1
|
Yao J, Chen Y, Huang Y, Sun X, Shi X. The role of cardiac microenvironment in cardiovascular diseases: implications for therapy. Hum Cell 2024; 37:607-624. [PMID: 38498133 DOI: 10.1007/s13577-024-01052-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 02/25/2024] [Indexed: 03/20/2024]
Abstract
Due to aging populations and changes in lifestyle, cardiovascular diseases including cardiomyopathy, hypertension, and atherosclerosis, are the leading causes of death worldwide. The heart is a complicated organ composed of multicellular types, including cardiomyocytes, fibroblasts, endothelial cells, vascular smooth muscle cells, and immune cells. Cellular specialization and complex interplay between different cell types are crucial for the cardiac tissue homeostasis and coordinated function of the heart. Mounting studies have demonstrated that dysfunctional cells and disordered cardiac microenvironment are closely associated with the pathogenesis of various cardiovascular diseases. In this paper, we discuss the composition and the homeostasis of cardiac tissues, and focus on the role of cardiac environment and underlying molecular mechanisms in various cardiovascular diseases. Besides, we elucidate the novel treatment for cardiovascular diseases, including stem cell therapy and targeted therapy. Clarification of these issues may provide novel insights into the prevention and potential targets for cardiovascular diseases.
Collapse
Affiliation(s)
- Jiayu Yao
- School of Life Science and Technology, Key Laboratory of Developmental Genes and Human Disease, Southeast University, Nanjing, China
| | - Yuejun Chen
- School of Life Science and Technology, Key Laboratory of Developmental Genes and Human Disease, Southeast University, Nanjing, China
| | - Yuqing Huang
- School of Life Science and Technology, Key Laboratory of Developmental Genes and Human Disease, Southeast University, Nanjing, China
| | - Xiaoou Sun
- Institute of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, China.
| | - Xingjuan Shi
- School of Life Science and Technology, Key Laboratory of Developmental Genes and Human Disease, Southeast University, Nanjing, China.
| |
Collapse
|
2
|
Tian H, Zhao X, Zhang Y, Xia Z. Research progress of circadian rhythm in cardiovascular disease: A bibliometric study from 2002 to 2022. Heliyon 2024; 10:e28738. [PMID: 38560247 PMCID: PMC10979111 DOI: 10.1016/j.heliyon.2024.e28738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 03/22/2024] [Accepted: 03/22/2024] [Indexed: 04/04/2024] Open
Abstract
Background Given that the circadian rhythm is intricately linked to cardiovascular physiological functions, the objective of this investigation was to employ bibliometric visualization analysis in order to scrutinize the trends, hotspots, and prospects of the circadian rhythm and cardiovascular disease (CVD) over the past two decades. Methods A thorough exploration of the literature related to the circadian rhythm and CVD was conducted via the Web of Science Core Collection database spanning the years 2002-2022. Advanced software tools, including citespace and VOSviewer, were employed to carry out a comprehensive analysis of the co-occurrence and collaborative relationships among countries, institutions, journals, references, and keywords found in this literature. Furthermore, correlation mapping was executed to provide a visual representation of the data. Results The present study encompassed a total of 3399 published works, comprising of 2691 articles and 708 reviews. The publications under scrutiny were primarily derived from countries such as the United States, Japan, and China. The most prominent research institutions were found to be the University of Vigo, University of Minnesota, and Harvard University. Notably, the journal Chronobiology International, alongside its co-cited publications, had the most substantial contribution to the research in this field. Following an exhaustive analysis, the most frequently observed keywords were identified as circadian rhythm, blood pressure, hypertension, heart rate, heart rate variability, and melatonin. Furthermore, a nascent analysis indicated that future research might gravitate towards topics such as inflammation, metabolism, oxidative stress, and autophagy, thereby indicating new directions for investigation. Conclusion This analysis represents the first instance of bibliometric scrutiny pertaining to circadian rhythm and its correlation with cardiovascular disease (CVD) through the use of visualization software. Notably, this study has succeeded in highlighting the recent research frontiers and prominent trajectories in this field, thereby providing a valuable contribution to the literature.
Collapse
Affiliation(s)
- Hao Tian
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Xiaoshuai Zhao
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Yuxi Zhang
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Zhongyuan Xia
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan 430060, China
| |
Collapse
|
3
|
Yeh KC, Lee CJ, Song JS, Wu CH, Yeh TK, Wu SH, Hsieh TC, Chen YT, Tseng HY, Huang CL, Chen CT, Jan JJ, Chou MC, Shia KS, Chiang KH. Protective Effect of CXCR4 Antagonist DBPR807 against Ischemia-Reperfusion Injury in a Rat and Porcine Model of Myocardial Infarction: Potential Adjunctive Therapy for Percutaneous Coronary Intervention. Int J Mol Sci 2022; 23:ijms231911730. [PMID: 36233031 PMCID: PMC9570210 DOI: 10.3390/ijms231911730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 09/23/2022] [Accepted: 09/28/2022] [Indexed: 11/25/2022] Open
Abstract
CXCR4 antagonists have been claimed to reduce mortality after myocardial infarction in myocardial infarction (MI) animals, presumably due to suppressing inflammatory responses caused by myocardial ischemia-reperfusion injury, thus, subsequently facilitating tissue repair and cardiac function recovery. This study aims to determine whether a newly designed CXCR4 antagonist DBPR807 could exert better vascular-protective effects than other clinical counterparts (e.g., AMD3100) to alleviate cardiac damage further exacerbated by reperfusion. Consequently, we find that instead of traditional continuous treatment or multiple-dose treatment at different intervals of time, a single-dose treatment of DBPR807 before reperfusion in MI animals could attenuate inflammation via protecting oxidative stress damage and preserve vascular/capillary density and integrity via mobilizing endothelial progenitor cells, leading to a desirable fibrosis reduction and recovery of cardiac function, as evaluated with the LVEF (left ventricular ejection fraction) in infarcted hearts in rats and mini-pigs, respectively. Thus, it is highly suggested that CXCR4 antagonists should be given at a single high dose prior to reperfusion to provide the maximal cardiac functional improvement. Based on its favorable efficacy and safety profiles indicated in tested animals, DBPR807 has a great potential to serve as an adjunctive medicine for percutaneous coronary intervention (PCI) therapies in acute MI patients.
Collapse
Affiliation(s)
- Kai-Chia Yeh
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Zhunan 35053, Taiwan
| | - Chia-Jui Lee
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Zhunan 35053, Taiwan
| | - Jen-Shin Song
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Zhunan 35053, Taiwan
| | - Chien-Huang Wu
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Zhunan 35053, Taiwan
| | - Teng-Kuang Yeh
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Zhunan 35053, Taiwan
| | - Szu-Huei Wu
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Zhunan 35053, Taiwan
| | - Tsung-Chin Hsieh
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Zhunan 35053, Taiwan
| | - Yen-Ting Chen
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Zhunan 35053, Taiwan
| | - Huan-Yi Tseng
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Zhunan 35053, Taiwan
| | - Chen-Lung Huang
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Zhunan 35053, Taiwan
| | - Chiung-Tong Chen
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Zhunan 35053, Taiwan
| | - Jiing-Jyh Jan
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Zhunan 35053, Taiwan
| | - Ming-Chen Chou
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Zhunan 35053, Taiwan
| | - Kak-Shan Shia
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Zhunan 35053, Taiwan
- Correspondence: (K.-S.S.); (K.-H.C.)
| | - Kuang-Hsing Chiang
- Taipei Heart Institute, Taipei Medical University, Taipei 11031, Taiwan
- Department of Cardiology, Taipei Medical University Hospital, Taipei 11031, Taiwan
- Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan
- Graduate Institute of Biomedical Electronics and Bioinformatics, National Taiwan University, Taipei 106319, Taiwan
- Correspondence: (K.-S.S.); (K.-H.C.)
| |
Collapse
|
4
|
Dynamics of endothelial progenitor cells in patients with advanced hepatocellular carcinoma. Dig Liver Dis 2022; 54:911-917. [PMID: 34876355 DOI: 10.1016/j.dld.2021.11.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 11/08/2021] [Accepted: 11/11/2021] [Indexed: 12/12/2022]
Abstract
BACKGROUND AND AIMS Circulating endothelial progenitor cells (EPC) predict tumor vascularization and disease progression, but limited information is available on their dynamics in hepatocellular carcinoma (HCC) undergoing systemic treatment. METHODS We prospectively analyzed different populations of EPC in 16 patients with advanced HCC receiving sorafenib. Patients were studied before therapy (T0, n = 16) and after two (T2, n = 12) and eight weeks (T8, n = 8), using high-performance flow-cytometry. The tumor response at T8 was categorized as progressive disease (PD) or clinical benefit (CB, all other responses). RESULTS At T0, higher levels of CD34+CD133+KDR+ and CD34+KDR+ were observed in patients with alpha-fetoprotein ≥400 ng/ml or non-viral liver disease, whereas CD34+CD133+KDR+ cells were virtually absent in patients with vascular invasion. CD34+KDR+ and CD34+CD133+KDR+ were directly correlated with platelet count. Frequencies of all populations of EPC declined in patients receiving sorafenib. Levels of CD34+CD133+ were higher at T0 in patients with CB compared to patients with PD. In patients belonging to the CB group CD34+KDR+ cells at T0 were directly correlated to platelet count. CONCLUSION In patients with advanced HCC, EPC are directly correlated with platelet count, suggesting a common activation of selected bone marrow pathways. Levels of a CD34+KDR+ are higher at baseline in patients responding to sorafenib.
Collapse
|
5
|
Oktaviono YH, Ahmad HA, Al Farabi MJ, Gandi P, Givani CL, Lumeno ISP, Azmi Y. Enhancement of EPC migration by high-dose lisinopril is superior compared to captopril and ramipril. F1000Res 2021; 10:15. [PMID: 34707860 PMCID: PMC8515492 DOI: 10.12688/f1000research.26395.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 12/03/2020] [Indexed: 11/20/2022] Open
Abstract
Background: Angiotensin-converting enzyme (ACE) inhibitors have been shown to promote endothelial progenitor cell (EPC) function. However, the efficacies of different ACE inhibitors in improving the migratory capabilities of ECPs in coronary artery disease (CAD) patients is unclear. This study compared the effectiveness of captopril, lisinopril, and ramipril toward the migration capability of impaired EPCs from CAD patients. Methods: We isolated peripheral blood mononuclear cells (PBMCs), separated EPCs from PBMCs, and divided them into an untreated group (control) and treated groups of captopril, lisinopril, and ramipril at doses of 1mM, 10mM, and 100mM. EPC migration was evaluated using the Boyden chamber assay. Analysis of variance (ANOVA) was performed using SPSS 25.0. Results: This study showed that treatment with captopril, lisinopril, and ramipril starting at the lowest dose (1 mM) increased EPC migration (65,250 ± 6,750 cells; 60,750± 5,030 cells; and 49,500 ± 8,400 cells, respectively) compared to control (43,714 ± 7,216 cells). Increased migration of EPCs was observed by increasing the treatment dose to 10 mM with captopril, lisinopril, and ramipril (90,000 ± 16,837 cells; 79,071 ± 2,043 cells; and 64,285 ± 11,824 cells, respectively). The highest EPC migration was shown for lisinopril 100 mM (150,750 ± 16,380 cells), compared to captopril and ramipril at the same dose (105,750 ± 8112 cells and 86,625 ± 5,845 cells, respectively). Conclusions: Captopril, ramipril, and lisinopril were shown to increase EPC migration in a dose-dependent manner. Low-dose (1 mM) and medium-dose (10 mM) captopril had a larger effect on ECP migration than lisinopril and ramipril. Meanwhile, high-dose lisinopril (100mM) had the highest migration effect, suggesting it may be preferable for promoting EPC migration in CAD patients.
Collapse
Affiliation(s)
- Yudi Her Oktaviono
- Department of Cardiology and Vascular Medicine, Airlangga University, Soetomo Academic and General Hospital, Surabaya, East Java, 60825, Indonesia
| | - Hanang Anugrawan Ahmad
- Department of Cardiology and Vascular Medicine, Airlangga University, Soetomo Academic and General Hospital, Surabaya, East Java, 60825, Indonesia
| | - Makhyan Jibril Al Farabi
- Department of Cardiology and Vascular Medicine, Airlangga University, Soetomo Academic and General Hospital, Surabaya, East Java, 60825, Indonesia
| | - Parama Gandi
- Department of Cardiology and Vascular Medicine, Airlangga University, Soetomo Academic and General Hospital, Surabaya, East Java, 60825, Indonesia
| | - Caesar Lagaliggo Givani
- Department of Internal Medicine, Airlangga University, Soetomo Academic and General Hospital, Surabaya, East Java, 60825, Indonesia
| | | | - Yusuf Azmi
- Faculty of Medicine, Airlangga University, Surabaya, East Java, 60825, Indonesia
| |
Collapse
|
6
|
Leal V, Ribeiro CF, Oliveiros B, António N, Silva S. Intrinsic Vascular Repair by Endothelial Progenitor Cells in Acute Coronary Syndromes: an Update Overview. Stem Cell Rev Rep 2020; 15:35-47. [PMID: 30345477 DOI: 10.1007/s12015-018-9857-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Bone marrow-derived endothelial progenitor cells (EPCs) play a key role in the maintenance of endothelial homeostasis and endothelial repair at areas of vascular damage. The quantification of EPCs in peripheral blood by flow cytometry is a strategy to assess this reparative capacity. The number of circulating EPCs is inversely correlated with the number of cardiovascular risk factors and to the occurrence of cardiovascular events. Therefore, monitoring EPCs levels may provide an accurate assessment of susceptibility to cardiovascular injury, greatly improving risk stratification of patients with high cardiovascular risk, such as those with an acute myocardial infarction. However, there are many issues in the field of EPC identification and quantification that remain unsolved. In fact, there have been conflicting protocols used to the phenotypic identification of EPCs and there is still no consensual immunophenotypical profile that corresponds exactly to EPCs. In this paper we aim to give an overview on EPCs-mediated vascular repair with special focus on acute coronary syndromes and to discuss the different phenotypic profiles that have been used to identify and quantify circulating EPCs in several clinical studies. Finally, we will synthesize evidence on the prognostic role of EPCs in patients with high cardiovascular risk.
Collapse
Affiliation(s)
- Vânia Leal
- Group of Pharmacology and Pharmaceutical Care, Faculty of Pharmacy, University of Coimbra, Pólo das Ciências da Saúde, Azinhaga de Santa Comba, 3000-548, Coimbra, Portugal.
| | - Carlos Fontes Ribeiro
- Institute of Pharmacology and Experimental Therapeutics, Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| | - Bárbara Oliveiros
- Laboratory of Biostatistics and Medical Informatics, Faculty of Medicine, University of Coimbra, Coimbra, Portugal.,Coimbra Institute for Biomedical Imaging and Translational Research, University of Coimbra, Coimbra, Portugal.,Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| | - Natália António
- Institute of Pharmacology and Experimental Therapeutics, Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, University of Coimbra, Coimbra, Portugal.,Cardiology Department, Coimbra Hospital and Universitary Centre, Coimbra, Portugal
| | - Sónia Silva
- Group of Pharmacology and Pharmaceutical Care, Faculty of Pharmacy, University of Coimbra, Pólo das Ciências da Saúde, Azinhaga de Santa Comba, 3000-548, Coimbra, Portugal.,Institute of Pharmacology and Experimental Therapeutics, Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| |
Collapse
|
7
|
Exosome-Mediated Transfer of ACE2 (Angiotensin-Converting Enzyme 2) from Endothelial Progenitor Cells Promotes Survival and Function of Endothelial Cell. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:4213541. [PMID: 32051731 PMCID: PMC6995312 DOI: 10.1155/2020/4213541] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Revised: 12/23/2019] [Accepted: 01/02/2020] [Indexed: 12/21/2022]
Abstract
Angiotensin-converting enzyme 2 (ACE2) is an emerging cardiovascular protective target that mediates the metabolism of angiotensin (Ang) II into Ang (1–7). Our group has demonstrated that ACE2 overexpression enhances the function of endothelial progenitor cells (EPCs). Here, we investigated whether ACE2-primed EPCs (ACE2-EPCs) can protect cerebral microvascular endothelial cells (ECs) against injury and dysfunction in an in vitro model, with focusing on their exosomal and cytokine paracrine effects on endothelial mitochondria. Human EPCs were transfected with lentivirus containing null or human ACE2 cDNA (denoted as Null-EPCs and ACE2-EPCs, respectively). Their conditioned culture media, w/wo depletion of exosomes (ACE2-EPC-CMEX-, Null-EPC-CMEX-, ACE2-EPC-CM, and Null-EPC-CM), were used for coculture experiments. EC injury and dysfunction model was induced by Ang II before coculture. Apoptosis, angiogenic ability, mitochondrion functions (ROS production, membrane potential, fragmentation), and gene expressions (ACE2, Nox2, and Nox4) of ECs were analyzed. The supernatant was collected for measuring the levels of ACE2, Ang II/Ang-(1–7), and growth factors (VEGF and IGF). Our results showed that (1) ACE2-EPC-CM had higher levels of ACE2, Ang (1–7), VEGF, and IGF than that of Null-EPC-CM. (2) Ang II-injured ECs displayed an increase of apoptotic rate and reduction in tube formation and migration abilities, which were associated with ACE2 downregulation, Ang II/Ang (1–7) imbalance, Nox2/Nox4 upregulation, ROS overproduction, an increase of mitochondrion fragmentation, and a decrease of membrane potential. (3) ACE2-EPC-CM had better protective effects than Null-EPC-CM on Ang II-injured ECs, which were associated with the improvements on ACE2 expression, Ang II/Ang (1–7) balance, and mitochondrial functions. (4) ACE2-EPC-CMEX- and Null-EPC-CMEX- showed reduced effects as compared to ACE2-EPCs-CM and Null-EPCs-CM. In conclusion, our data demonstrate that ACE2 overexpression can enhance the protective effects of EPCs on ECs injury, majorly through the exosomal effects on mitochondrial function.
Collapse
|
8
|
Kaushik K, Das A. Endothelial progenitor cell therapy for chronic wound tissue regeneration. Cytotherapy 2019; 21:1137-1150. [PMID: 31668487 DOI: 10.1016/j.jcyt.2019.09.002] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Revised: 09/20/2019] [Accepted: 09/24/2019] [Indexed: 02/07/2023]
Abstract
Despite advancements in wound care, healing of chronic diabetic wounds remains a great challenge for the clinical fraternity because of the intricacies of the healing process. Due to the limitations of existing treatment strategies for chronic wounds, stem/progenitor cell transplantation therapies have been explored as an alternative for tissue regeneration at the wound site. The non-healing phenotype of chronic wounds is directly associated with lack of vascularization. Therefore, endothelial progenitor cell (EPC) transplantation is proving to be a promising approach for the treatment of hypo-vascular chronic wounds. With the existing knowledge in EPC biology, significant efforts have been made to enrich EPCs at the chronic wound site, generating EPCs from somatic cells, induced pluripotent stem cells (iPSCs) using transcription factors, or from adult stem cells using chemicals/drugs for use in transplantation, as well as modulating the endogenous dysfunctional/compromised EPCs under diabetic conditions. This review mainly focuses on the pre-clinical and clinical approaches undertaken to date with EPC-based translational therapy for chronic diabetic as well as non-diabetic wounds to evaluate their vascularity-mediated regeneration potential.
Collapse
Affiliation(s)
- Komal Kaushik
- Department of Applied Biology, CSIR-Indian Institute of Chemical Technology, Uppal Road, Tarnaka, Hyderabad, India; Academy of Scientific and Innovative Research (AcSIR), CSIR-IICT Campus, Hyderabad, India
| | - Amitava Das
- Department of Applied Biology, CSIR-Indian Institute of Chemical Technology, Uppal Road, Tarnaka, Hyderabad, India; Academy of Scientific and Innovative Research (AcSIR), CSIR-IICT Campus, Hyderabad, India.
| |
Collapse
|
9
|
He S, Guo H, Zhao T, Meng Y, Chen R, Ren J, Pan L, Fan G, Jiang M, Qin G, Zhu Y, Gao X. A Defined Combination of Four Active Principles From the Danhong Injection Is Necessary and Sufficient to Accelerate EPC-Mediated Vascular Repair and Local Angiogenesis. Front Pharmacol 2019; 10:1080. [PMID: 31607924 PMCID: PMC6767990 DOI: 10.3389/fphar.2019.01080] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Accepted: 08/26/2019] [Indexed: 12/21/2022] Open
Abstract
Many compounds in Chinese medicine formulae, including Danhong injection (DHI) formulae, are capable of stimulating angiogenesis and promoting vascular repair, but their chemical basis and action mechanisms remain poorly defined. The aim of this study is to determine the minimal native chemical composition of DHI for the pro-angiogenesis activity and to evaluate its contribution from local endothelial cells (ECs) and bone marrow-derived endothelial progenitor cells (EPCs). Our study demonstrated that the action of DHI in accelerating the recovery of hindlimb blood flow in a ischemic rat model was attributable to its local CXCR4-mediated pro-angiogenesis activity in mature endothelial cells, as well as to its ability to promote the proliferation, migration, adhesion, and angiogenesis of EPCs via integrated activation of SDF-1α/CXCR4, VEGF/KDR, and eNOS/MMP-9 signal pathways. Combination experiments narrowed down the angiogenic activity into a few components in DHI. Reconstitution experiment defined that a combination of tanshinol, protocatechuic aldehyde, salvianolic acid B, and salvianolic acid C in their native proportion was necessary and sufficient for DHI's angiogenic activity. Compared with the full DHI, the minimal reconstituted four active principles had the same effects in promoting tube formation in vitro, improving perfusion and recovery of ischemic limb, and enhancing angiogenesis in ischemic mice post-hindlimb ischemia in vivo.
Collapse
Affiliation(s)
- Shuang He
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China.,Research and Development Center of Traditional Chinese Medicine, Tianjin International Joint Academy of Biomedicine, Tianjin, China
| | - Hao Guo
- Institute of Basic Medical Sciences, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China.,Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Tiechan Zhao
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China.,Research and Development Center of Traditional Chinese Medicine, Tianjin International Joint Academy of Biomedicine, Tianjin, China
| | - Yanzhi Meng
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China.,Research and Development Center of Traditional Chinese Medicine, Tianjin International Joint Academy of Biomedicine, Tianjin, China
| | - Rongrong Chen
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China.,Research and Development Center of Traditional Chinese Medicine, Tianjin International Joint Academy of Biomedicine, Tianjin, China
| | - Jie Ren
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China.,Research and Development Center of Traditional Chinese Medicine, Tianjin International Joint Academy of Biomedicine, Tianjin, China
| | - Lanlan Pan
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China.,Research and Development Center of Traditional Chinese Medicine, Tianjin International Joint Academy of Biomedicine, Tianjin, China
| | - Guanwei Fan
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China.,Key Laboratory of Pharmacology of Traditional Chinese Medicine Formulae, Ministry of Education, Tianjin Key Laboratory of Traditional Chinese Medicine Pharmacology, and Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Miaomiao Jiang
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China.,Research and Development Center of Traditional Chinese Medicine, Tianjin International Joint Academy of Biomedicine, Tianjin, China
| | - Gangjian Qin
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China.,Molecular Cardiology Program, Department of Biomedical Engineering, School of Medicine & School of Engineering, The University of Alabama at Birmingham (UAB), Birmingham, AL, United States
| | - Yan Zhu
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China.,Research and Development Center of Traditional Chinese Medicine, Tianjin International Joint Academy of Biomedicine, Tianjin, China
| | - Xiumei Gao
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China.,Key Laboratory of Pharmacology of Traditional Chinese Medicine Formulae, Ministry of Education, Tianjin Key Laboratory of Traditional Chinese Medicine Pharmacology, and Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| |
Collapse
|
10
|
Jiang P, Tang X, Wang H, Dai C, Su J, Zhu H, Song M, Liu J, Nan Z, Ru T, Li Y, Wang J, Yang J, Chen B, Dai J, Hu Y. Collagen-binding basic fibroblast growth factor improves functional remodeling of scarred endometrium in uterine infertile women: a pilot study. SCIENCE CHINA-LIFE SCIENCES 2019; 62:1617-1629. [PMID: 31515729 DOI: 10.1007/s11427-018-9520-2] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Accepted: 03/05/2019] [Indexed: 12/26/2022]
Abstract
Intrauterine adhesion (IUA) is a common cause of uterine infertility and one of the most severe clinical features is endometrial fibrosis namely endometrial scarring for which there are few cures currently. Blocked angiogenesis is the main pathological change in the scarred endometrium. The fibroblast growth factor 2 (bFGF), a member of FGF family, is usually applied to promote healing of refractory ulcer and contributes to angiogenesis of tissues. In this study, the sustained-release system of bFGF 100 µg was administrated around scarred endometrium guiding by ultrasound every 4 weeks in 18 patients (2-4 times). Results showed that after treatment, the menstrual blood volume, endometrial thickness and the scarred endometrial area were improved. Histological study showed blood vessel density increased obviously. Three patients (3/18) achieved pregnancy over 20 gestational weeks. Therefore, administrating the bFGF surrounding scarred endometrium may provide a new therapeutic approach for the patients with endometrial fibrosis.
Collapse
Affiliation(s)
- Peipei Jiang
- Department of Obstetrics and Gynecology, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, 210008, China
| | - Xiaoqiu Tang
- Department of Obstetrics and Gynecology, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, 210008, China
| | - Huiyan Wang
- Department of Obstetrics and Gynecology, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, 210008, China
| | - Chenyan Dai
- Department of Obstetrics and Gynecology, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, 210008, China
| | - Jing Su
- Department of Obstetrics and Gynecology, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, 210008, China
| | - Hui Zhu
- Department of Obstetrics and Gynecology, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, 210008, China
| | - Minmin Song
- Department of Obstetrics and Gynecology, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, 210008, China
| | - Jingyu Liu
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, 210008, China
| | - Ziqing Nan
- Nanjing Drum Tower Hospital, Chinese Academy of Medical Science & Peking Union Medical Collage, Nanjing, 210008, China
| | - Tong Ru
- Department of Obstetrics and Gynecology, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, 210008, China
| | - Yaling Li
- Department of Obstetrics and Gynecology, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, 210008, China
| | - Jingmei Wang
- Department of Pathology, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, 210008, China
| | - Jun Yang
- Department of Pathology, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, 210008, China
| | - Bing Chen
- Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100190, China
| | - Jianwu Dai
- Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100190, China.
| | - Yali Hu
- Department of Obstetrics and Gynecology, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, 210008, China.
| |
Collapse
|
11
|
Kiang JG, Smith JT, Anderson MN, Umali MV, Ho C, Zhai M, Lin B, Jiang S. A novel therapy, using Ghrelin with pegylated G-CSF, inhibits brain hemorrhage from ionizing radiation or combined radiation injury. PHARMACY & PHARMACOLOGY INTERNATIONAL JOURNAL 2019; 7:133-145. [PMID: 34368440 PMCID: PMC8341084 DOI: 10.15406/ppij.2019.07.00243] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Medical treatment becomes challenging when complicated injuries arise from secondary reactive metabolic and inflammatory products induced by initial acute ionizing radiation injury (RI) or when combined with subsequent trauma insult(s) (CI). With such detrimental effects on many organs, CI exacerbates the severity of primary injuries and decreases survival. Previously, in a novel study, we reported that ghrelin therapy significantly improved survival after CI. This study aimed to investigate whether brain hemorrhage induced by RI and CI could be inhibited by ghrelin therapy with pegylated G-CSF (i.e., Neulasta®, an FDA-approved drug). B6D2F1 female mice were exposed to 9.5 Gy 60Co-γ-radiation followed by 15% total-skin surface wound. Several endpoints were measured at several days. Brain hemorrhage and platelet depletion were observed in RI and CI mice. Brain hemorrhage severity was significantly higher in CI mice than in RI mice. Ghrelin therapy with pegylated G-CSF reduced the severity in brains of both RI and CI mice. RI and CI did not alter PARP and NF-κB but did significantly reduce PGC-1α and ghrelin receptors; the therapy, however, was able to partially recover ghrelin receptors. RI and CI significantly increased IL-6, KC, Eotaxin, G-CSF, MIP-2, MCP-1, MIP-1α, but significantly decreased IL-2, IL-9, IL-10, MIG, IFN-γ, and PDGF-bb; the therapy inhibited these changes. RI and CI significantly reduced platelet numbers, cellular ATP levels, NRF1/2, and AKT phosphorylation. The therapy significantly mitigated these CI-induced changes and reduced p53-mdm2 mediated caspase-3 activation. Our data are the first to support the view that Ghrelin therapy with pegylated G-CSF is potentially a novel therapy for treating brain hemorrhage after RI and CI.
Collapse
Affiliation(s)
- J G Kiang
- Radiation Combined Injury Program, Scientific Research Department, Armed Forces Radiobiology Research Institute, USA
- Department of Medicine, Uniformed Services University of the Health Sciences, USA
- Department of Pharmacology and Molecular Therapeutics, Uniformed Services University of the Health Sciences, USA
| | - J T Smith
- Radiation Combined Injury Program, Scientific Research Department, Armed Forces Radiobiology Research Institute, USA
| | - M N Anderson
- Radiation Combined Injury Program, Scientific Research Department, Armed Forces Radiobiology Research Institute, USA
| | - M V Umali
- Radiation Combined Injury Program, Scientific Research Department, Armed Forces Radiobiology Research Institute, USA
| | - C Ho
- Department of Biochemistry, University of California, USA
| | - M Zhai
- Radiation Combined Injury Program, Scientific Research Department, Armed Forces Radiobiology Research Institute, USA
| | - B Lin
- Radiation Combined Injury Program, Scientific Research Department, Armed Forces Radiobiology Research Institute, USA
| | - S Jiang
- Radiation Combined Injury Program, Scientific Research Department, Armed Forces Radiobiology Research Institute, USA
| |
Collapse
|
12
|
Abstract
The ability to generate new microvessels in desired numbers and at desired locations has been a long-sought goal in vascular medicine, engineering, and biology. Historically, the need to revascularize ischemic tissues nonsurgically (so-called therapeutic vascularization) served as the main driving force for the development of new methods of vascular growth. More recently, vascularization of engineered tissues and the generation of vascularized microphysiological systems have provided additional targets for these methods, and have required adaptation of therapeutic vascularization to biomaterial scaffolds and to microscale devices. Three complementary strategies have been investigated to engineer microvasculature: angiogenesis (the sprouting of existing vessels), vasculogenesis (the coalescence of adult or progenitor cells into vessels), and microfluidics (the vascularization of scaffolds that possess the open geometry of microvascular networks). Over the past several decades, vascularization techniques have grown tremendously in sophistication, from the crude implantation of arteries into myocardial tunnels by Vineberg in the 1940s, to the current use of micropatterning techniques to control the exact shape and placement of vessels within a scaffold. This review provides a broad historical view of methods to engineer the microvasculature, and offers a common framework for organizing and analyzing the numerous studies in this area of tissue engineering and regenerative medicine. © 2019 American Physiological Society. Compr Physiol 9:1155-1212, 2019.
Collapse
Affiliation(s)
- Joe Tien
- Department of Biomedical Engineering, Boston University, Boston, Massachusetts, USA
- Division of Materials Science and Engineering, Boston University, Brookline, Massachusetts, USA
| |
Collapse
|
13
|
Cheng Q, Lin S, Bi B, Jiang X, Shi H, Fan Y, Lin W, Zhu Y, Yang F. Bone Marrow-derived Endothelial Progenitor Cells Are Associated with Bone Mass and Strength. J Rheumatol 2018; 45:1696-1704. [PMID: 30173148 DOI: 10.3899/jrheum.171226] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/18/2018] [Indexed: 12/13/2022]
Abstract
OBJECTIVE Blood vessels of bone are thought to influence osteogenesis of bone. No clinical studies have determined whether angiogenesis is related to bone mass and gene expression of growth factors. We compared bone marrow endothelial progenitor cells (EPC), which control angiogenesis of bone in postmenopausal women incurring fragility fracture, with osteoporosis or traumatic fracture with normal bone mass (COM). METHODS Bone specimens were obtained from age-matched women with osteoporosis or COM. Mononuclear cells were isolated and EPC were detected by flow cytometry. The expression levels of specific genes were measured. Bone mineral density (BMD) was determined, and serum markers of bone turnover also were measured. Differences between OP and COM were assessed with Student t test or Mann-Whitney U test, and correlations were determined using Spearman's correlation. RESULTS Compared with COM, patients with OP had significantly lower levels of serum osteocalcin, procollagen type-1 N-terminal propeptide, and 25-hydroxy vitamin D, as well as decreased BMD of total hip and femoral neck and fewer bone marrow EPC. Expression levels of vascular endothelial growth factor, angiopoietin-1 (Ang-1), angiopoietin 2 (Ang-2), and the osteoblast-specific genes runt-related transcription factor 2 (RUNX2) and osterix in bone were significantly lower in OP than in COM. We determined that mature EPC were correlated positively with BMD of the femoral neck and total hip, gene expression of Ang-1, RUNX2, and CD31, and negatively with gene expression of receptor activator of nuclear factor-κB ligand and Ang-2. CONCLUSION Our results demonstrate correlations of bone marrow EPC with bone mass and gene expression of growth factors, which support a hypothesis of crosstalk between angiogenesis and osteogenesis in bone health.
Collapse
Affiliation(s)
- Qun Cheng
- From the Department of Osteoporosis and Bone Disease, Huadong Hospital, affiliated to Fudan University, Research Section of Geriatric Metabolic Bone Disease, Shanghai Geriatric Institute; the Department of Orthopedics, Huadong Hospital, affiliated to Fudan University; and the Central Laboratory, Huadong Hospital, affiliated to Fudan University, Shanghai, China. .,Q. Cheng, MD, PhD, Department of Osteoporosis and Bone Disease, Huadong Hospital, affiliated to Fudan University, Research Section of Geriatric Metabolic Bone Disease, Shanghai Geriatric Institute; S. Lin, MD, Department of Orthopedics, Huadong Hospital, affiliated to Fudan University; B. Bi, MD, PhD, Central Lab, Huadong Hospital, affiliated to Fudan University; X. Jiang, MD, Department of Osteoporosis and Bone Disease, Huadong Hospital affiliated to Fudan University, Research Section of Geriatric Metabolic Bone Disease, Shanghai Geriatric Institute; H. Shi, MD, Department of Osteoporosis and Bone Disease, Huadong Hospital, affiliated to Fudan University, Research Section of Geriatric Metabolic Bone Disease, Shanghai Geriatric Institute; Y. Fan, MD, PhD, Department of Orthopedics, Huadong Hospital, affiliated to Fudan University; W. Lin, MD, Department of Orthopedics, Huadong Hospital, affiliated to Fudan University; Y. Zhu, MD, Department of Orthopedics, Huadong Hospital, affiliated to Fudan University; F. Yang, MD, PhD, Department of Orthopedics, Huadong Hospital, affiliated to Fudan University. Qun Cheng and Shangjin Lin are co-first authors of this article.
| | - Shangjin Lin
- From the Department of Osteoporosis and Bone Disease, Huadong Hospital, affiliated to Fudan University, Research Section of Geriatric Metabolic Bone Disease, Shanghai Geriatric Institute; the Department of Orthopedics, Huadong Hospital, affiliated to Fudan University; and the Central Laboratory, Huadong Hospital, affiliated to Fudan University, Shanghai, China.,Q. Cheng, MD, PhD, Department of Osteoporosis and Bone Disease, Huadong Hospital, affiliated to Fudan University, Research Section of Geriatric Metabolic Bone Disease, Shanghai Geriatric Institute; S. Lin, MD, Department of Orthopedics, Huadong Hospital, affiliated to Fudan University; B. Bi, MD, PhD, Central Lab, Huadong Hospital, affiliated to Fudan University; X. Jiang, MD, Department of Osteoporosis and Bone Disease, Huadong Hospital affiliated to Fudan University, Research Section of Geriatric Metabolic Bone Disease, Shanghai Geriatric Institute; H. Shi, MD, Department of Osteoporosis and Bone Disease, Huadong Hospital, affiliated to Fudan University, Research Section of Geriatric Metabolic Bone Disease, Shanghai Geriatric Institute; Y. Fan, MD, PhD, Department of Orthopedics, Huadong Hospital, affiliated to Fudan University; W. Lin, MD, Department of Orthopedics, Huadong Hospital, affiliated to Fudan University; Y. Zhu, MD, Department of Orthopedics, Huadong Hospital, affiliated to Fudan University; F. Yang, MD, PhD, Department of Orthopedics, Huadong Hospital, affiliated to Fudan University. Qun Cheng and Shangjin Lin are co-first authors of this article
| | - Bo Bi
- From the Department of Osteoporosis and Bone Disease, Huadong Hospital, affiliated to Fudan University, Research Section of Geriatric Metabolic Bone Disease, Shanghai Geriatric Institute; the Department of Orthopedics, Huadong Hospital, affiliated to Fudan University; and the Central Laboratory, Huadong Hospital, affiliated to Fudan University, Shanghai, China.,Q. Cheng, MD, PhD, Department of Osteoporosis and Bone Disease, Huadong Hospital, affiliated to Fudan University, Research Section of Geriatric Metabolic Bone Disease, Shanghai Geriatric Institute; S. Lin, MD, Department of Orthopedics, Huadong Hospital, affiliated to Fudan University; B. Bi, MD, PhD, Central Lab, Huadong Hospital, affiliated to Fudan University; X. Jiang, MD, Department of Osteoporosis and Bone Disease, Huadong Hospital affiliated to Fudan University, Research Section of Geriatric Metabolic Bone Disease, Shanghai Geriatric Institute; H. Shi, MD, Department of Osteoporosis and Bone Disease, Huadong Hospital, affiliated to Fudan University, Research Section of Geriatric Metabolic Bone Disease, Shanghai Geriatric Institute; Y. Fan, MD, PhD, Department of Orthopedics, Huadong Hospital, affiliated to Fudan University; W. Lin, MD, Department of Orthopedics, Huadong Hospital, affiliated to Fudan University; Y. Zhu, MD, Department of Orthopedics, Huadong Hospital, affiliated to Fudan University; F. Yang, MD, PhD, Department of Orthopedics, Huadong Hospital, affiliated to Fudan University. Qun Cheng and Shangjin Lin are co-first authors of this article
| | - Xin Jiang
- From the Department of Osteoporosis and Bone Disease, Huadong Hospital, affiliated to Fudan University, Research Section of Geriatric Metabolic Bone Disease, Shanghai Geriatric Institute; the Department of Orthopedics, Huadong Hospital, affiliated to Fudan University; and the Central Laboratory, Huadong Hospital, affiliated to Fudan University, Shanghai, China.,Q. Cheng, MD, PhD, Department of Osteoporosis and Bone Disease, Huadong Hospital, affiliated to Fudan University, Research Section of Geriatric Metabolic Bone Disease, Shanghai Geriatric Institute; S. Lin, MD, Department of Orthopedics, Huadong Hospital, affiliated to Fudan University; B. Bi, MD, PhD, Central Lab, Huadong Hospital, affiliated to Fudan University; X. Jiang, MD, Department of Osteoporosis and Bone Disease, Huadong Hospital affiliated to Fudan University, Research Section of Geriatric Metabolic Bone Disease, Shanghai Geriatric Institute; H. Shi, MD, Department of Osteoporosis and Bone Disease, Huadong Hospital, affiliated to Fudan University, Research Section of Geriatric Metabolic Bone Disease, Shanghai Geriatric Institute; Y. Fan, MD, PhD, Department of Orthopedics, Huadong Hospital, affiliated to Fudan University; W. Lin, MD, Department of Orthopedics, Huadong Hospital, affiliated to Fudan University; Y. Zhu, MD, Department of Orthopedics, Huadong Hospital, affiliated to Fudan University; F. Yang, MD, PhD, Department of Orthopedics, Huadong Hospital, affiliated to Fudan University. Qun Cheng and Shangjin Lin are co-first authors of this article
| | - Hongli Shi
- From the Department of Osteoporosis and Bone Disease, Huadong Hospital, affiliated to Fudan University, Research Section of Geriatric Metabolic Bone Disease, Shanghai Geriatric Institute; the Department of Orthopedics, Huadong Hospital, affiliated to Fudan University; and the Central Laboratory, Huadong Hospital, affiliated to Fudan University, Shanghai, China.,Q. Cheng, MD, PhD, Department of Osteoporosis and Bone Disease, Huadong Hospital, affiliated to Fudan University, Research Section of Geriatric Metabolic Bone Disease, Shanghai Geriatric Institute; S. Lin, MD, Department of Orthopedics, Huadong Hospital, affiliated to Fudan University; B. Bi, MD, PhD, Central Lab, Huadong Hospital, affiliated to Fudan University; X. Jiang, MD, Department of Osteoporosis and Bone Disease, Huadong Hospital affiliated to Fudan University, Research Section of Geriatric Metabolic Bone Disease, Shanghai Geriatric Institute; H. Shi, MD, Department of Osteoporosis and Bone Disease, Huadong Hospital, affiliated to Fudan University, Research Section of Geriatric Metabolic Bone Disease, Shanghai Geriatric Institute; Y. Fan, MD, PhD, Department of Orthopedics, Huadong Hospital, affiliated to Fudan University; W. Lin, MD, Department of Orthopedics, Huadong Hospital, affiliated to Fudan University; Y. Zhu, MD, Department of Orthopedics, Huadong Hospital, affiliated to Fudan University; F. Yang, MD, PhD, Department of Orthopedics, Huadong Hospital, affiliated to Fudan University. Qun Cheng and Shangjin Lin are co-first authors of this article
| | - Yongqian Fan
- From the Department of Osteoporosis and Bone Disease, Huadong Hospital, affiliated to Fudan University, Research Section of Geriatric Metabolic Bone Disease, Shanghai Geriatric Institute; the Department of Orthopedics, Huadong Hospital, affiliated to Fudan University; and the Central Laboratory, Huadong Hospital, affiliated to Fudan University, Shanghai, China.,Q. Cheng, MD, PhD, Department of Osteoporosis and Bone Disease, Huadong Hospital, affiliated to Fudan University, Research Section of Geriatric Metabolic Bone Disease, Shanghai Geriatric Institute; S. Lin, MD, Department of Orthopedics, Huadong Hospital, affiliated to Fudan University; B. Bi, MD, PhD, Central Lab, Huadong Hospital, affiliated to Fudan University; X. Jiang, MD, Department of Osteoporosis and Bone Disease, Huadong Hospital affiliated to Fudan University, Research Section of Geriatric Metabolic Bone Disease, Shanghai Geriatric Institute; H. Shi, MD, Department of Osteoporosis and Bone Disease, Huadong Hospital, affiliated to Fudan University, Research Section of Geriatric Metabolic Bone Disease, Shanghai Geriatric Institute; Y. Fan, MD, PhD, Department of Orthopedics, Huadong Hospital, affiliated to Fudan University; W. Lin, MD, Department of Orthopedics, Huadong Hospital, affiliated to Fudan University; Y. Zhu, MD, Department of Orthopedics, Huadong Hospital, affiliated to Fudan University; F. Yang, MD, PhD, Department of Orthopedics, Huadong Hospital, affiliated to Fudan University. Qun Cheng and Shangjin Lin are co-first authors of this article
| | - Weilong Lin
- From the Department of Osteoporosis and Bone Disease, Huadong Hospital, affiliated to Fudan University, Research Section of Geriatric Metabolic Bone Disease, Shanghai Geriatric Institute; the Department of Orthopedics, Huadong Hospital, affiliated to Fudan University; and the Central Laboratory, Huadong Hospital, affiliated to Fudan University, Shanghai, China.,Q. Cheng, MD, PhD, Department of Osteoporosis and Bone Disease, Huadong Hospital, affiliated to Fudan University, Research Section of Geriatric Metabolic Bone Disease, Shanghai Geriatric Institute; S. Lin, MD, Department of Orthopedics, Huadong Hospital, affiliated to Fudan University; B. Bi, MD, PhD, Central Lab, Huadong Hospital, affiliated to Fudan University; X. Jiang, MD, Department of Osteoporosis and Bone Disease, Huadong Hospital affiliated to Fudan University, Research Section of Geriatric Metabolic Bone Disease, Shanghai Geriatric Institute; H. Shi, MD, Department of Osteoporosis and Bone Disease, Huadong Hospital, affiliated to Fudan University, Research Section of Geriatric Metabolic Bone Disease, Shanghai Geriatric Institute; Y. Fan, MD, PhD, Department of Orthopedics, Huadong Hospital, affiliated to Fudan University; W. Lin, MD, Department of Orthopedics, Huadong Hospital, affiliated to Fudan University; Y. Zhu, MD, Department of Orthopedics, Huadong Hospital, affiliated to Fudan University; F. Yang, MD, PhD, Department of Orthopedics, Huadong Hospital, affiliated to Fudan University. Qun Cheng and Shangjin Lin are co-first authors of this article
| | - Yuefeng Zhu
- From the Department of Osteoporosis and Bone Disease, Huadong Hospital, affiliated to Fudan University, Research Section of Geriatric Metabolic Bone Disease, Shanghai Geriatric Institute; the Department of Orthopedics, Huadong Hospital, affiliated to Fudan University; and the Central Laboratory, Huadong Hospital, affiliated to Fudan University, Shanghai, China.,Q. Cheng, MD, PhD, Department of Osteoporosis and Bone Disease, Huadong Hospital, affiliated to Fudan University, Research Section of Geriatric Metabolic Bone Disease, Shanghai Geriatric Institute; S. Lin, MD, Department of Orthopedics, Huadong Hospital, affiliated to Fudan University; B. Bi, MD, PhD, Central Lab, Huadong Hospital, affiliated to Fudan University; X. Jiang, MD, Department of Osteoporosis and Bone Disease, Huadong Hospital affiliated to Fudan University, Research Section of Geriatric Metabolic Bone Disease, Shanghai Geriatric Institute; H. Shi, MD, Department of Osteoporosis and Bone Disease, Huadong Hospital, affiliated to Fudan University, Research Section of Geriatric Metabolic Bone Disease, Shanghai Geriatric Institute; Y. Fan, MD, PhD, Department of Orthopedics, Huadong Hospital, affiliated to Fudan University; W. Lin, MD, Department of Orthopedics, Huadong Hospital, affiliated to Fudan University; Y. Zhu, MD, Department of Orthopedics, Huadong Hospital, affiliated to Fudan University; F. Yang, MD, PhD, Department of Orthopedics, Huadong Hospital, affiliated to Fudan University. Qun Cheng and Shangjin Lin are co-first authors of this article
| | - Fengjian Yang
- From the Department of Osteoporosis and Bone Disease, Huadong Hospital, affiliated to Fudan University, Research Section of Geriatric Metabolic Bone Disease, Shanghai Geriatric Institute; the Department of Orthopedics, Huadong Hospital, affiliated to Fudan University; and the Central Laboratory, Huadong Hospital, affiliated to Fudan University, Shanghai, China.,Q. Cheng, MD, PhD, Department of Osteoporosis and Bone Disease, Huadong Hospital, affiliated to Fudan University, Research Section of Geriatric Metabolic Bone Disease, Shanghai Geriatric Institute; S. Lin, MD, Department of Orthopedics, Huadong Hospital, affiliated to Fudan University; B. Bi, MD, PhD, Central Lab, Huadong Hospital, affiliated to Fudan University; X. Jiang, MD, Department of Osteoporosis and Bone Disease, Huadong Hospital affiliated to Fudan University, Research Section of Geriatric Metabolic Bone Disease, Shanghai Geriatric Institute; H. Shi, MD, Department of Osteoporosis and Bone Disease, Huadong Hospital, affiliated to Fudan University, Research Section of Geriatric Metabolic Bone Disease, Shanghai Geriatric Institute; Y. Fan, MD, PhD, Department of Orthopedics, Huadong Hospital, affiliated to Fudan University; W. Lin, MD, Department of Orthopedics, Huadong Hospital, affiliated to Fudan University; Y. Zhu, MD, Department of Orthopedics, Huadong Hospital, affiliated to Fudan University; F. Yang, MD, PhD, Department of Orthopedics, Huadong Hospital, affiliated to Fudan University. Qun Cheng and Shangjin Lin are co-first authors of this article
| |
Collapse
|
14
|
Ramai D, Lai J, Monzidelis C, Reddy S. Coronary Artery Development: Origin, Malformations, and Translational Vascular Reparative Therapy. J Cardiovasc Pharmacol Ther 2018; 23:292-300. [PMID: 29642708 DOI: 10.1177/1074248418769633] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
After thickening of the cardiac chamber walls during embryogenesis, oxygen and nutrients can no longer be adequately supplied to cardiac cells via passive diffusion; therefore, a primitive vascular network develops to supply these vital structures. This plexus further matures into coronary arteries and veins, which ensures continued development of the heart. Various models have been proposed to account for the growth of the coronary arteries. However, lineage-tracing studies in the last decade have identified 3 major sources, namely, the proepicardium, the sinus venosus, and endocardium. Although the exact contribution of each source remains unknown, the emerging model depicts alternative pathways and progenitor cells, which ensure successful coronary angiogenesis. We aim to explore the current trends in coronary artery development, the cellular and molecular signals regulating heart vascularization, and its implications for heart disease and vascular regeneration.
Collapse
Affiliation(s)
- Daryl Ramai
- Department of Medicine, The Brooklyn Hospital Center, Academic Affiliate of The Icahn School of Medicine at Mount Sinai, Clinical Affiliate of The Mount Sinai Hospital, Brooklyn, NY, USA
- Department of Anatomical Sciences, School of Medicine, St George’s University, Grenada, West Indies
| | - Jonathan Lai
- Department of Anatomical Sciences, School of Medicine, St George’s University, Grenada, West Indies
| | - Constantine Monzidelis
- Department of Medicine, The Brooklyn Hospital Center, Academic Affiliate of The Icahn School of Medicine at Mount Sinai, Clinical Affiliate of The Mount Sinai Hospital, Brooklyn, NY, USA
| | - Sarath Reddy
- Division of Cardiology, The Brooklyn Hospital Center, Academic Affiliate of The Icahn School of Medicine at Mount Sinai, Clinical Affiliate of The Mount Sinai Hospital, Brooklyn, NY, USA
| |
Collapse
|
15
|
Badimon L, Peña E, Arderiu G, Padró T, Slevin M, Vilahur G, Chiva-Blanch G. C-Reactive Protein in Atherothrombosis and Angiogenesis. Front Immunol 2018; 9:430. [PMID: 29552019 PMCID: PMC5840191 DOI: 10.3389/fimmu.2018.00430] [Citation(s) in RCA: 164] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Accepted: 02/16/2018] [Indexed: 12/11/2022] Open
Abstract
C-reactive protein (CRP) is a short pentraxin mainly found as a pentamer in the circulation, or as non-soluble monomers CRP (mCRP) in tissues, exerting different functions. This review is focused on discussing the role of CRP in cardiovascular disease, including recent advances on the implication of CRP and its forms specifically on the pathogenesis of atherothrombosis and angiogenesis. Besides its role in the humoral innate immune response, CRP contributes to cardiovascular disease progression by recognizing and binding multiple intrinsic ligands. mCRP is not present in the healthy vessel wall but it becomes detectable in the early stages of atherogenesis and accumulates during the progression of atherosclerosis. CRP inhibits endothelial nitric oxide production and contributes to plaque instability by increasing endothelial cell adhesion molecules expression, by promoting monocyte recruitment into the atheromatous plaque and by enzymatically binding to modified low-density lipoprotein. CRP also contributes to thrombosis, but depending on its form it elicits different actions. Pentameric CRP has no involvement in thrombogenesis, whereas mCRP induces platelet activation and thrombus growth. In addition, mCRP has apparently contradictory pro-angiogenic and anti-angiogenic effects determining tissue remodeling in the atherosclerotic plaque and in infarcted tissues. Overall, CRP contributes to cardiovascular disease by several mechanisms that deserve an in-depth analysis.
Collapse
Affiliation(s)
- Lina Badimon
- Cardiovascular Science Institute - ICCC, IIB-Sant Pau, Hospital de Sant Pau, Barcelona, Spain.,CiberCV, Institute Carlos III, Madrid, Spain
| | - Esther Peña
- Cardiovascular Science Institute - ICCC, IIB-Sant Pau, Hospital de Sant Pau, Barcelona, Spain.,CiberCV, Institute Carlos III, Madrid, Spain
| | - Gemma Arderiu
- Cardiovascular Science Institute - ICCC, IIB-Sant Pau, Hospital de Sant Pau, Barcelona, Spain
| | - Teresa Padró
- Cardiovascular Science Institute - ICCC, IIB-Sant Pau, Hospital de Sant Pau, Barcelona, Spain.,CiberCV, Institute Carlos III, Madrid, Spain
| | - Mark Slevin
- School of Healthcare Science, Manchester Metropolitan University, Manchester, United Kingdom
| | - Gemma Vilahur
- Cardiovascular Science Institute - ICCC, IIB-Sant Pau, Hospital de Sant Pau, Barcelona, Spain.,CiberCV, Institute Carlos III, Madrid, Spain
| | - Gemma Chiva-Blanch
- Cardiovascular Science Institute - ICCC, IIB-Sant Pau, Hospital de Sant Pau, Barcelona, Spain
| |
Collapse
|
16
|
Dhindsa DS, Khambhati J, Sandesara PB, Eapen DJ, Quyyumi AA. Biomarkers to Predict Cardiovascular Death. Card Electrophysiol Clin 2017; 9:651-664. [PMID: 29173408 DOI: 10.1016/j.ccep.2017.07.014] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
This article reviews biomarkers that have been shown to identify subjects at increased risk for cardiovascular death within the general population, in those with established coronary artery disease, and in those with heart failure. Use of biomarkers for risk stratification for sudden cardiac death continues to evolve. It seems that a multimarker strategy for risk stratification using simple measures of circulating proteins and usual clinical risk factors, particularly in patients with known coronary artery disease, can be used to identify patients at near-term risk of death. Whether similar strategies in the general population will prove to be cost-effective needs to be investigated.
Collapse
Affiliation(s)
- Devinder S Dhindsa
- Division of Cardiology, Department of Medicine, Emory University School of Medicine, 1462 Clifton Road Northeast, Suite 507, Atlanta, GA 30322, USA
| | - Jay Khambhati
- Division of Cardiology, Department of Medicine, Emory University School of Medicine, 1462 Clifton Road Northeast, Suite 507, Atlanta, GA 30322, USA
| | - Pratik B Sandesara
- Division of Cardiology, Department of Medicine, Emory University School of Medicine, 1462 Clifton Road Northeast, Suite 507, Atlanta, GA 30322, USA
| | - Danny J Eapen
- Division of Cardiology, Department of Medicine, Emory University School of Medicine, 1462 Clifton Road Northeast, Suite 507, Atlanta, GA 30322, USA
| | - Arshed A Quyyumi
- Division of Cardiology, Department of Medicine, Emory University School of Medicine, 1462 Clifton Road Northeast, Suite 507, Atlanta, GA 30322, USA.
| |
Collapse
|
17
|
Abstract
Vascular complications contribute significantly to morbidity and mortality of diabetes mellitus. The primary cause of vascular complications in diabetes mellitus is hyperglycaemia, associated with endothelial dysfunction and impaired neovascularization. Circulating endothelial progenitor cells was shown to play important roles in vascular repair and promoting neovascularization. In this review, we will demonstrate the individual effect of high glucose on endothelial progenitor cells. Endothelial progenitor cells isolated from healthy subjects exposed to high glucose conditions or endothelial progenitor cells isolated from diabetic patients exhibit reduced number of endothelial cell colony forming units, impaired abilities of differentiation, proliferation, adhesion and migration, tubulization, secretion, mobilization and homing, whereas enhanced senescence. Increased production of reactive oxygen species by the mitochondria seems to play a crucial role in high glucose-induced endothelial progenitor cells deficit. Later, we will review the agents that might be used to alleviate dysfunction of endothelial progenitor cells induced by high glucose. The conclusions are that the relationship between hyperglycaemia and endothelial progenitor cells dysfunction is only beginning to be recognized, and future studies should pay more attention to the haemodynamic environment of endothelial progenitor cells and ageing factors to discover novel treatment agents.
Collapse
Affiliation(s)
- Hongyan Kang
- 1 Key Laboratory for Biomechanics and Mechanobiology of the Ministry of Education, School of Biological Science and Medical Engineering, Beihang University, Beijing, China
| | - Xuejiao Ma
- 1 Key Laboratory for Biomechanics and Mechanobiology of the Ministry of Education, School of Biological Science and Medical Engineering, Beihang University, Beijing, China
| | - Jiajia Liu
- 1 Key Laboratory for Biomechanics and Mechanobiology of the Ministry of Education, School of Biological Science and Medical Engineering, Beihang University, Beijing, China
| | - Yubo Fan
- 1 Key Laboratory for Biomechanics and Mechanobiology of the Ministry of Education, School of Biological Science and Medical Engineering, Beihang University, Beijing, China
- 2 National Research Center for Rehabilitation Technical Aids, Beijing, China
| | - Xiaoyan Deng
- 1 Key Laboratory for Biomechanics and Mechanobiology of the Ministry of Education, School of Biological Science and Medical Engineering, Beihang University, Beijing, China
| |
Collapse
|
18
|
Endothelial progenitor cells in multiple myeloma neovascularization: a brick to the wall. Angiogenesis 2017; 20:443-462. [PMID: 28840415 DOI: 10.1007/s10456-017-9571-8] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2016] [Accepted: 07/31/2017] [Indexed: 12/12/2022]
Abstract
Multiple myeloma (MM) is characterized by the clonal expansion of plasma cells in the bone marrow that leads to events such as bone destruction, anaemia and renal failure. Despite the several therapeutic options available, there is still no effective cure, and the standard survival is up to 4 years. The evolution from the asymptomatic stage of monoclonal gammopathy of undetermined significance to MM and the progression of the disease itself are related to cellular and molecular alterations in the bone marrow microenvironment, including the development of the vasculature. Post-natal vasculogenesis is characterized by the recruitment to the tumour vasculature of bone marrow progenitors, known as endothelial progenitor cells (EPCs), which incorporate newly forming blood vessels and differentiate into endothelial cells. Several processes related to EPCs, such as recruitment, mobilization, adhesion and differentiation, are tightly controlled by cells and molecules in the bone marrow microenvironment. In this review, the bone marrow microenvironment and the mechanisms associated to the development of the neovasculature promoted by EPCs are discussed in detail in both a non-pathological scenario and in MM. The latest developments in therapy targeting the vasculature and EPCs in MM are also highlighted. The identification and characterization of the pathways relevant to the complex setting of MM are of utter importance to identify not only biomarkers for an early diagnosis and disease progression monitoring, but also to reveal intervention targets for more effective therapy directed to cancer cells and the endothelial mediators relevant to neovasculature development.
Collapse
|
19
|
Ghrelin Therapy Decreases Incidents of Intracranial Hemorrhage in Mice after Whole-Body Ionizing Irradiation Combined with Burn Trauma. Int J Mol Sci 2017; 18:ijms18081693. [PMID: 28771181 PMCID: PMC5578083 DOI: 10.3390/ijms18081693] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2017] [Revised: 07/17/2017] [Accepted: 07/27/2017] [Indexed: 12/30/2022] Open
Abstract
Nuclear industrial accidents and the detonation of nuclear devices cause a variety of damaging factors which, when their impacts are combined, produce complicated injuries challenging for medical treatment. Thus, trauma following acute ionizing irradiation (IR) can deteriorate the IR-induced secondary reactive metabolic and inflammatory impacts to dose-limiting tissues, such as bone marrow/lymphatic, gastrointestinal tissues, and vascular endothelial tissues, exacerbating the severity of the primary injury and decreasing survival from the exposure. Previously we first reported that ghrelin therapy effectively improved survival by mitigating leukocytopenia, thrombocytopenia, and bone-marrow injury resulting from radiation combined with burn trauma. This study was aimed at investigating whether radiation combined with burn trauma induced the cerebro-vascular impairment and intracranial hemorrhage that could be reversed by ghrelin therapy. When B6D2F1 female mice were exposed to 9.5 Gy Cobalt-60 γ-radiation followed by 15% total skin surface burn, cerebro-vascular impairment and intracranial hemorrhage as well as platelet depletion were observed. Ghrelin treatment after irradiation combined with burn trauma significantly decreased platelet depletion and brain hemorrhage. The results suggest that ghrelin treatment is an effective therapy for ionizing radiation combined with burn trauma.
Collapse
|
20
|
Samura M, Hosoyama T, Takeuchi Y, Ueno K, Morikage N, Hamano K. Therapeutic strategies for cell-based neovascularization in critical limb ischemia. J Transl Med 2017; 15:49. [PMID: 28235425 PMCID: PMC5324309 DOI: 10.1186/s12967-017-1153-4] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Accepted: 02/17/2017] [Indexed: 12/21/2022] Open
Abstract
Critical limb ischemia (CLI) causes severe ischemic rest pain, ulcer, and gangrene in the lower limbs. In spite of angioplasty and surgery, CLI patients without suitable artery inflow or enough vascular bed in the lesions are often forced to undergo amputation of a major limb. Cell-based therapeutic angiogenesis has the potential to treat ischemic lesions by promoting the formation of collateral vessel networks and the vascular bed. Peripheral blood mononuclear cells and bone marrow-derived mononuclear cells are the most frequently employed cell types in CLI clinical trials. However, the clinical outcomes of cell-based therapeutic angiogenesis using these cells have not provided the promised benefits for CLI patients, reinforcing the need for novel cell-based therapeutic angiogenesis strategies to cure untreatable CLI patients. Recent studies have demonstrated the possible enhancement of therapeutic efficacy in ischemic diseases by preconditioned graft cells. Moreover, judging from past clinical trials, the identification of adequate transplant timing and responders to cell-based therapy is important for improving therapeutic outcomes in CLI patients in clinical settings. Thus, to establish cell-based therapeutic angiogenesis as one of the most promising therapeutic strategies for CLI patients, its advantages and limitations should be taken into account.
Collapse
Affiliation(s)
- Makoto Samura
- Division of Vascular Surgery, Department of Surgery and Clinical Science, Yamaguchi University Graduate School of Medicine, 1-1-1 Minami-kogushi, Ube, Yamaguchi, 755-8505, Japan
| | - Tohru Hosoyama
- Center for Regenerative Medicine, Yamaguchi University Graduate School of Medicine, 1-1-1 Minami-kogushi, Ube, Yamaguchi, 755-8505, Japan. .,Department of Surgery and Clinical Science, Yamaguchi University Graduate School of Medicine, 1-1-1 Minami-kogushi, Ube, Yamaguchi, 755-8505, Japan. .,Center for Regenerative Medicine, Department of Surgery and Clinical Science, Yamaguchi University Graduate School of Medicine, 1-1-1 Minami-kogushi, Ube, Yamaguchi, 755-8505, Japan.
| | - Yuriko Takeuchi
- Division of Vascular Surgery, Department of Surgery and Clinical Science, Yamaguchi University Graduate School of Medicine, 1-1-1 Minami-kogushi, Ube, Yamaguchi, 755-8505, Japan
| | - Koji Ueno
- Department of Surgery and Clinical Science, Yamaguchi University Graduate School of Medicine, 1-1-1 Minami-kogushi, Ube, Yamaguchi, 755-8505, Japan
| | - Noriyasu Morikage
- Division of Vascular Surgery, Department of Surgery and Clinical Science, Yamaguchi University Graduate School of Medicine, 1-1-1 Minami-kogushi, Ube, Yamaguchi, 755-8505, Japan
| | - Kimikazu Hamano
- Department of Surgery and Clinical Science, Yamaguchi University Graduate School of Medicine, 1-1-1 Minami-kogushi, Ube, Yamaguchi, 755-8505, Japan
| |
Collapse
|
21
|
Endothelial progenitor cells accelerate the resolution of deep vein thrombosis. Vascul Pharmacol 2016; 83:10-6. [DOI: 10.1016/j.vph.2015.07.007] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2015] [Revised: 06/27/2015] [Accepted: 07/11/2015] [Indexed: 11/23/2022]
|
22
|
Cho H, Balaji S, Hone NL, Moles CM, Sheikh AQ, Crombleholme TM, Keswani SG, Narmoneva DA. Diabetic wound healing in a MMP9-/- mouse model. Wound Repair Regen 2016; 24:829-840. [PMID: 27292154 DOI: 10.1111/wrr.12453] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2015] [Accepted: 05/12/2016] [Indexed: 12/12/2022]
Abstract
Reduced mobilization of endothelial progenitor cells (EPCs) from the bone marrow (BM) and impaired EPC recruitment into the wound represent a fundamental deficiency in the chronic ulcers. However, mechanistic understanding of the role of BM-derived EPCs in cutaneous wound neovascularization and healing remains incomplete, which impedes development of EPC-based wound healing therapies. The objective of this study was to determine the role of EPCs in wound neovascularization and healing both under normal conditions and using single deficiency (EPC) or double-deficiency (EPC + diabetes) models of wound healing. MMP9 knockout (MMP9 KO) mouse model was utilized, where impaired EPC mobilization can be rescued by stem cell factor (SCF). The hypotheses were: (1) MMP9 KO mice exhibit impaired wound neovascularization and healing, which are further exacerbated with diabetes; (2) these impairments can be rescued by SCF administration. Full-thickness excisional wounds with silicone splints to minimize contraction were created on MMP9 KO mice with/without streptozotocin-induced diabetes in the presence or absence of tail-vein injected SCF. Wound morphology, vascularization, inflammation, and EPC mobilization and recruitment were quantified at day 7 postwounding. Results demonstrate no difference in wound closure and granulation tissue area between any groups. MMP9 deficiency significantly impairs wound neovascularization, increases inflammation, decreases collagen deposition, and decreases peripheral blood EPC (pb-EPC) counts when compared with wild-type (WT). Diabetes further increases inflammation, but does not cause further impairment in vascularization, as compared with MMP9 KO group. SCF improves neovascularization and increases EPCs to WT levels (both nondiabetic and diabetic MMP9 KO groups), while exacerbating inflammation in all groups. SCF rescues EPC-deficiency and impaired wound neovascularization in both diabetic and nondiabetic MMP9 KO mice. Overall, the results demonstrate that BM-derived EPCs play a significant role during wound neovascularization and that the SCF-based therapy with controlled inflammation could be a viable approach to enhance healing in chronic diabetic wounds.
Collapse
Affiliation(s)
- Hongkwan Cho
- Department of Biomedical, Chemical and Environmental Engineering, College of Engineering and Applied Sciences, University of Cincinnati, Cincinnati, Ohio
| | - Swathi Balaji
- Department of Biomedical, Chemical and Environmental Engineering, College of Engineering and Applied Sciences, University of Cincinnati, Cincinnati, Ohio.,Division of Pediatric Surgery, Baylor College of Medicine, Houston, Texas
| | - Natalie L Hone
- Department of Biomedical, Chemical and Environmental Engineering, College of Engineering and Applied Sciences, University of Cincinnati, Cincinnati, Ohio
| | - Chad M Moles
- Division of Pediatric Surgery, Baylor College of Medicine, Houston, Texas
| | - Abdul Q Sheikh
- Department of Biomedical, Chemical and Environmental Engineering, College of Engineering and Applied Sciences, University of Cincinnati, Cincinnati, Ohio
| | - Timothy M Crombleholme
- Children's Hospital Colorado and the University of Colorado School of Medicine, Aurora, Colorado
| | - Sundeep G Keswani
- Division of Pediatric Surgery, Baylor College of Medicine, Houston, Texas
| | - Daria A Narmoneva
- Department of Biomedical, Chemical and Environmental Engineering, College of Engineering and Applied Sciences, University of Cincinnati, Cincinnati, Ohio.
| |
Collapse
|
23
|
Takizawa S, Nagata E, Nakayama T, Masuda H, Asahara T. Recent Progress in Endothelial Progenitor Cell Culture Systems: Potential for Stroke Therapy. Neurol Med Chir (Tokyo) 2016; 56:302-9. [PMID: 27041632 PMCID: PMC4908073 DOI: 10.2176/nmc.ra.2016-0027] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Endothelial progenitor cells (EPCs) participate in endothelial repair and angiogenesis due to their abilities to differentiate into endothelial cells and to secrete protective cytokines and growth factors. Consequently, there is considerable interest in cell therapy with EPCs isolated from peripheral blood to treat various ischemic injuries. Quality and quantity-controlled culture systems to obtain mononuclear cells enriched in EPCs with well-defined angiogenic and anti-inflammatory phenotypes have recently been developed, and increasing evidence from animal models and clinical trials supports the idea that transplantation of EPCs contributes to the regenerative process in ischemic organs and is effective for the therapy of ischemic cerebral injury. Here, we briefly describe the general characteristics of EPCs, and we review recent developments in culture systems and applications of EPCs and EPC-enriched cell populations to treat ischemic stroke.
Collapse
Affiliation(s)
- Shunya Takizawa
- Department of Neurology, Tokai University School of Medicine
| | | | | | | | | |
Collapse
|
24
|
Bone marrow-derived cells in ocular neovascularization: contribution and mechanisms. Angiogenesis 2016; 19:107-18. [PMID: 26880135 PMCID: PMC4819501 DOI: 10.1007/s10456-016-9497-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2015] [Accepted: 02/02/2016] [Indexed: 01/16/2023]
Abstract
Ocular neovascularization often leads to severe vision loss. The role of bone marrow-derived cells (BMCs) in the development of ocular neovascularization, and its significance, is increasingly being recognized. In this review, we discuss their contribution and the potential mechanisms that mediate the effect of BMCs on the progression of ocular neovascularization. The sequence of events by which BMCs participate in ocular neovascularization can be roughly divided into four phases, i.e., mobilization, migration, adhesion and differentiation. This process is delicately regulated and liable to be affected by multiple factors. Cytokines such as vascular endothelial growth factor, granulocyte colony-stimulating factor and erythropoietin are involved in the mobilization of BMCs. Studies have also demonstrated a key role of cytokines such as stromal cell-derived factor-1, tumor necrosis factor-α, as well as vascular endothelial growth factor, in regulating the migration of BMCs. The adhesion of BMCs is mainly regulated by vascular cell adhesion molecule-1, intercellular adhesion molecule-1 and vascular endothelial cadherin. However, the mechanisms regulating the differentiation of BMCs are largely unknown at present. In addition, BMCs secrete cytokines that interact with the microenvironment of ocular neovascularization; their contribution to ocular neovascularization, especially choroidal neovascularization, can be aggravated by several risk factors. An extensive regulatory network is thought to modulate the role of BMCs in the development of ocular neovascularization. A comprehensive understanding of the involved mechanisms will help in the development of novel therapeutic strategies related to BMCs. In this review, we have limited the discussion to the recent progress in this field, especially the research conducted at our laboratory.
Collapse
|
25
|
Harrell DB, Caradonna E, Mazzucco L, Gudenus R, Amann B, Prochazka V, Giannoudis PV, Hendrich C, Jäger M, Krauspe R, Hernigou P. Non-Hematopoietic Essential Functions of Bone Marrow Cells: A Review of Scientific and Clinical Literature and Rationale for Treating Bone Defects. Orthop Rev (Pavia) 2015; 7:5691. [PMID: 26793290 PMCID: PMC4703908 DOI: 10.4081/or.2015.5691] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2014] [Accepted: 10/20/2015] [Indexed: 01/13/2023] Open
Abstract
Hematopoiesis as the only essential function of bone marrow cells has been challenged for several decades through basic science (in vitro and in vivo) and clinical data. Such work has shed light on two other essential functions of bone marrow cells: osteopoiesis and angio-genesis/vasculogenesis. Clinical utility of autologous concentrated bone marrow aspirate (CBMA) has demonstrated both safety and efficacy in treating bone defects. Moreover, CBMA has been shown to be comparable to the gold standard of iliac crest bone graft (ICBG), or autograft, with regard to being osteogenic and osteoinductive. ICBG is not considered an advanced therapy medicinal product (ATMP), but CBMA may become regulated as an ATMP. The European Medicines Agency Committee for Advanced Therapies (EMA:CAT) has issued a reflection paper (20 June 2014) in which reversal of the 2013 ruling that CBMA is a non-ATMP has been proposed. We review bone marrow cell involvement in osteopoiesis and angiogenesis/vasculogenesis to examine EMA:CAT 2013 decision to use CBMA for treatment of osteonecrosis (e.g, of the femoral head) should be considered a non-ATMP. This paper is intended to provide discussion on the 20 June 2014 reflection paper by reviewing two non-hematopoietic essential functions of bone marrow cells. Additionally, we provide clinical and scientific rationale for treating osteonecrosis with CBMA.
Collapse
Affiliation(s)
| | - Eugenio Caradonna
- Department of Cardiovascular Disease, Fondazione de Ricerca e Cura Giovanni e Paolo II, Campbasso, Italy
| | - Laura Mazzucco
- Blood Component and Regenerative Medicine Laboratory, Alessandria Hospital, Italy
| | | | | | - Vaclav Prochazka
- Interventional Neuroradiology and Angiology, University of Ostrava, Czech Republic
| | | | | | | | | | | |
Collapse
|
26
|
Heme-Mediated Induction of CXCL10 and Depletion of CD34+ Progenitor Cells Is Toll-Like Receptor 4 Dependent. PLoS One 2015; 10:e0142328. [PMID: 26555697 PMCID: PMC4640861 DOI: 10.1371/journal.pone.0142328] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2015] [Accepted: 10/19/2015] [Indexed: 11/19/2022] Open
Abstract
Plasmodium falciparum infection can cause microvascular dysfunction, cerebral encephalopathy and death if untreated. We have previously shown that high concentrations of free heme, and C-X-C motif chemokine 10 (CXCL10) in sera of malaria patients induce apoptosis in microvascular endothelial and neuronal cells contributing to vascular dysfunction, blood-brain barrier (BBB) damage and mortality. Endothelial progenitor cells (EPC) are microvascular endothelial cell precursors partly responsible for repair and regeneration of damaged BBB endothelium. Studies have shown that EPC's are depleted in severe malaria patients, but the mechanisms mediating this phenomenon are unknown. Toll-like receptors recognize a wide variety of pathogen-associated molecular patterns generated by pathogens such as bacteria and parasites. We tested the hypothesis that EPC depletion during malaria pathogenesis is a function of heme-induced apoptosis mediated by CXCL10 induction and toll-like receptor (TLR) activation. Heme and CXCL10 concentrations in plasma obtained from malaria patients were elevated compared with non-malaria subjects. EPC numbers were significantly decreased in malaria patients (P < 0.02) and TLR4 expression was significantly elevated in vivo. These findings were confirmed in EPC precursors in vitro; where it was determined that heme-induced apoptosis and CXCL10 expression was TLR4-mediated. We conclude that increased serum heme mediates depletion of EPC during malaria pathogenesis.
Collapse
|
27
|
Alvarado-Moreno JA, Hernandez-Lopez R, Chavez-Gonzalez A, Yoder MC, Rangel-Corona R, Isordia-Salas I, Hernandez-Juarez J, Cerbulo-Vazquez A, Gonzalez-Jimenez MA, Majluf-Cruz A. Endothelial colony-forming cells: Biological and functional abnormalities in patients with recurrent, unprovoked venous thromboembolic disease. Thromb Res 2015; 137:157-168. [PMID: 26597044 DOI: 10.1016/j.thromres.2015.11.005] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2015] [Revised: 10/27/2015] [Accepted: 11/06/2015] [Indexed: 11/16/2022]
Abstract
INTRODUCTION Endothelial cells (ECs) are an important component of the blood coagulation system because it maintains blood fluid. Because in patients with venous thromboembolic disease (VTD) a thrombophilic condition is not found sometimes, we investigated if endothelial colony-forming cells (ECFCs) from these patients have biological and functional abnormalities. PATIENTS AND METHODS Human mononuclear cells (MNCs) were obtained from peripheral blood from patients with VTD and controls to obtain ECFCs. These cells were assayed for their immunophenotype and electron microscopy characteristics and their ability to form capillary-like structures and to produce pro-inflammatory and pro-angiogenic cytokines and reactive oxygen species (ROS). RESULTS ECFCs appeared at 7 and 21 days of culture in VTD patients and controls, respectively. ECFCs increased 8-fold in patients and emerged 1 week earlier. No differences in the size of the colonies of ECFCs were found. Numbers and time of appearance of ECFCs was different between groups. ECFC-derived ECs (ECFC-ECs) of both groups expressed CD31, CD34, CD146, and CD-309 but none expressed CD45, CD14, or CD90. Interest CD34 was highly expressed in ECFC-ECs from patients. In both groups, ECFC-ECs showed similar capacity to form capillary-like structures but ECFC-ECs from patients had significant abnormalities in the mitochondrial membrane. We found a significant increase in ROS production in ECFC-ECs from patients. There were significant differences in cytokine profiles between VTD patients and controls. CONCLUSIONS We found a dysfunctional state in ECFC from VTD patients resembling some characteristics of dysfunctional ECs. These findings may help to understand some pathophysiological aspects of VTD.
Collapse
Affiliation(s)
- Jose Antonio Alvarado-Moreno
- Unidad de Investigacion Medica en Trombosis, Hemostasia y Aterogenesis, IMSS, Gabriel Mancera 222, Col. Del Valle, CP 03100 Mexico City, Mexico.
| | - Rubicel Hernandez-Lopez
- Unidad de Investigacion Medica en Trombosis, Hemostasia y Aterogenesis, IMSS, Gabriel Mancera 222, Col. Del Valle, CP 03100 Mexico City, Mexico.
| | - Antonieta Chavez-Gonzalez
- Unidad de Investigacion Medica en Enfermedades Oncologicas, IMSS, Av. Cuauhtemoc 330, Col. Doctores, CP 06700 Mexico City, Mexico.
| | - Mervin C Yoder
- Wells Center for Pediatric Research, Indiana University School of Medicine, 1044 W. Walnut Street, R4-W125, Indianapolis, IN 46202, USA.
| | - Rosalva Rangel-Corona
- Laboratorio de Oncología Celular, L-4P.B, UMIE-Z, FES-Zaragoza, UNAM, Batalla 5 de Mayo s/n Esq. Fuerte de Loreto, Col. Ejercito de Oriente. C.P. 09230 Mexico City, Mexico.
| | - Irma Isordia-Salas
- Unidad de Investigacion Medica en Trombosis, Hemostasia y Aterogenesis, IMSS, Gabriel Mancera 222, Col. Del Valle, CP 03100 Mexico City, Mexico.
| | - Jesus Hernandez-Juarez
- Unidad de Investigacion Medica en Trombosis, Hemostasia y Aterogenesis, IMSS, Gabriel Mancera 222, Col. Del Valle, CP 03100 Mexico City, Mexico.
| | - Arturo Cerbulo-Vazquez
- Hospital de la Mujer, Division de Enseñanza e Investigacion, Salvador Diaz Miron 374, Col. Santo Tomas, Delegacion Miguel Hidalgo, CP 11340 Mexico City, Mexico.
| | - Marco Antonio Gonzalez-Jimenez
- Departamento de Biologia Celular, Instituto Nacional de Perinatologia, Torre de Investigacion, Montes Urales #800 Lomas Virreyes, CP11000 Mexico City, Mexico.
| | - Abraham Majluf-Cruz
- Unidad de Investigacion Medica en Trombosis, Hemostasia y Aterogenesis, IMSS, Gabriel Mancera 222, Col. Del Valle, CP 03100 Mexico City, Mexico.
| |
Collapse
|
28
|
Cigarette Smoking Is Associated with a Lower Concentration of CD105(+) Bone Marrow Progenitor Cells. BONE MARROW RESEARCH 2015; 2015:914935. [PMID: 26346476 PMCID: PMC4546741 DOI: 10.1155/2015/914935] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/19/2015] [Revised: 07/06/2015] [Accepted: 07/22/2015] [Indexed: 12/20/2022]
Abstract
Cigarette smoking is associated with musculoskeletal degenerative disorders, delayed fracture healing, and nonunion. Bone marrow progenitor cells (BMPCs), known to express CD105, are important in local trophic and immunomodulatory activity and central to musculoskeletal healing/regeneration. We hypothesized that smoking is associated with lower levels of BMPC. Iliac bone marrow samples were collected from individuals aged 18–65 years during the first steps of pelvic surgery, under IRB approval with informed consent. Patients with active infectious or neoplastic disease, a history of cytotoxic or radiation therapy, primary or secondary metabolic bone disease, or bone marrow dysfunction were excluded. Separation process purity and the number of BMPCs recovered were assessed with FACS. BMPC populations in self-reported smokers and nonsmokers were compared using the two-tailed t-test. 13 smokers and 13 nonsmokers of comparable age and gender were included. The average concentration of BMPCs was 3.52 × 105/mL ± 2.45 × 105/mL for nonsmokers versus 1.31 × 105/mL ± 1.61 × 105/mL for smokers (t = 3.2, P = 0.004). This suggests that cigarette smoking is linked to a significant decrease in the concentration of BMPCs, which may contribute to the reduced regenerative capacity of smokers, with implications for musculoskeletal maintenance and repair.
Collapse
|
29
|
Yang S, Yang TS, Wang F, Su SB. High-mobility group box-1-Toll-Like receptor 4 axis mediates the recruitment of endothelial progenitor cells in alkali-induced corneal neovascularization. Int Immunopharmacol 2015. [PMID: 26202806 DOI: 10.1016/j.intimp.2015.07.013] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/09/2022]
Abstract
Endothelial progenitor cells (EPCs) promote both physiological and pathological neovascularization. Recently we found high-mobility group box-1 (HMGB1)-Toll-like receptor 4 (TLR4) signaling pathway promotes corneal neovascularization (CNV) induced by alkali in a mouse model. However, it is still unclear whether HMGB1-TLR4 promotes the mobility of EPCs. In this study, we explored the role of HMGB1-TLR4 signaling in EPC recruitment by modulating the activity of HMGB1-TLR4 signaling in the corneas of alkali-induced CNV mouse model. The level of EPC recruitment in injured corneas, as detected by flow cytometry, is increased and reaches the peak level 4days after injury. Activating TLR4 with exogenous HMGB1 or LPS enhances the EPC recruitment, whereas inhibiting the activity of HMGB1 and TLR4 with A-box (selective HMGB1 antagonist) or LPS-RS (selective TLR4 antagonist), respectively, reverses this phenotype. Moreover, the TLR4 mediated EPC recruitment is associated with up-regulation of stromal cell-derived factor-1 (SDF-1), a pivotal cytokine in EPC mobilization. Activation of TLR4 or HMGB1 leads to increased SDF-1 expression, while blocking TLR4 or HMGB1 inhibits the expression of SDF-1. Topical administration of AMD-3100, an antagonist of SDF-1 receptor, suppresses the TLR4-mediated EPC recruitment and ameliorates CNV. Our results indicated that activation of HMGB1-TLR4 signaling pathway promotes EPC recruitment in CNV, at least in part through up-regulation of SDF-1.
Collapse
Affiliation(s)
- Shuai Yang
- Department of Ophthalmology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China
| | - Tian-Shu Yang
- Department of Ophthalmology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China
| | - Fang Wang
- Department of Ophthalmology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China.
| | - Shao-Bo Su
- Department of Ophthalmology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China.
| |
Collapse
|
30
|
Zhu Z, Zhou X, He B, Dai T, Zheng C, Yang C, Zhu S, Zhu J, Zhu Q, Liu X. Ginkgo biloba extract (EGb 761) promotes peripheral nerve regeneration and neovascularization after acellular nerve allografts in a rat model. Cell Mol Neurobiol 2015; 35:273-82. [PMID: 25319407 DOI: 10.1007/s10571-014-0122-1] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2014] [Accepted: 09/30/2014] [Indexed: 12/11/2022]
Abstract
This study aimed to investigate whether or not ginkgo biloba extract (EGb 761) enhances peripheral nerve regeneration and vascularization after repair using acellular nerve allografts (ANA). Seventy-two Sprague-Dawley rats were randomly divided into three experimental groups: a unilateral 15-mm sciatic nerve defect was created and repaired with an autologous graft (autograft group); the same defect was repaired with an 18 mm ANA with an i.p. injection of normal saline for 10 days (saline group); and in the final group, the same defect was repaired with an 18 mm ANA with an i.p. injection of EGb 761 for 10 days (EGb 761 group). Axon outgrowth and vascularization were evaluated by immunocytochemistry 14 days post-implantation. The expression of genes associated with angiogenesis was analyzed by real-time polymerase chain reaction (PCR) seven days post-implantation. Compared with the saline group, rats in the EGb 761 group significantly increased the number of myelinated fibers and the average diameter of the nerves within the graft. There is no significant difference between the EGb 761 group and the autograft group. The expression of CD34 and NF200 was significantly higher in the EGb 761 group than in the saline group. Additionally, EGb 761 treatment increased the expression of several angiogenesis-related genes, including Vegf, SOX18, Prom 1, and IL-6. In conclusion, ANA repair with EGb 761 treatment demonstrates effects on peripheral nerve regeneration and vascularization that are equal to those of autologous graft repair, and that are superior to ANA repair alone.
Collapse
Affiliation(s)
- Zhaowei Zhu
- Department of Microsurgery and Hand Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Lee S, Yoon YS. Revisiting cardiovascular regeneration with bone marrow-derived angiogenic and vasculogenic cells. Br J Pharmacol 2014; 169:290-303. [PMID: 22250888 DOI: 10.1111/j.1476-5381.2012.01857.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Cell-based therapy has emerged as a promising therapy for cardiovascular disease. Particularly, bone marrow (BM)-derived cells have been most extensively investigated and have shown encouraging results in preclinical studies. Clinical trials, however, have demonstrated split results in post-myocardial infarction cardiac repair. Mechanistically, transdifferentiation of BM-derived cells into cardiovascular tissue demonstrated by earlier studies is now known to play a minor role in functional recovery, and humoral and paracrine effects turned out to be main mechanisms responsible for tissue regeneration and functional recovery. With this advancement in the mechanistic insight of BM-derived cells, new efforts have been made to identify cell population, which can be readily isolated and obtained in sufficient quantity without mobilization and have higher therapeutic potential. Recently, haematopoietic CD31(+) cells, which are more prevalent in bone marrow and peripheral blood, have been revealed to have angiogenic and vasculogenic activities and strong potential for therapeutic neovascularization in ischaemic tissues. This article will cover the recent advances in BM-derived cell-based therapy and implication of CD31(+) cells.
Collapse
Affiliation(s)
- Sangho Lee
- Division of Cardiology, Department of Medicine, Emory University School of Medicine, Atlanta, GA, USA
| | | |
Collapse
|
32
|
Qin T, Sun YY, Bai WW, Wang B, Xing YF, Liu Y, Yang RX, Zhao YX, Li JM. Period2 deficiency blunts hypoxia-induced mobilization and function of endothelial progenitor cells. PLoS One 2014; 9:e108806. [PMID: 25268972 PMCID: PMC4182576 DOI: 10.1371/journal.pone.0108806] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2014] [Accepted: 08/25/2014] [Indexed: 01/02/2023] Open
Abstract
BACKGROUND In the clinic, variations in circadian rhythm are evident in patients with cardiovascular disease, and the risk of cardiovascular events increases when rhythms are disrupted. In this study, we focused on the role of the circadian gene period2 (per2) in mobilization and function of endothelial progenitor cells (EPCs) in vitro and in vivo after myocardial infarction (MI) in mice. METHODS AND RESULTS MI was produced by surgical ligation of the left anterior descending coronary artery in mice with and without per2 deficiency. Trans-thoracic echocardiography was used to evaluate cardiac function in mice. Per2-/- mice with MI showed decreased cardiac function and increased infarct size. The number of CD34+ cells and capillary density were decreased in the myocardium of per2-/- mice on immunohistochemistry. Flow cytometry revealed decreased number of circulating EPCs in per2-/- mice after MI. In vitro, per2-/- EPCs showed decreased migration and tube formation capacity under hypoxia. Western blot analysis revealed inhibited activation of extracellular signal-regulated kinase and Akt signaling in the bone marrow of per2-/- mice and inhibited PI3K/Akt expression in per2-/- EPCs under hypoxia. CONCLUSIONS Per2 modulates EPC mobilization and function after MI, which is important to recovery after MI in mice.
Collapse
Affiliation(s)
- Tao Qin
- Department of Emergency Surgery, Qilu Hospital, Shandong University, Jinan, Shandong, China
| | - Yuan-Yuan Sun
- Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Health, Shandong University, Jinan, Shandong, China
- Department of Traditional Chinese Medicine, Qilu Hospital, Shandong University, Jinan, Shandong, China
| | - Wen-Wu Bai
- Department of Traditional Chinese Medicine, Qilu Hospital, Shandong University, Jinan, Shandong, China
| | - Bo Wang
- Department of Traditional Chinese Medicine, Qilu Hospital, Shandong University, Jinan, Shandong, China
| | - Yi-Fan Xing
- Department of Traditional Chinese Medicine, Qilu Hospital, Shandong University, Jinan, Shandong, China
| | - Yan Liu
- Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Health, Shandong University, Jinan, Shandong, China
| | - Rui-Xue Yang
- Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Health, Shandong University, Jinan, Shandong, China
| | - Yu-Xia Zhao
- Department of Traditional Chinese Medicine, Qilu Hospital, Shandong University, Jinan, Shandong, China
- * E-mail: (YXZ); (JML)
| | - Jian-Min Li
- Department of Orthopedics, Qilu Hospital, Shandong University, Jinan, Shandong, China
- * E-mail: (YXZ); (JML)
| |
Collapse
|
33
|
Jang IH, Heo SC, Kwon YW, Choi EJ, Kim JH. Role of formyl peptide receptor 2 in homing of endothelial progenitor cells and therapeutic angiogenesis. Adv Biol Regul 2014; 57:162-72. [PMID: 25304660 DOI: 10.1016/j.jbior.2014.09.011] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2014] [Accepted: 09/03/2014] [Indexed: 12/30/2022]
Abstract
Endothelial progenitor cells (EPCs) hold a great promise as a therapeutic mediator in treatment of ischemic disease conditions. The discovery of EPCs in adult blood has been a cause of significant enthusiasm in the field of endothelial cell research and numerous clinical trials have been expedited. After more than a decade of research in basic science and clinical applications, limitations and new strategies of EPC therapeutics have emerged. With various phenotypes, vague definitions, and uncertain distinction from hematopoietic cells, understanding EPC biology remains challenging. However, EPCs, still hold great hope for treatment of critical ischemic injury as low concern regarding safety can accelerate the clinical applications from basic findings. This review provides an introduction to EPC as cellular therapeutics, which highlights a recent finding that EPC homing was promoted through FPR2 signaling.
Collapse
Affiliation(s)
- Il Ho Jang
- Department of Physiology, School of Medicine, Pusan National University, Yangsan 626-870, Republic of Korea
| | - Soon Chul Heo
- Department of Physiology, School of Medicine, Pusan National University, Yangsan 626-870, Republic of Korea
| | - Yang Woo Kwon
- Department of Physiology, School of Medicine, Pusan National University, Yangsan 626-870, Republic of Korea
| | - Eun Jung Choi
- Department of Physiology, School of Medicine, Pusan National University, Yangsan 626-870, Republic of Korea
| | - Jae Ho Kim
- Department of Physiology, School of Medicine, Pusan National University, Yangsan 626-870, Republic of Korea; Research Institute of Convergence Biomedical Science and Technology, Pusan National University Yangsan Hospital, Yangsan 626-770, Gyeongsangnam-do, Republic of Korea.
| |
Collapse
|
34
|
Ashpole NM, Warrington JP, Mitschelen MC, Yan H, Sosnowska D, Gautam T, Farley JA, Csiszar A, Ungvari Z, Sonntag WE. Systemic influences contribute to prolonged microvascular rarefaction after brain irradiation: a role for endothelial progenitor cells. Am J Physiol Heart Circ Physiol 2014; 307:H858-68. [PMID: 25038144 DOI: 10.1152/ajpheart.00308.2014] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Whole brain radiation therapy (WBRT) induces profound cerebral microvascular rarefaction throughout the hippocampus. Despite the vascular loss and localized cerebral hypoxia, angiogenesis fails to occur, which subsequently induces long-term deficits in learning and memory. The mechanisms underlying the absence of vessel recovery after WBRT are unknown. We tested the hypotheses that vascular recovery fails to occur under control conditions as a result of loss of angiogenic drive in the circulation, chronic tissue inflammation, and/or impaired endothelial cell production/recruitment. We also tested whether systemic hypoxia, which is known to promote vascular recovery, reverses these chronic changes in inflammation and endothelial cell production/recruitment. Ten-week-old C57BL/6 mice were subjected to a clinical series of fractionated WBRT: 4.5-Gy fractions 2 times/wk for 4 wk. Plasma from radiated mice increased in vitro endothelial cell proliferation and adhesion compared with plasma from control mice, indicating that WBRT did not suppress the proangiogenic drive. Analysis of cytokine levels within the hippocampus revealed that IL-10 and IL-12(p40) were significantly increased 1 mo after WBRT; however, systemic hypoxia did not reduce these inflammatory markers. Enumeration of endothelial progenitor cells (EPCs) in the bone marrow and circulation indicated that WBRT reduced EPC production, which was restored with systemic hypoxia. Furthermore, using a bone marrow transplantation model, we determined that bone marrow-derived endothelial-like cells home to the hippocampus after systemic hypoxia. Thus, the loss of production and homing of EPCs have an important role in the prolonged vascular rarefaction after WBRT.
Collapse
Affiliation(s)
- Nicole M Ashpole
- Reynolds Oklahoma Center on Aging, Donald W. Reynolds Department of Geriatric Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| | - Junie P Warrington
- Reynolds Oklahoma Center on Aging, Donald W. Reynolds Department of Geriatric Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma; Oklahoma Center for Neuroscience, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma; and Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, Mississippi
| | - Matthew C Mitschelen
- Reynolds Oklahoma Center on Aging, Donald W. Reynolds Department of Geriatric Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| | - Han Yan
- Reynolds Oklahoma Center on Aging, Donald W. Reynolds Department of Geriatric Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| | - Danuta Sosnowska
- Reynolds Oklahoma Center on Aging, Donald W. Reynolds Department of Geriatric Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| | - Tripti Gautam
- Reynolds Oklahoma Center on Aging, Donald W. Reynolds Department of Geriatric Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| | - Julie A Farley
- Reynolds Oklahoma Center on Aging, Donald W. Reynolds Department of Geriatric Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| | - Anna Csiszar
- Reynolds Oklahoma Center on Aging, Donald W. Reynolds Department of Geriatric Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| | - Zoltan Ungvari
- Reynolds Oklahoma Center on Aging, Donald W. Reynolds Department of Geriatric Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| | - William E Sonntag
- Reynolds Oklahoma Center on Aging, Donald W. Reynolds Department of Geriatric Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma; Oklahoma Center for Neuroscience, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma; and
| |
Collapse
|
35
|
Abstract
PURPOSE Endothelial progenitor cells (EPCs) represent a population of novel precursor cells with known ability to participate in angiogenesis. Our previous studies have shown that local EPC therapy significantly increased angiogenesis and osteogenesis to promote fracture healing in an animal bone defect model. However, the cellular and molecular mechanisms by which EPC therapy promotes fracture healing remain largely unknown. The purpose of this study was to quantify local bone morphogenetic protein (BMP-2) expression after EPC therapy for a rat segmental bone defect, in hopes of further defining the potential mechanisms by which EPCs promote fracture healing. METHOD EPCs were isolated from the bone marrow of syngeneic rats and cultured ex vivo for 7-10 days before transfer to the bone defect. A total of 56 rats were studied. The treatment group received 1 × 10 EPCs on a gelfoam scaffold at the bone defect, and control animals received gelfoam/saline only. Before euthanasia, radiographs of the femur were performed. Animals were euthanized at 1, 2, 3, and 10 weeks, and specimens from the fracture gap area were collected, pulverized, and total messenger RNA (mRNA) was extracted. BMP-2 mRNA was measured by reverse transcriptase-polymerase chain reaction and quantified by VisionWorksLS. All measurements were performed in triplicate. RESULTS All EPC-treated bone defects healed radiographically by 10 weeks, whereas control-treated defects developed a nonunion. The expression of BMP-2 mRNA was significantly elevated in EPC-treated defects relative to controls at week 1 (EPC, 0.59 ± 0.10; control, 0.31 ± 0.08; P = 0.05), week 2 (EPC, 0.40 ± 0.06; control, 0.23 ± 0.04; P = 0.04), and week 3 (EPC, 0.33 ± 0.06; control, 0.18 ± 0.03; P = 0.04), but not at week 10 (EPC, 0.31 ± 0.06; control, 0.21 ± 0.04, P = 0.15). The highest mean expression of BMP-2 in EPC-treated defects was observed at 1 week, with a progressive decline in BMP-2 expression noted thereafter. CONCLUSIONS These findings demonstrate that EPC-treated bone defects demonstrate both radiographic healing and elevated expression of BMP-2 relative to control-treated defects. These results provide further insight into the potential mechanisms by which EPC therapy may promote fracture healing and provide further evidence to suggest that the trophic actions of EPC therapy may be a critical factor in their contribution to fracture healing.
Collapse
|
36
|
Silvestre JS, Smadja DM, Lévy BI. Postischemic revascularization: from cellular and molecular mechanisms to clinical applications. Physiol Rev 2013; 93:1743-802. [PMID: 24137021 DOI: 10.1152/physrev.00006.2013] [Citation(s) in RCA: 171] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
After the onset of ischemia, cardiac or skeletal muscle undergoes a continuum of molecular, cellular, and extracellular responses that determine the function and the remodeling of the ischemic tissue. Hypoxia-related pathways, immunoinflammatory balance, circulating or local vascular progenitor cells, as well as changes in hemodynamical forces within vascular wall trigger all the processes regulating vascular homeostasis, including vasculogenesis, angiogenesis, arteriogenesis, and collateral growth, which act in concert to establish a functional vascular network in ischemic zones. In patients with ischemic diseases, most of the cellular (mainly those involving bone marrow-derived cells and local stem/progenitor cells) and molecular mechanisms involved in the activation of vessel growth and vascular remodeling are markedly impaired by the deleterious microenvironment characterized by fibrosis, inflammation, hypoperfusion, and inhibition of endogenous angiogenic and regenerative programs. Furthermore, cardiovascular risk factors, including diabetes, hypercholesterolemia, hypertension, diabetes, and aging, constitute a deleterious macroenvironment that participates to the abrogation of postischemic revascularization and tissue regeneration observed in these patient populations. Thus stimulation of vessel growth and/or remodeling has emerged as a new therapeutic option in patients with ischemic diseases. Many strategies of therapeutic revascularization, based on the administration of growth factors or stem/progenitor cells from diverse sources, have been proposed and are currently tested in patients with peripheral arterial disease or cardiac diseases. This review provides an overview from our current knowledge regarding molecular and cellular mechanisms involved in postischemic revascularization, as well as advances in the clinical application of such strategies of therapeutic revascularization.
Collapse
|
37
|
Liu T, Liu S, Zhang K, Chen J, Huang N. Endothelialization of implanted cardiovascular biomaterial surfaces: The development fromin vitrotoin vivo. J Biomed Mater Res A 2013; 102:3754-72. [DOI: 10.1002/jbm.a.35025] [Citation(s) in RCA: 81] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2013] [Revised: 10/10/2013] [Accepted: 10/18/2013] [Indexed: 11/09/2022]
Affiliation(s)
- Tao Liu
- Key Lab. of Advanced Technology for Materials of Chinese Education Ministry; School of Materials Science and Engineering, Southwest Jiaotong University; Chengdu China
| | - Shihui Liu
- Key Lab. of Advanced Technology for Materials of Chinese Education Ministry; School of Materials Science and Engineering, Southwest Jiaotong University; Chengdu China
- Naton Institute of Medical Technology, Naton Medical Group; Peking China
| | - Kun Zhang
- Key Lab. of Advanced Technology for Materials of Chinese Education Ministry; School of Materials Science and Engineering, Southwest Jiaotong University; Chengdu China
| | - Junying Chen
- Key Lab. of Advanced Technology for Materials of Chinese Education Ministry; School of Materials Science and Engineering, Southwest Jiaotong University; Chengdu China
| | - Nan Huang
- Key Lab. of Advanced Technology for Materials of Chinese Education Ministry; School of Materials Science and Engineering, Southwest Jiaotong University; Chengdu China
| |
Collapse
|
38
|
Zhang Y, Li Y, Wang S, Han Z, Huang X, Li S, Chen F, Niu R, Dong JF, Jiang R, Zhang J. Transplantation of expanded endothelial colony-forming cells improved outcomes of traumatic brain injury in a mouse model. J Surg Res 2013; 185:441-9. [DOI: 10.1016/j.jss.2013.05.073] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2013] [Revised: 04/23/2013] [Accepted: 05/16/2013] [Indexed: 01/19/2023]
|
39
|
Warrington JP, Ashpole N, Csiszar A, Lee YW, Ungvari Z, Sonntag WE. Whole brain radiation-induced vascular cognitive impairment: mechanisms and implications. J Vasc Res 2013; 50:445-57. [PMID: 24107797 PMCID: PMC4309372 DOI: 10.1159/000354227] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2013] [Accepted: 07/05/2013] [Indexed: 01/31/2023] Open
Abstract
Mild cognitive impairment is a well-documented consequence of whole brain radiation therapy (WBRT) that affects 40-50% of long-term brain tumor survivors. The exact mechanisms for the decline in cognitive function after WBRT remain elusive and no treatment or preventative measures are available for use in the clinic. Here, we review recent findings indicating how changes in the neurovascular unit may contribute to the impairments in learning and memory. In addition to affecting neuronal development, WBRT induces profound capillary rarefaction within the hippocampus - a region of the brain important for learning and memory. Therapeutic strategies such as hypoxia, which restore the capillary density, result in the rescue of cognitive function. In addition to decreasing vascular density, WBRT impairs vasculogenesis and/or angiogenesis, which may also contribute to radiation-induced cognitive decline. Further studies aimed at uncovering the specific mechanisms underlying these WBRT-induced changes in the cerebrovasculature are essential for developing therapies to mitigate the deleterious effects of WBRT on cognitive function.
Collapse
Affiliation(s)
- Junie P. Warrington
- Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, MS 39216
| | - Nicole Ashpole
- Reynolds Oklahoma Center on Aging, Department of Geriatric Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104
| | - Anna Csiszar
- Reynolds Oklahoma Center on Aging, Department of Geriatric Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104
| | - Yong Woo Lee
- School of Biomedical Engineering and Sciences Virginia Polytechnic Institute and State University, Blacksburg, VA 24061
| | - Zoltan Ungvari
- Reynolds Oklahoma Center on Aging, Department of Geriatric Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104
| | - William E. Sonntag
- Reynolds Oklahoma Center on Aging, Department of Geriatric Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104
| |
Collapse
|
40
|
Tanaka R, Vaynrub M, Masuda H, Ito R, Kobori M, Miyasaka M, Mizuno H, Warren SM, Asahara T. Quality-control culture system restores diabetic endothelial progenitor cell vasculogenesis and accelerates wound closure. Diabetes 2013; 62:3207-17. [PMID: 23670975 PMCID: PMC3749357 DOI: 10.2337/db12-1621] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Delayed diabetic wound healing is, in part, the result of inadequate endothelial progenitor cell (EPC) proliferation, mobilization, and trafficking. Recently, we developed a serum-free functional culture system called the quality and quantity culture (QQc) system that enhances the number and vasculogenic potential of EPCs. We hypothesize that QQc restoration of diabetic EPC function will improve wound closure. To test this hypothesis, we measured diabetic c-kit(+)Sca-1(+)lin(-) (KSL) cell activity in vitro as well as the effect of KSL cell-adoptive transfer on the rate of euglycemic wound closure before and after QQc. KSL cells were magnetically sorted from control and streptozotocin-induced type I diabetic C57BL6J bone marrow. Freshly isolated control and diabetic KSL cells were cultured in QQc for 7 days and pre-QQc and post-QQc KSL function testing. The number of KSL cells significantly increased after QQc for both diabetic subjects and controls, and diabetic KSL increased vasculogenic potential above the fresh control KSL level. Similarly, fresh diabetic cells form fewer tubules, but QQc increases diabetic tubule formation to levels greater than that of fresh control cells (P < 0.05). Adoptive transfer of post-QQc diabetic KSL cells significantly enhances wound closure compared with fresh diabetic KSL cells and equaled wound closure of post-QQc control KSL cells. Post-QQc diabetic KSL enhancement of wound closure is mediated, in part, via a vasculogenic mechanism. This study demonstrates that QQc can reverse diabetic EPC dysfunction and achieve control levels of EPC function. Finally, post-QQc diabetic EPC therapy effectively improved euglycemic wound closure and may improve diabetic wound healing.
Collapse
Affiliation(s)
- Rica Tanaka
- Division of Regenerative Medicine, Department of Basic Clinical Science, Tokai University School of Medicine, Kanagawa, Japan
- Department of Plastic Surgery, Tokai University School of Medicine, Kanagawa, Japan
| | - Max Vaynrub
- Department of Plastic Surgery, Institute of Reconstructive Plastic Surgery Laboratories, New York University Medical Center, New York, New York
| | - Haruchika Masuda
- Division of Regenerative Medicine, Department of Basic Clinical Science, Tokai University School of Medicine, Kanagawa, Japan
| | - Rie Ito
- Division of Regenerative Medicine, Department of Basic Clinical Science, Tokai University School of Medicine, Kanagawa, Japan
| | - Michiru Kobori
- Division of Regenerative Medicine, Department of Basic Clinical Science, Tokai University School of Medicine, Kanagawa, Japan
| | - Muneo Miyasaka
- Department of Plastic and Reconstructive Surgery, Juntendo University School of Medicine, Tokyo, Japan
| | - Hiroshi Mizuno
- Department of Plastic Surgery, Tokai University School of Medicine, Kanagawa, Japan
| | - Stephen M. Warren
- Department of Plastic Surgery, Institute of Reconstructive Plastic Surgery Laboratories, New York University Medical Center, New York, New York
| | - Takayuki Asahara
- Division of Regenerative Medicine, Department of Basic Clinical Science, Tokai University School of Medicine, Kanagawa, Japan
- Corresponding authors: Takayuki Asahara, , and Stephen M. Warren,
| |
Collapse
|
41
|
Zhao Y, Yu P, Wu R, Ge Y, Wu J, Zhu J, Jia R. Renal cell carcinoma-adjacent tissues enhance mobilization and recruitment of endothelial progenitor cells to promote the invasion of the neoplasm. Biomed Pharmacother 2013; 67:643-9. [DOI: 10.1016/j.biopha.2013.06.009] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2013] [Accepted: 06/24/2013] [Indexed: 01/18/2023] Open
|
42
|
Grierson R, Meyer-Rüsenberg B, Kunst F, Berna MJ, Richard G, Thill M. Endothelial Progenitor Cells and Plasma Vascular Endothelial Growth Factor and Stromal Cell-Derived Factor-1 During Ranibizumab Treatment for Neovascular Age-Related Macular Degeneration. J Ocul Pharmacol Ther 2013; 29:530-8. [DOI: 10.1089/jop.2012.0013] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
- Rebecca Grierson
- Department of Ophthalmology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Birthe Meyer-Rüsenberg
- Department of Ophthalmology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Frank Kunst
- Department of Ophthalmology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Marc J. Berna
- Department of Internal Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Gisbert Richard
- Department of Ophthalmology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Michelle Thill
- Department of Ophthalmology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
43
|
Kim WS, Lee S, Yoon YS. Cardiovascular repair with bone marrow-derived cells. Blood Res 2013; 48:76-86. [PMID: 23826576 PMCID: PMC3698412 DOI: 10.5045/br.2013.48.2.76] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2013] [Revised: 06/11/2013] [Accepted: 06/13/2013] [Indexed: 12/31/2022] Open
Abstract
While bone marrow (BM)-derived cells have been comprehensively studied for their propitious pre-clinical results, clinical trials have shown controversial outcomes. Unlike previously acknowledged, more recent studies have now confirmed that humoral and paracrine effects are the key mechanisms for tissue regeneration and functional recovery, instead of transdifferentiation of BM-derived cells into cardiovascular tissues. The progression of the understanding of BM-derived cells has further led to exploring efficient methods to isolate and obtain, without mobilization, sufficient number of cell populations that would eventually have a higher therapeutic potential. As such, hematopoietic CD31+ cells, prevalent in both bone marrow and peripheral blood, have been discovered, in recent studies, to have angiogenic and vasculogenic activities and to show strong potential for therapeutic neovascularization in ischemic tissues. This article will discuss recent advancement on BM-derived cell therapy and the implication of newly discovered CD31+ cells.
Collapse
Affiliation(s)
- Woan-Sang Kim
- Division of Cardiology, Department of Medicine, Emory University School of Medicine, GA, USA
| | | | | |
Collapse
|
44
|
Dang XQ, He XJ, Chen HX, He QN, Yi ZW. Number and function of peripheral blood endothelial progenitor cells in Henoch-Schönlein purpura nephritis children with different degrees of renal vascular lesions. Exp Ther Med 2013; 5:870-874. [PMID: 23403796 PMCID: PMC3570088 DOI: 10.3892/etm.2012.863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2012] [Accepted: 12/07/2012] [Indexed: 11/10/2022] Open
Abstract
The aim of this study was to explore the correlation between different degrees of renal vascular lesions in children with Henoch-Schönlein purpura nephritis (HSPN) and changes in progenitor cell number and function in peripheral blood. Forty-eight HSPN patients were divided into three groups, mild, moderate and severe, according to the degree of renal vascular lesions. Peripheral blood mononuclear cells were isolated and cultured. Endothelial progenitor cells (EPCs) were identified by immunofluorescence assay. The number of EPCs and the migration and adhesion of EPCs were detected by flow cytometry. The numbers of peripheral blood CD34+, kinase insert domain receptor+ (KDR+) and CD133+ cells were lower in the severe and moderate vascular lesion groups compared with the mild vascular lesion group (all P<0.05) and were also lower in the severe vascular lesion group compared with the mild and moderate vascular lesion groups (all P<0.05). The adhesion and migration of EPCs were reduced in turn in the mild, moderate and severe groups. There were significant differences between the severe group and the mild and moderate groups (all P<0.05). Renal vascular lesions are involved in the occurrence and development of HSPN, while the number of EPCs, migration and adhesion of EPCs are important factors in renal vascular lesions.
Collapse
Affiliation(s)
- Xi-Qiang Dang
- Laboratory of Pediatric Nephrology, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, P.R. China
| | | | | | | | | |
Collapse
|
45
|
Maltais S, Joggerst SJ, Hatzopoulos A, DiSalvo TG, Zhao D, Sung HJ, Wang X, Byrne JG, Naftilan AJ. Stem cell therapy for chronic heart failure: an updated appraisal. Expert Opin Biol Ther 2013; 13:503-16. [PMID: 23289619 DOI: 10.1517/14712598.2013.749852] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
INTRODUCTION Significant advances have been made to understand the mechanisms involved in cardiac cell-based therapies. The early translational application of basic science knowledge has led to several animal and human clinical trials. The initial promising beneficial effect of stem cells on cardiac function restoration has been eclipsed by the inability of animal studies to translate into sustained clinical improvements in human clinical trials. AREAS COVERED In this review, the authors cover an updated overview of various stem cell populations used in chronic heart failure. A critical review of clinical trials conducted in advanced heart failure patients is proposed, and finally promising avenues for developments in the field of cardiac cell-based therapies are presented. EXPERT OPINION Several questions remain unanswered, and this limits our ability to understand basic mechanisms involved in stem cell therapeutics. Human studies have revealed critical unresolved issues. Further elucidation of the proper timing, mode delivery and prosurvival factors is imperative, if the field is to advance. The limited benefits seen to date are simply not enough if the potential for substantial recovery of nonfunctioning myocardium is to be realized.
Collapse
|
46
|
Uchikura Y, Matsubara K, Matsubara Y, Mori M, Nabeta M, Hashimoto H, Fujioka T, Hamada K, Nawa A. Nucleated red blood cells are involved in endothelial progenitor cell proliferation in umbilical venous blood of preeclamptic patients. HYPERTENSION RESEARCH IN PREGNANCY 2013. [DOI: 10.14390/jsshp.1.46] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Affiliation(s)
- Yuka Uchikura
- Department of Obstetrics and Gynecology, Ehime University School of Medicine
| | - Keiichi Matsubara
- Department of Obstetrics and Gynecology, Ehime University School of Medicine
| | - Yuko Matsubara
- Department of Obstetrics and Gynecology, Ehime University School of Medicine
| | - Miki Mori
- Department of Obstetrics and Gynecology, Ehime University School of Medicine
| | - Motowo Nabeta
- Department of Obstetrics and Gynecology, Ehime University School of Medicine
| | - Hisashi Hashimoto
- Department of Obstetrics and Gynecology, Ehime University School of Medicine
| | - Toru Fujioka
- Department of Obstetrics and Gynecology, Ehime University School of Medicine
| | - Katsuyuki Hamada
- Department of Obstetrics and Gynecology, Ehime University School of Medicine
| | - Akihiro Nawa
- Department of Obstetrics and Gynecology, Ehime University School of Medicine
| |
Collapse
|
47
|
Vascular Regeneration: Endothelial Progenitor Cell Therapy for Ischemic Diseases. Regen Med 2013. [DOI: 10.1007/978-94-007-5690-8_35] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022] Open
|
48
|
Lin CP, Lin FY, Huang PH, Chen YL, Chen WC, Chen HY, Huang YC, Liao WL, Huang HC, Liu PL, Chen YH. Endothelial progenitor cell dysfunction in cardiovascular diseases: role of reactive oxygen species and inflammation. BIOMED RESEARCH INTERNATIONAL 2012; 2013:845037. [PMID: 23484163 PMCID: PMC3591199 DOI: 10.1155/2013/845037] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/25/2012] [Accepted: 11/13/2012] [Indexed: 12/31/2022]
Abstract
Endothelial progenitor cells (EPCs) move towards injured endothelium or inflamed tissues and incorporate into foci of neovascularisation, thereby improving blood flow and tissue repair. Patients with cardiovascular diseases have been shown to exhibit reduced EPC number and function. It has become increasingly apparent that these changes may be effected in response to enhanced oxidative stress, possibly as a result of systemic and localised inflammatory responses. The interplay between inflammation and oxidative stress affects the initiation, progression, and complications of cardiovascular diseases. Recent studies suggest that inflammation and oxidative stress modulate EPC bioactivity. Clinical medications with anti-inflammatory and antioxidant properties, such as statins, thiazolidinediones, angiotensin II receptor 1 blockers, and angiotensin-converting enzyme inhibitors, are currently administered to patients with cardiovascular diseases. These medications appear to exert beneficial effects on EPC biology. This review focuses on EPC biology and explores the links between oxidative stress, inflammation, and development of cardiovascular diseases.
Collapse
Affiliation(s)
- Chih-Pei Lin
- Department of Biotechnology and Laboratory Science in Medicine and Institute of Biotechnology in Medicine, National Yang-Ming University, Taipei 112, Taiwan
- Department of Pathology and Laboratory Medicine, Department of Internal Medicine and Divisions of Biochemistry and Cardiology, Taipei Veterans General Hospital, Taipei 112, Taiwan
- School of Medicine and Cardiovascular Research Center, National Yang-Ming University, Taipei 112, Taiwan
| | - Feng-Yen Lin
- Department of Internal Medicine, School of Medicine, Taipei Medical University and Cardiovascular Research Center, Taipei Medical University Hospital, Taipei 110, Taiwan
| | - Po-Hsun Huang
- Department of Pathology and Laboratory Medicine, Department of Internal Medicine and Divisions of Biochemistry and Cardiology, Taipei Veterans General Hospital, Taipei 112, Taiwan
- School of Medicine and Cardiovascular Research Center, National Yang-Ming University, Taipei 112, Taiwan
- Faculty of Medicine and Institute of Clinical Medicine, National Yang-Ming University, Taipei 112, Taiwan
| | - Yuh-Lien Chen
- Department of Anatomy and Cell Biology, College of Medicine, National Taiwan University, Taipei 100, Taiwan
| | - Wen-Chi Chen
- Graduate Institute of Integrated Medicine, School of Chinese Medicine, College of Chinese Medicine and Department of Medical Laboratory Science and Biotechnology, College of Health Care, China Medical University, Taichung 404, Taiwan
- Departments of Urology, Obstetrics and Gynecology and Medical Research, Genetics Centre and Center for Personalized Medicine, China Medical University Hospital, Taichung 404, Taiwan
| | - Huey-Yi Chen
- Graduate Institute of Integrated Medicine, School of Chinese Medicine, College of Chinese Medicine and Department of Medical Laboratory Science and Biotechnology, College of Health Care, China Medical University, Taichung 404, Taiwan
- Departments of Urology, Obstetrics and Gynecology and Medical Research, Genetics Centre and Center for Personalized Medicine, China Medical University Hospital, Taichung 404, Taiwan
| | - Yu-Chuen Huang
- Graduate Institute of Integrated Medicine, School of Chinese Medicine, College of Chinese Medicine and Department of Medical Laboratory Science and Biotechnology, College of Health Care, China Medical University, Taichung 404, Taiwan
- Departments of Urology, Obstetrics and Gynecology and Medical Research, Genetics Centre and Center for Personalized Medicine, China Medical University Hospital, Taichung 404, Taiwan
| | - Wen-Ling Liao
- Graduate Institute of Integrated Medicine, School of Chinese Medicine, College of Chinese Medicine and Department of Medical Laboratory Science and Biotechnology, College of Health Care, China Medical University, Taichung 404, Taiwan
- Departments of Urology, Obstetrics and Gynecology and Medical Research, Genetics Centre and Center for Personalized Medicine, China Medical University Hospital, Taichung 404, Taiwan
| | - Huey-Chun Huang
- Graduate Institute of Integrated Medicine, School of Chinese Medicine, College of Chinese Medicine and Department of Medical Laboratory Science and Biotechnology, College of Health Care, China Medical University, Taichung 404, Taiwan
| | - Po-Len Liu
- Department of Respiratory Therapy, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Yung-Hsiang Chen
- Graduate Institute of Integrated Medicine, School of Chinese Medicine, College of Chinese Medicine and Department of Medical Laboratory Science and Biotechnology, College of Health Care, China Medical University, Taichung 404, Taiwan
- Departments of Urology, Obstetrics and Gynecology and Medical Research, Genetics Centre and Center for Personalized Medicine, China Medical University Hospital, Taichung 404, Taiwan
| |
Collapse
|
49
|
Zhao YH, Yuan B, Chen J, Feng DH, Zhao B, Qin C, Chen YF. Endothelial progenitor cells: therapeutic perspective for ischemic stroke. CNS Neurosci Ther 2012; 19:67-75. [PMID: 23230897 DOI: 10.1111/cns.12040] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2012] [Revised: 10/30/2012] [Accepted: 10/31/2012] [Indexed: 12/26/2022] Open
Abstract
Endothelial progenitor cells (EPCs), which can be cultured in vitro from mononuclear cells in peripheral blood or bone marrow, express both hematopoietic stem cell and endothelial cell markers on their surface. They are believed to participate in endothelial repair and postnatal angiogenesis due to their abilities of differentiating into endothelial cells and secreting protective cytokines and growth factors. Mounting evidence suggests that circulating EPCs are reduced and dysfunctional in various diseases including hypertension, diabetes, coronary heart disease, and ischemic stroke. Therefore, EPCs have been documented to be a potential biomarker for vascular diseases and a hopeful candidate for regenerative medicine. Ischemic stroke, as the major cause of disability and death, still has limited therapeutics based on the approaches of vascular recanalization or neuronal protection. Emerging evidence indicates that transplantation of EPCs is beneficial for the recovery of ischemic cerebral injury. EPC-based therapy could open a new avenue for ischemic cerebrovascular disease. Currently, clinical trials for evaluating EPC transfusion in treating ischemic stroke are underway. In this review, we summarize the general conceptions and the characteristics of EPCs, and highlight the recent research developments on EPCs. More importantly, the rationale, perspectives, and strategies for using them to treat ischemic stroke will be discussed.
Collapse
Affiliation(s)
- Yu-Hui Zhao
- Department of Neurology, the First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | | | | | | | | | | | | |
Collapse
|
50
|
Tamarat R, Lataillade JJ, Bey E, Gourmelon P, Benderitter M. Stem cell therapy: from bench to bedside. RADIATION PROTECTION DOSIMETRY 2012; 151:633-9. [PMID: 22969031 DOI: 10.1093/rpd/ncs160] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Several countries have increased efforts to develop medical countermeasures to protect against radiation toxicity due to acts of bioterrorism as well as cancer treatment. Both acute radiation injuries and delayed effects such as cutaneous effects and impaired wound repair depend, to some extent, on angiogenesis deficiency. Vascular damage influences levels of nutrients, oxygen available to skin tissue and epithelial cell viability. Consequently, the evolution of radiation lesions often becomes uncontrolled and surgery is the final option--amputation leading to a disability. Therefore, the development of strategies designed to promote healing of radiation injuries is a major therapeutic challenge. Adult mesenchymal stem cell therapy has been combined with surgery in some cases and not in others and successfully applied in patients with accidental radiation injuries. Although research in the field of radiation skin injury management has made substantial progress in the past 10 y, several strategies are still needed in order to enhance the beneficial effect of stem cell therapy and to counteract the deleterious effect of an irradiated tissue environment. This review summarises the current and evolving advances concerning basic and translational research based on stem cell therapy for the management of radiological burns.
Collapse
Affiliation(s)
- R Tamarat
- Institute of Radioprotection and Nuclear Safety (IRSN), DRPH/SRBE/LRTE, BP 17, Fontenay-aux-Roses Cedex 92262, France.
| | | | | | | | | |
Collapse
|