chemistry, Northwestern University, 2145 Sheridan Rd, Evanston, IL 60208, USA.
| | - Jordan C T Reddel
- Department of Chemistry, Northwestern University, 2145 Sheridan Rd, Evanston, IL 60208, USA.
| | - Regan J Thomson
- Department of Chemistry, Northwestern University, 2145 Sheridan Rd, Evanston, IL 60208, USA.
| |
Collapse
|
15
|
Zhao Y, Li D, Han Y, Wang H, Du R, Yan Z. The ester derivatives obtained by C‐ring modification of podophyllotoxin induced apoptosis and inhibited proliferation in Hemangioma Endothelial Cells via down‐regulation of PI3K/Akt signaling pathway. Chem Biol Drug Des 2022; 99:828-838. [PMID: 35184389 DOI: 10.1111/cbdd.14034] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 10/12/2021] [Accepted: 01/15/2022] [Indexed: 12/01/2022]
Affiliation(s)
- Yan Zhao
- College of Chinese Medicinal Materials Jilin Agricultural University Changchun 130118 China
| | - Danyao Li
- College of Chinese Medicinal Materials Jilin Agricultural University Changchun 130118 China
| | - Yun Han
- Department of Pharmacy TCM Hospital Nanjing University of Chinese Medicine Suzhou 215009 China
| | - Haohao Wang
- College of Chinese Medicinal Materials Jilin Agricultural University Changchun 130118 China
| | - Rui Du
- College of Chinese Medicinal Materials Jilin Agricultural University Changchun 130118 China
| | - Zhaowei Yan
- Department of Pharmacy The First Affiliated Hospital of Soochow University Suzhou 215006 China
| |
Collapse
|
16
|
Cheng X, Yu P, Zhou X, Zhu J, Han Y, Zhang C, Kong L. Enhanced tumor homing of pathogen-mimicking liposomes driven by R848 stimulation: A new platform for synergistic oncology therapy. Acta Pharm Sin B 2022; 12:924-938. [PMID: 35256955 PMCID: PMC8897206 DOI: 10.1016/j.apsb.2021.08.018] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 06/20/2021] [Accepted: 07/02/2021] [Indexed: 11/01/2022] Open
Abstract
Although multifarious tumor-targeting modifications of nanoparticulate systems have been attempted in joint efforts by our predecessors, it remains challenging for nanomedicine to traverse physiological barriers involving blood vessels, tissues, and cell barriers to thereafter demonstrate excellent antitumor effects. To further overcome these inherent obstacles, we designed and prepared mycoplasma membrane (MM)-fused liposomes (LPs) with the goal of employing circulating neutrophils with the advantage of inflammatory cytokine-guided autonomous tumor localization to transport nanoparticles. We also utilized in vivo neutrophil activation induced by the liposomal form of the immune activator resiquimod (LPs-R848). Fused LPs preparations retained mycoplasma pathogen characteristics and achieved rapid recognition and endocytosis by activated neutrophils stimulated by LPs-R848. The enhanced neutrophil infiltration in homing of the inflammatory tumor microenvironment allowed more nanoparticles to be delivered into solid tumors. Facilitated by the formation of neutrophil extracellular traps (NETs), podophyllotoxin (POD)-loaded MM-fused LPs (MM-LPs-POD) were concomitantly released from neutrophils and subsequently engulfed by tumor cells during inflammation. MM-LPs-POD displayed superior suppression efficacy of tumor growth and lung metastasis in a 4T1 breast tumor model. Overall, such a strategy of pathogen-mimicking nanoparticles hijacking neutrophils in situ combined with enhanced neutrophil infiltration indeed elevates the potential of chemotherapeutics for tumor targeting therapy.
Collapse
|
17
|
In Vitro Investigation of the Antioxidant and Cytotoxic Potential of Tabernaemontana ventricosa Hochst. ex A. DC. Leaf, Stem, and Latex Extracts. HORTICULTURAE 2022. [DOI: 10.3390/horticulturae8020091] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Tabernaemontana ventricosa (Apocynaceae) a latex-bearing plant is used in traditional medicine for its therapeutic benefits in reducing fever and hypertension and wound healing. Due to limited information on the plant’s pharmacological activities, this study aimed to investigate the antioxidant potential of the leaf, stem, and latex extracts of T. ventricosa, using the Folin-Ciocalteu (total phenolics), aluminum chloride colorimetric (total flavonoids), 2,2-diphenyl-1-picrylhydrazyl (DPPH), and ferric reducing antioxidant power (FRAP) assays. The cytotoxic activity was evaluated in the human HEK293 (embryonic kidney), HeLa (cervical carcinoma), and MCF-7 (breast adenocarcinoma) cell lines using the MTT assay. The latex extracts possessed the highest total phenolic content (115.36 ± 2.89 mg GAE/g), followed by the stem hexane extracts (21.33 ± 0.42 mg GAE/g), the chloroform leaf (7.89 ± 0.87 mg GAE/g), and the chloroform stem (4.69 ± 0.21 mg GAE/g) extracts. The flavonoid content was substantially high ranging from 946.92 ± 6.29 mg QE/g in the stem hexane, 768.96 ± 5.43 mg QE/g in the latex, 693.24 ± 4.12 mg QE/g in the stem chloroform, and 662.20 ± 1.00 mg QE/g in the leaf hexane extracts. The DPPH assays showed the highest percentage of inhibition at 240 µg/mL, for the stem hexane (70.10%), stem methanol (65.24%), and stem chloroform (60.26%) extracts, with their respective IC50 values of 19.26 µg/mL (stem hexane), 6.19 µg/mL (stem methanol), and 22.56 µg/mL (stem chloroform). The FRAP assays displayed minimal inhibition ranging from 4.73% to 14.40%, except for the latex extracts which displayed moderate inhibition at 15 µg/mL (21.82%) and substantial inhibition at 240 µg/mL (98.48%). The HeLa and MCF-7 cell lines were the most sensitive to the extracts, with the hexane, chloroform, and methanol leaf and stem, and latex extracts significantly affecting the percentage cell survival. Overall, the various parts of T. ventricosa exhibited strong antioxidant activity correlating to its cytotoxicity. Further studies should focus on the isolation of specific antioxidant compounds that could be investigated for their anticancer potential.
Collapse
|
18
|
Ganaie BA, Banday JA, Bhat BA, Ara T. Synthesis and In Vitro Anticancer Activity of Triazolyl Analogs of Podophyllotoxin, a Naturally Occurring Lignin. RUSSIAN JOURNAL OF ORGANIC CHEMISTRY 2022. [DOI: 10.1134/s1070428021120216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
19
|
Hagras M, El Deeb MA, Elzahabi HSA, Elkaeed EB, Mehany ABM, Eissa IH. Discovery of new quinolines as potent colchicine binding site inhibitors: design, synthesis, docking studies, and anti-proliferative evaluation. J Enzyme Inhib Med Chem 2021; 36:640-658. [PMID: 33588683 PMCID: PMC7889231 DOI: 10.1080/14756366.2021.1883598] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Revised: 12/26/2020] [Accepted: 01/25/2021] [Indexed: 01/03/2023] Open
Abstract
Discovering of new anticancer agents with potential activity against tubulin polymerisation is still a promising approach. Colchicine binding site inhibitors are the most relevant anti-tubulin polymerisation agents. Thus, new quinoline derivatives have been designed and synthesised to possess the same essential pharmacophoric features of colchicine binding site inhibitors. The synthesised compounds were tested in vitro against a panel of three human cancer cell lines (HepG-2, HCT-116, and MCF-7) using colchicine as a positive control. Comparing to colchicine (IC50 = 7.40, 9.32, and 10.41 µM against HepG-2, HCT-116, and MCF-7, respectively), compounds 20, 21, 22, 23, 24, 25, 26, and 28 exhibited superior cytotoxic activities with IC50 values ranging from 1.78 to 9.19 µM. In order to sightsee the proposed mechanism of anti-proliferative activity, the most active members were further evaluated in vitro for their inhibitory activities against tubulin polymerisation. Compounds 21 and 32 exhibited the highest tubulin polymerisation inhibitory effect with IC50 values of 9.11 and 10.5 nM, respectively. Such members showed activities higher than that of colchicine (IC50 = 10.6 nM) and CA-4 (IC50 = 13.2 nM). The impact of the most promising compound 25 on cell cycle distribution was assessed. The results revealed that compound 25 can arrest the cell cycle at G2/M phase. Annexin V and PI double staining assay was carried out to explore the apoptotic effect of the synthesised compounds. Compound 25 induced apoptotic effect on HepG-2 thirteen times more than the control cells. To examine the binding pattern of the target compounds against the tubulin heterodimers active site, molecular docking studies were carried out.
Collapse
Affiliation(s)
- Mohamed Hagras
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo, Egypt
| | - Moshira A. El Deeb
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy (Girls), Al-Azhar University, Cairo, Egypt
| | - Heba S. A. Elzahabi
- Department of Pharmaceutical Medicinal Chemistry & Drug Design, Faculty of Pharmacy (Girls), Al-Azhar University, Cairo, Egypt
| | - Eslam B. Elkaeed
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo, Egypt
- Department of Pharmaceutical Sciences, College of Pharmacy, AlMaarefa University, Ad Diriyah, Riyadh, Saudi Arabia
| | - Ahmed B. M. Mehany
- Department of Zoology, Faculty of Science, Al-Azhar University, Cairo, Egypt
| | - Ibrahim H. Eissa
- Department of Pharmaceutical Medicinal Chemistry & Drug Design, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo, Egypt
| |
Collapse
|
20
|
Synthesis and Anticancer Activity of Podophyllotoxin Derivatives. Chem Nat Compd 2021. [DOI: 10.1007/s10600-021-03539-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
21
|
Ciaffaglione V, Modica MN, Pittalà V, Romeo G, Salerno L, Intagliata S. Mutual Prodrugs of 5-Fluorouracil: From a Classic Chemotherapeutic Agent to Novel Potential Anticancer Drugs. ChemMedChem 2021; 16:3496-3512. [PMID: 34415107 PMCID: PMC9290623 DOI: 10.1002/cmdc.202100473] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 08/18/2021] [Indexed: 12/18/2022]
Abstract
The development of potent antitumor agents with a low toxicological profile against healthy cells is still one of the greatest challenges facing medicinal chemistry. In this context, the “mutual prodrug” approach has emerged as a potential tool to overcome undesirable physicochemical features and mitigate the side effects of approved drugs. Among broad‐spectrum chemotherapeutics available for clinical use today, 5‐fluorouracil (5‐FU) is one of the most representative, also included in the World Health Organization model list of essential medicines. Unfortunately, severe side effects and drug resistance phenomena are still the primary limits and drawbacks in its clinical use. This review describes the progress made over the last ten years in developing 5‐FU‐based mutual prodrugs to improve the therapeutic profile and achieve targeted delivery to cancer tissues.
Collapse
Affiliation(s)
- Valeria Ciaffaglione
- Department of Drug and Health Sciences, University of Catania, Viale A. Doria 6, 95125, Catania, Italy
| | - Maria N Modica
- Department of Drug and Health Sciences, University of Catania, Viale A. Doria 6, 95125, Catania, Italy
| | - Valeria Pittalà
- Department of Drug and Health Sciences, University of Catania, Viale A. Doria 6, 95125, Catania, Italy
| | - Giuseppe Romeo
- Department of Drug and Health Sciences, University of Catania, Viale A. Doria 6, 95125, Catania, Italy
| | - Loredana Salerno
- Department of Drug and Health Sciences, University of Catania, Viale A. Doria 6, 95125, Catania, Italy
| | - Sebastiano Intagliata
- Department of Drug and Health Sciences, University of Catania, Viale A. Doria 6, 95125, Catania, Italy
| |
Collapse
|
22
|
Zi CT, Yang L, Hu Y, Zhang P, Tang H, Zhang BL, Shen XJ, Kong QH, Wang Y, Wang XJ, Sheng J. Synthesis, antitumor activity, and molecular docking of (-)-epigallocatechin-3-gallate-4β-triazolopodophyllotoxin conjugates. JOURNAL OF ASIAN NATURAL PRODUCTS RESEARCH 2021; 23:772-780. [PMID: 32619100 DOI: 10.1080/10286020.2020.1786066] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Accepted: 06/17/2020] [Indexed: 06/11/2023]
Abstract
Two new (-)-epigallocatechin-3-gallate-4β-triazolopodophyllotoxin conjugates (7 and 8) were synthesized and evaluated for biological activity. Compound 8 showed highly potent anticancer activity against A-549 cell line with IC50 of 2.16 ± 1.02 μM, which displayed the highest selectivity index value (SI = 14.5) in A-549 cells. Molecular docking indicated that compound 8 could bind with the active site of Top-II. Therefore, compound 8 might be a promising candidate for further development.
Collapse
Affiliation(s)
- Cheng-Ting Zi
- Key Laboratory of Pu-er Tea Science, Ministry of Education, Yunnan Agricultural University, Kunming 650201, China
- College of Science, Yunnan Agricultural University, Kunming 650201, China
| | - Liu Yang
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
| | - Yue Hu
- Key Laboratory of Pu-er Tea Science, Ministry of Education, Yunnan Agricultural University, Kunming 650201, China
| | - Pan Zhang
- Key Laboratory of Pu-er Tea Science, Ministry of Education, Yunnan Agricultural University, Kunming 650201, China
| | - Han Tang
- Key Laboratory of Pu-er Tea Science, Ministry of Education, Yunnan Agricultural University, Kunming 650201, China
| | - Bang-Lei Zhang
- Key Laboratory of Pu-er Tea Science, Ministry of Education, Yunnan Agricultural University, Kunming 650201, China
| | - Xiao-Jing Shen
- College of Science, Yunnan Agricultural University, Kunming 650201, China
| | - Qing-Hua Kong
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
| | - Ya Wang
- Key Laboratory of Pu-er Tea Science, Ministry of Education, Yunnan Agricultural University, Kunming 650201, China
- College of Science, Yunnan Agricultural University, Kunming 650201, China
| | - Xuan-Jun Wang
- Key Laboratory of Pu-er Tea Science, Ministry of Education, Yunnan Agricultural University, Kunming 650201, China
- College of Science, Yunnan Agricultural University, Kunming 650201, China
| | - Jun Sheng
- Key Laboratory of Pu-er Tea Science, Ministry of Education, Yunnan Agricultural University, Kunming 650201, China
| |
Collapse
|
23
|
Zi CT, Wang ZH, Shi J, Shi BY, Zhang N, Wu YL, Xie YR, Zhou L, Xiao C, Wang XJ, Sheng J. Synthesis, cytotoxicity, and molecular docking of methylated (–)-epigallocatechin-3-gallate-4β-triazolopodophyllotoxin derivatives as novel antitumor agents. JOURNAL OF CHEMICAL RESEARCH 2021. [DOI: 10.1177/17475198211027328] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
A series of novel methylated (–)-epigallocatechin-3-gallate-4β-triazolopodophyllotoxin derivatives is synthesized by utilizing the click reaction. Evaluation of their cytotoxicity against a panel of five human cancer cell lines (HL-60, SMMC-7721, A-549, MCF-7, and SW480) using the MTT assay shows that most of these compounds exhibit weak cytotoxicity. It is observed that compound 12 shows the highest activity against A-549 cells with an IC50 value of 10.27 ± 0.90 μM. Molecular docking results suggested that this compound 12 has a higher binding affinity for epidermal growth factor receptor than for tubulin. Our findings support the utility of compound 12 as a novel compound for the further development of anticancer agents.
Collapse
Affiliation(s)
- Cheng-Ting Zi
- Key Laboratory of Pu-er Tea Science, Ministry of Education, College of Science, Yunnan Agricultural University, Kunming, P.R. China
| | - Ze-Hao Wang
- Key Laboratory of Pu-er Tea Science, Ministry of Education, College of Science, Yunnan Agricultural University, Kunming, P.R. China
- College of Food Science and Technology, Yunnan Agricultural University, Kunming, P.R. China
| | - Jing Shi
- Key Laboratory of the Ministry of Education for Agro-Biodiversity and Pest Management, Yunnan Agricultural University, Kunming, P.R. China
| | - Bo-Ya Shi
- Key Laboratory of Pu-er Tea Science, Ministry of Education, College of Science, Yunnan Agricultural University, Kunming, P.R. China
- College of Food Science and Technology, Yunnan Agricultural University, Kunming, P.R. China
| | - Ning Zhang
- Key Laboratory of Pu-er Tea Science, Ministry of Education, College of Science, Yunnan Agricultural University, Kunming, P.R. China
- College of Food Science and Technology, Yunnan Agricultural University, Kunming, P.R. China
| | - Yi-Long Wu
- Key Laboratory of Pu-er Tea Science, Ministry of Education, College of Science, Yunnan Agricultural University, Kunming, P.R. China
- College of Food Science and Technology, Yunnan Agricultural University, Kunming, P.R. China
| | - Yin-Rong Xie
- Key Laboratory of Pu-er Tea Science, Ministry of Education, College of Science, Yunnan Agricultural University, Kunming, P.R. China
- College of Food Science and Technology, Yunnan Agricultural University, Kunming, P.R. China
| | - Lu Zhou
- Yunnan Plateatu Characteristic Agricultural Industry Research Institute, Yunnan Agricultural University, Kunming, P.R. China
| | - Chun Xiao
- Key Laboratory of the Ministry of Education for Agro-Biodiversity and Pest Management, Yunnan Agricultural University, Kunming, P.R. China
| | - Xuan-Jun Wang
- Key Laboratory of Pu-er Tea Science, Ministry of Education, College of Science, Yunnan Agricultural University, Kunming, P.R. China
| | - Jun Sheng
- Key Laboratory of Pu-er Tea Science, Ministry of Education, College of Science, Yunnan Agricultural University, Kunming, P.R. China
| |
Collapse
|
24
|
Essential Oil Composition and Bioactivity of Two Juniper Species from Bulgaria and Slovakia. Molecules 2021; 26:molecules26123659. [PMID: 34203980 PMCID: PMC8232667 DOI: 10.3390/molecules26123659] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 06/08/2021] [Accepted: 06/09/2021] [Indexed: 11/20/2022] Open
Abstract
Juniperus excelsa M. Bieb and J. sabina L. contain essential oil (EO), while J. sabina also contains podophyllotoxin, which is used as a precursor for anti-cancer drugs. Two studies were conducted. The first assessed the variability in the EO profile and podophyllotoxin concentration of the two junipers, depending on the location and tree gender. The main EO constituents of J. excelsa were α-cedrol, α-limonene and α-pinene, while the constituents in J. sabina were sabinene, terpinen-4-ol, myrtenyl acetate and α-cadinol. The podophyllotoxin yield of 18 J. sabina accessions was 0.07–0.32% (w/w), but this was not found in any of the J. excelsa accessions. The second study assessed the effect of hydrodistillation (Clevenger apparatus) and steam distillation (in a semi-commercial apparatus) on the EO profile and bioactivity. The extraction type did not significantly alter the EO composition. The EO profiles of the two junipers and their accessions were different and may be of interest to the industry utilizing juniper leaf EO. Breeding and selection programs could be developed with the two junipers (protected species) in order to identify chemotypes with (1) a high EO content and desirable composition, and (2) a high concentration of podophyllotoxin in J. sabina. Such chemotypes could be established as agricultural crops for the commercial production of podophyllotoxin and EO.
Collapse
|
25
|
Zhao Y, Li D, Wei M, Du R, Yan Z. The ester derivatives obtained by C-ring modification of podophyllotoxin induce apoptosis and inhibited proliferation in PC-3M cells via down-regulation of PI3K/Akt signaling pathway. Bioorg Med Chem Lett 2021; 46:128174. [PMID: 34098082 DOI: 10.1016/j.bmcl.2021.128174] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 05/03/2021] [Accepted: 06/01/2021] [Indexed: 10/21/2022]
Abstract
Podophyllotoxin (PPT) has been reported to have many pharmacological activities, especially its anti-tumor effects. To improve the cytotoxicity and selective effect of PPT, in this study, we have designed and synthesized 20 ester derivatives by introducing Boc-amino acids or organic acids at the C-4 position of PPT. The cytotoxicity of these compounds was evaluated with PC-3M, HemECs, A549, MCF-7 and HepG2 cells. We observed that the proliferation of PC-3M cells was inhibited by all 20 ester derivatives in the largest degree, comparing to the other cell lines. Comparing to PPT (IC50 = 234.90 ± 20.7 nM), eight derivatives had better performance in inhabiting proliferation of PC-3M cells, six of them belong to Boc-amino acid ester derivatives, and the derivative named V-05 (IC50 = 1.28 ± 0.1 nM) had the strongest inhibitation effect. Changes in cell proliferation and apoptotic signaling pathways were studied by DAPI staining, colony formation assay, migration assay, flow cytometry and western blot analysis. We found that V-05 were able to inhibit PC-3M cells proliferation and migration, and induced apoptosis by downregualting p-PI3K, p-Akt and Bcl-2, and upregulating Cleaved caspase-3 and Bax. Our research provides the first insight for the application of PPT derivatives in PC-3M cells, which may offer information to the effective medicine development for human prostate cancer treatment.
Collapse
Affiliation(s)
- Yan Zhao
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China
| | - Danyao Li
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China
| | - Minggang Wei
- The First Affiliated Hospital of Soochow University, Suzhou 215006, China
| | - Rui Du
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China.
| | - Zhaowei Yan
- The First Affiliated Hospital of Soochow University, Suzhou 215006, China.
| |
Collapse
|
26
|
Liu Y, Izzo JA, McLeod D, Ričko S, Svenningsen EB, Poulsen TB, Jørgensen KA. Organocatalytic Asymmetric Multicomponent Cascade Reaction for the Synthesis of Contiguously Substituted Tetrahydronaphthols. J Am Chem Soc 2021; 143:8208-8220. [PMID: 34028261 DOI: 10.1021/jacs.1c03923] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Isobenzopyrylium ions are unique, highly reactive, aromatic intermediates which are largely unexplored in asymmetric catalysis despite their high potential synthetic utility. In this study, an organocatalytic asymmetric multicomponent cascade via dienamine catalysis, involving a cycloaddition, a nucleophilic addition, and a ring-opening reaction, is disclosed. The reaction furnishes chiral tetrahydronaphthols containing four contiguous stereocenters in good to high yield, high diastereoselectivity (up to >20:1), and excellent enantioselectivity (93-98% ee). The obtained products are important synthetic intermediates, and it is demonstrated that they can be used for the generation of frameworks such as octahydrobenzo[h]isoquinoline and [2.2.2]octane scaffolds. Furthermore, mechanistic experiments involving oxygen-18-labeling studies and density functional theory calculations provide a vivid picture of the reaction mechanism. Finally, the bioactivity of 16 representative tetrahydronaphthol compounds has been evaluated in U-2OS cancer cells with some compounds showing a unique profile and a clear morphological change.
Collapse
Affiliation(s)
- Yidong Liu
- Department of Chemistry, Aarhus University, DK-8000 Aarhus C, Denmark
| | - Joseph A Izzo
- Department of Chemistry, Aarhus University, DK-8000 Aarhus C, Denmark
| | - David McLeod
- Department of Chemistry, Aarhus University, DK-8000 Aarhus C, Denmark
| | - Sebastijan Ričko
- Department of Chemistry, Aarhus University, DK-8000 Aarhus C, Denmark
| | | | - Thomas B Poulsen
- Department of Chemistry, Aarhus University, DK-8000 Aarhus C, Denmark
| | | |
Collapse
|
27
|
Zhao X, Qiu N, Ma Y, Liu J, An L, Zhang T, Li Z, Han X, Chen L. Preparation, characterization and biological evaluation of β-cyclodextrin-biotin conjugate based podophyllotoxin complex. Eur J Pharm Sci 2021; 160:105745. [PMID: 33549707 DOI: 10.1016/j.ejps.2021.105745] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 01/02/2021] [Accepted: 02/01/2021] [Indexed: 02/05/2023]
Abstract
Podophyllotoxin is a natural occurring aryltetralin lignin with pronounced cytotoxic activity. However, its clinical application for cancer treatment has been blocked due to its poor water solubility and selectivity. In this work, biotin as a tumor specific ligand was coupled with β-cyclodextrin and the resulting biotin modified β-cyclodextrin was used to complex with podophyllotoxin to improve its aqueous solubility and tumor selectivity. The solubility of β-cyclodextrin was greatly enhanced(>16 times) by conjugating with biotin. podophyllotoxin/ mono-6-biotin-amino-6-deoxy-β-cyclodextrin inclusion complex was prepared by freeze-drying method and the complex behavior between mono-6-biotin-amino-6-deoxy-β-cyclodextrin and podophyllotoxin was studied by water solubility, phase solubility, Job's plot, UV spectroscopy, Proton Nuclear Magnetic Resonance, Rotating-frame Overhauser Effect Spectroscopy, Powder X-ray diffraction and Scanning electron microscopy. The solubility of podophyllotoxin/ mono-6-biotin-amino-6-deoxy-β-cyclodextrin complex was greatly improved(9 times) compared with Podophyllotoxin. The stability constant of podophyllotoxin/ mono-6-biotin-amino-6-deoxy-β-cyclodextrin complex (Ks= 415.29 M-1) was 3.2 times that of podophyllotoxin/β-cyclodextrin complex. The possible inclusion mode of podophyllotoxin/mono-6-biotin-amino-6-deoxy-β-cyclodextrin complex was inferred from the Proton Nuclear Magnetic Resonance and Rotating-frame Overhauser Effect Spectroscopy. The cellular uptake study showed that the introduction of biotin increased the cellular uptake of rhodamine-B/mono-6-biotin-amino-6-deoxy-β-cyclodextrin complex. Moreover, cell cytotoxicity study showed that the antitumor activity of podophyllotoxin/ mono-6-biotin-amino-6-deoxy-β-cyclodextrin complex was more potent than podophyllotoxin/β-cyclodextrin complex and free podophyllotoxin. The superior water solubility and enhanced cytotoxicity suggested that the mono-6-biotin-amino-6-deoxy-β-cyclodextrin associated inclusion complex might be a potential and promising delivery system for hydrophobic chemotherapeutics such as podophyllotoxin.
Collapse
Affiliation(s)
- Xiu Zhao
- Department of Chemical & Pharmaceutical Engineering, College of Materials and Chemistry and Chemical Engineering, Chengdu University of Technology, Chengdu 610059, China
| | - Neng Qiu
- Department of Chemical & Pharmaceutical Engineering, College of Materials and Chemistry and Chemical Engineering, Chengdu University of Technology, Chengdu 610059, China.
| | - Yingyu Ma
- Department of Chemical & Pharmaceutical Engineering, College of Materials and Chemistry and Chemical Engineering, Chengdu University of Technology, Chengdu 610059, China
| | - Junda Liu
- Department of Chemical & Pharmaceutical Engineering, College of Materials and Chemistry and Chemical Engineering, Chengdu University of Technology, Chengdu 610059, China
| | - Lianying An
- Department of Chemical & Pharmaceutical Engineering, College of Materials and Chemistry and Chemical Engineering, Chengdu University of Technology, Chengdu 610059, China
| | - Teng Zhang
- Department of Chemical & Pharmaceutical Engineering, College of Materials and Chemistry and Chemical Engineering, Chengdu University of Technology, Chengdu 610059, China
| | - Ziqin Li
- Department of Chemical & Pharmaceutical Engineering, College of Materials and Chemistry and Chemical Engineering, Chengdu University of Technology, Chengdu 610059, China
| | - Xu Han
- Department of Chemical & Pharmaceutical Engineering, College of Materials and Chemistry and Chemical Engineering, Chengdu University of Technology, Chengdu 610059, China
| | - Lijuan Chen
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University, Chengdu 610041, China
| |
Collapse
|
28
|
Xu Q, Deng H, Li X, Quan ZS. Application of Amino Acids in the Structural Modification of Natural Products: A Review. Front Chem 2021; 9:650569. [PMID: 33996749 PMCID: PMC8118163 DOI: 10.3389/fchem.2021.650569] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Accepted: 03/02/2021] [Indexed: 01/11/2023] Open
Abstract
Natural products and their derivatives are important sources for drug discovery; however, they usually have poor solubility and low activity and require structural modification. Amino acids are highly soluble in water and have a wide range of activities. The introduction of amino acids into natural products is expected to improve the performance of these products and minimize their adverse effects. Therefore, this review summarizes the application of amino acids in the structural modification of natural products and provides a theoretical basis for the structural modification of natural products in the future. The articles were divided into six types based on the backbone structures of the natural products, and the related applications of amino acids in the structural modification of natural products were discussed in detail.
Collapse
Affiliation(s)
- Qian Xu
- Key Laboratory of Natural Medicines of the Changbai Mountain, Affiliated Ministry of Education, College of Pharmacy, Yanbian University, Jilin, China
| | - Hao Deng
- Key Laboratory of Natural Medicines of the Changbai Mountain, Affiliated Ministry of Education, College of Pharmacy, Yanbian University, Jilin, China
| | - Xiaoting Li
- Key Laboratory of Natural Medicines of the Changbai Mountain, Affiliated Ministry of Education, College of Pharmacy, Yanbian University, Jilin, China
- Department of Pharmaceutical Analysis, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, China
| | - Zhe-Shan Quan
- Key Laboratory of Natural Medicines of the Changbai Mountain, Affiliated Ministry of Education, College of Pharmacy, Yanbian University, Jilin, China
| |
Collapse
|
29
|
Yafout M, Ousaid A, Khayati Y, El Otmani IS. Gold nanoparticles as a drug delivery system for standard chemotherapeutics: A new lead for targeted pharmacological cancer treatments. SCIENTIFIC AFRICAN 2021. [DOI: 10.1016/j.sciaf.2020.e00685] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
|
30
|
Li YN, Ning N, Song L, Geng Y, Fan JT, Ma CY, Jiang HZ. Derivatives of Deoxypodophyllotoxin Induce Apoptosis through Bcl-2/Bax Proteins Expression. Anticancer Agents Med Chem 2021; 21:611-620. [PMID: 32748757 DOI: 10.2174/1871520620999200730160952] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2020] [Revised: 05/30/2020] [Accepted: 06/25/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND Deoxypodophyllotoxin, isolated from the Traditional Chinese Medicine Anthriscus sylvestris, is well-known because of its significant anti-tumor activity with strong toxicity in vitro and in vivo. OBJECTIVE In this article, a series of deoxypodophyllotoxin derivatives were synthesized and their anti-tumor effectiveness was evaluated. METHODS The anti-tumor activity of deoxypodophyllotoxin derivatives was investigated by the MTT assay method. Apoptosis percentage was measured by flow cytometer analysis using Annexin-V-FITC. RESULTS The derivatives revealed obvious cytotoxicity in the MTT assay by decreasing the number of late cancer cells. The decrease of Bcl-2/Bax could be observed in MCF-7, HepG2, HT-29, and MG-63 using Annexin V-FITC. The ratio of Bcl-2/Bax in the administration group was decreased, which was determined by the ELISA kit. CONCLUSION The derivatives of deoxypodophyllotoxin could induce apoptosis in tumor cell lines by influencing Bcl-2/Bax.
Collapse
Affiliation(s)
- Ya-Nan Li
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, China
| | - Ni Ning
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, China
| | - Lei Song
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, China
| | - Yun Geng
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, China
| | - Jun-Ting Fan
- Department of Pharmaceutical Analysis, School of Pharmacy, Nanjing Medical University, Nanjing, China
| | - Chao-Ying Ma
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, China
| | - He-Zhong Jiang
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, China
| |
Collapse
|
31
|
Design and Synthesis of 4-O-Podophyllotoxin Sulfamate Derivatives as Potential Cytotoxic Agents. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2021; 2021:6672807. [PMID: 33574882 PMCID: PMC7857870 DOI: 10.1155/2021/6672807] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 12/25/2020] [Accepted: 01/09/2021] [Indexed: 11/17/2022]
Abstract
4-O-Podophyllotoxin sulfamate derivatives were prepared using the natural lignan podophyllotoxin. The prepared compounds were afforded by reacting O-sulfonyl chloride podophyllotoxin with ammonia or aminoaryl/heteroaryl motif. Biological evaluation was performed in human breast cancer (MCF7), ovarian cancer (A2780), colon adenocarcinoma (HT29), and normal lung fibroblast (MRC5) cell lines. Compound 3 exhibited potent inhibitory activity and good selectivity margin. Compounds 2, 3, and 7 exerted apoptotic effect in MCF7 cells in a dose-dependent manner. The cytotoxicity of the verified compounds was inferior to that of podophyllotoxin.
Collapse
|
32
|
Oh HN, Kwak AW, Lee MH, Kim E, Yoon G, Cho SS, Liu K, Chae JI, Shim JH. Targeted inhibition of c-MET by podophyllotoxin promotes caspase-dependent apoptosis and suppresses cell growth in gefitinib-resistant non-small cell lung cancer cells. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2021; 80:153355. [PMID: 33039730 DOI: 10.1016/j.phymed.2020.153355] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 09/04/2020] [Accepted: 09/24/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND Lung cancer has the highest incidence and cancer-related mortality of all cancers worldwide. Its treatment is focused on molecular targeted therapy. c-MET plays an important role in the development and metastasis of various human cancers and has been identified as an attractive potential anti-cancer target. Podophyllotoxin (PPT), an aryltetralin lignan isolated from the rhizomes of Podophyllum species, has several pharmacological activities that include anti-viral and anti-cancer effects. However, the mechanism of the anti-cancer effects of PPT on gefitinib-sensitive (HCC827) or -resistant (MET-amplified HCC827GR) non-small cell lung cancer (NSCLC) cells remains unexplored. PURPOSE In the present study, we investigated the underlying mechanisms of PPT-induced apoptosis in NSCLC cells and found that the inhibition of c-MET kinase activity contributed to PPT-induced cell death. METHODS The regulation of c-MET by PPT was examined by pull-down assay, ATP-competitive binding assay, kinase activity assay, molecular docking simulation, and Western blot analysis. The cell growth inhibitory effects of PPT on NSCLC cells were assessed using the MTT assay, soft agar assay, and flow cytometry analysis. RESULTS PPT could directly interact with c-MET and inhibit kinase activity, which further induced the apoptosis of HCC827GR cells. In contrast, PPT did not significantly affect EGFR kinase activity. PPT significantly inhibited the cell viability of HCC827GR cells, whereas the PPT-treated HCC827 cells showed a cell viability of more than 80%. PPT dose-dependently induced G2/M cell cycle arrest, as shown by the downregulation of cyclin B1 and cdc2, and upregulation of p27 expression in HCC827GR cells. Furthermore, PPT treatment induced Bad expression and downregulation of Mcl-1, survivin, and Bcl-xl expression, subsequently activating multi-caspases. PPT thereby induced caspase-dependent apoptosis in HCC827GR cells. CONCLUSION These results suggest the potential of PPT as a c-MET inhibitor to overcome tyrosine kinase inhibitor resistance in lung cancer.
Collapse
Affiliation(s)
- Ha-Na Oh
- Department of Pharmacy, College of Pharmacy, Mokpo National University, Jeonnam 58554, Republic of Korea
| | - Ah-Won Kwak
- Department of Pharmacy, College of Pharmacy, Mokpo National University, Jeonnam 58554, Republic of Korea
| | - Mee-Hyun Lee
- College of Korean Medicine, Dongshin University, Naju-si, Jeollanam-do 58245, Republic of Korea
| | - Eunae Kim
- College of Pharmacy, Chosun University, Gwangju 61452, Republic of Korea
| | - Goo Yoon
- Department of Pharmacy, College of Pharmacy, Mokpo National University, Jeonnam 58554, Republic of Korea
| | - Seung-Sik Cho
- Department of Pharmacy, College of Pharmacy, Mokpo National University, Jeonnam 58554, Republic of Korea
| | - Kangdong Liu
- China-US (Henan) Hormel Cancer Institute, Zhengzhou, Henan, 450008, P.R. China; Basic Medical College, Zhengzhou University, Zhengzhou 450001, Henan, China
| | - Jung-Il Chae
- Department of Dental Pharmacology, School of Dentistry and Institute of Oral Bioscience, Jeonbuk National University, Jeonju 54896, Republic of Korea.
| | - Jung-Hyun Shim
- Department of Pharmacy, College of Pharmacy, Mokpo National University, Jeonnam 58554, Republic of Korea; China-US (Henan) Hormel Cancer Institute, Zhengzhou, Henan, 450008, P.R. China; Department of Biomedicine, Health & Life Convergence Sciences, BK21 Four, College of Pharmacy, Mokpo National University, Jeonnam 58554, Republic of Korea.
| |
Collapse
|
33
|
Makhafola TJ, Mbele M, Yacqub-Usman K, Hendren A, Haigh DB, Blackley Z, Meyer M, Mongan NP, Bates DO, Dlamini Z. Apoptosis in Cancer Cells Is Induced by Alternative Splicing of hnRNPA2/B1 Through Splicing of Bcl-x, a Mechanism that Can Be Stimulated by an Extract of the South African Medicinal Plant, Cotyledon orbiculata. Front Oncol 2020; 10:547392. [PMID: 33163396 PMCID: PMC7580256 DOI: 10.3389/fonc.2020.547392] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Accepted: 08/21/2020] [Indexed: 01/09/2023] Open
Abstract
Alternative splicing is deregulated in cancer and alternatively spliced products can be linked to cancer hallmarks. Targeting alternative splicing could offer novel effective cancer treatments. We investigated the effects of the crude extract of a South African medicinal plant, Cotyledon orbiculata, on cell survival of colon (HCT116) and esophageal (OE33 and KYSE70) cancer cell lines. Using RNASeq, we discovered that the extract interfered with mRNA regulatory pathways. The extract caused hnRNPA2B1 to splice from the hnRNPB1 to the hnRNPA2 isoform, resulting in a switch in the BCL2L1 gene from Bcl-xL to Bcl-xS causing activation of caspase-3-cleavage and apoptosis. Similar splicing effects were induced by the known anti-cancer splicing modulator pladienolide B. Knockdown of hnRNPB1 using siRNA resulted in decreased cell viability and increased caspase-3-cleavage, and over-expression of hnRNPB1 prevented the effect of C. orbiculata extract on apoptosis and cell survival. The effect of the hnRNPA2/B1 splicing switch by the C. orbiculata extract increased hnRNPA2B1 binding to Bcl-xl/s, BCL2, MDM2, cMYC, CD44, CDK6, and cJUN mRNA. These findings suggest that apoptosis in HCT116, OE33, and KYSE cancer cells is controlled by switched splicing of hnRNPA2B1 and BCL2L1, providing evidence that hnRNPB1 regulates apoptosis. Inhibiting this splicing could have therapeutic potential for colon and esophageal cancers. Targeting hnRNPA2B1 splicing in colon cancer regulates splicing of BCL2L1 to induce apoptosis. This approach could be a useful therapeutic strategy to induce apoptosis and restrain cancer cell proliferation and tumor progression. Here, we found that the extract of Cotyledon orbiculata, a South African medicinal plant, had an anti-proliferative effect in cancer cells, mediated by apoptosis induced by alternative splicing of hnRNPA2B1 and BCL2L1.
Collapse
Affiliation(s)
- Tshepiso Jan Makhafola
- SA-Medical Research Council (MRC)/UP Precision Prevention & Novel Drug Targets for HIV-Associated Cancers Extramural Unit, Faculty of Health Sciences, Pan African Cancer Research Institute (PACRI), University of Pretoria, Pretoria, South Africa.,Division of Cancer and Stem Cells, Centre for Cancer Sciences, Biodiscovery Institute, University of Nottingham, Nottingham, United Kingdom
| | - Mzwandile Mbele
- SA-Medical Research Council (MRC)/UP Precision Prevention & Novel Drug Targets for HIV-Associated Cancers Extramural Unit, Faculty of Health Sciences, Pan African Cancer Research Institute (PACRI), University of Pretoria, Pretoria, South Africa.,Division of Cancer and Stem Cells, Centre for Cancer Sciences, Biodiscovery Institute, University of Nottingham, Nottingham, United Kingdom
| | - Kiren Yacqub-Usman
- Division of Cancer and Stem Cells, Centre for Cancer Sciences, Biodiscovery Institute, University of Nottingham, Nottingham, United Kingdom
| | - Amy Hendren
- Division of Cancer and Stem Cells, Centre for Cancer Sciences, Biodiscovery Institute, University of Nottingham, Nottingham, United Kingdom
| | - Daisy Belle Haigh
- School of Veterinary Medicine and Science, University of Nottingham, Nottingham, United Kingdom
| | - Zoe Blackley
- Division of Cancer and Stem Cells, Centre for Cancer Sciences, Biodiscovery Institute, University of Nottingham, Nottingham, United Kingdom
| | - Mervin Meyer
- Biolabels Unit, Department of Biotechnology, Department of Science and Technology (DST)/Mintek Nanotechnology Innovation Centre (NIC), University of the Western Cape, Bellville, South Africa
| | - Nigel Patrick Mongan
- School of Veterinary Medicine and Science, University of Nottingham, Nottingham, United Kingdom
| | - David Owen Bates
- Division of Cancer and Stem Cells, Centre for Cancer Sciences, Biodiscovery Institute, University of Nottingham, Nottingham, United Kingdom
| | - Zodwa Dlamini
- SA-Medical Research Council (MRC)/UP Precision Prevention & Novel Drug Targets for HIV-Associated Cancers Extramural Unit, Faculty of Health Sciences, Pan African Cancer Research Institute (PACRI), University of Pretoria, Pretoria, South Africa
| |
Collapse
|
34
|
Lee D, Lee YH, Lee KH, Lee BS, Alishir A, Ko YJ, Kang KS, Kim KH. Aviculin Isolated from Lespedeza cuneata Induce Apoptosis in Breast Cancer Cells through Mitochondria-Mediated Caspase Activation Pathway. Molecules 2020; 25:molecules25071708. [PMID: 32276430 PMCID: PMC7180549 DOI: 10.3390/molecules25071708] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 04/01/2020] [Accepted: 04/07/2020] [Indexed: 12/13/2022] Open
Abstract
The global incidence of breast cancer has increased. However, there are many impediments to the development of safe and effective anticancer drugs. The aim of the present study was to evaluate the effect of aviculin isolated from Lespedeza cuneata (Dum. Cours.) G. Don. (Fabaceae) on MCF-7 human breast cancer cells and determine the underlying mechanism. Using the bioassay-guided isolation by water soluble tetrazolium salt (WST-1)-based Ez-Cytox assay, nine compounds (four lignan glycosides (1-4), three flavonoid glycosides (5-7), and two phenolic compounds (8 and 9)) were isolated from the ethyl acetate (EA) fraction of the L. cuneata methanolic extract. Of these, aviculin (2), a lignan glycoside, was the only compound that reduced metabolic activity on MCF-7 cells below 50% (IC50: 75.47 ± 2.23 μM). The underlying mechanism was analyzed using the annexin V Alexa Fluor 488 binding assay and Western blotting. Aviculin (2) was found to induce apoptotic cell death through the intrinsic apoptosis pathway, as indicated by the increased expression of initiator caspase-9, executioner caspase-7, and poly (ADP-ribose) polymerase (PARP). Aviculin (2)-induced apoptotic cell death was accompanied by an increase in the Bax/Bcl-2 ratio. These findings demonstrated that aviculin (2) could induce breast cancer cell apoptosis through the intrinsic apoptosis pathway, and it can therefore be considered an excellent candidate for herbal treatment of breast cancer.
Collapse
Affiliation(s)
- Dahae Lee
- College of Korean Medicine, Gachon University, Seongnam 13120, Korea;
| | - Yong Hoon Lee
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Korea; (Y.H.L.); (K.H.L.); (B.S.L.); (A.A.)
| | - Kwang Ho Lee
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Korea; (Y.H.L.); (K.H.L.); (B.S.L.); (A.A.)
| | - Bum Soo Lee
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Korea; (Y.H.L.); (K.H.L.); (B.S.L.); (A.A.)
| | - Akida Alishir
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Korea; (Y.H.L.); (K.H.L.); (B.S.L.); (A.A.)
| | - Yoon-Joo Ko
- Laboratory of Nuclear Magnetic Resonance, National Center for Inter-University Research Facilities (NCIRF), Seoul National University, Gwanak-gu, Seoul 08826, Korea;
| | - Ki Sung Kang
- College of Korean Medicine, Gachon University, Seongnam 13120, Korea;
- Correspondence: (K.S.K.); (K.H.K.); Tel.: +82-31-750-5402 (K.S.K.); +82-31-290-7700 (K.H.K.)
| | - Ki Hyun Kim
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Korea; (Y.H.L.); (K.H.L.); (B.S.L.); (A.A.)
- Correspondence: (K.S.K.); (K.H.K.); Tel.: +82-31-750-5402 (K.S.K.); +82-31-290-7700 (K.H.K.)
| |
Collapse
|
35
|
Mukherjee S, Gupta S, Ganorkar K, Kumar A, Ghosh SK. Entrapment in micellar assemblies switches the excimer population of potential therapeutic luminophore azapodophyllotoxin. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2020; 228:117723. [PMID: 31748162 DOI: 10.1016/j.saa.2019.117723] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2019] [Revised: 09/19/2019] [Accepted: 10/27/2019] [Indexed: 06/10/2023]
Abstract
Azapodophyllotoxin is a new class of anti-tumor agent with brilliant therapeutic activity and understanding its physicochemical nature in bio-mimetic microenvironments may provide substantial importance in context of its intercellular localization, efficacy as well as delivery. The present work epitomizes environment-sensitive fluorescence modulation of a prodigy, 4-(2-Hydroxyethyl)-10-phenyl-3,4,6,7,8,10- hexahydro-1H-cyclopenta[g]furo[3,4-b]quinoline-1-one (HPFQ) from the class of anti-cancer agent Azapodophyllotoxin, in differently charged model bio-mimetic micellar microenvironment of cationic CTAB, anionic SDS and neutral Triton X-100 using UV-visible absorption, steady state fluorescence, time-resolved fluorescence and fluorescence anisotropy studies. As a distinct phenomenon, anticancer HPFQ exhibits prolific fluorescence in solvents of varying polarity, originating from a mixed contribution of locally excited, charge transfer and excimer emission. A dramatic modulation in the photophysics of HPFQ has been observed in two types of surfactant consortiums: pre-micellar and post-micellar at physiological and anoxic pH. On photo-excitation, anti-cancer HPFQ exists in monomer-excimer equilibrium with varying ratios in different polarity regions. The marked enhancement in fluorescence intensity of HPFQ in post-micellar region of the surfactant under study probably arises due to regeneration of the monomer from its excimer. This reoccurrence reduces the possibility of Förster resonance energy transfer (FRET) from monomer to excimer, which essentially increases the desired emission intensity. Localization of HPFQ in micellar systems highly depends on polarity gradient inside the micelle, electrostatic, hydrophobic and intermolecular hydrogen bonding interactions. Further corroboration with the polarity sensitive experiments in dioxane-water mixture indicates towards spatial localization of the probe molecule in the stern layer of cationic CTAB, sheer surface of neutral TX100 and outer Gouy-Chapman layer in anionic SDS micelles. A molecular binary logic gate correlates the dominance of micellization over the polarity factor, which enhances the fluorescence response of HPFQ. The enhancement of the emissive potential of anti-cancer HPFQ in biomimetic environments by switching its excimer population may have an immense importance to achieve the status of a dual therapeutic and imaging agent altogether in progressive biomedical research.
Collapse
Affiliation(s)
- Soham Mukherjee
- Department of Chemistry, Visvesvaraya National Institute of Technology, Nagpur, Maharashtra, 440010, India
| | - Smruti Gupta
- Department of Chemistry, Visvesvaraya National Institute of Technology, Nagpur, Maharashtra, 440010, India
| | - Kapil Ganorkar
- Department of Chemistry, Visvesvaraya National Institute of Technology, Nagpur, Maharashtra, 440010, India
| | - Ajay Kumar
- School of Science, Technology and Environment, Universidad Ana G. Mendez-Cupey Campus, San Juan, PR, USA, 00926
| | - Sujit Kumar Ghosh
- Department of Chemistry, Visvesvaraya National Institute of Technology, Nagpur, Maharashtra, 440010, India.
| |
Collapse
|
36
|
Ou K, Kang Y, Chen L, Zhang X, Chen X, Zheng Y, Wu J, Guan S. H 2O 2-responsive nano-prodrug for podophyllotoxin delivery. Biomater Sci 2019; 7:2491-2498. [PMID: 30957821 DOI: 10.1039/c9bm00344d] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The tumor microenvironment is different from that of normal tissue; therefore, the development of a prodrug that retains its efficacy in the tumor microenvironment can be useful in enhancing the anticancer properties of podophyllotoxin. An innovative podophyllotoxin prodrug (POD-PEG) was designed by linking podophyllotoxin to poly(ethylene glycol)(n) monomethacrylate with a H2O2-responsive oxalate ester bond. POD-PEG can self-assemble into stable nanoparticles (POD-PEG NPs). In vitro experiments demonstrated that the POD-PEG NPs can be activated by hydrogen peroxide resulting in podophyllotoxin release and are highly toxic against colon carcinoma CT26 cells. In vivo biodistribution studies demonstrate that PEGylated POD-PEG NPs are capable of prolonging blood circulation. Intravenous injection of POD-PEG NPs into CT26 tumor-bearing Balb/c mice resulted in a significantly enhanced therapeutic efficacy against tumors, with no significant systemic toxicity. Therefore, this H2O2-responsive prodrug delivery system exhibits good biosafety and provides a novel strategy for the development of drug delivery systems.
Collapse
Affiliation(s)
- Kunyong Ou
- School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou 510006, China.
| | | | | | | | | | | | | | | |
Collapse
|
37
|
Mir MA, Hamdani SS, Sheikh BA, Mehraj U. Recent Advances in Metabolites from Medicinal Plants in Cancer Prevention and Treatment. ACTA ACUST UNITED AC 2019. [DOI: 10.2174/1573395515666191102094330] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Cancer is the second leading cause of death and morbidity in the world among noncommunicable diseases after cardiovascular ailments. With the advancement in science and research, a number of therapies have been developed to treat cancer, including chemotherapy, radiotherapy and immunotherapy. Chemo and radiotherapy have been in use since the last two decades, however these are not devoid of their own intrinsic problems, such as myelotoxicity, cardiotoxicity, nephrotoxicity, neurotoxicity and immunosuppression. Hence, there is an urgent need to develop alternative methods for the treatment of cancer. An increase in the cases of various cancers has encouraged the researchers to discover novel, more effective drugs from plant sources. In this review, fifteen medicinal plants alongside their products with anticancer effects will be introduced and discussed, as well as the most important plant compounds responsible for the anticancer activity of the plant. Several phenolic and alkaloid compounds have been demonstrated to have anticancer effects on various types of cancers. The most fundamental and efficient role exhibited by these secondary plant metabolites against cancer involves removing free radicals and antioxidant effects, induction of apoptosis, cell cycle arrest and inhibition of angiogenesis. Moreover, recent studies have shown that plants and their metabolites may provide an alternative to the existing approaches, including chemotherapies and radiotherapies, in the treatment of cancer. In this review, a brief overview of important secondary metabolites having anticancer activity will be given, along with the major molecular mechanisms involved in the disease. In addition to this, recent advances in secondary metabolites from various medicinal plants in the prevention and treatment of cancer will be explored.
Collapse
Affiliation(s)
- Manzoor A. Mir
- Department of Bioresources, School of Biological Sciences, University of Kashmir, Srinagar 190006, India
| | - Syed S. Hamdani
- Department of Bioresources, School of Biological Sciences, University of Kashmir, Srinagar 190006, India
| | - Bashir A. Sheikh
- Department of Bioresources, School of Biological Sciences, University of Kashmir, Srinagar 190006, India
| | - Umar Mehraj
- Department of Bioresources, School of Biological Sciences, University of Kashmir, Srinagar 190006, India
| |
Collapse
|
38
|
Hao SY, Feng SL, Wang XR, Wang Z, Chen SW, Hui L. Novel conjugates of podophyllotoxin and coumarin: Synthesis, cytotoxicities, cell cycle arrest, binding CT DNA and inhibition of Topo IIβ. Bioorg Med Chem Lett 2019; 29:2129-2135. [DOI: 10.1016/j.bmcl.2019.06.063] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2019] [Revised: 06/25/2019] [Accepted: 06/29/2019] [Indexed: 10/26/2022]
|
39
|
Gamage CDB, Park SY, Yang Y, Zhou R, Taş İ, Bae WK, Kim KK, Shim JH, Kim E, Yoon G, Kim H. Deoxypodophyllotoxin Exerts Anti-Cancer Effects on Colorectal Cancer Cells Through Induction of Apoptosis and Suppression of Tumorigenesis. Int J Mol Sci 2019; 20:E2612. [PMID: 31141929 PMCID: PMC6601030 DOI: 10.3390/ijms20112612] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Revised: 05/24/2019] [Accepted: 05/24/2019] [Indexed: 02/01/2023] Open
Abstract
Deoxypodophyllotoxin (DPT) is a cyclolignan compound that exerts anti-cancer effects against various types of cancers. DPT induces apoptosis and inhibits the growth of breast, brain, prostate, gastric, lung, and cervical tumors. In this study, we sought to determine the effect of DPT on cell proliferation, apoptosis, motility, and tumorigenesis of three colorectal cancer (CRC) cell lines: HT29, DLD1, and Caco2. DPT inhibited the proliferation of these cells. Specifically, the compound-induced mitotic arrest in CRC cells by destabilizing microtubules and activating the mitochondrial apoptotic pathway via regulation of B-cell lymphoma 2 (Bcl-2) family proteins (increasing Bcl-2 associated X (BAX) and decreasing B-cell lymphoma-extra-large (Bcl-xL)) ultimately led to caspase-mediated apoptosis. In addition, DPT inhibited tumorigenesis in vitro, and in vivo skin xenograft experiments revealed that DPT significantly decreased tumor size and tumor weight. Taken together, our results suggest DPT to be a potent compound that is suitable for further exploration as a novel chemotherapeutic for human CRC.
Collapse
Affiliation(s)
- Chathurika D B Gamage
- College of Pharmacy and Research Institute of Life and Pharmaeutical Sciences, Sunchon National University, 255 Jungang-ro, Sunchon, Jeonnam 57922, Korea.
| | - So-Yeon Park
- College of Pharmacy and Research Institute of Life and Pharmaeutical Sciences, Sunchon National University, 255 Jungang-ro, Sunchon, Jeonnam 57922, Korea.
| | - Yi Yang
- College of Pharmacy and Research Institute of Life and Pharmaeutical Sciences, Sunchon National University, 255 Jungang-ro, Sunchon, Jeonnam 57922, Korea.
| | - Rui Zhou
- College of Pharmacy and Research Institute of Life and Pharmaeutical Sciences, Sunchon National University, 255 Jungang-ro, Sunchon, Jeonnam 57922, Korea.
| | - İsa Taş
- College of Pharmacy and Research Institute of Life and Pharmaeutical Sciences, Sunchon National University, 255 Jungang-ro, Sunchon, Jeonnam 57922, Korea.
| | - Woo Kyun Bae
- Department of Internal Medicine, Chonnam National University Medical School, 160 Baekseo-ro, Dong-gu, Gwangju 61469, Korea.
| | - Kyung Keun Kim
- Department of Pharmacology, Chonnam National University Medical School, 160 Baekseo-ro, Dong-gu, Gwangju 61469, Korea.
| | - Jung-Hyun Shim
- College of Pharmacy and Natural Medicine Research Institute, Mokpo National University, 1666 Yeongsan-ro, muan, Jeonnam 58554, Korea.
| | - Eunae Kim
- College of Pharmacy, Chosun University, 309 Philmun-daero, Dong-gu, Gwangju 61452, Korea.
| | - Goo Yoon
- College of Pharmacy and Natural Medicine Research Institute, Mokpo National University, 1666 Yeongsan-ro, muan, Jeonnam 58554, Korea.
| | - Hangun Kim
- College of Pharmacy and Research Institute of Life and Pharmaeutical Sciences, Sunchon National University, 255 Jungang-ro, Sunchon, Jeonnam 57922, Korea.
| |
Collapse
|
40
|
Panda G, Kumar M SL. Versatile Synthesis of 4‐Aryl Chroman and 1‐Aryl Tetralins Through Metal‐Free Reductive Arylations. European J Org Chem 2019. [DOI: 10.1002/ejoc.201801375] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Gautam Panda
- Academy of Scientific and Innovative Research 110001 New Delhi India
- BS 10/1, Sector 10 Jankipuram extension CSIR‐Central Drug Research Institute Sitapur Road 226031 Lucknow India
| | - Srinivas Lavanya Kumar M
- BS 10/1, Sector 10 Jankipuram extension CSIR‐Central Drug Research Institute Sitapur Road 226031 Lucknow India
| |
Collapse
|
41
|
Sugiura H, Yamazaki S, Go K, Ogawa A. Intramolecular Cyclization of 3,3-Diarylpropenylamides of Electron-Deficient Alkenes: Stereoselective Synthesis of Functionalized Hexahydrobenzo[ f
]isoindoles. European J Org Chem 2019. [DOI: 10.1002/ejoc.201801508] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Hirotaka Sugiura
- Department of Applied Chemistry; Graduate School of Engineering; Osaka Prefecture University; Gakuen-cho 1-1 599-8531 Nakaku, Sakai Osaka Japan
| | - Shoko Yamazaki
- Department of Chemistry; Nara University of Education; Takabatake-cho 630-8528 Nara Japan
| | - Kakeru Go
- Department of Chemistry; Nara University of Education; Takabatake-cho 630-8528 Nara Japan
| | - Akiya Ogawa
- Department of Applied Chemistry; Graduate School of Engineering; Osaka Prefecture University; Gakuen-cho 1-1 599-8531 Nakaku, Sakai Osaka Japan
| |
Collapse
|
42
|
Prakash Rao HS, Adigopula LN, Ramalingam G, Lone JA, Ramadas K. Design, Synthesis, Anticancer Properties and In SilicoEvaluation of C(4) N‐Heteroaryl 4 H‐Chromenes. ChemistrySelect 2018. [DOI: 10.1002/slct.201802270] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- H. Surya Prakash Rao
- Department of ChemistryPondicherry University Puducherry – 605 014 India
- Department of Chemistry and BiochemistrySharda University, Knowledge Park III, Greater Noida (Delhi NCR) 201306 UP. India
| | - Lakshmi Narayana Adigopula
- Department of ChemistryPondicherry University Puducherry – 605 014 India
- Center for BioinformaticsPondicherry University Puducherry – 605 014 India
| | | | - Javeed Ahmed Lone
- Department of ChemistryPondicherry University Puducherry – 605 014 India
| | - Krishna Ramadas
- Center for BioinformaticsPondicherry University Puducherry – 605 014 India
| |
Collapse
|
43
|
Hou W, Zhang G, Luo Z, Su L, Xu H. Click chemistry‐based synthesis and cytotoxic activity evaluation of 4α‐triazole acetate podophyllotoxin derivatives. Chem Biol Drug Des 2018; 93:473-483. [DOI: 10.1111/cbdd.13436] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Revised: 09/26/2018] [Accepted: 10/28/2018] [Indexed: 12/24/2022]
Affiliation(s)
- Wei Hou
- College of Pharmaceutical ScienceInstitute of Drug Development & Chemical Biology (IDD & CB)Zhejiang University of Technology Hangzhou China
| | - Guanjun Zhang
- College of Chemical Engineering and Materials ScienceTianjin University of Science & Technology Tianjin China
| | - Zhi Luo
- Shanghai Evergene Biotech Co., Ltd. Shanghai China
| | - Lin Su
- College of Pharmaceutical ScienceInstitute of Drug Development & Chemical Biology (IDD & CB)Zhejiang University of Technology Hangzhou China
| | - Hongtao Xu
- Shanghai Institute for Advanced Immunochemical StudiesShanghaiTech University Shanghai China
| |
Collapse
|
44
|
Falzone L, Salomone S, Libra M. Evolution of Cancer Pharmacological Treatments at the Turn of the Third Millennium. Front Pharmacol 2018; 9:1300. [PMID: 30483135 PMCID: PMC6243123 DOI: 10.3389/fphar.2018.01300] [Citation(s) in RCA: 519] [Impact Index Per Article: 74.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Accepted: 10/23/2018] [Indexed: 12/11/2022] Open
Abstract
The medical history of cancer began millennia ago. Historical findings of patients with cancer date back to ancient Egyptian and Greek civilizations, where this disease was predominantly treated with radical surgery and cautery that were often ineffective, leading to the death of patients. Over the centuries, important discoveries allowed to identify the biological and pathological features of tumors, without however contributing to the development of effective therapeutic approaches until the end of the 1800s, when the discovery of X-rays and their use for the treatment of tumors provided the first modern therapeutic approach in medical oncology. However, a real breakthrough took place after the Second World War, with the discovery of cytotoxic antitumor drugs and the birth of chemotherapy for the treatment of various hematological and solid tumors. Starting from this epochal turning point, there has been an exponential growth of studies concerning the use of new drugs for cancer treatment. The second fundamental breakthrough in the field of oncology and pharmacology took place at the beginning of the '80s, thanks to molecular and cellular biology studies that allowed the development of specific drugs for some molecular targets involved in neoplastic processes, giving rise to targeted therapy. Both chemotherapy and target therapy have significantly improved the survival and quality of life of cancer patients inducing sometimes complete tumor remission. Subsequently, at the turn of the third millennium, thanks to genetic engineering studies, there was a further advancement of clinical oncology and pharmacology with the introduction of monoclonal antibodies and immune checkpoint inhibitors for the treatment of advanced or metastatic tumors, for which no effective treatment was available before. Today, cancer research is always aimed at the study and development of new therapeutic approaches for cancer treatment. Currently, several researchers are focused on the development of cell therapies, anti-tumor vaccines, and new biotechnological drugs that have already shown promising results in preclinical studies, therefore, in the near future, we will certainly assist to a new revolution in the field of medical oncology.
Collapse
Affiliation(s)
- Luca Falzone
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Salvatore Salomone
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy.,Research Center for Prevention, Diagnosis and Treatment of Cancer (PreDiCT), University of Catania, Catania, Italy
| | - Massimo Libra
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy.,Research Center for Prevention, Diagnosis and Treatment of Cancer (PreDiCT), University of Catania, Catania, Italy
| |
Collapse
|
45
|
Winkler M, Geier M, Hanlon SP, Nidetzky B, Glieder A. Human Enzymes for Organic Synthesis. Angew Chem Int Ed Engl 2018; 57:13406-13423. [PMID: 29600541 PMCID: PMC6334177 DOI: 10.1002/anie.201800678] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Indexed: 02/06/2023]
Abstract
Human enzymes have been widely studied in various disciplines. The number of reactions taking place in the human body is vast, and so is the number of potential catalysts for synthesis. Herein, we focus on the application of human enzymes that catalyze chemical reactions in course of the metabolism of drugs and xenobiotics. Some of these reactions have been explored on the preparative scale. The major field of application of human enzymes is currently drug development, where they are applied for the synthesis of drug metabolites.
Collapse
Affiliation(s)
- Margit Winkler
- Institute for Molecular BiotechnologyGraz University of TechnologyPetersgasse 148010GrazAustria
- acib GmbHPetersgasse 148010GrazAustria
| | | | | | - Bernd Nidetzky
- acib GmbHPetersgasse 148010GrazAustria
- Institute of Biotechnology and Biochemical EngineeringGraz University of TechnologyPetersgasse 128010GrazAustria
| | - Anton Glieder
- Institute for Molecular BiotechnologyGraz University of TechnologyPetersgasse 148010GrazAustria
| |
Collapse
|
46
|
Winkler M, Geier M, Hanlon SP, Nidetzky B, Glieder A. Humane Enzyme für die organische Synthese. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201800678] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Margit Winkler
- Institut für Molekulare Biotechnologie; Technische Universität Graz; Petersgasse 14 8010 Graz Österreich
- acib GmbH; Petersgasse 14 8010 Graz Österreich
| | | | | | - Bernd Nidetzky
- acib GmbH; Petersgasse 14 8010 Graz Österreich
- Institut für Biotechnologie und Bioprozesstechnik; Technische Universität Graz; Petersgasse 12 8010 Graz Österreich
| | - Anton Glieder
- Institut für Molekulare Biotechnologie; Technische Universität Graz; Petersgasse 14 8010 Graz Österreich
| |
Collapse
|
47
|
Fang X, Shen L, Hu X. Asymmetric total synthesis of (+)-ovafolinins A and B. Chem Commun (Camb) 2018; 54:7539-7541. [PMID: 29942973 DOI: 10.1039/c8cc03456g] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
(+)-Ovafolinins A and B are two homologous lignans containing unique polycyclic skeletons. Benefiting from a highly diastereoselective alkylation of (S)-Taniguchi lactone, a double Friedel-Crafts reaction, a global debenzylation and a Cu(OAc)2-enabled benzylic oxidative cyclization, we present herein an efficient synthetic approach to (+)-ovafolinins A and B.
Collapse
Affiliation(s)
- Xianhe Fang
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi'an 710127, China.
| | - Lei Shen
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi'an 710127, China.
| | - Xiangdong Hu
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi'an 710127, China.
| |
Collapse
|
48
|
Yang B, Gao S. Recent advances in the application of Diels–Alder reactions involving o-quinodimethanes, aza-o-quinone methides and o-quinone methides in natural product total synthesis. Chem Soc Rev 2018; 47:7926-7953. [DOI: 10.1039/c8cs00274f] [Citation(s) in RCA: 240] [Impact Index Per Article: 34.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
This review summarizes recent advances in Diels–Alder reactions involving o-QDMs, o-QMs and aza-o-QMs. The power and potential of this strategy in organic synthesis and natural product total synthesis is highlighted.
Collapse
Affiliation(s)
- Baochao Yang
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes
- School of Chemistry and Molecular Engineering
- East China Normal University
- Shanghai 200062
- China
| | - Shuanhu Gao
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes
- School of Chemistry and Molecular Engineering
- East China Normal University
- Shanghai 200062
- China
| |
Collapse
|
49
|
Abstract
The first catalytic enantioselective total synthesis of (-)-podophyllotoxin is accomplished by a challenging organocatalytic cross-aldol Heck cyclization and distal stereocontrolled transfer hydrogenation in five steps from three aldehydes. Reversal of selectivity in hydrogenation led to the syntheses of other stereoisomers from the common precursor.
Collapse
Affiliation(s)
- Saumen Hajra
- Centre of Biomedical Research (CBMR), Sanjay Gandhi Postgraduate Institute of Medical Sciences Campus , Raebareli Road, Lucknow 226014, UP, India
| | - Sujay Garai
- Centre of Biomedical Research (CBMR), Sanjay Gandhi Postgraduate Institute of Medical Sciences Campus , Raebareli Road, Lucknow 226014, UP, India.,Department of Chemistry, Indian Institute of Technology Kharagpur (IIT Kharagpur) , Kharagpur 721302, WB, India
| | - Sunit Hazra
- Department of Chemistry, Indian Institute of Technology Kharagpur (IIT Kharagpur) , Kharagpur 721302, WB, India
| |
Collapse
|
50
|
Ren J, Liu Y, Li L, Zhao Y, Li Z, Wu C, Chen L, Hu K. OAMDP, a novel podophyllotoxin derivative, induces apoptosis, cell cycle arrest and autophagy in hepatoma HepG2 cells. Cell Biol Int 2017; 42:194-204. [DOI: 10.1002/cbin.10892] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2017] [Accepted: 09/30/2017] [Indexed: 12/27/2022]
Affiliation(s)
- Jie Ren
- School of Pharmaceutical Engineering & Life Science; Changzhou University; Changzhou Jiangsu 213164 P. R. China
| | - Yu Liu
- School of Pharmaceutical Engineering & Life Science; Changzhou University; Changzhou Jiangsu 213164 P. R. China
| | - Lixia Li
- School of Pharmaceutical Engineering & Life Science; Changzhou University; Changzhou Jiangsu 213164 P. R. China
| | - Yuexin Zhao
- School of Pharmaceutical Engineering & Life Science; Changzhou University; Changzhou Jiangsu 213164 P. R. China
| | - Zhongyu Li
- School of Pharmaceutical Engineering & Life Science; Changzhou University; Changzhou Jiangsu 213164 P. R. China
| | - Chao Wu
- School of Pharmaceutical Engineering & Life Science; Changzhou University; Changzhou Jiangsu 213164 P. R. China
| | - Lin Chen
- School of Pharmaceutical Engineering & Life Science; Changzhou University; Changzhou Jiangsu 213164 P. R. China
| | - Kun Hu
- School of Pharmaceutical Engineering & Life Science; Changzhou University; Changzhou Jiangsu 213164 P. R. China
| |
Collapse
|