1
|
Colombo F, Guzzeloni V, Kizilirmak C, Brambilla F, Garcia-Manteiga JM, Tascini AS, Moalli F, Mercalli F, Ponzoni M, Mezzapelle R, Ferrarini M, Ferrero E, Visone R, Rasponi M, Bianchi ME, Zambrano S, Agresti A. In vitro models of the crosstalk between multiple myeloma and stromal cells recapitulate the mild NF-κB activation observed in vivo. Cell Death Dis 2024; 15:731. [PMID: 39370432 PMCID: PMC11456592 DOI: 10.1038/s41419-024-07038-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 08/21/2024] [Accepted: 08/28/2024] [Indexed: 10/08/2024]
Abstract
Multiple myeloma (MM) is linked to chronic NF-κB activity in myeloma cells, but this activity is generally considered a cell-autonomous property of the cancer cells. The precise extent of NF-κB activation and the contributions of the physical microenvironment and of cell-to-cell communications remain largely unknown. By quantitative immunofluorescence, we found that NF-κB is mildly and heterogeneously activated in a fraction of MM cells in human BMs, while only a minority of MM cells shows a strong activation. To gain quantitative insights on NF-κB activation in living MM cells, we combined advanced live imaging of endogenous p65 Venus-knocked-in in MM.1S and HS-5 cell lines to model MM and mesenchymal stromal cells (MSCs), cell co-cultures, microfluidics and custom microbioreactors to mimic the 3D-interactions within the bone marrow (BM) microenvironment. We found that i) reciprocal MM-MSC paracrine crosstalk and cell-to-scaffold interactions shape the inflammatory response in the BM; ii) the pro-inflammatory cytokine IL-1β, abundant in MM patients' plasma, activates MSCs, whose paracrine signals are responsible for strong NF-κB activation in a minority of MM cells; iii) IL-1β, but not TNF-α, activates NF-κB in vivo in BM-engrafted MM cells, while its receptor inhibitor Anakinra reduces the global NF-κB activation. We propose that NF-κB activation in the BM of MM patients is mild, restricted to a minority of cells and modulated by the interplay of restraining physical microenvironmental cues and activating IL-1β-dependent stroma-to-MM crosstalk.
Collapse
Affiliation(s)
- Federica Colombo
- Division of Genetics and Cell Biology, IRCCS Ospedale San Raffaele, Milan, Italy
- Department of Electronics, Information and Bioengineering, Politecnico di Milano, Milan, Italy
| | - Virginia Guzzeloni
- Division of Experimental Oncology, IRCCS Ospedale San Raffaele, Milan, Italy
- Universita' Vita-Salute San Raffaele, Milan, Italy
| | - Cise Kizilirmak
- Division of Genetics and Cell Biology, IRCCS Ospedale San Raffaele, Milan, Italy
| | - Francesca Brambilla
- Division of Genetics and Cell Biology, IRCCS Ospedale San Raffaele, Milan, Italy
| | | | - Anna Sofia Tascini
- Universita' Vita-Salute San Raffaele, Milan, Italy
- Center for Omics Sciences, IRCCS Ospedale San Raffaele, Milan, Italy
| | - Federica Moalli
- Division of Immunology, Transplantation and Infectious Diseases, IRCCS Ospedale San Raffaele, Milan, Italy
| | | | | | - Rosanna Mezzapelle
- Division of Genetics and Cell Biology, IRCCS Ospedale San Raffaele, Milan, Italy
- Universita' Vita-Salute San Raffaele, Milan, Italy
| | - Marina Ferrarini
- B-Cell Neoplasia Unit, Division of Experimental Oncology, IRCCS Ospedale San Raffaele, Milan, Italy
| | - Elisabetta Ferrero
- B-Cell Neoplasia Unit, Division of Experimental Oncology, IRCCS Ospedale San Raffaele, Milan, Italy
| | - Roberta Visone
- Department of Electronics, Information and Bioengineering, Politecnico di Milano, Milan, Italy
| | - Marco Rasponi
- Department of Electronics, Information and Bioengineering, Politecnico di Milano, Milan, Italy
| | - Marco E Bianchi
- Division of Genetics and Cell Biology, IRCCS Ospedale San Raffaele, Milan, Italy
- Universita' Vita-Salute San Raffaele, Milan, Italy
| | - Samuel Zambrano
- Division of Genetics and Cell Biology, IRCCS Ospedale San Raffaele, Milan, Italy.
- Universita' Vita-Salute San Raffaele, Milan, Italy.
| | - Alessandra Agresti
- Division of Genetics and Cell Biology, IRCCS Ospedale San Raffaele, Milan, Italy.
- Division of Immunology, Transplantation and Infectious Diseases, IRCCS Ospedale San Raffaele, Milan, Italy.
| |
Collapse
|
2
|
Yi W, Dziadowicz SA, Mangano RS, Wang L, McBee J, Frisch SM, Hazlehurst LA, Adjeroh DA, Hu G. Molecular Signatures of CB-6644 Inhibition of the RUVBL1/2 Complex in Multiple Myeloma. Int J Mol Sci 2024; 25:9022. [PMID: 39201707 PMCID: PMC11354775 DOI: 10.3390/ijms25169022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 08/09/2024] [Accepted: 08/18/2024] [Indexed: 09/03/2024] Open
Abstract
Multiple myeloma is the second most hematological cancer. RUVBL1 and RUVBL2 form a subcomplex of many chromatin remodeling complexes implicated in cancer progression. As an inhibitor specific to the RUVBL1/2 complex, CB-6644 exhibits remarkable anti-tumor activity in xenograft models of Burkitt's lymphoma and multiple myeloma (MM). In this work, we defined transcriptional signatures corresponding to CB-6644 treatment in MM cells and determined underlying epigenetic changes in terms of chromatin accessibility. CB-6644 upregulated biological processes related to interferon response and downregulated those linked to cell proliferation in MM cells. Transcriptional regulator inference identified E2Fs as regulators for downregulated genes and MED1 and MYC as regulators for upregulated genes. CB-6644-induced changes in chromatin accessibility occurred mostly in non-promoter regions. Footprinting analysis identified transcription factors implied in modulating chromatin accessibility in response to CB-6644 treatment, including ATF4/CEBP and IRF4. Lastly, integrative analysis of transcription responses to various chemical compounds of the molecular signature genes from public gene expression data identified CB-5083, a p97 inhibitor, as a synergistic candidate with CB-6644 in MM cells, but experimental validation refuted this hypothesis.
Collapse
Affiliation(s)
- Weijun Yi
- Department of Microbiology, Immunology & Cell Biology, West Virginia University, Morgantown, WV 26505, USA; (W.Y.); (S.A.D.); (R.S.M.); (L.W.); (J.M.)
- Lane Department of Computer Science & Electrical Engineering, West Virginia University, Morgantown, WV 26506, USA
| | - Sebastian A. Dziadowicz
- Department of Microbiology, Immunology & Cell Biology, West Virginia University, Morgantown, WV 26505, USA; (W.Y.); (S.A.D.); (R.S.M.); (L.W.); (J.M.)
| | - Rachel S. Mangano
- Department of Microbiology, Immunology & Cell Biology, West Virginia University, Morgantown, WV 26505, USA; (W.Y.); (S.A.D.); (R.S.M.); (L.W.); (J.M.)
- Division of Clinical Pharmacology, Departments of Medicine and Pharmacology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Lei Wang
- Department of Microbiology, Immunology & Cell Biology, West Virginia University, Morgantown, WV 26505, USA; (W.Y.); (S.A.D.); (R.S.M.); (L.W.); (J.M.)
| | - Joseph McBee
- Department of Microbiology, Immunology & Cell Biology, West Virginia University, Morgantown, WV 26505, USA; (W.Y.); (S.A.D.); (R.S.M.); (L.W.); (J.M.)
| | - Steven M. Frisch
- Department of Biochemistry and Molecular Medicine, West Virginia University, Morgantown, WV 26506, USA;
| | - Lori A. Hazlehurst
- Department of Pharmaceutical Sciences, School of Pharmacy, West Virginia University, Morganton, WV 26506, USA;
- WVU Cancer Institute, West Virginia University, Morgantown, WV 26506, USA
| | - Donald A. Adjeroh
- Lane Department of Computer Science & Electrical Engineering, West Virginia University, Morgantown, WV 26506, USA
| | - Gangqing Hu
- Department of Microbiology, Immunology & Cell Biology, West Virginia University, Morgantown, WV 26505, USA; (W.Y.); (S.A.D.); (R.S.M.); (L.W.); (J.M.)
- WVU Cancer Institute, West Virginia University, Morgantown, WV 26506, USA
| |
Collapse
|
3
|
Zheleznyak A, Tang R, Duncan K, Manion B, Liang K, Xu B, Vanover A, Ghai A, Prior J, Lees S, Achilefu S, Kelly K, Shokeen M. Development of New CD38 Targeted Peptides for Cancer Imaging. Mol Imaging Biol 2024; 26:738-752. [PMID: 38480650 PMCID: PMC11282151 DOI: 10.1007/s11307-024-01901-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 02/15/2024] [Accepted: 02/20/2024] [Indexed: 04/18/2024]
Abstract
PURPOSE Multiple myeloma (MM) affects over 35,000 patients each year in the US. There remains a need for versatile Positron Emission Tomography (PET) tracers for the detection, accurate staging, and monitoring of treatment response of MM that have optimal specificity and translational attributes. CD38 is uniformly overexpressed in MM and thus represents an ideal target to develop CD38-targeted small molecule PET radiopharmaceuticals to address these challenges. PROCEDURES Using phage display peptide libraries and pioneering algorithms, we identified novel CD38 specific peptides. Imaging bioconjugates were synthesized using solid phase peptide chemistry, and systematically analyzed in vitro and in vivo in relevant MM systems. RESULTS The CD38-targeted bioconjugates were radiolabeled with copper-64 (64Cu) with100% radiochemical purity and an average specific activity of 3.3 - 6.6 MBq/nmol. The analog NODAGA-PEG4-SL022-GGS (SL022: Thr-His-Tyr-Pro-Ile-Val-Ile) had a Kd of 7.55 ± 0.291 nM and was chosen as the lead candidate. 64Cu-NODAGA-PEG4-SL022-GGS demonstrated high binding affinity to CD38 expressing human myeloma MM.1S-CBR-GFP-WT cells, which was blocked by the non-radiolabeled version of the peptide analog and anti-CD38 clinical antibodies, daratumumab and isatuximab, by 58%, 73%, and 78%, respectively. The CD38 positive MM.1S-CBR-GFP-WT cells had > 68% enhanced cellular binding when compared to MM.1S-CBR-GFP-KO cells devoid of CD38. Furthermore, our new CD38-targeted radiopharmaceutical allowed visualization of tumors located in marrow rich bones, remaining there for up to 4 h. Clearance from non-target organs occurred within 60 min. Quantitative PET data from a murine disseminated tumor model showed significantly higher accumulation in the bones of tumor-bearing animals compared to tumor-naïve animals (SUVmax 2.06 ± 0.4 versus 1.24 ± 0.4, P = 0.02). Independently, tumor uptake of the target compound was significantly higher (P = 0.003) compared to the scrambled peptide, 64Cu-NODAGA-PEG4-SL041-GGS (SL041: Thr-Tyr-His-Ile-Pro-Ile-Val). The subcutaneous MM model demonstrated significantly higher accumulation in tumors compared to muscle at 1 and 4 h after tracer administration (SUVmax 0.8 ± 0.2 and 0.14 ± 0.04, P = 0.04 at 1 h; SUVmax 0.89 ± 0.01 and 0.09 ± 0.01, P = 0.0002 at 4 h). CONCLUSIONS The novel CD38-targeted, radiolabeled bioconjugates were specific and allowed visualization of MM, providing a starting point for the clinical translation of such tracers for the detection of MM.
Collapse
Affiliation(s)
- Alexander Zheleznyak
- Department of Radiology, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Rui Tang
- Department of Radiology, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Kathleen Duncan
- Department of Radiology, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Brad Manion
- Department of Radiology, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Kexian Liang
- Department of Radiology, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Baogang Xu
- Department of Neurosurgery, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Alexander Vanover
- Department of Radiology, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Anchal Ghai
- Department of Biomedical Engineering, UT Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Julie Prior
- Department of Radiology, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Stephen Lees
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA, 22908, USA
| | - Samuel Achilefu
- Department of Biomedical Engineering, UT Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Kimberly Kelly
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA, 22908, USA
| | - Monica Shokeen
- Department of Radiology, Washington University School of Medicine, St. Louis, MO, 63110, USA.
- Alvin J. Siteman Cancer Center, Washington University School of Medicine and Barnes-Jewish Hospital, St. Louis, MO, 63110, USA.
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, MO, 63110, USA.
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA.
| |
Collapse
|
4
|
Pérez M, Buey B, Corral P, Giraldos D, Latorre E. Microbiota-Derived Short-Chain Fatty Acids Boost Antitumoral Natural Killer Cell Activity. J Clin Med 2024; 13:3885. [PMID: 38999461 PMCID: PMC11242436 DOI: 10.3390/jcm13133885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 06/21/2024] [Accepted: 06/30/2024] [Indexed: 07/14/2024] Open
Abstract
Background: The intestinal microbiota can regulate numerous host functions, including the immune response. Through fermentation, the microbiota produces and releases microbial metabolites such as short-chain fatty acids (SCFAs), which can affect host homeostasis. There is growing evidence that the gut microbiome can have a major impact on cancer. Specific gut microbial composition and metabolites are associated with tumor status in the host. However, their effects on the antitumor response have scarcely been investigated. Natural killer (NK) cells play an important role in antitumor immunity due to their ability to directly identify and eliminate tumor cells. Methods: The aim of this study was to investigate the effects of SCFAs on antitumoral NK cell activity, using NK-92 cell line. Results: Here, we describe how SCFAs can boost antitumoral NK cell activity. The SCFAs induced the release of NK extracellular vesicles and reduced the secretion of the anti-inflammatory cytokine IL-10. The SCFAs also increased the cytotoxicity of the NK cells against multiple myeloma cells. Conclusions: Our results indicate, for the first time, the enormous potential of SCFAs in regulating antitumoral NK cell defense, where modulation of the SCFAs' production could play a fundamental role in cancer immunotherapy.
Collapse
Affiliation(s)
- Marina Pérez
- Departamento de Bioquímica y Biología Molecular y Celular, Facultad de Ciencias, Universidad de Zaragoza, 50009 Zaragoza, Spain
| | - Berta Buey
- Departamento de Farmacología, Fisiología y Medicina Legal y Forense, Facultad de Veterinaria, Universidad de Zaragoza, 50013 Zaragoza, Spain
| | - Pilar Corral
- Departamento de Bioquímica y Biología Molecular y Celular, Facultad de Ciencias, Universidad de Zaragoza, 50009 Zaragoza, Spain
| | - David Giraldos
- Departamento de Bioquímica y Biología Molecular y Celular, Facultad de Ciencias, Universidad de Zaragoza, 50009 Zaragoza, Spain
| | - Eva Latorre
- Departamento de Bioquímica y Biología Molecular y Celular, Facultad de Ciencias, Universidad de Zaragoza, 50009 Zaragoza, Spain
- Instituto de Investigación Sanitaria de Aragón (IIS Aragón), 50009 Zaragoza, Spain
- Instituto Agroalimentario de Aragón (IA2), 50013 Zaragoza, Spain
| |
Collapse
|
5
|
Williams AL, Scorzo AV, Strawbridge RR, Davis SC, Niedre M. Two-color diffuse in vivo flow cytometer. JOURNAL OF BIOMEDICAL OPTICS 2024; 29:065003. [PMID: 38818515 PMCID: PMC11138342 DOI: 10.1117/1.jbo.29.6.065003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 04/26/2024] [Accepted: 05/14/2024] [Indexed: 06/01/2024]
Abstract
Significance Hematogenous metastasis is mediated by circulating tumor cells (CTCs) and CTC clusters (CTCCs). We recently developed "diffuse in vivo flow cytometry" (DiFC) to detect fluorescent protein (FP) expressing CTCs in small animals. Extending DiFC to allow detection of two FPs simultaneously would allow concurrent study of different CTC sub-populations or heterogeneous CTCCs in the same animal. Aim The goal of this work was to develop and validate a two-color DiFC system capable of non-invasively detecting circulating cells expressing two distinct FPs. Approach A DiFC instrument was designed and built to detect cells expressing either green FP (GFP) or tdTomato. We tested the instrument in tissue-mimicking flow phantoms in vitro and in multiple myeloma bearing mice in vivo. Results In phantoms, we could accurately differentiate GFP+ and tdTomato+ CTCs and CTCCs. In tumor-bearing mice, CTC numbers expressing both FPs increased during disease. Most CTCCs (86.5%) expressed single FPs with the remainder both FPs. These data were supported by whole-body hyperspectral fluorescence cryo-imaging of the mice. Conclusions We showed that two-color DiFC can detect two populations of CTCs and CTCCs concurrently. This instrument could allow study of tumor development and response to therapies for different sub-populations in the same animal.
Collapse
Affiliation(s)
- Amber L. Williams
- Northeastern University, Department of Bioengineering, Boston, Massachusetts, United States
| | - Augustino V. Scorzo
- Dartmouth College, Thayer School of Engineering, Hanover, New Hampshire, United States
| | | | - Scott C. Davis
- Dartmouth College, Thayer School of Engineering, Hanover, New Hampshire, United States
| | - Mark Niedre
- Northeastern University, Department of Bioengineering, Boston, Massachusetts, United States
| |
Collapse
|
6
|
Dorfman DM, Devitt KA, Cui W, Bashleben C, Naharro ECF, Hedley B, Hupp M, Karlon WJ, Murphy CE, Cherian S, Olteanu H, Seifert RP, Rosado FN, Linden MA. PCNEO, a New Proficiency Testing Program for Flow Cytometric Analysis of Plasma Cell Neoplasms From the College of American Pathologists Diagnostic Immunology and Flow Cytometry Committee. Arch Pathol Lab Med 2024; 148:699-704. [PMID: 37776247 DOI: 10.5858/arpa.2023-0035-cp] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/18/2023] [Indexed: 10/02/2023]
Abstract
CONTEXT.— In 2018 the College of American Pathologists Diagnostic Immunology and Flow Cytometry Committee designed and implemented a new plasma cell neoplasia flow cytometry proficiency testing program-PCNEO-to allow clinical flow cytometry laboratories to monitor and assess their performance compared with a peer group. OBJECTIVE.— To report the results from the first 4 years of the PCNEO program. DESIGN.— Program participants were sent 2 sets of challenges per year, each including 1 wet challenge and 2 dry challenges, with associated clinical and laboratory findings. The wet challenges were composed of myeloma cell line specimens (with or without dilution in preserved whole blood) for flow cytometric analysis. The dry (paper) challenges were composed of clinical case summaries and images of flow cytometric test results from various flow cytometry laboratories of committee members. RESULTS.— A total of 116 to 145 laboratories from 17 countries enrolled in the proficiency testing program. For the wet challenges, almost all participants (97%-100%; cumulative, 98.2%) correctly identified the presence of neoplastic plasma cell populations based on flow cytometric analysis of undiluted myeloma cell lines. Slightly fewer participants (89.0%-97.4%; cumulative, 95.2%) correctly identified the presence of neoplastic plasma cell populations based on flow cytometric analysis of diluted myeloma cell lines (10% or 50% dilutions into peripheral blood) intended to better represent a typical clinical sample. There was generally agreement among 80% or more of participants for positive or negative staining for CD38, CD138, CD19, CD20, and surface and cytoplasmic κ and λ light chains. Similarly, 84% to 100% of participants were able to correctly identify the presence of neoplastic plasma cell populations in paper challenges, including the presence of small, neoplastic plasma cell populations (0.01%-5.0% clonal plasma cells) and the presence of nonneoplastic plasma cell populations (correctly identified by 91%-96% of participants). CONCLUSIONS.— Participant performance in the new proficiency testing program was excellent overall, with the vast majority of participants able to perform flow cytometric analysis and identify neoplastic plasma cell populations and to identify small plasma cell clones or expanded populations of reactive plasma cells in dry challenge flow cytometry results. This program will allow laboratories to verify the accuracy of their testing program and test interpretations for the assessment of patients suspected of having a plasma cell neoplasm.
Collapse
Affiliation(s)
- David M Dorfman
- From the Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts (Dorfman)
| | - Katherine A Devitt
- the Department of Pathology and Laboratory Medicine, University of Vermont Medical Center, Burlington (Devitt)
| | - Wei Cui
- the Department of Pathology and Laboratory Medicine, University of Kansas Health System, Kansas City (Cui)
| | - Christine Bashleben
- Laboratory Improvement Programs, Surveys, College of American Pathologists, Northfield, Illinois (Bashleben)
| | - Elena C Frye Naharro
- the Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis (Naharro, Hupp, Linden)
| | - Benjamin Hedley
- the Department of Pathology and Laboratory Medicine, London Health Sciences Centre, London, Ontario, Canada (Hedley)
| | - Meghan Hupp
- the Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis (Naharro, Hupp, Linden)
| | - William J Karlon
- the Department of Laboratory Medicine, University of California, San Francisco (Karlon)
| | | | - Sindhu Cherian
- the Department of Laboratory Medicine and Pathology, University of Washington, Seattle (Cherian)
| | - Horatiu Olteanu
- the Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota (Olteanu)
| | - Robert P Seifert
- the Department of Pathology, Immunology and Laboratory Medicine, University of Florida College of Medicine, Gainesville (Seifert)
| | - Flavia N Rosado
- the Department of Pathology, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania (Rosado)
| | - Michael A Linden
- the Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis (Naharro, Hupp, Linden)
| |
Collapse
|
7
|
Juarez D, Buono R, Matulis SM, Gupta VA, Duong M, Yudiono J, Paul M, Mallya S, Diep G, Hsin P, Lu A, Suh SM, Dong VM, Roberts AW, Leverson JD, Jalaluddin M, Liu Z, Bueno OF, Boise LH, Fruman DA. Statin-induced Mitochondrial Priming Sensitizes Multiple Myeloma Cells to BCL2 and MCL-1 Inhibitors. CANCER RESEARCH COMMUNICATIONS 2023; 3:2497-2509. [PMID: 37956312 PMCID: PMC10704957 DOI: 10.1158/2767-9764.crc-23-0350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 09/12/2023] [Accepted: 11/03/2023] [Indexed: 11/15/2023]
Abstract
The BCL2 inhibitor venetoclax promotes apoptosis in blood cancer cells and is approved for treatment of chronic lymphocytic leukemia and acute myeloid leukemia. However, multiple myeloma cells are frequently more dependent on MCL-1 for survival, conferring resistance to venetoclax. Here we report that mevalonate pathway inhibition with statins can overcome resistance to venetoclax in multiple myeloma cell lines and primary cells. In addition, statins sensitize to apoptosis induced by MCL-1 inhibitor, S63845. In retrospective analysis of venetoclax clinical studies in multiple myeloma, background statin use was associated with a significantly enhanced rate of stringent complete response and absence of progressive disease. Statins sensitize multiple myeloma cells to venetoclax by upregulating two proapoptotic proteins: PUMA via a p53-independent mechanism and NOXA via the integrated stress response. These findings provide rationale for prospective testing of statins with venetoclax regimens in multiple myeloma. SIGNIFICANCE BH3 mimetics including venetoclax hold promise for treatment of multiple myeloma but rational combinations are needed to broaden efficacy. This study presents mechanistic and clinical data to support addition of pitavastatin to venetoclax regimens in myeloma. The results open a new avenue for repurposing statins in blood cancer.
Collapse
Affiliation(s)
- Dennis Juarez
- Department of Molecular Biology and Biochemistry, University of California, Irvine, California
| | - Roberta Buono
- Department of Molecular Biology and Biochemistry, University of California, Irvine, California
| | - Shannon M. Matulis
- Department of Hematology and Medical Oncology and the Winship Cancer Institute at Emory University, Atlanta, Georgia
| | - Vikas A. Gupta
- Department of Hematology and Medical Oncology and the Winship Cancer Institute at Emory University, Atlanta, Georgia
| | - Madeleine Duong
- Department of Molecular Biology and Biochemistry, University of California, Irvine, California
| | - Jacob Yudiono
- Department of Molecular Biology and Biochemistry, University of California, Irvine, California
| | - Madhuri Paul
- Department of Molecular Biology and Biochemistry, University of California, Irvine, California
| | - Sharmila Mallya
- Department of Molecular Biology and Biochemistry, University of California, Irvine, California
| | - Grace Diep
- Department of Molecular Biology and Biochemistry, University of California, Irvine, California
| | - Peter Hsin
- Department of Molecular Biology and Biochemistry, University of California, Irvine, California
| | - Alexander Lu
- Department of Chemistry, University of California, Irvine, California
| | - Sang Mi Suh
- Department of Chemistry, University of California, Irvine, California
| | - Vy M. Dong
- Department of Chemistry, University of California, Irvine, California
| | | | | | | | | | | | - Lawrence H. Boise
- Department of Hematology and Medical Oncology and the Winship Cancer Institute at Emory University, Atlanta, Georgia
| | - David A. Fruman
- Department of Molecular Biology and Biochemistry, University of California, Irvine, California
| |
Collapse
|
8
|
Clarisse D, Prekovic S, Vlummens P, Staessens E, Van Wesemael K, Thommis J, Fijalkowska D, Acke G, Zwart W, Beck IM, Offner F, De Bosscher K. Crosstalk between glucocorticoid and mineralocorticoid receptors boosts glucocorticoid-induced killing of multiple myeloma cells. Cell Mol Life Sci 2023; 80:249. [PMID: 37578563 PMCID: PMC10425521 DOI: 10.1007/s00018-023-04900-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 07/11/2023] [Accepted: 07/27/2023] [Indexed: 08/15/2023]
Abstract
The glucocorticoid receptor (GR) is a crucial drug target in multiple myeloma as its activation with glucocorticoids effectively triggers myeloma cell death. However, as high-dose glucocorticoids are also associated with deleterious side effects, novel approaches are urgently needed to improve GR action in myeloma. Here, we reveal a functional crosstalk between GR and the mineralocorticoid receptor (MR) that plays a role in improved myeloma cell killing. We show that the GR agonist dexamethasone (Dex) downregulates MR levels in a GR-dependent way in myeloma cells. Co-treatment of Dex with the MR antagonist spironolactone (Spi) enhances Dex-induced cell killing in primary, newly diagnosed GC-sensitive myeloma cells. In a relapsed GC-resistant setting, Spi alone induces distinct myeloma cell killing. On a mechanistic level, we find that a GR-MR crosstalk likely arises from an endogenous interaction between GR and MR in myeloma cells. Quantitative dimerization assays show that Spi reduces Dex-induced GR-MR heterodimerization and completely abolishes Dex-induced MR-MR homodimerization, while leaving GR-GR homodimerization intact. Unbiased transcriptomics analyses reveal that c-myc and many of its target genes are downregulated most by combined Dex-Spi treatment. Proteomics analyses further identify that several metabolic hallmarks are modulated most by this combination treatment. Finally, we identified a subset of Dex-Spi downregulated genes and proteins that may predict prognosis in the CoMMpass myeloma patient cohort. Our study demonstrates that GR-MR crosstalk is therapeutically relevant in myeloma as it provides novel strategies for glucocorticoid-based dose-reduction.
Collapse
Affiliation(s)
- Dorien Clarisse
- VIB Center for Medical Biotechnology, Technologiepark-Zwijnaarde 75, 9052, Ghent, Belgium
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
- Cancer Research Institute Ghent (CRIG), Ghent, Belgium
| | - Stefan Prekovic
- Center for Molecular Medicine, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Philip Vlummens
- Department of Internal Medicine and Pediatrics, Ghent University Hospital, Ghent, Belgium
| | - Eleni Staessens
- VIB Center for Medical Biotechnology, Technologiepark-Zwijnaarde 75, 9052, Ghent, Belgium
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
- Cancer Research Institute Ghent (CRIG), Ghent, Belgium
| | - Karlien Van Wesemael
- VIB Center for Medical Biotechnology, Technologiepark-Zwijnaarde 75, 9052, Ghent, Belgium
- Department of Internal Medicine and Pediatrics, Ghent University Hospital, Ghent, Belgium
| | - Jonathan Thommis
- VIB Center for Medical Biotechnology, Technologiepark-Zwijnaarde 75, 9052, Ghent, Belgium
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
| | - Daria Fijalkowska
- VIB Center for Medical Biotechnology, Technologiepark-Zwijnaarde 75, 9052, Ghent, Belgium
| | - Guillaume Acke
- Department of Chemistry, Ghent University, Ghent, Belgium
| | - Wilbert Zwart
- Division of Oncogenomics, Oncode Institute, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Ilse M Beck
- Department of Health Sciences, Odisee University of Applied Sciences, Ghent, Belgium
| | - Fritz Offner
- Cancer Research Institute Ghent (CRIG), Ghent, Belgium
- Department of Internal Medicine and Pediatrics, Ghent University Hospital, Ghent, Belgium
| | - Karolien De Bosscher
- VIB Center for Medical Biotechnology, Technologiepark-Zwijnaarde 75, 9052, Ghent, Belgium.
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium.
- Cancer Research Institute Ghent (CRIG), Ghent, Belgium.
| |
Collapse
|
9
|
Peat TJ, Gaikwad SM, Dubois W, Gyabaah-Kessie N, Zhang S, Gorjifard S, Phyo Z, Andres M, Hughitt VK, Simpson RM, Miller MA, Girvin AT, Taylor A, Williams D, D'Antonio N, Zhang Y, Rajagopalan A, Flietner E, Wilson K, Zhang X, Shinn P, Klumpp-Thomas C, McKnight C, Itkin Z, Chen L, Kazandijian D, Zhang J, Michalowski AM, Simmons JK, Keats J, Thomas CJ, Mock BA. Drug combinations identified by high-throughput screening promote cell cycle transition and upregulate Smad pathways in myeloma. Cancer Lett 2023; 568:216284. [PMID: 37356470 PMCID: PMC10408729 DOI: 10.1016/j.canlet.2023.216284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 06/12/2023] [Accepted: 06/16/2023] [Indexed: 06/27/2023]
Abstract
Drug resistance and disease progression are common in multiple myeloma (MM) patients, underscoring the need for new therapeutic combinations. A high-throughput drug screen in 47 MM cell lines and in silico Huber robust regression analysis of drug responses revealed 43 potentially synergistic combinations. We hypothesized that effective combinations would reduce MYC expression and enhance p16 activity. Six combinations cooperatively reduced MYC protein, frequently over-expressed in MM and also cooperatively increased p16 expression, frequently downregulated in MM. Synergistic reductions in viability were observed with top combinations in proteasome inhibitor-resistant and sensitive MM cell lines, while sparing fibroblasts. Three combinations significantly prolonged survival in a transplantable Ras-driven allograft model of advanced MM closely recapitulating high-risk/refractory myeloma in humans and reduced viability of ex vivo treated patient cells. Common genetic pathways similarly downregulated by these combinations promoted cell cycle transition, whereas pathways most upregulated were involved in TGFβ/SMAD signaling. These preclinical data identify potentially useful drug combinations for evaluation in drug-resistant MM and reveal potential mechanisms of combined drug sensitivity.
Collapse
Affiliation(s)
- Tyler J Peat
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA; Department of Comparative Pathobiology, Purdue University, West Lafayette, IN, USA.
| | - Snehal M Gaikwad
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Wendy Dubois
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Nana Gyabaah-Kessie
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Shuling Zhang
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Sayeh Gorjifard
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA; University of Washington, Seattle, WA, USA
| | - Zaw Phyo
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA; Johns Hopkins University, Baltimore, MD, USA
| | - Megan Andres
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA; Johns Hopkins University, Baltimore, MD, USA
| | - V Keith Hughitt
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - R Mark Simpson
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Margaret A Miller
- Department of Comparative Pathobiology, Purdue University, West Lafayette, IN, USA
| | | | | | | | | | - Yong Zhang
- Lymphoid Malignancies Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA; Office of Oncologic Diseases, Center for Drug Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, MD, USA
| | | | - Evan Flietner
- McArdle Research Labs, University of Wisconsin, Madison, WI, USA
| | - Kelli Wilson
- Chemical Genomics Center, Division of Preclinical Innovation, National Center for Advancing Translational Sciences, Bethesda, MD, USA
| | - Xiaohu Zhang
- Chemical Genomics Center, Division of Preclinical Innovation, National Center for Advancing Translational Sciences, Bethesda, MD, USA
| | - Paul Shinn
- Chemical Genomics Center, Division of Preclinical Innovation, National Center for Advancing Translational Sciences, Bethesda, MD, USA
| | - Carleen Klumpp-Thomas
- Chemical Genomics Center, Division of Preclinical Innovation, National Center for Advancing Translational Sciences, Bethesda, MD, USA
| | - Crystal McKnight
- Chemical Genomics Center, Division of Preclinical Innovation, National Center for Advancing Translational Sciences, Bethesda, MD, USA
| | - Zina Itkin
- Chemical Genomics Center, Division of Preclinical Innovation, National Center for Advancing Translational Sciences, Bethesda, MD, USA
| | - Lu Chen
- Chemical Genomics Center, Division of Preclinical Innovation, National Center for Advancing Translational Sciences, Bethesda, MD, USA
| | - Dickran Kazandijian
- Lymphoid Malignancies Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA; Sylvester Comprehensive Cancer Center, University of Miami, Miami, FL, USA
| | - Jing Zhang
- McArdle Research Labs, University of Wisconsin, Madison, WI, USA
| | - Aleksandra M Michalowski
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | | | - Jonathan Keats
- Translational Genomics Research Institute, Phoenix, AZ, USA
| | - Craig J Thomas
- Lymphoid Malignancies Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA; Chemical Genomics Center, Division of Preclinical Innovation, National Center for Advancing Translational Sciences, Bethesda, MD, USA
| | - Beverly A Mock
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA.
| |
Collapse
|
10
|
Kwak JG, Lee J. Bone Marrow Adipocytes Contribute to Tumor Microenvironment-Driven Chemoresistance via Sequestration of Doxorubicin. Cancers (Basel) 2023; 15:2737. [PMID: 37345073 PMCID: PMC10216070 DOI: 10.3390/cancers15102737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 05/06/2023] [Accepted: 05/09/2023] [Indexed: 06/23/2023] Open
Abstract
Chemoresistance is a significant problem in the effective treatment of bone metastasis. Adipocytes are a major stromal cell type in the bone marrow and may play a crucial role in developing microenvironment-driven chemoresistance. However, detailed investigation remains challenging due to the anatomical inaccessibility and intrinsic tissue complexity of the bone marrow microenvironment. In this study, we developed 2D and 3D in vitro models of bone marrow adipocytes to examine the mechanisms underlying adipocyte-induced chemoresistance. We first established a protocol for the rapid and robust differentiation of human bone marrow stromal cells (hBMSCs) into mature adipocytes in 2D tissue culture plastic using rosiglitazone (10 μM), a PPARγ agonist. Next, we created a 3D adipocyte culture model by inducing aggregation of hBMSCs and adipogenesis to create adipocyte spheroids in porous hydrogel scaffolds that mimic bone marrow sinusoids. Simulated chemotherapy treatment with doxorubicin (2.5 μM) demonstrated that mature adipocytes sequester doxorubicin in lipid droplets, resulting in reduced cytotoxicity. Lastly, we performed direct coculture of human multiple myeloma cells (MM1.S) with the established 3D adipocyte model in the presence of doxorubicin. This resulted in significantly accelerated multiple myeloma proliferation following doxorubicin treatment. Our findings suggest that the sequestration of hydrophobic chemotherapeutics by mature adipocytes represents a potent mechanism of bone marrow microenvironment-driven chemoresistance.
Collapse
Affiliation(s)
- Jun-Goo Kwak
- Molecular and Cellular Biology Graduate Program, University of Massachusetts Amherst, Amherst, MA 01003, USA;
| | - Jungwoo Lee
- Molecular and Cellular Biology Graduate Program, University of Massachusetts Amherst, Amherst, MA 01003, USA;
- Department of Chemical Engineering, University of Massachusetts Amherst, Amherst, MA 01003, USA
- Institute for Applied Life Sciences, University of Massachusetts Amherst, Amherst, MA 01003, USA
| |
Collapse
|
11
|
Domenger A, Ricci D, Mayau V, Majlessi L, Marcireau C, Dadaglio G, Demangel C. Sec61 blockade therapy overrides resistance to proteasome inhibitors and immunomodulatory drugs in multiple myeloma. Front Oncol 2023; 13:1110916. [PMID: 36776330 PMCID: PMC9911829 DOI: 10.3389/fonc.2023.1110916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 01/16/2023] [Indexed: 01/28/2023] Open
Abstract
Multiple Myeloma (MM) is an incurable neoplasm of mature B cells and the second most prevalent hematological malignancy worldwide. While combinations of proteasome inhibitors like bortezomib (Bz) and immunomodulators (IMiDs) like lenalinomide (Len) are generally effective in newly diagnosed patients, some do not respond to this first-line therapy, and all others will eventually become drug resistant. We previously reported that inhibiting the Sec61 translocon with mycolactone synergizes with Bz to induce terminal unfolded protein response in MM cells, irrespective of their resistance to proteasome inhibition. Here, we examined how Sec61 blockade interferes with IMiD action and whether it overrides resistance to Len. With this aim, we knocked out the IMiD target CRBN in the MM1S cell line and a Bz-resistant subclone to generate Len- and Len/Bz-resistant daughters, respectively. Both the Len- and Len/Bz-resistant clones were susceptible to mycolactone toxicity, especially the doubly resistant one. Notably, the synergy between mycolactone and Bz was maintained in these two clones, and mycolactone also synergized with Len in the two Len-susceptible ones. Further, mycolactone enhanced the therapeutic efficacy of the Bz/Len combination in both mice engrafted with parental or double drug resistant MM1S. Together, these data consolidate the interest of Sec61 blockers as new anti-MM agents and reveal their potential for treatment of refractory or relapsed MM.
Collapse
Affiliation(s)
- Antoine Domenger
- Immunobiology and Therapy Unit, Institut Pasteur, Université Paris Cité, Institut National de la Santé et de la Recherche Médicale (INSERM) U1224, Paris, France
| | - Daniela Ricci
- Immunobiology and Therapy Unit, Institut Pasteur, Université Paris Cité, Institut National de la Santé et de la Recherche Médicale (INSERM) U1224, Paris, France
| | - Véronique Mayau
- Immunobiology and Therapy Unit, Institut Pasteur, Université Paris Cité, Institut National de la Santé et de la Recherche Médicale (INSERM) U1224, Paris, France
| | - Laleh Majlessi
- Pasteur-TheraVectys Joint Lab, Institut Pasteur, Université Paris Cité, Paris, France
| | | | - Gilles Dadaglio
- Immunobiology and Therapy Unit, Institut Pasteur, Université Paris Cité, Institut National de la Santé et de la Recherche Médicale (INSERM) U1224, Paris, France,*Correspondence: Gilles Dadaglio, ; Caroline Demangel,
| | - Caroline Demangel
- Immunobiology and Therapy Unit, Institut Pasteur, Université Paris Cité, Institut National de la Santé et de la Recherche Médicale (INSERM) U1224, Paris, France,*Correspondence: Gilles Dadaglio, ; Caroline Demangel,
| |
Collapse
|
12
|
Miao YR, Thakkar K, Cenik C, Jiang D, Mizuno K, Jia C, Li CG, Zhao H, Diep A, Xu Y, Zhang XE, Yang TTC, Liedtke M, Abidi P, Leung WS, Koong AC, Giaccia AJ. Developing high-affinity decoy receptors to treat multiple myeloma and diffuse large B cell lymphoma. J Exp Med 2022; 219:213366. [PMID: 35881112 PMCID: PMC9428257 DOI: 10.1084/jem.20220214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 05/05/2022] [Accepted: 06/17/2022] [Indexed: 11/12/2022] Open
Abstract
Disease relapse and treatment-induced immunotoxicity pose significant clinical challenges for patients with hematological cancers. Here, we reveal distinctive requirements for neutralizing TNF receptor ligands APRIL and BAFF and their receptor activity in MM and DLBCL, impacting protein translation and production in MM cells and modulating the translation efficiency of the ATM interactor (ATMIN/ACSIZ). Therapeutically, we investigated the use of BCMA decoy receptor (sBCMA-Fc) as an inhibitor of APRIL and BAFF. While wild-type sBCMA-Fc effectively blocked APRIL signaling in MM, it lacked activity in DLBCL due to its weak BAFF binding. To expand the therapeutic utility of sBCMA-Fc, we engineered an affinity-enhanced mutant sBCMA-Fc fusion molecule (sBCMA-Fc V3) 4- and 500-fold stronger in binding to APRIL and BAFF, respectively. The mutant sBCMA-Fc V3 clone significantly enhanced antitumor activity against both MM and DLBCL. Importantly, we also demonstrated an adequate toxicity profile and on-target mechanism of action in nonhuman primate studies.
Collapse
Affiliation(s)
- Yu Rebecca Miao
- Department of Radiation Oncology, Stanford University, Stanford, CA
| | - Kaushik Thakkar
- Department of Radiation Oncology, Stanford University, Stanford, CA
| | - Can Cenik
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX
| | - Dadi Jiang
- Department of Radiation Oncology, MD Anderson Cancer Center, Houston, TX
| | - Kazue Mizuno
- Department of Radiation Oncology, Stanford University, Stanford, CA
| | | | - Caiyun Grace Li
- Department of Radiation Oncology, Stanford University, Stanford, CA
| | - Hongjuan Zhao
- Department of Urology, Stanford University, Stanford, CA
| | - Anh Diep
- Department of Radiation Oncology, Stanford University, Stanford, CA
| | - Yu Xu
- Department of Radiation Oncology, Stanford University, Stanford, CA
| | - Xin Eric Zhang
- Department of Oncology, Oxford Institute for Radiation Oncology, University of Oxford, Oxford, UK
| | | | - Michaela Liedtke
- Department of Medicine (Hematology), Stanford University, Stanford, CA
| | - Parveen Abidi
- Department of Medicine (Hematology), Stanford University, Stanford, CA
| | - Wing-Sze Leung
- Department of Radiation Oncology, Stanford University, Stanford, CA
| | - Albert C Koong
- Department of Radiation Oncology, MD Anderson Cancer Center, Houston, TX
| | - Amato J Giaccia
- Department of Radiation Oncology, Stanford University, Stanford, CA.,Department of Oncology, Oxford Institute for Radiation Oncology, University of Oxford, Oxford, UK
| |
Collapse
|
13
|
Shi L, Chen B, Liu T, Li L, Hu B, Li C, Jia B, Wang F. 99mTc-CD3813: A Nanobody-Based Single Photon Emission Computed Tomography Radiotracer with Clinical Potential for Myeloma Imaging and Evaluation of CD38 Expression. Mol Pharm 2022; 19:2583-2594. [PMID: 35696536 DOI: 10.1021/acs.molpharmaceut.2c00279] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Daratumumab (DARA) is an anti-CD38 monoclonal antibody for the treatment of multiple myeloma (MM). The tumor CD38 expression level is one of the important factors in determining the efficacy of DARA treatment. Therefore, there is an urgent clinical need for a noninvasive tool to evaluate the CD38 levels in cancer patients before, during, and after DARA treatment. In this study, we prepared a new molecular imaging probe 99mTc-CD3813, the 99mTc-labeled nanobody CD3813, for noninvasive imaging of CD38 expression by single photon emission computed tomography (SPECT). We evaluated 99mTc-CD3813 for its CD38 affinity and specificity and its capacity to image the CD38 expression in the MM and lymphoma xenografts models. 99mTc-CD3813 SPECT/CT is able to visualize subcutaneous/orthotopic myeloma lesions in animal models and has advantages over 18F-fluorodeoxyglucose (18F-FDG) positron emission tomography. Excess DARA has less impact on its tumor uptake (3.14 ± 0.83 vs 2.29 ± 0.91 %ID/g, n.s.), strongly suggesting that there is no competition between 99mTc-CD3813 and DARA in binding to CD38. 99mTc-CD3813 SPECT/CT revealed significant reduction in CD38 expression in the Ramos-bearing mice under DARA treatment, as evidenced by their reduced tumor uptake (3.04 ± 0.70 vs 1.07 ± 0.28 %ID/cc, P < 0.001). 99mTc-CD3813 SPECT/CT was also able to detect the increased tumor uptake (0.79 ± 0.29 vs 2.12 ± 0.12 %ID/cc, P < 0.001) due to the upregulation of CD38 levels caused by all-trans retinoic acid infection. 99mTc-CD3813 is a promising SPECT radiotracer for imaging the CD38-positive tumors and has clinical potential as a molecular imaging tool for evaluation of the CD38 expression level in patients before, during, and after DARA treatment.
Collapse
Affiliation(s)
- Linqing Shi
- Medical Isotopes Research Center and Department of Radiation Medicine, School of Basic Medical Sciences, Peking University, Beijing 100191, China
| | - Bo Chen
- Chengdu NBbiolab Co., Ltd., Chengdu 611130, China
| | - Tianyu Liu
- Medical Isotopes Research Center and Department of Radiation Medicine, School of Basic Medical Sciences, Peking University, Beijing 100191, China
| | - Liqiang Li
- Medical Isotopes Research Center and Department of Radiation Medicine, School of Basic Medical Sciences, Peking University, Beijing 100191, China
| | - Biao Hu
- Medical Isotopes Research Center and Department of Radiation Medicine, School of Basic Medical Sciences, Peking University, Beijing 100191, China
| | - Chenzhen Li
- Medical Isotopes Research Center and Department of Radiation Medicine, School of Basic Medical Sciences, Peking University, Beijing 100191, China
| | - Bing Jia
- Medical Isotopes Research Center and Department of Radiation Medicine, School of Basic Medical Sciences, Peking University, Beijing 100191, China.,Department of Integration of Chinese and Western Medicine, School of Basic Medical Sciences, Peking University, Beijing 100191, China
| | - Fan Wang
- Medical Isotopes Research Center and Department of Radiation Medicine, School of Basic Medical Sciences, Peking University, Beijing 100191, China.,Key Laboratory of Protein and Peptide Pharmaceuticals, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China.,Guangzhou Laboratory, Guangzhou 510005, China
| |
Collapse
|
14
|
The aspartyl protease DDI2 drives adaptation to proteasome inhibition in multiple myeloma. Cell Death Dis 2022; 13:475. [PMID: 35589686 PMCID: PMC9120136 DOI: 10.1038/s41419-022-04925-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 05/02/2022] [Accepted: 05/06/2022] [Indexed: 12/14/2022]
Abstract
Proteasome inhibitors, such as bortezomib, are first-line therapy against multiple myeloma (MM). Unfortunately, patients frequently become refractory to this treatment. The transcription factor NRF1 has been proposed to initiate an adaptation program that regulates proteasome levels. In the context of proteasome inhibition, the cytosolic protease DDI2 cleaves NRF1 to release an active fragment that translocates to the nucleus to promote the transcription of new proteasome subunits. However, the contribution of the DDI2-NRF1 pathway to bortezomib resistance is poorly understood. Here we show that upon prolonged bortezomib treatment, MM cells become resistant to proteasome inhibition by increasing the expression of DDI2 and consequently activation of NRF1. Furthermore, we found that many MM cells became more sensitive to proteasome impairment in the context of DDI2 deficiency. Mechanistically, we demonstrate that both the protease and the HDD domains of DDI2 are required to activate NRF1. Finally, we show that partial inhibition of the DDI2-protease domain with the antiviral drug nelfinavir increased bortezomib susceptibility in treated MM cells. Altogether, these findings define the DDI2-NRF1 pathway as an essential program contributing to proteasome inhibition responses and identifying DDI2 domains that could be targets of interest in bortezomib-treated MM patients.
Collapse
|
15
|
Accelerating clinical-scale production of BCMA CAR T cells with defined maturation stages. Mol Ther Methods Clin Dev 2022; 24:181-198. [PMID: 35118163 PMCID: PMC8791860 DOI: 10.1016/j.omtm.2021.12.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Accepted: 12/22/2021] [Indexed: 01/04/2023]
Abstract
The advent of CAR T cells targeting CD19 or BCMA on B cell neoplasm demonstrated remarkable efficacy, but rapid relapses and primary refractoriness remains challenging. A leading cause of CAR T cell failure is their lack of expansion and limited persistence. Long-lived, self-renewing multipotent T memory stem cells (TSCM) and T central memory cells (TCM) likely sustain superior tumor regression, but their low frequencies in blood from cancer patients impose a major hurdle for clinical CAR T production. We designed a clinically compliant protocol for generating BCMA CAR T cells starting with increased TSCM/TCM cell input. A CliniMACS Prodigy process was combined with flow cytometry-based enrichment of CD62L+CD95+ T cells. Although starting with only 15% of standard T cell input, the selected TSCM/TCM material was efficiently activated and transduced with a BCMA CAR-encoding retrovirus. Cultivation in the presence of IL-7/IL-15 enabled the harvest of CAR T cells containing an increased CD4+ TSCM fraction and 70% TSCM cells amongst CD8+. Strong cell proliferation yielded cell numbers sufficient for clinical application, while effector functions were maintained. Together, adaptation of a standard CliniMACS Prodigy protocol to low input numbers resulted in efficient retroviral transduction with a high CAR T cell yield.
Collapse
|
16
|
Uhl C, Nyirenda T, Siegel DS, Lee WY, Zilberberg J. Natural killer cells activity against multiple myeloma cells is modulated by osteoblast-induced IL-6 and IL-10 production. Heliyon 2022; 8:e09167. [PMID: 35846441 PMCID: PMC9280577 DOI: 10.1016/j.heliyon.2022.e09167] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Revised: 11/29/2021] [Accepted: 03/18/2022] [Indexed: 11/24/2022] Open
Abstract
Background Natural killer (NK) cells are part of the innate arm of the immune system; as such NK cells can be activated rapidly to target virus-infected cells and tumor cells without prior sensitization. The human NK-92MI cell line is among the most widely used NK cell in preclinical research studies and has also been approved for clinical applications. Previous studies have shown that osteoblasts (OSB) confer drug resistance in multiple myeloma (MM) and other cancers that metastasize to the bone marrow. Aim We evaluated here how OSB, which are bone forming cells and a key cellular component of the bone marrow microenvironment, modulate the cytotoxic activity of NK-92MI cells against the MM.1S multiple myeloma cell line. Methods The osteoblastic niche was recapitulated with either the osteoblastic cell line hFOB 1.19 (hFOB) or primary osteoblasts (P-OSB) derived from surgical resections. Time-lapse imaging was utilized to quantify changes in MM.1S cell viability under different conditions, including: (1) Co-culture of MM.1S with NK92MI cells, (2) triple-culture of hFOB or P-OSB with MM.1S and NK-92MI, and (3) MM.1S or NK-92MI cells primed with OSB-derived supernatant. Cytokine analysis was conducted to quantify potential secreted factors associated with the protective effects of OSB. Results The physical presence of OSB hindered the activity of NK-92MI cells, resulting in the increased viability of MM.1S compared to co-cultures which lacked OSB. This observation was accompanied by reduced perforin and granzyme A secretion from NK-92MI cells. Contact of OSB and NK-92MI cells also induced interleukin 6 (IL-6) and interleukin 10 (IL-10) production; two cytokines which are known to impair the NK cell immunity against MM and other cancers. OSB supernatant also conferred cytoprotection to MM.1S, suggesting a dual mechanism by which OSB may modulate both NK and MM cells. Conclusions We demonstrated here that OSB can negatively impact the activity of NK cells against MM. As NK cells and their chimeric antigen receptor-modified versions become more widely used in the clinic, our results suggest that understanding the role of OSB as potential immunoregulators of the NK cell-mediated cytotoxic response in the bone marrow tumor microenvironment may provide new opportunities for enhancing the effectiveness of this potent immunotherapeutic approach.
Collapse
|
17
|
Haney SL, Varney ML, Williams JT, Smith LM, Talmon G, Holstein SA. Geranylgeranyl diphosphate synthase inhibitor and proteasome inhibitor combination therapy in multiple myeloma. Exp Hematol Oncol 2022; 11:5. [PMID: 35139925 PMCID: PMC8827146 DOI: 10.1186/s40164-022-00261-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Accepted: 01/25/2022] [Indexed: 11/11/2022] Open
Abstract
Background Multiple myeloma (MM) remains an incurable malignancy, despite the advent of therapies such as proteosome inhibitors (PIs) that disrupt protein homeostasis and induce ER stress. We have pursued inhibition of geranylgeranyl diphosphate synthase (GGDPS) as a novel mechanism by which to target protein homeostasis in MM cells. GGDPS inhibitors (GGSI) disrupt Rab geranylgeranylation, which in turn results in perturbation of Rab-mediated protein trafficking, leading to accumulation of intracellular monoclonal protein, induction of ER stress and apoptosis. Our lead GGSI, RAM2061, has demonstrated favorable pharmacokinetic properties and in vivo efficacy. Here we sought to evaluate if combination therapy with GGSI and PI would result in enhanced disruption of the unfolded protein response (UPR) and increase anti-MM efficacy. Methods MTT assays were conducted to evaluate the cytotoxic effects of combining RAM2061 with bortezomib in human MM cells. The effects of RAM2061 and/or PI (bortezomib or carfilzomib) on markers of UPR and apoptosis were evaluated by a combination of immunoblot (ATF4, IRE1, p-eIF2a, cleaved caspases and PARP), RT-PCR (ATF4, ATF6, CHOP, PERK, IRE1) and flow cytometry (Annexin-V). Induction of immunogenic cell death (ICD) was assessed by immunoblot (HMGB1 release) and flow cytometry (calreticulin translocation). Cell assays were performed using both concurrent and sequential incubation with PIs. To evaluate the in vivo activity of GGSI/PI, a flank xenograft using MM.1S cells was performed. Results Isobologram analysis of cytotoxicity data revealed that sequential treatment of bortezomib with RAM2061 has a synergistic effect in MM cells, while concurrent treatment was primarily additive or mildly antagonistic. The effect of PIs on augmenting RAM2061-induced upregulation of UPR and apoptotic markers was dependent on timing of the PI exposure. Combination treatment with RAM2061 and bortezomib enhanced activation of ICD pathway markers. Lastly, combination treatment slowed MM tumor growth and lengthened survival in a MM xenograft model without evidence of off-target toxicity. Conclusion We demonstrate that GGSI/PI treatment can potentiate activation of the UPR and apoptotic pathway, as well as induce upregulation of markers associated with the ICD pathway. Collectively, these findings lay the groundwork for future clinical studies evaluating combination GGSI and PI therapy in patients with MM. Supplementary Information The online version contains supplementary material available at 10.1186/s40164-022-00261-6.
Collapse
Affiliation(s)
- Staci L Haney
- Division of Oncology and Hematology, Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Michelle L Varney
- Division of Oncology and Hematology, Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Jacob T Williams
- Division of Oncology and Hematology, Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Lynette M Smith
- Department of Biostatistics, University of Nebraska Medical Center, Omaha, NE, USA
| | - Geoffrey Talmon
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Sarah A Holstein
- Division of Oncology and Hematology, Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE, 68198, USA.
| |
Collapse
|
18
|
Amet R, Previtali V, Mihigo HB, Sheridan E, Brophy S, Hante NK, Santos-Martinez MJ, Hayden PJ, Browne PV, Rozas I, McElligott AM, Zisterer DM. A novel aryl-guanidinium derivative, VP79s, targets the signal transducer and activator of transcription 3 signaling pathway, downregulates myeloid cell leukaemia-1 and exhibits preclinical activity against multiple myeloma. Life Sci 2021; 290:120236. [PMID: 34953891 DOI: 10.1016/j.lfs.2021.120236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 12/03/2021] [Accepted: 12/09/2021] [Indexed: 10/19/2022]
Abstract
AIMS We have recently described a novel guanidinium-based compound, VP79s, which induces cytotoxicity in various cancer cell lines. Here, we aim to investigate the activity of VP79s and associated mechanisms of action in multiple myeloma (MM) cells in vitro and ex vivo. MAIN METHODS The effects of VP79s on cell viability and induction of apoptosis was examined in a panel of drug-sensitive and drug-resistant MM cell lines, as well as ex vivo patient samples and normal donor lymphocytes and platelets. Cell signaling pathways associated with the biological effects of VP79s were analysed by immunoblotting and flow cytometry. Gene expression changes were assessed by quantitative real-time PCR analysis. KEY FINDINGS VP79s was found to rapidly inhibit both constitutively active and IL-6-induced STAT3 signaling with concurrent downregulation of the IL-6 receptors, CD130 and CD126. VP79s induced a rapid and dose-dependent downregulation of anti-apoptotic Bcl-2 family member, myeloid cell leukaemia-1 (MCL-1). VP79s enhanced bortezomib induced cell death and was also found to overcome bone marrow stromal cell induced drug resistance. VP79s exhibited activity in ex vivo patient samples at concentrations which had no effect on peripheral blood mononuclear cells, lymphocytes and platelets isolated from healthy donors. SIGNIFICANCE As VP79s resulted in rapid inhibition of the key IL-6/STAT3 signaling pathway and downregulation of MCL-1 expression with subsequent selective anti-myeloma activity, VP79s may be a potential therapeutic agent with a novel mechanism of action in MM cells.
Collapse
Affiliation(s)
- Rebecca Amet
- School of Biochemistry and Immunology, Trinity College Dublin, Dublin 2, Ireland; John Durkan Leukaemia Laboratories, Trinity Translational Medicine Institute, Trinity College Dublin, Dublin 8, Ireland
| | - Viola Previtali
- School of Chemistry, Trinity College Dublin, Dublin 2, Ireland
| | - Helene B Mihigo
- School of Chemistry, Trinity College Dublin, Dublin 2, Ireland
| | - Emily Sheridan
- School of Biochemistry and Immunology, Trinity College Dublin, Dublin 2, Ireland
| | - Sarah Brophy
- John Durkan Leukaemia Laboratories, Trinity Translational Medicine Institute, Trinity College Dublin, Dublin 8, Ireland
| | - Nadhim Kamil Hante
- School of Pharmacy and Pharmaceutical Sciences, Trinity College Dublin, Dublin 2, Ireland
| | - Maria Jose Santos-Martinez
- School of Pharmacy and Pharmaceutical Sciences, Trinity College Dublin, Dublin 2, Ireland; School of Medicine, Trinity College Dublin, Dublin 2, Ireland
| | - Patrick J Hayden
- Department of Haematology, St. James's Hospital, Dublin 8, Ireland; Trinity St. James's Cancer Institute, Trinity College and St James's Hospital, Dublin 8, Ireland
| | - Paul V Browne
- Department of Haematology, St. James's Hospital, Dublin 8, Ireland; Trinity St. James's Cancer Institute, Trinity College and St James's Hospital, Dublin 8, Ireland
| | - Isabel Rozas
- School of Chemistry, Trinity College Dublin, Dublin 2, Ireland
| | - Anthony M McElligott
- John Durkan Leukaemia Laboratories, Trinity Translational Medicine Institute, Trinity College Dublin, Dublin 8, Ireland; Trinity St. James's Cancer Institute, Trinity College and St James's Hospital, Dublin 8, Ireland.
| | - Daniela M Zisterer
- School of Biochemistry and Immunology, Trinity College Dublin, Dublin 2, Ireland
| |
Collapse
|
19
|
Wei W, Zhang D, Wang C, Zhang Y, An S, Chen Y, Huang G, Liu J. Annotating CD38 Expression in Multiple Myeloma with [ 18F]F-Nb1053. Mol Pharm 2021; 19:3502-3510. [PMID: 34846151 DOI: 10.1021/acs.molpharmaceut.1c00733] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Noninvasive diagnosis of multiple myeloma (MM) is a clinical challenge. CD38 is an established biomarker for MM, and the development of CD38-targeted radiotracers may improve the management of MM. By taking the advantages of bioorthogonal click chemistry, a nanobody (i.e., Nb1053-LLQS) specific for CD38 was successfully labeled with 18F. The diagnostic efficacy and specificity of the developed tracer (i.e., [18F]F-Nb1053) were evaluated by immuno-positron emission tomography (immunoPET) imaging in disseminated MM.1S-bearing models. [18F]F-Nb1053 was developed with high radiochemical purity (>98%) and excellent immunoreactivity. [18F]F-Nb1053 immunoPET successfully delineated disseminated MM lesions in preclinical MM models. The uptake in the humerus, femur, and tibia was 1.42 ± 0.50%ID/g, 1.35 ± 0.53%ID/g, and 1.48 ± 0.67%ID/g (n = 6), respectively. Tumor uptake of [18F]F-Nb1053 decreased after daratumumab premedication, indicating the superior specificity of the reported probe. This work successfully developed a novel CD38-specific probe [18F]F-Nb1053 that may potentially optimize the management of MM upon clinical translation.
Collapse
Affiliation(s)
- Weijun Wei
- Department of Nuclear Medicine, Institute of Clinical Nuclear Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Di Zhang
- Department of Nuclear Medicine, Institute of Clinical Nuclear Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Cheng Wang
- Department of Nuclear Medicine, Institute of Clinical Nuclear Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - You Zhang
- Department of Nuclear Medicine, Institute of Clinical Nuclear Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Shuxian An
- Department of Nuclear Medicine, Institute of Clinical Nuclear Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Yumei Chen
- Department of Nuclear Medicine, Institute of Clinical Nuclear Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Gang Huang
- Department of Nuclear Medicine, Institute of Clinical Nuclear Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China.,Shanghai Key Laboratory of Molecular Imaging, Shanghai University of Medicine and Health Sciences, Shanghai 201318, China
| | - Jianjun Liu
- Department of Nuclear Medicine, Institute of Clinical Nuclear Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| |
Collapse
|
20
|
Wei W, Zhang Y, Zhang D, Liu Q, An S, Chen Y, Huang G, Liu J. Annotating BCMA Expression in Multiple Myelomas. Mol Pharm 2021; 19:3492-3501. [PMID: 34843261 DOI: 10.1021/acs.molpharmaceut.1c00628] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
B cell maturation antigen (BCMA) is a promising theranostic target for multiple myeloma (MM). BCMA-targeted therapeutics, such as antibody-drug conjugates and chimeric antigen receptor T-cell immunotherapies, are rapidly reshaping the treatment landscape of MM. Along with the progress, a critical challenge is to noninvasively visualize the dynamic change of BCMA for a better-personalized prescription of the above-mentioned therapeutics. We aim to develop immuno-positron emission tomography (immunoPET) imaging strategies to visualize BCMA expression and realize target-specific diagnosis of MM in the work. A series of BCMA-targeting nanobodies were produced and two of them were successfully labeled with gallium-68 (68Ga). MM models were established using MM.1S cell line and NOD-Prkdcem26Cd52Il2rgem26Cd22/Nju mice. The diagnostic efficacies of the developed probes (i.e., [68Ga]Ga-NOTA-MMBC2 and [68Ga]Ga-NOTA-MMBC3) were investigated in disseminated MM models by immunoPET imaging, region of interest analysis on PET images, biodistribution study, and histopathological staining study. [68Ga]Ga-NOTA-MMBC2 and [68Ga]Ga-NOTA-MMBC3 were developed with radiochemical purities of >99%. ImmunoPET imaging with either [68Ga]Ga-NOTA-MMBC2 or [68Ga]Ga-NOTA-MMBC3 precisely visualized BCMA expression and delineated MM lesions throughout the bone marrows. Moreover, [68Ga]Ga-NOTA-MMBC3 immunoPET successfully detected remnant MM after treatment with daratumumab, a prescription medicine used to treat MM. The immunoPET imaging data correlated well with the biodistribution and immunohistochemistry staining results. The work successfully developed two state-of-the-art BCMA-targeted radiotracers for annotating BCMA expression and diagnosing MM. Translational studies interpreting the diagnostic efficacies of the immunoPET radiotracers are warranted.
Collapse
Affiliation(s)
- Weijun Wei
- Department of Nuclear Medicine, Institute of Clinical Nuclear Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - You Zhang
- Department of Nuclear Medicine, Institute of Clinical Nuclear Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Di Zhang
- Department of Nuclear Medicine, Institute of Clinical Nuclear Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Qiufang Liu
- Department of Nuclear Medicine, Fudan University Shanghai Cancer Center, Fudan University, Shanghai 200032, China
| | - Shuxian An
- Department of Nuclear Medicine, Institute of Clinical Nuclear Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Yumei Chen
- Department of Nuclear Medicine, Institute of Clinical Nuclear Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Gang Huang
- Department of Nuclear Medicine, Institute of Clinical Nuclear Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China.,Shanghai Key Laboratory of Molecular Imaging, Shanghai University of Medicine and Health Sciences, Shanghai 201318, China
| | - Jianjun Liu
- Department of Nuclear Medicine, Institute of Clinical Nuclear Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| |
Collapse
|
21
|
Mannino F, Pallio G, Corsaro R, Minutoli L, Altavilla D, Vermiglio G, Allegra A, Eid AH, Bitto A, Squadrito F, Irrera N. Beta-Caryophyllene Exhibits Anti-Proliferative Effects through Apoptosis Induction and Cell Cycle Modulation in Multiple Myeloma Cells. Cancers (Basel) 2021; 13:5741. [PMID: 34830893 PMCID: PMC8616110 DOI: 10.3390/cancers13225741] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 11/12/2021] [Accepted: 11/15/2021] [Indexed: 12/11/2022] Open
Abstract
Cannabinoid receptors, which are widely distributed in the body, have been considered as possible pharmacological targets for the management of several tumors. Cannabinoid type 2 receptors (CB2Rs) belong to the G protein-coupled receptor family and are mainly expressed in hematopoietic and immune cells, such as B-cells, T-cells, and macrophages; thus, CB2R activation might be useful for treating cancers affecting plasma cells, such as multiple myeloma (MM). Previous studies have shown that CB2R stimulation may have anti-proliferative effects; therefore, the purpose of the present study was to explore the antitumor effect of beta-caryophyllene (BCP), a CB2R agonist, in an in vitro model of MM. Dexamethasone-resistant (MM.1R) and sensitive (MM.1S) human multiple myeloma cell lines were used in this study. Cells were treated with different concentrations of BCP for 24 h, and a group of cells was pre-incubated with AM630, a specific CB2R antagonist. BCP treatment reduced cell proliferation through CB2R stimulation; notably, BCP considerably increased the pro-apoptotic protein Bax and decreased the anti-apoptotic molecule Bcl-2. Furthermore, an increase in caspase 3 protein levels was detected following BCP incubation, thus demonstrating its anti-proliferative effect through apoptosis activation. In addition, BCP regulated AKT, Wnt1, and beta-catenin expression, showing that CB2R stimulation may decrease cancer cell proliferation by modulating Wnt/β-catenin signaling. These effects were counteracted by AM630 co-incubation, thus confirming that BCP's mechanism of action is mainly related to CB2R modulation. A decrease in β-catenin regulated the impaired cell cycle and especially promoted cyclin D1 and CDK 4/6 reduction. Taken together, these data revealed that BCP might have significant and effective anti-cancer and anti-proliferative effects in MM cells by activating apoptosis, modulating different molecular pathways, and downregulating the cell cycle.
Collapse
Affiliation(s)
- Federica Mannino
- Department of Clinical and Experimental Medicine, University of Messina, Via C. Valeria Gazzi, 98125 Messina, Italy; (F.M.); (G.P.); (R.C.); (L.M.); (N.I.)
| | - Giovanni Pallio
- Department of Clinical and Experimental Medicine, University of Messina, Via C. Valeria Gazzi, 98125 Messina, Italy; (F.M.); (G.P.); (R.C.); (L.M.); (N.I.)
| | - Roberta Corsaro
- Department of Clinical and Experimental Medicine, University of Messina, Via C. Valeria Gazzi, 98125 Messina, Italy; (F.M.); (G.P.); (R.C.); (L.M.); (N.I.)
| | - Letteria Minutoli
- Department of Clinical and Experimental Medicine, University of Messina, Via C. Valeria Gazzi, 98125 Messina, Italy; (F.M.); (G.P.); (R.C.); (L.M.); (N.I.)
| | - Domenica Altavilla
- Department of Biomedical, Dental, Morphological and Functional Imaging Sciences, University of Messina, Via C. Valeria Gazzi, 98125 Messina, Italy; (D.A.); (G.V.)
| | - Giovanna Vermiglio
- Department of Biomedical, Dental, Morphological and Functional Imaging Sciences, University of Messina, Via C. Valeria Gazzi, 98125 Messina, Italy; (D.A.); (G.V.)
| | - Alessandro Allegra
- Department of Human Pathology in Adulthood and Childhood, University of Messina, Via C. Valeria Gazzi, 98125 Messina, Italy;
| | - Ali H. Eid
- Department of Basic Medical Sciences, College of Medicine, QU Health, Qatar University, 2713 Doha, Qatar;
- Biomedical and Pharmaceutical Research Unit, QU Health, Qatar University, 2713 Doha, Qatar
| | - Alessandra Bitto
- Department of Clinical and Experimental Medicine, University of Messina, Via C. Valeria Gazzi, 98125 Messina, Italy; (F.M.); (G.P.); (R.C.); (L.M.); (N.I.)
| | - Francesco Squadrito
- Department of Clinical and Experimental Medicine, University of Messina, Via C. Valeria Gazzi, 98125 Messina, Italy; (F.M.); (G.P.); (R.C.); (L.M.); (N.I.)
| | - Natasha Irrera
- Department of Clinical and Experimental Medicine, University of Messina, Via C. Valeria Gazzi, 98125 Messina, Italy; (F.M.); (G.P.); (R.C.); (L.M.); (N.I.)
| |
Collapse
|
22
|
Desantis V, Solimando AG, Saltarella I, Sacco A, Giustini V, Bento M, Lamanuzzi A, Melaccio A, Frassanito MA, Paradiso A, Montagnani M, Vacca A, Roccaro AM. MicroRNAs as a Potential New Preventive Approach in the Transition from Asymptomatic to Symptomatic Multiple Myeloma Disease. Cancers (Basel) 2021; 13:cancers13153650. [PMID: 34359551 PMCID: PMC8344971 DOI: 10.3390/cancers13153650] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 07/16/2021] [Accepted: 07/19/2021] [Indexed: 01/02/2023] Open
Abstract
Simple Summary Multiple myeloma (MM) is the second most common haematologic malignancy, and it remains an incurable disease despite the advances of novel therapies. It is characterised by a multistep process that arises from a pre-malignant asymptomatic status-defined monoclonal gammopathy of undetermined significance (MGUS), evolves to a middle stage named smouldering myeloma phase (SMM), and culminates in the active disease (MM). Identification of early and non-invasive markers of the disease progression is currently an active field of investigation. In this review, we discuss the role and significance of microRNAs (miRNAs) as potential diagnostic biomarkers to predict the clinical transition from MGUS/SMM status to MM. Abstract Multiple myeloma (MM) is a hematological malignancy characterised by proliferation of clonal plasma cells (PCs) within the bone marrow (BM). Myelomagenesis is a multi-step process which goes from an asymptomatic phase, defined as monoclonal gammopathy of undetermined significance (MGUS), to a smouldering myeloma (SMM) stage, to a final active MM disease, characterised by hypercalcemia, renal failure, bone lesions anemia, and higher risk of infections. Overall, microRNAs (miRNAs) have shown to significantly impact on MM tumorigenesis, as a result of miRNA-dependent modulation of genes involved in pathways known to be crucial for MM pathogenesis and disease progression. We aim to revise the literature related to the role of miRNAs as potential diagnostic and prognostic biomarkers, thus highlighting their key role as novel players within the field of MM and related premalignant conditions.
Collapse
Affiliation(s)
- Vanessa Desantis
- Unit of Internal Medicine and Clinical Oncology, Department of Biomedical Sciences and Human Oncology, University of Bari “Aldo Moro”, 70124 Bari, Italy; (V.D.); (A.G.S.); (I.S.); (A.L.); (A.M.)
- Department of Biomedical Sciences and Human Oncology, Pharmacology Section, Medical School, University of Bari “Aldo Moro”, 70124 Bari, Italy;
| | - Antonio Giovanni Solimando
- Unit of Internal Medicine and Clinical Oncology, Department of Biomedical Sciences and Human Oncology, University of Bari “Aldo Moro”, 70124 Bari, Italy; (V.D.); (A.G.S.); (I.S.); (A.L.); (A.M.)
- IRCCS Istituto Tumori “Giovanni Paolo II” of Bari, 70124 Bari, Italy;
| | - Ilaria Saltarella
- Unit of Internal Medicine and Clinical Oncology, Department of Biomedical Sciences and Human Oncology, University of Bari “Aldo Moro”, 70124 Bari, Italy; (V.D.); (A.G.S.); (I.S.); (A.L.); (A.M.)
| | - Antonio Sacco
- Clinical Research Development and Phase I Unit, ASST Spedali Civili di Brescia, 25123 Brescia, Italy; (A.S.); (V.G.)
| | - Viviana Giustini
- Clinical Research Development and Phase I Unit, ASST Spedali Civili di Brescia, 25123 Brescia, Italy; (A.S.); (V.G.)
| | - Marta Bento
- Centro Hospitalar Lisboa Norte, Department of Hematology and Transplantation, Institute of Molecular Medicine, University of Lisbon, 1649-035 Lisbon, Portugal;
| | - Aurelia Lamanuzzi
- Unit of Internal Medicine and Clinical Oncology, Department of Biomedical Sciences and Human Oncology, University of Bari “Aldo Moro”, 70124 Bari, Italy; (V.D.); (A.G.S.); (I.S.); (A.L.); (A.M.)
| | - Assunta Melaccio
- Unit of Internal Medicine and Clinical Oncology, Department of Biomedical Sciences and Human Oncology, University of Bari “Aldo Moro”, 70124 Bari, Italy; (V.D.); (A.G.S.); (I.S.); (A.L.); (A.M.)
| | - Maria Antonia Frassanito
- Unit of General Pathology, Department of Biomedical Sciences and Human Oncology, University of Bari “Aldo Moro”, 70124 Bari, Italy;
| | - Angelo Paradiso
- IRCCS Istituto Tumori “Giovanni Paolo II” of Bari, 70124 Bari, Italy;
| | - Monica Montagnani
- Department of Biomedical Sciences and Human Oncology, Pharmacology Section, Medical School, University of Bari “Aldo Moro”, 70124 Bari, Italy;
| | - Angelo Vacca
- Unit of Internal Medicine and Clinical Oncology, Department of Biomedical Sciences and Human Oncology, University of Bari “Aldo Moro”, 70124 Bari, Italy; (V.D.); (A.G.S.); (I.S.); (A.L.); (A.M.)
- Correspondence: (A.V.); (A.M.R.)
| | - Aldo M. Roccaro
- Clinical Research Development and Phase I Unit, ASST Spedali Civili di Brescia, 25123 Brescia, Italy; (A.S.); (V.G.)
- Correspondence: (A.V.); (A.M.R.)
| |
Collapse
|
23
|
Measurement of ex vivo resistance to proteasome inhibitors, IMiDs, and daratumumab during multiple myeloma progression. Blood Adv 2021; 4:1628-1639. [PMID: 32311014 DOI: 10.1182/bloodadvances.2019000122] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Accepted: 03/09/2020] [Indexed: 12/20/2022] Open
Abstract
The oncogenic drivers and progression factors in multiple myeloma (MM) are heterogeneous and difficult to target therapeutically. Many different MM drugs have emerged, however, that attack various phenotypic aspects of malignant plasma cells. These drugs are administered in numerous, seemingly interchangeable combinations. Although the availability of many treatment options is useful, no clinical test capable of optimizing and sequencing the treatment regimens for an individual patient is currently available. To overcome this problem, we developed a functional ex vivo approach to measure patients' inherent and acquired drug resistance. This method, which we termed myeloma drug sensitivity testing (My-DST), uses unselected bone marrow mononuclear cells with a panel of drugs in clinical use, followed by flow cytometry to measure myeloma-specific cytotoxicity. We found that using whole bone marrow cultures helped preserve primary MM cell viability. My-DST was used to profile 55 primary samples at diagnosis or at relapse. Sensitivity or resistance to each drug was determined from the change in MM viability relative to untreated control samples. My-DST identified progressive loss of sensitivity to immunomodulatory drugs, proteasome inhibitors, and daratumumab through the disease course, mirroring the clinical development of resistance. Prospectively, patients' ex vivo drug sensitivity to the drugs subsequently received was sensitive and specific for clinical response. In addition, treatment with <2 drugs identified as sensitive by My-DST led to inferior depth and duration of clinical response. In summary, ex vivo drug sensitivity is prognostically impactful and, with further validation, may facilitate more personalized and effective therapeutic regimens.
Collapse
|
24
|
Covalent Cysteine Targeting of Bruton's Tyrosine Kinase (BTK) Family by Withaferin-A Reduces Survival of Glucocorticoid-Resistant Multiple Myeloma MM1 Cells. Cancers (Basel) 2021; 13:cancers13071618. [PMID: 33807411 PMCID: PMC8037275 DOI: 10.3390/cancers13071618] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 03/25/2021] [Accepted: 03/29/2021] [Indexed: 02/07/2023] Open
Abstract
Multiple myeloma (MM) is a hematological malignancy characterized by plasma cells' uncontrolled growth. The major barrier in treating MM is the occurrence of primary and acquired therapy resistance to anticancer drugs. Often, this therapy resistance is associated with constitutive hyperactivation of tyrosine kinase signaling. Novel covalent kinase inhibitors, such as the clinically approved BTK inhibitor ibrutinib (IBR) and the preclinical phytochemical withaferin A (WA), have, therefore, gained pharmaceutical interest. Remarkably, WA is more effective than IBR in killing BTK-overexpressing glucocorticoid (GC)-resistant MM1R cells. To further characterize the kinase inhibitor profiles of WA and IBR in GC-resistant MM cells, we applied phosphopeptidome- and transcriptome-specific tyrosine kinome profiling. In contrast to IBR, WA was found to reverse BTK overexpression in GC-resistant MM1R cells. Furthermore, WA-induced cell death involves covalent cysteine targeting of Hinge-6 domain type tyrosine kinases of the kinase cysteinome classification, including inhibition of the hyperactivated BTK. Covalent interaction between WA and BTK could further be confirmed by biotin-based affinity purification and confocal microscopy. Similarly, molecular modeling suggests WA preferably targets conserved cysteines in the Hinge-6 region of the kinase cysteinome classification, favoring inhibition of multiple B-cell receptors (BCR) family kinases. Altogether, we show that WA's promiscuous inhibition of multiple BTK family tyrosine kinases represents a highly effective strategy to overcome GC-therapy resistance in MM.
Collapse
|
25
|
ImmunoPET imaging of multiple myeloma with [ 68Ga]Ga-NOTA-Nb1053. Eur J Nucl Med Mol Imaging 2021; 48:2749-2760. [PMID: 33543326 DOI: 10.1007/s00259-021-05218-1] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Accepted: 01/24/2021] [Indexed: 12/18/2022]
Abstract
PURPOSE Multiple myeloma (MM) remains incurable and its diagnosis relies heavily on bone marrow aspiration and biopsy. CD38 is a glycoprotein highly specific for MM. Antibody therapeutics (e.g., daratumumab) targeting CD38 have shown encouraging efficacy in treating MM, either as a monotherapy agent or in combination with other regimens. However, efficient stratification of patients who might benefit from daratumumab therapy and timely monitoring of the therapeutic responses are still clinical challenges. This work aims to devise a CD38-targeted imaging strategy and assess its value in diagnosing MMs. METHODS By labeling a CD38-specific single domain antibody (Nb1053) with 68Ga (t1/2 = 1.1 h), we developed a CD38-targeted immuno-positron emission tomography (immunoPET) imaging probe [68Ga]Ga-NOTA-Nb1053. The probe was developed with good radiochemical yield (> 50%), excellent radiochemical purity (> 99%), and immunoreactivity (> 95%). The diagnostic accuracy of the probe was thoroughly investigated in preclinical MM models. RESULTS ImmunoPET imaging with [68Ga]Ga-NOTA-Nb1053 specifically depicted all the subcutaneous and orthotopic MM lesions, outperforming the traditional 18F-fluorodeoxyglucose PET and the nonspecific [68Ga]Ga-NOTA-NbGFP immunoPET. More importantly, daratumumab preloading significantly reduced [68Ga]Ga-NOTA-Nb1053 uptake in the disseminated bone lesions, indicating the overlapping targeting epitopes of [68Ga]Ga-NOTA-Nb1053 with that of daratumumab. Furthermore, premedication with sodium maleate or fructose significantly decreased kidney retention of [68Ga]Ga-NOTA-Nb1053 and improved the diagnostic value of the probe in lymphoma models. CONCLUSION This work successfully developed a novel CD38-targeted immunoPET imaging approach that enabled precise visualization of CD38 and diagnosis of MMs. Upon clinical translation, [68Ga]Ga-NOTA-Nb1053 immunoPET may serve as a valuable CD38-targeted molecular imaging toolbox, facilitating early diagnosis of MM and precise assessment of the therapeutic responses.
Collapse
|
26
|
Dogan A, Siegel D, Tran N, Fu A, Fowler J, Belani R, Landgren O. B-cell maturation antigen expression across hematologic cancers: a systematic literature review. Blood Cancer J 2020; 10:73. [PMID: 32606424 PMCID: PMC7327051 DOI: 10.1038/s41408-020-0337-y] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 05/21/2020] [Accepted: 05/26/2020] [Indexed: 12/23/2022] Open
Abstract
B-cell maturation antigen (BCMA) plays a critical role in regulating B-cell proliferation and survival. There is evidence for BCMA expression in various hematologic malignancies, suggesting that BCMA may play an important role as a biomarker or therapeutic target in these diseases. Given advances in understanding the role of BCMA in B-cell development and the promise of BCMA as a therapeutic target, a systematic review is needed to rigorously assess the evidence for BCMA expression and identify areas of consensus and future research. The objective of this review was to summarize the evidence on BCMA protein and mRNA expression across hematologic malignancies. Using a PubMed database search up to 28 August 2019, a systematic literature review of publications reporting BCMA expression in patients with hematologic malignancies was conducted. Data from published congress abstracts presented at the American Society of Clinical Oncology and the American Society of Hematology were also searched. Studies that assessed BCMA expression (protein or mRNA) in patients of any age with hematologic malignancies were included. A total of 21 studies met inclusion criteria and were included in the review. BCMA was expressed in several hematologic malignancies, including multiple myeloma (MM), chronic lymphocytic leukemia, acute B-lymphoblastic leukemia, non-Hodgkin lymphoma (NHL), and Hodgkin lymphoma. BCMA was expressed at uniformly high levels across all 13 MM studies and at low to moderate levels in acute myeloid leukemia and acute lymphoblastic leukemia. These results suggest that BCMA is a relevant target in MM as well as in a subset of B-cell leukemia. BCMA expression in Hodgkin lymphoma and NHL varied across studies, and further research is needed to determine the utility of BCMA as an antibody target and biomarker in these diseases. Differences in sample type, timing of sample collection, and laboratory technique used may have affected the reporting of BCMA levels.
Collapse
Affiliation(s)
- Ahmet Dogan
- Memorial Sloan Kettering Cancer Center, New York, NY, USA.
| | - David Siegel
- John Theurer Cancer Center at Hackensack University Medical Center, Hackensack, NJ, USA
| | | | - Alan Fu
- Amgen, Inc., Thousand Oaks, CA, USA
| | | | | | - Ola Landgren
- Memorial Sloan Kettering Cancer Center, New York, NY, USA
| |
Collapse
|
27
|
Tang R, Zheleznyak A, Mixdorf M, Ghai A, Prior J, Black KCL, Shokeen M, Reed N, Biswas P, Achilefu S. Osteotropic Radiolabeled Nanophotosensitizer for Imaging and Treating Multiple Myeloma. ACS NANO 2020; 14:4255-4264. [PMID: 32223222 PMCID: PMC7295119 DOI: 10.1021/acsnano.9b09618] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Rapid liver and spleen opsonization of systemically administered nanoparticles (NPs) for in vivo applications remains the Achilles' heel of nanomedicine, allowing only a small fraction of the materials to reach the intended target tissue. Although focusing on diseases that reside in the natural disposal organs for nanoparticles is a viable option, it limits the plurality of lesions that could benefit from nanomedical interventions. Here we designed a theranostic nanoplatform consisting of reactive oxygen (ROS)-generating titanium dioxide (TiO2) NPs, coated with a tumor-targeting agent, transferrin (Tf), and radiolabeled with a radionuclide (89Zr) for targeting bone marrow, imaging the distribution of the NPs, and stimulating ROS generation for cell killing. Radiolabeling of TiO2 NPs with 89Zr afforded thermodynamically and kinetically stable chelate-free 89Zr-TiO2-Tf NPs without altering the NP morphology. Treatment of multiple myeloma (MM) cells, a disease of plasma cells originating in the bone marrow, with 89Zr-TiO2-Tf generated cytotoxic ROS to induce cancer cell killing via the apoptosis pathway. Positron emission tomography/X-ray computed tomography (PET/CT) imaging and tissue biodistribution studies revealed that in vivo administration of 89Zr-TiO2-Tf in mice leveraged the osteotropic effect of 89Zr to selectively localize about 70% of the injected radioactivity in mouse bone tissue. A combination of small-animal PET/CT imaging of NP distribution and bioluminescence imaging of cancer progression showed that a single-dose 89Zr-TiO2-Tf treatment in a disseminated MM mouse model completely inhibited cancer growth at euthanasia of untreated mice and at least doubled the survival of treated mice. Treatment of the mice with cold Zr-TiO2-Tf, 89Zr-oxalate, or 89Zr-Tf had no therapeutic benefit compared to untreated controls. This study reveals an effective radionuclide sensitizing nanophototherapy paradigm for the treatment of MM and possibly other bone-associated malignancies.
Collapse
Affiliation(s)
- Rui Tang
- Department of Radiology, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Alexander Zheleznyak
- Department of Radiology, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Matthew Mixdorf
- Department of Radiology, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Anchal Ghai
- Department of Radiology, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Julie Prior
- Department of Radiology, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Kvar C. L. Black
- Department of Radiology, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Monica Shokeen
- Department of Radiology, Washington University School of Medicine, St. Louis, MO, 63110, USA
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, MO, 63105, USA
| | - Nathan Reed
- Department of Energy, Environmental and Chemical Engineering, Washington University in St. Louis, St. Louis, MO, 63112, USA
| | - Pratim Biswas
- Department of Energy, Environmental and Chemical Engineering, Washington University in St. Louis, St. Louis, MO, 63112, USA
| | - Samuel Achilefu
- Department of Radiology, Washington University School of Medicine, St. Louis, MO, 63110, USA
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, MO, 63105, USA
- Departments of Medicine and Biochemistry & Molecular Biophysics, Washington University School of Medicine, St. Louis, MO, 63110, USA
| |
Collapse
|
28
|
Sriskandarajah P, De Haven Brandon A, MacLeod K, Carragher NO, Kirkin V, Kaiser M, Whittaker SR. Combined targeting of MEK and the glucocorticoid receptor for the treatment of RAS-mutant multiple myeloma. BMC Cancer 2020; 20:269. [PMID: 32228485 PMCID: PMC7106683 DOI: 10.1186/s12885-020-06735-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Accepted: 03/11/2020] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Multiple myeloma (MM) remains incurable despite recent therapeutic advances. RAS mutations are frequently associated with relapsed/refractory disease. Efforts to target the mitogen-activated protein kinase (MAPK) pathway with the MEK inhibitor, trametinib (Tra) have been limited by toxicities and the development of resistance. Dexamethasone (Dex) is a corticosteroid commonly used in clinical practice, to enhance efficacy of anti-myeloma therapy. Therefore, we hypothesised that the combination of Tra and Dex would yield synergistic activity in RAS-mutant MM. METHODS The response of human MM cell lines to drug treatment was analysed using cell proliferation assays, Western blotting, Annexin V and propidium iodide staining by flow cytometry and reverse phase protein arrays. The efficacy of trametinib and dexamethasone treatment in the MM.1S xenograft model was assessed by measuring tumor volume over time. RESULTS The Tra/Dex combination demonstrated synergistic cytotoxicity in KRASG12A mutant lines MM.1S and RPMI-8226. The induction of apoptosis was associated with decreased MCL-1 expression and increased BIM expression. Reverse phase proteomic arrays revealed suppression of FAK, PYK2, FLT3, NDRG1 and 4EBP1 phosphorylation with the Tra/Dex combination. Notably, NDRG1 expression was associated with the synergistic response to Tra/Dex. MM cells were sensitive to PDK1 inhibition and IGF1-induced signalling partially protected from Tra/Dex treatment, highlighting the importance of this pathway. In the MM.1S tumor xenograft model, only the combination of Tra/Dex resulted in a significant inhibition of tumor growth. CONCLUSIONS Overall Tra/Dex demonstrates antiproliferative activity in RAS-mutant MM cell lines associated with suppression of pro-survival PDK1 signalling and engagement of apoptotic pathways. Our data support further investigation of this combination in RAS-mutant MM.
Collapse
Affiliation(s)
- Priya Sriskandarajah
- Division of Cancer Therapeutics, The Institute of Cancer Research, London, SW7 3RP, UK.,The Royal Marsden NHS Foundation Trust, London, UK
| | | | - Kenneth MacLeod
- Cancer Research UK Edinburgh Centre, Institute of Genetics and Molecular Medicine, The University of Edinburgh, Edinburgh, UK
| | - Neil O Carragher
- Cancer Research UK Edinburgh Centre, Institute of Genetics and Molecular Medicine, The University of Edinburgh, Edinburgh, UK
| | - Vladimir Kirkin
- Division of Cancer Therapeutics, The Institute of Cancer Research, London, SW7 3RP, UK
| | - Martin Kaiser
- The Royal Marsden NHS Foundation Trust, London, UK.,Division of Molecular Pathology, The Institute of Cancer Research, London, UK
| | - Steven R Whittaker
- Division of Cancer Therapeutics, The Institute of Cancer Research, London, SW7 3RP, UK.
| |
Collapse
|
29
|
Ronca R, Ghedini GC, Maccarinelli F, Sacco A, Locatelli SL, Foglio E, Taranto S, Grillo E, Matarazzo S, Castelli R, Paganini G, Desantis V, Cattane N, Cattaneo A, Mor M, Carlo-Stella C, Belotti A, Roccaro AM, Presta M, Giacomini A. FGF Trapping Inhibits Multiple Myeloma Growth through c-Myc Degradation-Induced Mitochondrial Oxidative Stress. Cancer Res 2020; 80:2340-2354. [PMID: 32094301 DOI: 10.1158/0008-5472.can-19-2714] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Revised: 12/10/2019] [Accepted: 02/14/2020] [Indexed: 11/16/2022]
Abstract
Multiple myeloma, the second most common hematologic malignancy, frequently relapses because of chemotherapeutic resistance. Fibroblast growth factors (FGF) act as proangiogenic and mitogenic cytokines in multiple myeloma. Here, we demonstrate that the autocrine FGF/FGFR axis is essential for multiple myeloma cell survival and progression by protecting multiple myeloma cells from oxidative stress-induced apoptosis. In keeping with the hypothesis that the intracellular redox status can be a target for cancer therapy, FGF/FGFR blockade by FGF trapping or tyrosine kinase inhibitor impaired the growth and dissemination of multiple myeloma cells by inducing mitochondrial oxidative stress, DNA damage, and apoptotic cell death that were prevented by the antioxidant vitamin E or mitochondrial catalase overexpression. In addition, mitochondrial oxidative stress occurred as a consequence of proteasomal degradation of the c-Myc oncoprotein that led to glutathione depletion. Accordingly, expression of a proteasome-nondegradable c-Myc protein mutant was sufficient to avoid glutathione depletion and rescue the proapoptotic effects due to FGF blockade. These findings were confirmed on bortezomib-resistant multiple myeloma cells as well as on bone marrow-derived primary multiple myeloma cells from newly diagnosed and relapsed/refractory patients, including plasma cells bearing the t(4;14) translocation obtained from patients with high-risk multiple myeloma. Altogether, these findings dissect the mechanism by which the FGF/FGFR system plays a nonredundant role in multiple myeloma cell survival and disease progression, and indicate that FGF targeting may represent a therapeutic approach for patients with multiple myeloma with poor prognosis and advanced disease stage. SIGNIFICANCE: This study provides new insights into the mechanisms by which FGF antagonists promote multiple myeloma cell death. GRAPHICAL ABSTRACT: http://cancerres.aacrjournals.org/content/canres/80/11/2340/F1.large.jpg.
Collapse
Affiliation(s)
- Roberto Ronca
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Gaia C Ghedini
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Federica Maccarinelli
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Antonio Sacco
- Clinical Research Development and Phase I Unit, CREA Laboratory, ASST Spedali Civili di Brescia, Brescia, Italy
| | - Silvia L Locatelli
- Department of Oncology and Hematology, Humanitas Clinical and Research Center - IRCCS and Humanitas University, Milan, Italy
| | - Eleonora Foglio
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Sara Taranto
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Elisabetta Grillo
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Sara Matarazzo
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | | | - Giuseppe Paganini
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Vanessa Desantis
- Department of Biomedical Sciences and Human Oncology, Azienda Ospedaliera Consorziale Universitaria Policlinico di Bari, Bari, Italy
| | - Nadia Cattane
- Biological Psychiatry Unit, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy
| | - Annamaria Cattaneo
- Biological Psychiatry Unit, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy.,Stress, Psychiatry and Immunology Laboratory, Department of Psychological Medicine, Institute of Psychiatry, King's College London, London, United Kingdom
| | - Marco Mor
- Department of Food and Drug, University of Parma, Parma, Italy
| | - Carmelo Carlo-Stella
- Department of Oncology and Hematology, Humanitas Clinical and Research Center - IRCCS and Humanitas University, Milan, Italy
| | - Angelo Belotti
- Department of Hematology, ASST Spedali Civili di Brescia, Brescia, Italy
| | - Aldo M Roccaro
- Clinical Research Development and Phase I Unit, CREA Laboratory, ASST Spedali Civili di Brescia, Brescia, Italy
| | - Marco Presta
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy.
| | - Arianna Giacomini
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy.
| |
Collapse
|
30
|
Ettari R, Pallio G, Pizzino G, Irrera N, Zappalà M, Maiorana S, Di Chio C, Altavilla D, Squadrito F, Bitto A. Non-covalent immunoproteasome inhibitors induce cell cycle arrest in multiple myeloma MM.1R cells. J Enzyme Inhib Med Chem 2019; 34:1307-1313. [PMID: 31307247 PMCID: PMC6691773 DOI: 10.1080/14756366.2019.1594802] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
Proteasome inhibition is a promising strategy for the treatment of multiple myeloma; unfortunately, this disease is often associated with an increasing chemoresistance. One novel approach may be to target the immunoproteasome, a proteasomal isoform mainly present in cells of hematopoietic origin. We investigated the activity of a panel of amides against immunoproteasome core particles as potential agents for the treatment of multiple myeloma (MM). Amide 6 showed an ideal profile since it was able to inhibit both the chymotrypsin-like activities of the immunoproteasome with Ki values of 4.90 µM and 4.39 µM for β1i and β5i, respectively, coupled with an EC50 =17.8 µM against MM.1R cells. Compound 6 inhibited also ubiquitinated protein degradation and was able to act on different phases of MM cell cycle reducing the levels of cyclin A/CDK1, cyclin B/CDK1 and cyclin D/CDK4/6 complexes, which turns in cell cycle arrest.
Collapse
Affiliation(s)
- Roberta Ettari
- a Department of Chemical, Biological, Pharmaceutical and Environmental Sciences , University of Messina , Messina , Italy
| | - Giovanni Pallio
- b Department of Clinical and Experimental Medicine , University of Messina , Messina , Italy
| | - Gabriele Pizzino
- b Department of Clinical and Experimental Medicine , University of Messina , Messina , Italy
| | - Natasha Irrera
- b Department of Clinical and Experimental Medicine , University of Messina , Messina , Italy
| | - Maria Zappalà
- a Department of Chemical, Biological, Pharmaceutical and Environmental Sciences , University of Messina , Messina , Italy
| | - Santina Maiorana
- a Department of Chemical, Biological, Pharmaceutical and Environmental Sciences , University of Messina , Messina , Italy
| | - Carla Di Chio
- a Department of Chemical, Biological, Pharmaceutical and Environmental Sciences , University of Messina , Messina , Italy
| | - Domenica Altavilla
- c Department of Biomedical Sciences, Dentistry, and Morphofunctional Sciences , University of Messina , Messina , Italy
| | - Francesco Squadrito
- b Department of Clinical and Experimental Medicine , University of Messina , Messina , Italy
| | - Alessandra Bitto
- b Department of Clinical and Experimental Medicine , University of Messina , Messina , Italy
| |
Collapse
|
31
|
Ochoa MC, Perez-Ruiz E, Minute L, Oñate C, Perez G, Rodriguez I, Zabaleta A, Alignani D, Fernandez-Sendin M, Lopez A, Muntasell A, Sanmamed MF, Paiva B, Lopez-Botet M, Berraondo P, Melero I. Daratumumab in combination with urelumab to potentiate anti-myeloma activity in lymphocyte-deficient mice reconstituted with human NK cells. Oncoimmunology 2019; 8:1599636. [PMID: 31143521 DOI: 10.1080/2162402x.2019.1599636] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Revised: 03/05/2019] [Accepted: 03/12/2019] [Indexed: 10/27/2022] Open
Abstract
Daratumumab is an anti-CD38 fully human IgG1 mAb approved for multiple myeloma treatment. One of the proposed mechanisms of action is the induction of antibody-dependent cellular cytotoxicity (ADCC) mediated by NK cells. NK cells acquire surface CD137 expression in the presence of solid-phase-attached daratumumab and when encountering a daratumumab-coated CD38+ tumor cell line. In this setting, addition of the agonist anti-CD137 mAb urelumab enhances NK-cell activation increasing CD25 expression and IFNɣ production. However, in vitro ADCC is not increased by the addition of urelumab both in 4h or 24h lasting experiments. To study urelumab-increased daratumumab-mediated ADCC activity in vivo, we set up a mouse model based on the intravenous administration of a luciferase-transfected multiple myeloma cell line of human origin, human NK cells and daratumumab to immuno-deficient NSG mice. In this model, intravenous administration of urelumab 24h after daratumumab delayed tumor growth and prolonged mice survival.
Collapse
Affiliation(s)
- Maria C Ochoa
- Program of Immunology and Immunotherapy, Center for Applied Medical Research (CIMA), Pamplona, Spain.,Navarra Institute for Health Research (IDISNA), Pamplona, Spain.,Department of Immunology and Immunotherapy, University Hospital of Navarra, Pamplona, Spain.,Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain
| | | | - Luna Minute
- Program of Immunology and Immunotherapy, Center for Applied Medical Research (CIMA), Pamplona, Spain.,Navarra Institute for Health Research (IDISNA), Pamplona, Spain.,Department of Immunology and Immunotherapy, University Hospital of Navarra, Pamplona, Spain.,Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain
| | - Carmen Oñate
- Navarra Institute for Health Research (IDISNA), Pamplona, Spain.,Department of Immunology and Immunotherapy, University Hospital of Navarra, Pamplona, Spain
| | - Guiomar Perez
- Navarra Institute for Health Research (IDISNA), Pamplona, Spain.,Department of Immunology and Immunotherapy, University Hospital of Navarra, Pamplona, Spain
| | - Inmaculada Rodriguez
- Navarra Institute for Health Research (IDISNA), Pamplona, Spain.,Department of Immunology and Immunotherapy, University Hospital of Navarra, Pamplona, Spain
| | - Aintzane Zabaleta
- Program of Immunology and Immunotherapy, Center for Applied Medical Research (CIMA), Pamplona, Spain.,Navarra Institute for Health Research (IDISNA), Pamplona, Spain.,Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain.,Cytometry Unit, Center for Applied Medical Research (CIMA), Pamplona, Spain
| | - Diego Alignani
- Navarra Institute for Health Research (IDISNA), Pamplona, Spain.,Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain.,Cytometry Unit, Center for Applied Medical Research (CIMA), Pamplona, Spain
| | - Myriam Fernandez-Sendin
- Program of Immunology and Immunotherapy, Center for Applied Medical Research (CIMA), Pamplona, Spain.,Navarra Institute for Health Research (IDISNA), Pamplona, Spain
| | - Ascension Lopez
- Navarra Institute for Health Research (IDISNA), Pamplona, Spain.,Department of Immunology and Immunotherapy, University Hospital of Navarra, Pamplona, Spain.,Cell Therapy Area, University Hospital of Navarra, Pamplona, Spain
| | - Aura Muntasell
- Immunity and Infection Lab, Hospital del Mar Medical Research Institute (IMIM), Barcelona, Spain
| | - Miguel F Sanmamed
- Program of Immunology and Immunotherapy, Center for Applied Medical Research (CIMA), Pamplona, Spain.,Navarra Institute for Health Research (IDISNA), Pamplona, Spain.,Department of Immunology and Immunotherapy, University Hospital of Navarra, Pamplona, Spain
| | - Bruno Paiva
- Program of Immunology and Immunotherapy, Center for Applied Medical Research (CIMA), Pamplona, Spain.,Navarra Institute for Health Research (IDISNA), Pamplona, Spain.,Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain.,Cytometry Unit, Center for Applied Medical Research (CIMA), Pamplona, Spain
| | - Miguel Lopez-Botet
- Immunity and Infection Lab, Hospital del Mar Medical Research Institute (IMIM), Barcelona, Spain.,Departament de Ciències Experimentals i de la Salut. Immunology Unit, University Pompeu Fabra, Barcelona, Spain
| | - Pedro Berraondo
- Program of Immunology and Immunotherapy, Center for Applied Medical Research (CIMA), Pamplona, Spain.,Navarra Institute for Health Research (IDISNA), Pamplona, Spain.,Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain
| | - Ignacio Melero
- Program of Immunology and Immunotherapy, Center for Applied Medical Research (CIMA), Pamplona, Spain.,Navarra Institute for Health Research (IDISNA), Pamplona, Spain.,Department of Immunology and Immunotherapy, University Hospital of Navarra, Pamplona, Spain.,Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain
| |
Collapse
|
32
|
Reed NA, Raliya R, Tang R, Xu B, Mixdorf M, Achilefu S, Biswas P. Electrospray Functionalization of Titanium Dioxide Nanoparticles with Transferrin for Cerenkov Radiation Induced Cancer Therapy. ACS APPLIED BIO MATERIALS 2019; 2:1141-1147. [PMID: 31214665 DOI: 10.1021/acsabm.8b00755] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Titanium dioxide (TiO2) nanoparticles have shown success as photosensitizers in the form of light-based cancer therapy called Cerenkov radiation induced therapy (CRIT). While TiO2 nanoparticles have been reported to be an effective therapeutic agent, there has been little work to control their functionalization and stability in aqueous suspension. In this work, the controlled coating of 25 nm diameter TiO2 nanoparticles with the glycoprotein transferrin (Tf) for application in CRIT was demonstrated using an electrospray system. Monodisperse nanoscale droplets containing TiO2 and Tf were dried during flight, coating the proteins on the surface of the metal oxide nanoparticles. Real-time scanning mobility particle sizing, dynamic light scattering, and transmission electron microscopy show efficient control of the Tf coating thickness when varying the droplet size and the ratio of Tf to TiO2 in the electrospray precursor suspension. Further, the functionality of Tf-coated TiO2 nanoparticles was demonstrated, and these particles were found to have enhanced targeting activity of Tf to the Tf receptor after electrospray processing. The electrospray-coated Tf/TiO2 particles were also found to be more effective at killing the multiple myeloma cell line MM1.S than that of nanoparticles prepared by other reported functionalization methods. In summary, this investigation not only provides a single-step functionalization technique for nanomaterials used in Cerenkov radiation induced therapy but also elucidates an electrospray coating technique for nanomaterials that can be used for a wide range of drug design and delivery purposes.
Collapse
Affiliation(s)
- Nathan A Reed
- Aerosol and Air Quality Research Laboratory, Department of Energy, Environmental and Chemical Engineering, Washington University in St. Louis, St. Louis, Missouri 63130, United States
| | - Ramesh Raliya
- Aerosol and Air Quality Research Laboratory, Department of Energy, Environmental and Chemical Engineering, Washington University in St. Louis, St. Louis, Missouri 63130, United States
| | - Rui Tang
- Optical Radiology Lab, Mallinckrodt Institute of Radiology, Department of Radiology, Washington University School of Medicine, St. Louis, Missouri 63130, United States
| | - Baogang Xu
- Optical Radiology Lab, Mallinckrodt Institute of Radiology, Department of Radiology, Washington University School of Medicine, St. Louis, Missouri 63130, United States
| | - Matthew Mixdorf
- Optical Radiology Lab, Mallinckrodt Institute of Radiology, Department of Radiology, Washington University School of Medicine, St. Louis, Missouri 63130, United States
| | - Samuel Achilefu
- Optical Radiology Lab, Mallinckrodt Institute of Radiology, Department of Radiology, Washington University School of Medicine, St. Louis, Missouri 63130, United States.,Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, Missouri 63130, United States.,Department of Biochemistry and Molecular Biophysics, School of Medicine, Washington University in St. Louis, St. Louis, Missouri 63130, United States
| | - Pratim Biswas
- Aerosol and Air Quality Research Laboratory, Department of Energy, Environmental and Chemical Engineering, Washington University in St. Louis, St. Louis, Missouri 63130, United States
| |
Collapse
|
33
|
Ma TZ, Piao Z, Jin SY, Kwak YG. Differential expression of serum proteins in multiple myeloma. Exp Ther Med 2019; 17:649-656. [PMID: 30651846 PMCID: PMC6307483 DOI: 10.3892/etm.2018.7010] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2018] [Accepted: 08/14/2018] [Indexed: 01/27/2023] Open
Abstract
The exact cause instigating multiple myeloma (MM) has not been fully elucidated, and the disease has a median survival of 6 months without any treatment. To identify potential biomarkers of MM, serum proteins reflecting alteration in their proteomes were analyzed in 6 patients with MM compared with 6 healthy controls using two-dimensional electrophoresis (2-DE) and matrix-assisted laser desorption/ionization time-of flight mass spectrometry. The most notable differentially expressed proteins were validated by immunoblotting and changes in mRNA expression were evaluated by reverse transcription-quantitative polymerase chain reaction (RT-qPCR). A total of 11 differentially expressed protein spots were found. The expression levels of 7 proteins [Immunoglobulin heavy constant µ; proto-oncogene diffuse B-cell lymphoma (DBL2); 26S protease regulatory subunit 4 (P26s4); serum albumin; haptoglobin; and two unknown proteins with isoelectronic point (pI) of 6.41 and molecular weight of 35.4 kDa, and pI of 8.05 and molecular weight of 27.4 kDa, respectively] were downregulated in MM compared with healthy controls. Expression of gel actin-related protein 2/3 complex subunit 1A (ARPC1A); immunoglobulin heavy constant γ 1; fibrinogen α chain (FGA) fragment D; and zinc finger protein 70 were increased in serum of MM patients. Protein expressions of ARPC1A, FGA, P26s4 and DBL2 were measured by immunoblotting in an independent cohort of 12 MM patients and 10 healthy controls. RT-qPCR analysis demonstrated that ARPC1A expression only mimicked protein expression, whereas FGA, PSMC1 (encoding P26s4) and MCF2 (encoding DBL2) did not exhibit significant changes in mRNA expression between control and MM samples. These proteins represent putative serological biomarkers for patients with MM.
Collapse
Affiliation(s)
- Tian-Ze Ma
- Department of Hematology, Yanbian University Hospital, Yanji, Jilin 133000, P.R. China
| | - Zhe Piao
- Department of Hematology, Yanbian University Hospital, Yanji, Jilin 133000, P.R. China
| | - Sheng-Yu Jin
- Department of Hematology, Yanbian University Hospital, Yanji, Jilin 133000, P.R. China
| | - Yong-Geun Kwak
- Department of Pharmacology, Chonbuk National University Medical School, Jeonju, Jeonbuk 560-182, Republic of Korea
| |
Collapse
|
34
|
Wilkinson L, Verhoog NJD, Louw A. Disease- and treatment-associated acquired glucocorticoid resistance. Endocr Connect 2018; 7:R328-R349. [PMID: 30352419 PMCID: PMC6280593 DOI: 10.1530/ec-18-0421] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Accepted: 10/11/2018] [Indexed: 12/16/2022]
Abstract
The development of resistance to glucocorticoids (GCs) in therapeutic regimens poses a major threat. Generally, GC resistance is congenital or acquired over time as a result of disease progression, prolonged GC treatment or, in some cases, both. Essentially, disruptions in the function and/or pool of the glucocorticoid receptor α (GRα) underlie this resistance. Many studies have detailed how alterations in GRα function lead to diminished GC sensitivity; however, the current review highlights the wealth of data concerning reductions in the GRα pool, mediated by disease-associated and treatment-associated effects, which contribute to a significant decrease in GC sensitivity. Additionally, the current understanding of the molecular mechanisms involved in driving reductions in the GRα pool is discussed. After highlighting the importance of maintaining the level of the GRα pool to combat GC resistance, we present current strategies and argue that future strategies to prevent GC resistance should involve biased ligands with a predisposition for reduced GR dimerization, a strategy originally proposed as the SEMOGRAM-SEDIGRAM concept to reduce the side-effect profile of GCs.
Collapse
Affiliation(s)
- Legh Wilkinson
- Department of Biochemistry, Stellenbosch University, Stellenbosch, South Africa
| | | | - Ann Louw
- Department of Biochemistry, Stellenbosch University, Stellenbosch, South Africa
- Correspondence should be addressed to A Louw:
| |
Collapse
|
35
|
CAR T Cells with Enhanced Sensitivity to B Cell Maturation Antigen for the Targeting of B Cell Non-Hodgkin's Lymphoma and Multiple Myeloma. Mol Ther 2018; 26:1906-1920. [PMID: 30078440 DOI: 10.1016/j.ymthe.2018.06.012] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Revised: 06/11/2018] [Accepted: 06/12/2018] [Indexed: 11/24/2022] Open
Abstract
Autologous T cells genetically modified with a chimeric antigen receptor (CAR) redirected at CD19 have potent activity in the treatment of B cell leukemia and B cell non-Hodgkin's lymphoma (B-NHL). Immunotherapies to treat multiple myeloma (MM) targeted the B cell maturation antigen (BCMA), which is expressed in most cases of MM. We developed a humanized CAR with specificity for BCMA based on our previously generated anti-BCMA monoclonal antibody. The targeting single-chain variable fragment (scFv) domain exhibited a binding affinity in the low nanomolar range, conferring T cells with high functional avidity. Redirecting T cells by this CAR allowed us to explore BCMA as an alternative target for mature B-NHLs. We validated BCMA expression in diffuse large B cell lymphoma, follicular lymphoma, mantle cell lymphoma, and chronic lymphocytic leukemia. BCMA CAR T cells triggered target cell lysis with an activation threshold in the range of 100 BCMA molecules, which allowed for an efficient eradication of B-NHL cells in vitro and in vivo. Our data corroborate BCMA is a suitable target in B cell tumors beyond MM, providing a novel therapeutic option for patients where BCMA is expressed at low abundance or where anti-CD19 immunotherapies have failed due to antigen loss.
Collapse
|
36
|
Argueta C, Kashyap T, Klebanov B, Unger TJ, Guo C, Harrington S, Baloglu E, Lee M, Senapedis W, Shacham S, Landesman Y. Selinexor synergizes with dexamethasone to repress mTORC1 signaling and induce multiple myeloma cell death. Oncotarget 2018; 9:25529-25544. [PMID: 29876006 PMCID: PMC5986633 DOI: 10.18632/oncotarget.25368] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Accepted: 04/25/2018] [Indexed: 12/12/2022] Open
Abstract
Multiple myeloma (MM) is a plasma cell neoplasm that results in over 11,000 deaths in the United States annually. The backbone therapy for the treatment of MM patients almost always includes combinations with corticosteroids such as dexamethasone (DEX). We found that DEX in combination with selinexor, an inhibitor of exportin-1 (XPO1) activity, synergistically inhibits the mTOR pathway and subsequently promotes cell death in MM cells. Specifically, we show that selinexor induces the expression of the glucocorticoid receptor (GR) and when combined with dexamethasone increases GR transcriptional activity. Moreover, we found that key downstream targets of the mTOR pathway are deregulated by the combination and identified a mechanism in which GR enhances the expression of REDD1 in GR positive cells while suppressing mTOR activity and cell viability. While the single agent activity of selinexor in MM cells appears to be GR-independent, synergy with DEX depends on GR expression. These data suggest that patients with tumor cells that are GR positive will benefit substantially from the combination. The current findings are consistent with the beneficial therapeutic outcome in patients with MM when treated with the combination of selinexor and DEX. In addition, they provide a rationale for testing GR and REDD1 as predictive and prognostic markers of response, respectively, for patients treated with this beneficial combination.
Collapse
Affiliation(s)
| | | | | | | | - Cathy Guo
- Karyopharm Therapeutics Inc, Newton, MA 02459, USA
| | | | | | - Margaret Lee
- Karyopharm Therapeutics Inc, Newton, MA 02459, USA
| | | | | | | |
Collapse
|
37
|
Clarisse D, Van Wesemael K, Tavernier J, Offner F, Beck IM, De Bosscher K. Effect of combining glucocorticoids with Compound A on glucocorticoid receptor responsiveness in lymphoid malignancies. PLoS One 2018; 13:e0197000. [PMID: 29738549 PMCID: PMC5940183 DOI: 10.1371/journal.pone.0197000] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Accepted: 04/24/2018] [Indexed: 11/18/2022] Open
Abstract
Glucocorticoids (GCs) are a cornerstone in the treatment of lymphoid malignancies such as multiple myeloma (MM) and acute lymphoblastic leukemia (ALL). Yet, prolonged GC use is hampered by deleterious GC-related side effects and the emergence of GC resistance. To tackle and overcome these GC-related problems, the applicability of selective glucocorticoid receptor agonists and modulators was studied, in search of fewer side-effects and at least equal therapeutic efficacy as classic GCs. Compound A (CpdA) is a prototypical example of such a selective glucocorticoid receptor modulator and does not support GR-mediated transactivation. Here, we examined whether the combination of CpdA with the classic GC dexamethasone (Dex) may improve GC responsiveness of MM and ALL cell lines. We find that the combination of Dex and CpdA does not substantially enhance GC-mediated cell killing. In line, several apoptosis hallmarks, such as caspase 3/7 activity, PARP cleavage and the levels of cleaved-caspase 3 remain unchanged upon combining Dex with CpdA. Moreover, we monitor no additional inhibition of cell proliferation and the homologous downregulation of GR is not counteracted by the combination of Dex and CpdA. In addition, CpdA is unable to modulate Dex-liganded GR transactivation and transrepression, yet, Dex-mediated transrepression is also aberrant in these lymphoid cell lines. Together, transrepression-favoring compounds, alone or combined with GCs, do not seem a valid strategy in the treatment of lymphoid malignancies.
Collapse
Affiliation(s)
- Dorien Clarisse
- Receptor Research Laboratories, Nuclear Receptor Lab (NRL) and Cytokine Receptor Lab (CRL), Department for Biomolecular Medicine, VIB-UGent Center for Medical Biotechnology, Ghent University, Ghent, Belgium
- Laboratory of Experimental Cancer Research (LECR), Department of Radiation Oncology and Experimental Cancer Research, Ghent University, Ghent, Belgium
- Cancer Research Institute Ghent (CRIG), Ghent, Belgium
- Hematology, Department of Internal Medicine, Ghent University Hospital, Ghent, Belgium
| | - Karlien Van Wesemael
- Laboratory of Experimental Cancer Research (LECR), Department of Radiation Oncology and Experimental Cancer Research, Ghent University, Ghent, Belgium
- Hematology, Department of Internal Medicine, Ghent University Hospital, Ghent, Belgium
| | - Jan Tavernier
- Receptor Research Laboratories, Nuclear Receptor Lab (NRL) and Cytokine Receptor Lab (CRL), Department for Biomolecular Medicine, VIB-UGent Center for Medical Biotechnology, Ghent University, Ghent, Belgium
- Cancer Research Institute Ghent (CRIG), Ghent, Belgium
| | - Fritz Offner
- Hematology, Department of Internal Medicine, Ghent University Hospital, Ghent, Belgium
| | - Ilse M. Beck
- Laboratory of Experimental Cancer Research (LECR), Department of Radiation Oncology and Experimental Cancer Research, Ghent University, Ghent, Belgium
- Department of Health Sciences, Odisee University College, Ghent, Belgium
| | - Karolien De Bosscher
- Receptor Research Laboratories, Nuclear Receptor Lab (NRL) and Cytokine Receptor Lab (CRL), Department for Biomolecular Medicine, VIB-UGent Center for Medical Biotechnology, Ghent University, Ghent, Belgium
- Cancer Research Institute Ghent (CRIG), Ghent, Belgium
- * E-mail:
| |
Collapse
|
38
|
Ramakrishnan V, Mager DE. Network-Based Analysis of Bortezomib Pharmacodynamic Heterogeneity in Multiple Myeloma Cells. J Pharmacol Exp Ther 2018; 365:734-751. [PMID: 29632237 DOI: 10.1124/jpet.118.247924] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Accepted: 04/05/2018] [Indexed: 12/19/2022] Open
Abstract
The objective of this study is to evaluate the heterogeneity in pharmacodynamic response in four in vitro multiple myeloma cell lines to treatment with bortezomib, and to assess whether such differences are associated with drug-induced intracellular signaling protein dynamics identified via a logic-based network modeling approach. The in vitro pharmacodynamic-efficacy of bortezomib was evaluated through concentration-effect and cell proliferation dynamical studies in U266, RPMI8226, MM.1S, and NCI-H929 myeloma cell lines. A Boolean logic-based network model incorporating intracellular protein signaling pathways relevant to myeloma cell growth, proliferation, and apoptosis was developed based on information available in the literature and used to identify key proteins regulating bortezomib pharmacodynamics. The time-course of network-identified proteins was measured using the MAGPIX protein assay system. Traditional pharmacodynamic modeling endpoints revealed variable responses of the cell lines to bortezomib treatment, classifying cell lines as more sensitive (MM.1S and NCI-H929) and less sensitive (U266 and RPMI8226). Network centrality and model reduction identified key proteins (e.g., phosphorylated nuclear factor-κB, phosphorylated protein kinase B, phosphorylated mechanistic target of rapamycin, Bcl-2, phosphorylated c-Jun N-terminal kinase, phosphorylated p53, p21, phosphorylated Bcl-2-associated death promoter, caspase 8, and caspase 9) that govern bortezomib pharmacodynamics. The corresponding relative expression (normalized to 0-hour untreated-control cells) of proteins demonstrated a greater magnitude and earlier onset of stimulation/inhibition in cells more sensitive (MM.1S and NCI-H929) to bortezomib-induced cell death at 20 nM, relative to the less sensitive cells (U266 and RPMI8226). Overall, differences in intracellular signaling appear to be associated with bortezomib pharmacodynamic heterogeneity, and key proteins may be potential biomarkers to evaluate bortezomib responses.
Collapse
Affiliation(s)
- Vidya Ramakrishnan
- Department of Pharmaceutical Sciences, University at Buffalo, SUNY, Buffalo, New York
| | - Donald E Mager
- Department of Pharmaceutical Sciences, University at Buffalo, SUNY, Buffalo, New York
| |
Collapse
|
39
|
Thangavadivel S, Zelle-Rieser C, Olivier A, Postert B, Untergasser G, Kern J, Brunner A, Gunsilius E, Biedermann R, Hajek R, Pour L, Willenbacher W, Greil R, Jöhrer K. CCR10/CCL27 crosstalk contributes to failure of proteasome-inhibitors in multiple myeloma. Oncotarget 2018; 7:78605-78618. [PMID: 27732933 PMCID: PMC5346663 DOI: 10.18632/oncotarget.12522] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2016] [Accepted: 10/03/2016] [Indexed: 11/25/2022] Open
Abstract
The bone marrow microenvironment plays a decisive role in multiple myeloma progression and drug resistance. Chemokines are soluble mediators of cell migration, proliferation and survival and essentially modulate tumor progression and drug resistance. Here we investigated bone marrow-derived chemokines of naive and therapy-refractory myeloma patients and discovered that high levels of the chemokine CCL27, known so far for its role in skin inflammatory processes, correlated with worse overall survival of the patients. In addition, chemokine levels were significantly higher in samples from patients who became refractory to bortezomib at first line treatment compared to resistance at later treatment lines. In vitro as well as in an in vivo model we could show that CCL27 triggers bortezomib-resistance of myeloma cells. This effect was strictly dependent on the expression of the respective receptor, CCR10, on stroma cells and involved the modulation of IL-10 expression, activation of myeloma survival pathways, and modulation of proteasomal activity. Drug resistance could be totally reversed by blocking CCR10 by siRNA as well as blocking IL-10 and its receptor. From our data we suggest that blocking the CCR10/CCL27/IL-10 myeloma-stroma crosstalk is a novel therapeutic target that could be especially relevant in early refractory myeloma patients.
Collapse
Affiliation(s)
| | | | | | - Benno Postert
- Tyrolean Cancer Research Institute, Innsbruck, Austria
| | - Gerold Untergasser
- Tyrolean Cancer Research Institute, Innsbruck, Austria.,Laboratory of Tumor Angiogenesis and Tumorbiology, Department of Internal Medicine V, Medical University of Innsbruck, Innsbruck, Austria
| | - Johann Kern
- Laboratory of Tumor Angiogenesis and Tumorbiology, Department of Internal Medicine V, Medical University of Innsbruck, Innsbruck, Austria
| | - Andrea Brunner
- Department of Pathology, Medical University Innsbruck, Innsbruck, Austria
| | - Eberhard Gunsilius
- Laboratory of Tumor Angiogenesis and Tumorbiology, Department of Internal Medicine V, Medical University of Innsbruck, Innsbruck, Austria
| | - Rainer Biedermann
- Department of Orthopedic Surgery, Medical University Innsbruck, Innsbruck, Austria
| | - Roman Hajek
- Babak Myeloma Group, Department of Pathological Physiology, Faculty of Medicine, Masaryk University, Department of Clinical Hematology, University Hospital Brno, Brno, Czech Republic.,Department of Hematooncology, Faculty of Medicine, University of Ostrava and University Hospital Ostrava, Ostrava, Czech Republic
| | - Ludek Pour
- Babak Myeloma Group, Department of Pathological Physiology, Faculty of Medicine, Masaryk University, Department of Clinical Hematology, University Hospital Brno, Brno, Czech Republic.,Department of Hematooncology, Faculty of Medicine, University of Ostrava and University Hospital Ostrava, Ostrava, Czech Republic
| | - Wolfgang Willenbacher
- Department of Internal Medicine V, University Hospital Innsbruck, Innsbruck, Austria
| | - Richard Greil
- Tyrolean Cancer Research Institute, Innsbruck, Austria.,Salzburg Cancer Research Institute-Laboratory of Immunological and Molecular Cancer Research, Salzburg, Austria.,Third Medical Department at The Paracelsus Medical University Salzburg, Austria.,Cancer Cluster Salzburg (CCS), Salzburg, Austria
| | - Karin Jöhrer
- Tyrolean Cancer Research Institute, Innsbruck, Austria
| |
Collapse
|
40
|
Ramakrishnan V, Gomez M, Prasad V, Kimlinger T, Painuly U, Mukhopadhyay B, Haug J, Bi L, Rajkumar SV, Kumar S. Smac mimetic LCL161 overcomes protective ER stress induced by obatoclax, synergistically causing cell death in multiple myeloma. Oncotarget 2018; 7:56253-56265. [PMID: 27494845 PMCID: PMC5302912 DOI: 10.18632/oncotarget.11028] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Accepted: 07/23/2016] [Indexed: 11/25/2022] Open
Abstract
Bcl2 and IAP families are anti-apoptotic proteins deregulated in multiple myeloma (MM) cells. Pharmacological inhibition of each of these families has shown significant activity only in subgroups of MM patients. Here, we have examined a broad-spectrum Bcl2 family inhibitor Obatoclax (OBX) in combination with a Smac mimetic LCL161 in MM cell lines and patient cells. LCL161/OBX combination induced synergistic cytotoxicity and anti-proliferative effects on a broad range of human MM cell lines. The cytotoxicity was mediated through inhibition of the IAPs, activation of caspases and up regulation of the pro-apoptotic proteins Bid, Bim, Puma and Noxa by the drug combination. In addition, we observed that OBX caused ER stress and activated the Unfolded Protein Response (UPR) leading to drug resistance. LCL161, however inhibited spliced Xbp-1, a pro-survival factor. In addition, we observed that OBX increased GRP78 localization to the cell surface, which then induced PI3K dependent Akt activation and resistance to cell death. LCL161 was able to block OBX induced Akt activation contributing to synergistic cell death. Our results support clinical evaluation of this combination strategy in relapsed refractory MM patients.
Collapse
Affiliation(s)
| | - Marcus Gomez
- Division of Hematology, Mayo Clinic, Rochester, MN, USA
| | - Vivek Prasad
- Division of Hematology, Mayo Clinic, Rochester, MN, USA
| | | | - Utkarsh Painuly
- Division of Hematology, Mayo Clinic, Rochester, MN, USA.,4th Department of Internal Medicine-Hematology, University Hospital Hradec Kralove and Charles University in Prague, Faculty of Medicine in Hradec Kralove, Czech Republic
| | | | - Jessica Haug
- Division of Hematology, Mayo Clinic, Rochester, MN, USA
| | - Lintao Bi
- Division of Hematology, Mayo Clinic, Rochester, MN, USA.,The Department of Hematology and Oncology, China-Japan Union Hospital, Jilin University, Changchun, Jilin, China
| | | | - Shaji Kumar
- Division of Hematology, Mayo Clinic, Rochester, MN, USA
| |
Collapse
|
41
|
Belloni D, Heltai S, Ponzoni M, Villa A, Vergani B, Pecciarini L, Marcatti M, Girlanda S, Tonon G, Ciceri F, Caligaris-Cappio F, Ferrarini M, Ferrero E. Modeling multiple myeloma-bone marrow interactions and response to drugs in a 3D surrogate microenvironment. Haematologica 2018; 103:707-716. [PMID: 29326121 PMCID: PMC5865414 DOI: 10.3324/haematol.2017.167486] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Accepted: 12/27/2017] [Indexed: 01/26/2023] Open
Abstract
Multiple myeloma develops primarily inside the bone marrow microenvironment, that confers pro-survival signals and drug resistance. 3D cultures that reproduce multiple myeloma-bone marrow interactions are needed to fully investigate multiple myeloma pathogenesis and response to drugs. To this purpose, we exploited the 3D Rotary Cell Culture System bioreactor technology for myeloma-bone marrow co-cultures in gelatin scaffolds. The model was validated with myeloma cell lines that, as assessed by histochemical and electron-microscopic analyses, engaged contacts with stromal cells and endothelial cells. Consistently, pro-survival signaling and also cell adhesion-mediated drug resistance were significantly higher in 3D than in 2D parallel co-cultures. The contribution of the VLA-4/VCAM1 pathway to resistance to bortezomib was modeled by the use of VCAM1 transfectants. Soluble factor-mediated drug resistance could be also demonstrated in both 2D and 3D co-cultures. The system was then successfully applied to co-cultures of primary myeloma cells-primary myeloma bone marrow stromal cells from patients and endothelial cells, allowing the development of functional myeloma-stroma interactions and MM cell long-term survival. Significantly, genomic analysis performed in a high-risk myeloma patient demonstrated that culture in bioreactor paralleled the expansion of the clone that ultimately dominated in vivo. Finally, the impact of bortezomib on myeloma cells and on specialized functions of the microenvironment could be evaluated. Our findings indicate that 3D dynamic culture of reconstructed human multiple myeloma microenvironments in bioreactor may represent a useful platform for drug testing and for studying tumor-stroma molecular interactions.
Collapse
Affiliation(s)
- Daniela Belloni
- Division of Experimental Oncology, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Silvia Heltai
- Division of Experimental Oncology, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Maurilio Ponzoni
- Pathology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy.,Vita-Salute San Raffaele University, Milan, Italy
| | | | | | | | - Magda Marcatti
- Hematology, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | | | - Giovanni Tonon
- Functional Genomics of Cancer Unit, Division of Experimental Oncology, San Raffaele Scientific Institute, Milan, Italy
| | - Fabio Ciceri
- Vita-Salute San Raffaele University, Milan, Italy.,Hematology, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Federico Caligaris-Cappio
- Division of Experimental Oncology, IRCCS San Raffaele Scientific Institute, Milan, Italy.,Vita-Salute San Raffaele University, Milan, Italy.,AIRC, Milan, Italy
| | - Marina Ferrarini
- Division of Experimental Oncology, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Elisabetta Ferrero
- Division of Experimental Oncology, IRCCS San Raffaele Scientific Institute, Milan, Italy
| |
Collapse
|
42
|
Franco D, Trusso S, Fazio E, Allegra A, Musolino C, Speciale A, Cimino F, Saija A, Neri F, Nicolò MS, Guglielmino SPP. Raman spectroscopy differentiates between sensitive and resistant multiple myeloma cell lines. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2017; 187:15-22. [PMID: 28645097 DOI: 10.1016/j.saa.2017.06.020] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2017] [Revised: 05/22/2017] [Accepted: 06/15/2017] [Indexed: 05/25/2023]
Abstract
Current methods for identifying neoplastic cells and discerning them from their normal counterparts are often nonspecific and biologically perturbing. Here, we show that single-cell micro-Raman spectroscopy can be used to discriminate between resistant and sensitive multiple myeloma cell lines based on their highly reproducible biomolecular spectral signatures. In order to demonstrate robustness of the proposed approach, we used two different cell lines of multiple myeloma, namely MM.1S and U266B1, and their counterparts MM.1R and U266/BTZ-R subtypes, resistant to dexamethasone and bortezomib, respectively. Then, micro-Raman spectroscopy provides an easily accurate and noninvasive method for cancer detection for both research and clinical environments. Characteristic peaks, mostly due to different DNA/RNA ratio, nucleic acids, lipids and protein concentrations, allow for discerning the sensitive and resistant subtypes. We also explored principal component analysis (PCA) for resistant cell identification and classification. Sensitive and resistant cells form distinct clusters that can be defined using just two principal components. The identification of drug-resistant cells by confocal micro-Raman spectroscopy is thus proposed as a clinical tool to assess the development of resistance to glucocorticoids and proteasome inhibitors in myeloma cells.
Collapse
Affiliation(s)
- Domenico Franco
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Italy
| | - Sebastiano Trusso
- Institute of Chemical-Physical Processes (IPCF)-CNR, Messina, Italy.
| | - Enza Fazio
- Department of Mathematical and Computational Sciences, Physical Science and Earth Science, University of Messina, Italy
| | - Alessandro Allegra
- Division of Hematology, Department of General Surgery, Pathological Anatomy and Oncology, University of Messina, Italy
| | - Caterina Musolino
- Division of Hematology, Department of General Surgery, Pathological Anatomy and Oncology, University of Messina, Italy
| | - Antonio Speciale
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Italy
| | - Francesco Cimino
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Italy
| | - Antonella Saija
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Italy
| | - Fortunato Neri
- Department of Mathematical and Computational Sciences, Physical Science and Earth Science, University of Messina, Italy
| | - Marco S Nicolò
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Italy
| | - Salvatore P P Guglielmino
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Italy.
| |
Collapse
|
43
|
Clarisse D, Thommis J, Van Wesemael K, Houtman R, Ratman D, Tavernier J, Offner F, Beck I, De Bosscher K. Coregulator profiling of the glucocorticoid receptor in lymphoid malignancies. Oncotarget 2017; 8:109675-109691. [PMID: 29312638 PMCID: PMC5752551 DOI: 10.18632/oncotarget.22764] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2017] [Accepted: 11/14/2017] [Indexed: 12/11/2022] Open
Abstract
Coregulators cooperate with nuclear receptors, such as the glucocorticoid receptor (GR), to enhance or repress transcription. These regulatory proteins are implicated in cancer, yet, their role in lymphoid malignancies, including multiple myeloma (MM) and acute lymphoblastic leukemia (ALL), is largely unknown. Here, we report the use and extension of the microarray assay for real-time nuclear receptor coregulator interactions (MARCoNI) technology to detect coregulator associations with endogenous GR in cell lysates. We use MARCoNI to determine the GR coregulator profile of glucocorticoid-sensitive (MM and ALL) and glucocorticoid-resistant (ALL) cells, and identify common and unique coregulators for different cell line comparisons. Overall, we identify SRC-1/2/3, PGC-1α, RIP140 and DAX-1 as the strongest interacting coregulators of GR in MM and ALL cells and show that the interaction strength does not correlate with GR protein levels. Lastly, as a step towards patient samples, we determine the GR coregulator profile of peripheral blood mononuclear cells. We profile the interactions between GR and coregulators in MM and ALL cells and suggest to further explore the GR coregulator profile in hematological patient samples.
Collapse
Affiliation(s)
- Dorien Clarisse
- Receptor Research Laboratories, Nuclear Receptor Lab (NRL) and Cytokine Receptor Lab (CRL), VIB-UGent Center for Medical Biotechnology, Ghent University, Ghent, Belgium.,Laboratory of Experimental Cancer Research (LECR), Department of Radiation Oncology and Experimental Cancer Research, Ghent University, Ghent, Belgium.,Cancer Research Institute Ghent (CRIG), Ghent, Belgium
| | - Jonathan Thommis
- Receptor Research Laboratories, Nuclear Receptor Lab (NRL) and Cytokine Receptor Lab (CRL), VIB-UGent Center for Medical Biotechnology, Ghent University, Ghent, Belgium
| | - Karlien Van Wesemael
- Laboratory of Experimental Cancer Research (LECR), Department of Radiation Oncology and Experimental Cancer Research, Ghent University, Ghent, Belgium.,Hematology, Department of Internal Medicine, Ghent University Hospital, Ghent, Belgium
| | - René Houtman
- PamGene International B.V., 's Hertogenbosch, The Netherlands
| | - Dariusz Ratman
- Receptor Research Laboratories, Nuclear Receptor Lab (NRL) and Cytokine Receptor Lab (CRL), VIB-UGent Center for Medical Biotechnology, Ghent University, Ghent, Belgium.,Current/Present address: Roche Global IT Solutions, Roche-Polska, Warsaw, Poland
| | - Jan Tavernier
- Receptor Research Laboratories, Nuclear Receptor Lab (NRL) and Cytokine Receptor Lab (CRL), VIB-UGent Center for Medical Biotechnology, Ghent University, Ghent, Belgium.,Cancer Research Institute Ghent (CRIG), Ghent, Belgium
| | - Fritz Offner
- Hematology, Department of Internal Medicine, Ghent University Hospital, Ghent, Belgium
| | - Ilse Beck
- Laboratory of Experimental Cancer Research (LECR), Department of Radiation Oncology and Experimental Cancer Research, Ghent University, Ghent, Belgium.,Department of Health Sciences, Odisee University College, Ghent, Belgium
| | - Karolien De Bosscher
- Receptor Research Laboratories, Nuclear Receptor Lab (NRL) and Cytokine Receptor Lab (CRL), VIB-UGent Center for Medical Biotechnology, Ghent University, Ghent, Belgium.,Cancer Research Institute Ghent (CRIG), Ghent, Belgium
| |
Collapse
|
44
|
Hewett DR, Vandyke K, Lawrence DM, Friend N, Noll JE, Geoghegan JM, Croucher PI, Zannettino ACW. DNA Barcoding Reveals Habitual Clonal Dominance of Myeloma Plasma Cells in the Bone Marrow Microenvironment. Neoplasia 2017; 19:972-981. [PMID: 29091798 PMCID: PMC5678743 DOI: 10.1016/j.neo.2017.09.004] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Accepted: 09/30/2017] [Indexed: 02/07/2023] Open
Abstract
Multiple myeloma (MM) is a hematological malignancy resulting from the uncontrolled proliferation of antibody-producing plasma cells in the bone marrow. At diagnosis, independent plasma cell tumors are found throughout the skeleton. The recirculation of mutant plasma cells from the initial lesion and their recolonization of distant marrow sites are thought to occur by a process similar to solid tumor metastasis. However, the efficiency of this bone marrow homing process and the proportion of disseminated cells that actively divide and contribute to new tumor growth in MM are both unknown. We used the C57BL/KaLwRij mouse model of myeloma, lentiviral-mediated DNA barcoding of 5TGM1 myeloma cells, and next-generation sequencing to investigate the relative efficiency of plasma cell migration to, and growth within, the bone marrow. This approach revealed three major findings: firstly, establishment of metastasis within the bone marrow was extremely inefficient, with approximately 0.01% of circulating myeloma cells becoming resident long term in the bone marrow of each long bone; secondly, the individual cells of each metastasis exhibited marked differences in their proliferative fates, with the majority of final tumor burden within a bone being attributable to the progeny of between 1 and 8 cells; and, thirdly, the proliferative fate of individual clonal plasma cells differed at each bone marrow site in which the cells “landed.” These findings suggest that individual myeloma plasma cells are subjected to vastly different selection pressures within the bone marrow microenvironment, highlighting the importance of niche-driven factors, which determine the disease course and outcome.
Collapse
Affiliation(s)
- Duncan R Hewett
- Myeloma Research Laboratory, Adelaide Medical School, Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, South Australia, 5000, Australia; South Australian Health and Medical Research Institute, Adelaide, South Australia, 5000, Australia.
| | - Kate Vandyke
- Myeloma Research Laboratory, Adelaide Medical School, Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, South Australia, 5000, Australia; South Australian Health and Medical Research Institute, Adelaide, South Australia, 5000, Australia
| | - David M Lawrence
- Centre for Cancer Biology, Australian Cancer Research Fund Cancer Genomics Facility, SA Pathology, Adelaide, Australia; School of Biological Sciences, Faculty of Sciences, University of Adelaide, Adelaide, South Australia, 5000, Australia
| | - Natasha Friend
- Myeloma Research Laboratory, Adelaide Medical School, Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, South Australia, 5000, Australia; South Australian Health and Medical Research Institute, Adelaide, South Australia, 5000, Australia
| | - Jacqueline E Noll
- Myeloma Research Laboratory, Adelaide Medical School, Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, South Australia, 5000, Australia; South Australian Health and Medical Research Institute, Adelaide, South Australia, 5000, Australia
| | - Joel M Geoghegan
- Centre for Cancer Biology, Australian Cancer Research Fund Cancer Genomics Facility, SA Pathology, Adelaide, Australia
| | - Peter I Croucher
- Garvan Institute of Medical Research, 384 Victoria Street, Sydney, New South Wales, 2010
| | - Andrew C W Zannettino
- Myeloma Research Laboratory, Adelaide Medical School, Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, South Australia, 5000, Australia; South Australian Health and Medical Research Institute, Adelaide, South Australia, 5000, Australia
| |
Collapse
|
45
|
Ghai A, Maji D, Cho N, Chanswangphuwana C, Rettig M, Shen D, DiPersio J, Akers W, Dehdashti F, Achilefu S, Vij R, Shokeen M. Preclinical Development of CD38-Targeted [ 89Zr]Zr-DFO-Daratumumab for Imaging Multiple Myeloma. J Nucl Med 2017; 59:216-222. [PMID: 29025987 DOI: 10.2967/jnumed.117.196063] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Accepted: 08/30/2017] [Indexed: 12/18/2022] Open
Abstract
Multiple myeloma (MM) is a plasma B-cell hematologic cancer that causes significant skeletal morbidity. Despite improvements in survival, heterogeneity in response remains a major challenge in MM. Cluster of differentiation 38 (CD38) is a type II transmembrane glycoprotein overexpressed in myeloma cells and is implicated in MM cell signaling. Daratumumab is a U.S. Food and Drug Administration-approved high-affinity monoclonal antibody targeting CD38 that is clinically benefiting refractory MM patients. Here, we evaluated [89Zr]Zr-desferrioxamine (DFO)-daratumumab PET/CT imaging in MM tumor models. Methods: Daratumumab was conjugated to DFO-p-benzyl-isothiocyanate (DFO-Bz-NCS) for radiolabeling with 89Zr. Chelator conjugation was confirmed by electrospray ionization-mass spectrometry, and radiolabeling was monitored by instant thin-layer chromatography. Daratumumab was conjugated to Cyanine5 (Cy5) dye for cell microscopy. In vitro and in vivo evaluation of [89Zr]Zr-DFO-daratumumab was performed using CD38+ human myeloma MM1.S-luciferase (MM1.S) cells. Cellular studies determined the affinity, immunoreactivity, and specificity of [89Zr]Zr-DFO-daratumumab. A 5TGM1-luciferase (5TGM1)/KaLwRij MM mouse model served as control for imaging background noise. [89Zr]Zr-DFO-daratumumab PET/CT small-animal imaging was performed in severe combined immunodeficient mice bearing solid and disseminated MM tumors. Tissue biodistribution (7 d after tracer administration, 1.11 MBq/animal, n = 4-6/group) was performed in wild-type and MM1.S tumor-bearing mice. Results: A specific activity of 55.5 MBq/nmol (0.37 MBq/μg) was reproducibly obtained with [89Zr]Zr-daratumumab-DFO. Flow cytometry confirmed CD38 expression (>99%) on the surface of MM1.S cells. Confocal microscopy with daratumumab-Cy5 demonstrated specific cell binding. Dissociation constant, 3.3 nM (±0.58), and receptor density, 10.1 fmol/mg (±0.64), was obtained with a saturation binding assay. [89Zr]Zr-DFO-daratumumab/PET demonstrated specificity and sensitivity for detecting CD38+ myeloma tumors of variable sizes (8.5-128 mm3) with standardized uptake values ranging from 2.1 to 9.3. Discrete medullar lesions, confirmed by bioluminescence images, were efficiently imaged with [89Zr]Zr-DFO-daratumumab/PET. Biodistribution at 7 d after administration of [89Zr]Zr-DFO-daratumumab showed prominent tumor uptake (27.7 ± 7.6 percentage injected dose per gram). In vivo blocking was achieved with a 200-fold excess of unlabeled daratumumab. Conclusion: [89Zr]Zr-DFO- and Cy5-daratumumab demonstrated superb binding to CD38+ human MM cells and significantly low binding to CD38low cells. Daratumumab bioconjugates are being evaluated for image-guided delivery of therapeutic radionuclides.
Collapse
Affiliation(s)
- Anchal Ghai
- Department of Radiology, Washington University School of Medicine, St. Louis, Missouri
| | - Dolonchampa Maji
- Department of Radiology, Washington University School of Medicine, St. Louis, Missouri.,Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, Missouri
| | - Nicholas Cho
- Department of Radiology, Washington University School of Medicine, St. Louis, Missouri.,Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, Missouri
| | | | - Michael Rettig
- Department of Medicine, Washington University School of Medicine, St. Louis, Missouri
| | - Duanwen Shen
- Department of Radiology, Washington University School of Medicine, St. Louis, Missouri
| | - John DiPersio
- Department of Medicine, Washington University School of Medicine, St. Louis, Missouri
| | - Walter Akers
- Center for In Vivo Imaging and Therapeutics, St. Jude Children's Research Hospital, Memphis, Tennessee; and
| | - Farrokh Dehdashti
- Department of Radiology, Washington University School of Medicine, St. Louis, Missouri
| | - Samuel Achilefu
- Department of Radiology, Washington University School of Medicine, St. Louis, Missouri.,Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, Missouri.,Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, Missouri
| | - Ravi Vij
- Department of Medicine, Washington University School of Medicine, St. Louis, Missouri
| | - Monica Shokeen
- Department of Radiology, Washington University School of Medicine, St. Louis, Missouri .,Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, Missouri
| |
Collapse
|
46
|
Rana N, Cultrara C, Phillips M, Sabatino D. Functionalization of peptide nucleolipid bioconjugates and their structure anti-cancer activity relationship studies. Bioorg Med Chem Lett 2017; 27:4019-4023. [PMID: 28789897 DOI: 10.1016/j.bmcl.2017.07.056] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2017] [Revised: 07/13/2017] [Accepted: 07/21/2017] [Indexed: 11/15/2022]
Abstract
In the search for more potent peptide-based anti-cancer conjugates the generation of new, functionally diverse nucleolipid derived D-(KLAKLAK)2-AK sequences has enabled a structure and anti-cancer activity relationship study. A reductive amination approach was key for the synthesis of alkylamine, diamine and polyamine derived nucleolipids as well as those incorporating heterocyclic functionality. The carboxy-derived nucleolipids were then coupled to the C-terminus of the D-(KLAKLAK)2-AK killer peptide sequence and produced with and without the FITC fluorophore for investigating biological activity in cancer cells. The amphiphilic, α-helical peptide-nucleolipid bioconjugates were found to exhibit variable effects on the viability of MM.1S cells, with the histamine derived nucleolipid peptide bioconjugate displaying the most significant anti-cancer effects. Thus, functionally diverse nucleolipids have been developed to fine-tune the structure and anti-cancer properties of killer peptide sequences, such as D-(KLAKLAK)2-AK.
Collapse
Affiliation(s)
- Niki Rana
- Department of Chemistry and Biochemistry, Seton Hall University, 400 South Orange Avenue, South Orange, NJ 07079, United States
| | - Christopher Cultrara
- Department of Chemistry and Biochemistry, Seton Hall University, 400 South Orange Avenue, South Orange, NJ 07079, United States
| | - Mariana Phillips
- Department of Chemistry and Biochemistry, Seton Hall University, 400 South Orange Avenue, South Orange, NJ 07079, United States
| | - David Sabatino
- Department of Chemistry and Biochemistry, Seton Hall University, 400 South Orange Avenue, South Orange, NJ 07079, United States.
| |
Collapse
|
47
|
Blockade of deubiquitylating enzyme Rpn11 triggers apoptosis in multiple myeloma cells and overcomes bortezomib resistance. Oncogene 2017; 36:5631-5638. [PMID: 28581522 DOI: 10.1038/onc.2017.172] [Citation(s) in RCA: 68] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Revised: 04/03/2017] [Accepted: 05/01/2017] [Indexed: 12/11/2022]
Abstract
Proteasome inhibition is an effective therapy for multiple myeloma (MM) patients; however, the emergence of drug resistance is common. Novel therapeutic strategies to overcome proteasome inhibitor resistance are needed. In this study, we examined whether targeting deubiquitylating (DUB) enzymes upstream of 20S proteasome overcomes proteasome inhibitor resistance. Gene expression analysis, immunohistochemical studies of MM patient bone marrow, reverse transcription-PCR and protein analysis show that Rpn11/POH1, a DUB enzyme upstream of 20S proteasome, is more highly expressed in patient MM cells than in normal plasma cells. Importantly, Rpn11 expression directly correlates with poor patient survival. Loss-of-function studies show that Rpn11-siRNA knockdown decreases MM cell viability. Pharmacological inhibition of Rpn11 with O-phenanthroline (OPA) blocks cellular proteasome function, induces apoptosis in MM cells and overcomes resistance to proteasome inhibitor bortezomib. Mechanistically, Rpn11 inhibition in MM cells activates caspase cascade and endoplasmic stress response signaling. Human MM xenograft model studies demonstrate that OPA treatment reduces progression of tumor growth and prolongs survival in mice. Finally, blockade of Rpn11 increases the cytotoxic activity of anti-MM agents lenalidomide, pomalidomide or dexamethasone. Overall, our preclinical data provide the rationale for targeting DUB enzyme Rpn11 upstream of 20S proteasome to enhance cytotoxicity and overcome proteasome inhibitor resistance in MM.
Collapse
|
48
|
Das DS, Das A, Ray A, Song Y, Samur MK, Munshi NC, Chauhan D, Anderson KC. Blockade of Deubiquitylating Enzyme USP1 Inhibits DNA Repair and Triggers Apoptosis in Multiple Myeloma Cells. Clin Cancer Res 2017; 23:4280-4289. [PMID: 28270494 DOI: 10.1158/1078-0432.ccr-16-2692] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2016] [Revised: 01/04/2017] [Accepted: 03/01/2017] [Indexed: 11/16/2022]
Abstract
Purpose: The ubiquitin proteasome pathway is a validated therapeutic target in multiple myeloma. Deubiquitylating enzyme USP1 participates in DNA damage response and cellular differentiation pathways. To date, the role of USP1 in multiple myeloma biology is not defined. In the present study, we investigated the functional significance of USP1 in multiple myeloma using genetic and biochemical approaches.Experimental Design: To investigate the role of USP1 in myeloma, we utilized USP1 inhibitor SJB3-019A (SJB) for studies in myeloma cell lines and patient multiple myeloma cells.Results: USP1-siRNA knockdown decreases multiple myeloma cell viability. USP1 inhibitor SJB selectively blocks USP1 enzymatic activity without blocking other DUBs. SJB also decreases the viability of multiple myeloma cell lines and patient tumor cells, inhibits bone marrow plasmacytoid dendritic cell-induced multiple myeloma cell growth, and overcomes bortezomib resistance. SJB triggers apoptosis in multiple myeloma cells via activation of caspase-3, caspase-8, and caspase-9. Moreover, SJB degrades USP1 and downstream inhibitor of DNA-binding proteins as well as inhibits DNA repair via blockade of Fanconi anemia pathway and homologous recombination. SJB also downregulates multiple myeloma stem cell renewal/survival-associated proteins Notch-1, Notch-2, SOX-4, and SOX-2. Moreover, SJB induced generation of more mature and differentiated plasma cells. Combination of SJB and HDACi ACY-1215, bortezomib, lenalidomide, or pomalidomide triggers synergistic cytotoxicity.Conclusions: Our preclinical studies provide the framework for clinical evaluation of USP1 inhibitors, alone or in combination, as a potential novel multiple myeloma therapy. Clin Cancer Res; 23(15); 4280-9. ©2017 AACR.
Collapse
Affiliation(s)
- Deepika Sharma Das
- LeBow Institute for Myeloma Therapeutics and Jerome Lipper Myeloma Center, Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Abhishek Das
- Program in Cellular and Molecular Medicine, Children's Hospital, Boston, Massachusetts
| | - Arghya Ray
- LeBow Institute for Myeloma Therapeutics and Jerome Lipper Myeloma Center, Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Yan Song
- LeBow Institute for Myeloma Therapeutics and Jerome Lipper Myeloma Center, Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Mehmet Kemal Samur
- LeBow Institute for Myeloma Therapeutics and Jerome Lipper Myeloma Center, Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Nikhil C Munshi
- LeBow Institute for Myeloma Therapeutics and Jerome Lipper Myeloma Center, Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Dharminder Chauhan
- LeBow Institute for Myeloma Therapeutics and Jerome Lipper Myeloma Center, Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts.
| | - Kenneth C Anderson
- LeBow Institute for Myeloma Therapeutics and Jerome Lipper Myeloma Center, Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts.
| |
Collapse
|
49
|
Burwick N, Zhang MY, de la Puente P, Azab AK, Hyun TS, Ruiz-Gutierrez M, Sanchez-Bonilla M, Nakamura T, Delrow JJ, MacKay VL, Shimamura A. The eIF2-alpha kinase HRI is a novel therapeutic target in multiple myeloma. Leuk Res 2017; 55:23-32. [PMID: 28119225 DOI: 10.1016/j.leukres.2017.01.007] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2016] [Revised: 11/14/2016] [Accepted: 01/04/2017] [Indexed: 12/16/2022]
Abstract
Dexamethasone (dex) induces apoptosis in multiple myeloma (MM) cells and is a frontline treatment for this disease. However resistance to dex remains a major challenge and novel treatment approaches are needed. We hypothesized that dex utilizes translational pathways to promote apoptosis in MM and that specific targeting of these pathways could overcome dex-resistance. Global unbiased profiling of mRNA translational profiles in MM cells treated with or without dex revealed that dex significantly repressed eIF2 signaling, an important pathway for regulating ternary complex formation and protein synthesis. We demonstrate that dex induces the phosphorylation of eIF2α resulting in the translational upregulation of ATF4, a known eIF2 regulated mRNA. Pharmacologic induction of eIF2α phosphorylation via activation of the heme-regulated eIF2α kinase (HRI) induced apoptosis in MM cell lines and in primary MM cells from patients with dex-resistant disease. In addition, co-culture with marrow stroma failed to protect MM cells from apoptosis induced by targeting the eIF2 pathway. Combination therapy with rapamycin, an mTOR inhibitor, and BTdCPU, an activator of HRI, demonstrated additive effects on apoptosis in dex-resistant cells. Thus, specific activation of the eIF2α kinase HRI is a novel therapeutic target in MM that can augment current treatment strategies.
Collapse
Affiliation(s)
- Nicholas Burwick
- Clinical Research Division, Fred Hutchinson Cancer Research Center, 1100 Fairview Ave N, Seattle, WA, USA; Department of Medicine, University of Washington Medical Center, 1705 NE Pacific St., Seattle, WA, USA.
| | - Michael Y Zhang
- Clinical Research Division, Fred Hutchinson Cancer Research Center, 1100 Fairview Ave N, Seattle, WA, USA
| | - Pilar de la Puente
- Department of Radiation Oncology, Cancer Biology Division, Washington University in St. Louis School of Medicine, St. Louis, MO, USA
| | - Abdel Kareem Azab
- Department of Radiation Oncology, Cancer Biology Division, Washington University in St. Louis School of Medicine, St. Louis, MO, USA
| | - Teresa S Hyun
- Clinical Research Division, Fred Hutchinson Cancer Research Center, 1100 Fairview Ave N, Seattle, WA, USA; Department of Pathology, University of Washington Medical Center, 1705 NE Pacific St., Seattle, WA, USA
| | - Melisa Ruiz-Gutierrez
- Department of Pediatric Hematology/Oncology, Seattle Children's Hospital, 4800 Sand Point Way, Seattle, WA, USA; Department of Pediatrics, University of Washington, 1959 NE Pacific St., Seattle, WA, USA
| | - Marilyn Sanchez-Bonilla
- Clinical Research Division, Fred Hutchinson Cancer Research Center, 1100 Fairview Ave N, Seattle, WA, USA
| | - Tomoka Nakamura
- Clinical Research Division, Fred Hutchinson Cancer Research Center, 1100 Fairview Ave N, Seattle, WA, USA
| | - Jeffrey J Delrow
- Genomics Resource, Fred Hutchinson Cancer Research Center, 1100 Fairview Ave N, Seattle, WA, USA
| | - Vivian L MacKay
- Department of Biochemistry, University of Washington, Seattle, WA, USA
| | - Akiko Shimamura
- Clinical Research Division, Fred Hutchinson Cancer Research Center, 1100 Fairview Ave N, Seattle, WA, USA; Department of Pediatric Hematology/Oncology, Seattle Children's Hospital, 4800 Sand Point Way, Seattle, WA, USA; Department of Pediatrics, University of Washington, 1959 NE Pacific St., Seattle, WA, USA
| |
Collapse
|
50
|
Dotterweich J, Schlegelmilch K, Keller A, Geyer B, Schneider D, Zeck S, Tower RJJ, Ebert R, Jakob F, Schütze N. Contact of myeloma cells induces a characteristic transcriptome signature in skeletal precursor cells -Implications for myeloma bone disease. Bone 2016; 93:155-166. [PMID: 27519972 DOI: 10.1016/j.bone.2016.08.006] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2015] [Revised: 06/24/2016] [Accepted: 08/08/2016] [Indexed: 10/21/2022]
Abstract
Physical interaction of skeletal precursors with multiple myeloma cells has been shown to suppress their osteogenic potential while favoring their tumor-promoting features. Although several transcriptome analyses of myeloma patient-derived mesenchymal stem cells have displayed differences compared to their healthy counterparts, these analyses insufficiently reflect the signatures mediated by tumor cell contact, vary due to different methodologies, and lack results in lineage-committed precursors. To determine tumor cell contact-mediated changes on skeletal precursors, we performed transcriptome analyses of mesenchymal stem cells and osteogenic precursor cells cultured in contact with the myeloma cell line INA-6. Comparative analyses confirmed dysregulation of genes which code for known disease-relevant factors and additionally revealed upregulation of genes that are associated with plasma cell homing, adhesion, osteoclastogenesis, and angiogenesis. Osteoclast-derived coupling factors, a dysregulated adipogenic potential, and an imbalance in favor of anti-anabolic factors may play a role in the hampered osteoblast differentiation potential of mesenchymal stem cells. Angiopoietin-Like 4 (ANGPTL4) was selected from a list of differentially expressed genes as a myeloma cell contact-dependent target in skeletal precursor cells which warranted further functional analyses. Adhesion assays with full-length ANGPTL4-coated plates revealed a potential role of this protein in INA-6 cell attachment. This study expands knowledge of the myeloma cell contact-induced signature in the stromal compartment of myelomatous bones and thus offers potential targets that may allow detection and treatment of myeloma bone disease at an early stage.
Collapse
Affiliation(s)
- Julia Dotterweich
- Orthopedic Center for Musculoskeletal Research, Orthopedic Department, University of Würzburg, Würzburg, Germany
| | - Katrin Schlegelmilch
- Orthopedic Center for Musculoskeletal Research, Orthopedic Department, University of Würzburg, Würzburg, Germany
| | - Alexander Keller
- DNA-Analytics Core Facility, Biocenter and Department of Animal Ecology and Tropical Biology, University of Würzburg, Würzburg, Germany
| | - Beate Geyer
- Orthopedic Center for Musculoskeletal Research, Orthopedic Department, University of Würzburg, Würzburg, Germany
| | - Doris Schneider
- Orthopedic Center for Musculoskeletal Research, Orthopedic Department, University of Würzburg, Würzburg, Germany
| | - Sabine Zeck
- Orthopedic Center for Musculoskeletal Research, Orthopedic Department, University of Würzburg, Würzburg, Germany
| | - Robert J J Tower
- Section Biomedical Imaging, MOIN CC, Department of Radiology and Neuroradiology, University Hospital Schleswig-Holstein, Campus Kiel, Kiel, Germany
| | - Regina Ebert
- Orthopedic Center for Musculoskeletal Research, Orthopedic Department, University of Würzburg, Würzburg, Germany
| | - Franz Jakob
- Orthopedic Center for Musculoskeletal Research, Orthopedic Department, University of Würzburg, Würzburg, Germany.
| | - Norbert Schütze
- Orthopedic Center for Musculoskeletal Research, Orthopedic Department, University of Würzburg, Würzburg, Germany
| |
Collapse
|