1
|
Takeuchi N, Fullmer MS, Maddock DJ, Poole AM. The Constructive Black Queen hypothesis: new functions can evolve under conditions favouring gene loss. THE ISME JOURNAL 2024; 18:wrae011. [PMID: 38366199 PMCID: PMC10942775 DOI: 10.1093/ismejo/wrae011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 01/17/2024] [Accepted: 01/19/2024] [Indexed: 02/18/2024]
Abstract
Duplication is a major route for the emergence of new gene functions. However, the emergence of new gene functions via this route may be reduced in prokaryotes, as redundant genes are often rapidly purged. In lineages with compact, streamlined genomes, it thus appears challenging for novel function to emerge via duplication and divergence. A further pressure contributing to gene loss occurs under Black Queen dynamics, as cheaters that lose the capacity to produce a public good can instead acquire it from neighbouring producers. We propose that Black Queen dynamics can favour the emergence of new function because, under an emerging Black Queen dynamic, there is high gene redundancy spread across a community of interacting cells. Using computational modelling, we demonstrate that new gene functions can emerge under Black Queen dynamics. This result holds even if there is deletion bias due to low duplication rates and selection against redundant gene copies resulting from the high cost associated with carrying a locus. However, when the public good production costs are high, Black Queen dynamics impede the fixation of new functions. Our results expand the mechanisms by which new gene functions can emerge in prokaryotic systems.
Collapse
Affiliation(s)
- Nobuto Takeuchi
- School of Biological Sciences, University of Auckland, Auckland 1010, New Zealand
- Universal Biology Institute, University of Tokyo, Tokyo 113-0033, Japan
- Department of Biology, Faculty of Sciences, Kyushu University, Fukuoka 819-0395, Japan
| | - Matthew S Fullmer
- School of Biological Sciences, University of Auckland, Auckland 1010, New Zealand
| | - Danielle J Maddock
- School of Biological Sciences, University of Auckland, Auckland 1010, New Zealand
| | - Anthony M Poole
- School of Biological Sciences, University of Auckland, Auckland 1010, New Zealand
| |
Collapse
|
2
|
Dantzer B. Frank Beach Award Winner: The centrality of the hypothalamic-pituitary-adrenal axis in dealing with environmental change across temporal scales. Horm Behav 2023; 150:105311. [PMID: 36707334 DOI: 10.1016/j.yhbeh.2023.105311] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Revised: 01/02/2023] [Accepted: 01/06/2023] [Indexed: 01/26/2023]
Abstract
Understanding if and how individuals and populations cope with environmental change is an enduring question in evolutionary ecology that has renewed importance given the pace of change in the Anthropocene. Two evolutionary strategies of coping with environmental change may be particularly important in rapidly changing environments: adaptive phenotypic plasticity and/or bet hedging. Adaptive plasticity could enable individuals to match their phenotypes to the expected environment if there is an accurate cue predicting the selective environment. Diversifying bet hedging involves the production of seemingly random phenotypes in an unpredictable environment, some of which may be adaptive. Here, I review the central role of the hypothalamic-pituitary-adrenal (HPA) axis and glucocorticoids (GCs) in enabling vertebrates to cope with environmental change through adaptive plasticity and bet hedging. I first describe how the HPA axis mediates three types of adaptive plasticity to cope with environmental change (evasion, tolerance, recovery) over short timescales (e.g., 1-3 generations) before discussing how the implications of GCs on phenotype integration may depend upon the timescale under consideration. GCs can promote adaptive phenotypic integration, but their effects on phenotypic co-variation could also limit the dimensions of phenotypic space explored by animals over longer timescales. Finally, I discuss how organismal responses to environmental stressors can act as a bet hedging mechanism and therefore enhance evolvability by increasing genetic or phenotypic variability or reducing patterns of genetic and phenotypic co-variance. Together, this emphasizes the crucial role of the HPA axis in understanding fundamental questions in evolutionary ecology.
Collapse
Affiliation(s)
- Ben Dantzer
- Department of Psychology, University of Michigan, MI 48109 Ann Arbor, MI, USA; Department of Ecology and Evolutionary Biology, University of Michigan, MI 48109, Ann Arbor, MI, USA.
| |
Collapse
|
3
|
Inactivation of airborne microbial contaminants by a heat-pump-driven liquid-desiccant air-conditioning system. JOURNAL OF BUILDING ENGINEERING 2022; 50:104157. [PMCID: PMC8813195 DOI: 10.1016/j.jobe.2022.104157] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 01/21/2022] [Accepted: 01/31/2022] [Indexed: 04/25/2024]
Abstract
The COVID-19 pandemic has led to increasing interest in controlling airborne virus transmission during the operation of air-conditioning systems. Therefore, beyond an examination of the ability of liquid-desiccant material itself to inactivate microbes, a heat-pump-driven liquid-desiccant air-conditioning system was proposed and constructed to experimentally investigate the effect of liquid-desiccant solution on the inactivation of airborne bacteria and fungi in various air-conditioning processes. The proposed system comprises a liquid-desiccant unit to dehumidify or humidify process air using a desiccant-solution and heat-pump unit to cool or heat it and accommodate solution thermal loads. The decrease in the concentration of airborne bacteria and fungi before and after passing through the system (i.e., inactivation efficiency) were compared for the base, summer, and winter operating modes. The results indicated that airborne fungi were less inactivated than bacteria because they possess more stress-resistant cellular structures that resist inactivation. During the air-conditioning processes in both the summer and winter operating modes, the bacterial and fungal inactivation efficiencies improved compared to the base mode owing to the contact with desiccant solution. The higher solution flow rate and solution temperature improved the bacterial inactivation efficiency by 27% for the winter compared to the summer mode. Conversely, because of possible growth of fungi in the heated and humidified supply air in the winter, the fungal inactivation efficiency improved by only 1.5% for the winter compared to the summer mode. In conclusion, the proposed system can contribute to control the airborne transmission of microbial contaminants while operating air-conditioning systems.
Collapse
|
4
|
Abstract
The concept of developmental constraints has been central to understand the role of development in morphological evolution. Developmental constraints are classically defined as biases imposed by development on the distribution of morphological variation. This opinion article argues that the concepts of developmental constraints and developmental biases do not accurately represent the role of development in evolution. The concept of developmental constraints was coined to oppose the view that natural selection is all-capable and to highlight the importance of development for understanding evolution. In the modern synthesis, natural selection was seen as the main factor determining the direction of morphological evolution. For that to be the case, morphological variation needs to be isotropic (i.e. equally possible in all directions). The proponents of the developmental constraint concept argued that development makes that some morphological variation is more likely than other (i.e. variation is not isotropic), and that, thus, development constraints evolution by precluding natural selection from being all-capable. This article adds to the idea that development is not compatible with the isotropic expectation by arguing that, in fact, it could not be otherwise: there is no actual reason to expect that development could lead to isotropic morphological variation. It is then argued that, since the isotropic expectation is untenable, the role of development in evolution should not be understood as a departure from such an expectation. The role of development in evolution should be described in an exclusively positive way, as the process determining which directions of morphological variation are possible, instead of negatively, as a process precluding the existence of morphological variation we have no actual reason to expect. This article discusses that this change of perspective is not a mere question of semantics: it leads to a different interpretation of the studies on developmental constraints and to a different research program in evolution and development. This program does not ask whether development constrains evolution. Instead it asks questions such as, for example, how different types of development lead to different types of morphological variation and, together with natural selection, determine the directions in which different lineages evolve.
Collapse
|
5
|
Kim H, Muñoz S, Osuna P, Gershenson C. Antifragility Predicts the Robustness and Evolvability of Biological Networks through Multi-Class Classification with a Convolutional Neural Network. ENTROPY 2020; 22:e22090986. [PMID: 33286756 PMCID: PMC7597304 DOI: 10.3390/e22090986] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Accepted: 09/02/2020] [Indexed: 12/28/2022]
Abstract
Robustness and evolvability are essential properties to the evolution of biological networks. To determine if a biological network is robust and/or evolvable, it is required to compare its functions before and after mutations. However, this sometimes takes a high computational cost as the network size grows. Here, we develop a predictive method to estimate the robustness and evolvability of biological networks without an explicit comparison of functions. We measure antifragility in Boolean network models of biological systems and use this as the predictor. Antifragility occurs when a system benefits from external perturbations. By means of the differences of antifragility between the original and mutated biological networks, we train a convolutional neural network (CNN) and test it to classify the properties of robustness and evolvability. We found that our CNN model successfully classified the properties. Thus, we conclude that our antifragility measure can be used as a predictor of the robustness and evolvability of biological networks.
Collapse
Affiliation(s)
- Hyobin Kim
- Biotech Research and Innovation Centre (BRIC), University of Copenhagen (UCPH), 2200 Copenhagen, Denmark;
- Novo Nordisk Foundation Center for Stem Cell Biology, DanStem, Faculty of Health Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Stalin Muñoz
- Institute for Software Technology (IST), Graz University of Technology, 8010 Graz, Austria;
| | - Pamela Osuna
- Faculté des Sciences et Ingénierie, Sorbonne Université, 75005 Paris, France;
| | - Carlos Gershenson
- Centro de Ciencias de la Complejidad, Universidad Nacional Autónoma de México, CDMX 04510, Mexico
- Instituto de Investigaciones en Matemáticas Aplicadas y en Sistemas, Universidad Nacional Autónoma de México, CDMX 04510, Mexico
- Department of High Performance Computing, ITMO University, 199034 St. Petersburg, Russia
- Correspondence:
| |
Collapse
|
6
|
Xuan N, Rajashekar B, Picimbon JF. DNA and RNA-dependent polymerization in editing of Bombyx chemosensory protein (CSP) gene family. ACTA ACUST UNITED AC 2019. [DOI: 10.1016/j.aggene.2019.100087] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
7
|
Fragata I, Simões P, Matos M, Szathmáry E, Santos M. Playing evolution in the laboratory: From the first major evolutionary transition to global warming. ACTA ACUST UNITED AC 2018. [DOI: 10.1209/0295-5075/122/38001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
8
|
Kim H, Sayama H. How Criticality of Gene Regulatory Networks Affects the Resulting Morphogenesis under Genetic Perturbations. ARTIFICIAL LIFE 2018; 24:85-105. [PMID: 29664344 DOI: 10.1162/artl_a_00262] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Whereas the relationship between criticality of gene regulatory networks (GRNs) and dynamics of GRNs at a single-cell level has been vigorously studied, the relationship between the criticality of GRNs and system properties at a higher level has not been fully explored. Here we aim at revealing a potential role of criticality of GRNs in morphogenesis, which is hard to uncover through the single-cell-level studies, especially from an evolutionary viewpoint. Our model simulated the growth of a cell population from a single seed cell. All the cells were assumed to have identical intracellular GRNs. We induced genetic perturbations to the GRN of the seed cell by adding, deleting, or switching a regulatory link between a pair of genes. From numerical simulations, we found that the criticality of GRNs facilitated the formation of nontrivial morphologies when the GRNs were critical in the presence of the evolutionary perturbations. Moreover, the criticality of GRNs produced topologically homogeneous cell clusters by adjusting the spatial arrangements of cells, which led to the formation of nontrivial morphogenetic patterns. Our findings correspond to an epigenetic viewpoint that heterogeneous and complex features emerge from homogeneous and less complex components through the interactions among them. Thus, our results imply that highly structured tissues or organs in morphogenesis of multicellular organisms might stem from the criticality of GRNs.
Collapse
Affiliation(s)
- Hyobin Kim
- Department of Systems Science and Industrial Engineering, Center for Collective Dynamics of Complex Systems, Binghamton University.
| | - Hiroki Sayama
- Department of Systems Science and Industrial Engineering, Center for Collective Dynamics of Complex Systems, Binghamton University. (HS)
| |
Collapse
|
9
|
The relative ages of eukaryotes and akaryotes. J Mol Evol 2014; 79:228-39. [PMID: 25179144 DOI: 10.1007/s00239-014-9643-y] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2014] [Accepted: 08/18/2014] [Indexed: 12/22/2022]
Abstract
The Last Eukaryote Common Ancestor (LECA) appears to have the genetics required for meiosis, mitosis, nucleus and nuclear substructures, an exon/intron gene structure, spliceosomes, many centres of DNA replication, etc. (and including mitochondria). Most of these features are not generally explained by models for the origin of the Eukaryotic cell based on the fusion of an Archeon and a Bacterium. We find that the term 'prokaryote' is ambiguous and the non-phylogenetic term akaryote should be used in its place because we do not yet know the direction of evolution between eukaryotes and akaryotes. We use the term 'protoeukaryote' for the hypothetical stem group ancestral eukaryote that took up a bacterium as an endosymbiont that formed the mitochondrion. It is easier to make detailed models with a eukaryote to an akaryote transition, rather than vice versa. So we really are at a phylogenetic impasse in not being confident about the direction of change between eukaryotes and akaryotes.
Collapse
|
10
|
Fischer S, Bernard S, Beslon G, Knibbe C. A model for genome size evolution. Bull Math Biol 2014; 76:2249-91. [PMID: 25142746 PMCID: PMC4153982 DOI: 10.1007/s11538-014-9997-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2013] [Accepted: 07/15/2014] [Indexed: 01/27/2023]
Abstract
We present a model for genome size evolution that takes into account both local mutations such as small insertions and small deletions, and large chromosomal rearrangements such as duplications and large deletions. We introduce the possibility of undergoing several mutations within one generation. The model, albeit minimalist, reveals a non-trivial spontaneous dynamics of genome size: in the absence of selection, an arbitrary large part of genomes remains beneath a finite size, even for a duplication rate 2.6-fold higher than the rate of large deletions, and even if there is also a systematic bias toward small insertions compared to small deletions. Specifically, we show that the condition of existence of an asymptotic stationary distribution for genome size non-trivially depends on the rates and mean sizes of the different mutation types. We also give upper bounds for the median and other quantiles of the genome size distribution, and argue that these bounds cannot be overcome by selection. Taken together, our results show that the spontaneous dynamics of genome size naturally prevents it from growing infinitely, even in cases where intuition would suggest an infinite growth. Using quantitative numerical examples, we show that, in practice, a shrinkage bias appears very quickly in genomes undergoing mutation accumulation, even though DNA gains and losses appear to be perfectly symmetrical at first sight. We discuss this spontaneous dynamics in the light of the other evolutionary forces proposed in the literature and argue that it provides them a stability-related size limit below which they can act.
Collapse
Affiliation(s)
- Stephan Fischer
- INSA-Lyon, Inria, CNRS, LIRIS, UMR5205, 69621, Villeurbanne, France,
| | | | | | | |
Collapse
|
11
|
Piacentini L, Fanti L, Specchia V, Bozzetti MP, Berloco M, Palumbo G, Pimpinelli S. Transposons, environmental changes, and heritable induced phenotypic variability. Chromosoma 2014; 123:345-54. [PMID: 24752783 PMCID: PMC4107273 DOI: 10.1007/s00412-014-0464-y] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2014] [Revised: 03/21/2014] [Accepted: 04/07/2014] [Indexed: 12/20/2022]
Abstract
The mechanisms of biological evolution have always been, and still are, the subject of intense debate and modeling. One of the main problems is how the genetic variability is produced and maintained in order to make the organisms adaptable to environmental changes and therefore capable of evolving. In recent years, it has been reported that, in flies and plants, mutations in Hsp90 gene are capable to induce, with a low frequency, many different developmental abnormalities depending on the genetic backgrounds. This has suggested that the reduction of Hsp90 amount makes different development pathways more sensitive to hidden genetic variability. This suggestion revitalized a classical debate around the original Waddington hypothesis of canalization and genetic assimilation making Hsp90 the prototype of morphological capacitor. Other data have also suggested a different mechanism that revitalizes another classic debate about the response of genome to physiological and environmental stress put forward by Barbara McClintock. That data demonstrated that Hsp90 is involved in repression of transposon activity by playing a significant role in piwi-interacting RNA (piRNAs)-dependent RNA interference (RNAi) silencing. The important implication is that the fixed phenotypic abnormalities observed in Hsp90 mutants are probably related to de novo induced mutations by transposon activation. In this case, Hsp90 could be considered as a mutator. In the present theoretical paper, we discuss several possible implications about environmental stress, transposon, and evolution offering also a support to the concept of evolvability.
Collapse
Affiliation(s)
- Lucia Piacentini
- Istituto Pasteur, Fondazione Cenci-Bolognetti and Dipartimento Di Biologia e Biotecnologie, Università di Roma “La Sapienza”, Piazzale Aldo Moro 5, 00185 Rome, Italy
| | - Laura Fanti
- Istituto Pasteur, Fondazione Cenci-Bolognetti and Dipartimento Di Biologia e Biotecnologie, Università di Roma “La Sapienza”, Piazzale Aldo Moro 5, 00185 Rome, Italy
| | - Valeria Specchia
- Dipartimento di Scienze e Tecnologie Biologiche ed Ambientali (DiSTeBA), University of Salento, Lecce, Italy
| | - Maria Pia Bozzetti
- Dipartimento di Scienze e Tecnologie Biologiche ed Ambientali (DiSTeBA), University of Salento, Lecce, Italy
| | - Maria Berloco
- Dipartimento di Biologia, Università degli Studi di Bari Aldo Moro, 70121 Bari, Italy
| | - Gino Palumbo
- Dipartimento di Biologia, Università degli Studi di Bari Aldo Moro, 70121 Bari, Italy
| | - Sergio Pimpinelli
- Istituto Pasteur, Fondazione Cenci-Bolognetti and Dipartimento Di Biologia e Biotecnologie, Università di Roma “La Sapienza”, Piazzale Aldo Moro 5, 00185 Rome, Italy
| |
Collapse
|
12
|
Wenzel MA, Piertney SB. Fine-scale population epigenetic structure in relation to gastrointestinal parasite load in red grouse (Lagopus lagopus scotica). Mol Ecol 2014; 23:4256-73. [PMID: 24943398 PMCID: PMC4282444 DOI: 10.1111/mec.12833] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2014] [Revised: 06/10/2014] [Accepted: 06/11/2014] [Indexed: 12/27/2022]
Abstract
Epigenetic modification of cytosine methylation states can be elicited by environmental stresses and may be a key process affecting phenotypic plasticity and adaptation. Parasites are potent stressors with profound physiological and ecological effects on their host, but there is little understanding in how parasites may influence host methylation states. Here, we estimate epigenetic diversity and differentiation among 21 populations of red grouse (Lagopus lagopus scotica) in north-east Scotland and test for association of gastrointestinal parasite load (caecal nematode Trichostrongylus tenuis) with hepatic genome-wide and locus-specific methylation states. Following methylation-sensitive AFLP (MSAP), 129 bands, representing 73 methylation-susceptible and 56 nonmethylated epiloci, were scored across 234 individuals. The populations differed significantly in genome-wide methylation levels and were also significantly epigenetically (FSC = 0.0227; P < 0.001) and genetically (FSC = 0.0058; P < 0.001) differentiated. Parasite load was not associated with either genome-wide methylation levels or epigenetic differentiation. Instead, we found eight disproportionately differentiated epilocus-specific methylation states (FST outliers) using bayescan software and significant positive and negative association of 35 methylation states with parasite load from bespoke generalized estimating equations (GEE), simple logistic regression (sam) and Bayesian environmental analysis (bayenv2). Following Sanger sequencing, genome mapping and geneontology (go) annotation, some of these epiloci were linked to genes involved in regulation of cell cycle, signalling, metabolism, immune system and notably rRNA methylation, histone acetylation and small RNAs. These findings demonstrate an epigenetic signature of parasite load in populations of a wild bird and suggest intriguing physiological effects of parasite-associated cytosine methylation.
Collapse
Affiliation(s)
- Marius A Wenzel
- Institute of Biological and Environmental Sciences, University of Aberdeen, Zoology Building, Tillydrone Avenue, Aberdeen, AB24 2TZ, UK
| | | |
Collapse
|
13
|
Mourier T, Nielsen LP, Hansen AJ, Willerslev E. Transposable elements in cancer as a by-product of stress-induced evolvability. Front Genet 2014; 5:156. [PMID: 24910642 PMCID: PMC4038923 DOI: 10.3389/fgene.2014.00156] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2014] [Accepted: 05/11/2014] [Indexed: 01/18/2023] Open
Abstract
Transposable elements (TEs) are ubiquitous in eukaryotic genomes. Barbara McClintock's famous notion of TEs acting as controlling elements modifying the genetic response of an organism upon exposure to stressful environments has since been solidly supported in a series of model organisms. This requires the TE activity response to possess an element of specificity and be targeted toward certain parts of the genome. We propose that a similar TE response is present in human cells, and that this stress response may drive the onset of human cancers. As such, TE-driven cancers may be viewed as an evolutionary by-product of organisms' abilities to genetically adapt to environmental stress.
Collapse
Affiliation(s)
- Tobias Mourier
- Natural History Museum of Denmark, Centre for GeoGenetics, University of Copenhagen Copenhagen, Denmark
| | - Lars P Nielsen
- Department of Virology and the Danish National Biobank, Statens Serum Institut Copenhagen, Denmark
| | - Anders J Hansen
- Natural History Museum of Denmark, Centre for GeoGenetics, University of Copenhagen Copenhagen, Denmark
| | - Eske Willerslev
- Natural History Museum of Denmark, Centre for GeoGenetics, University of Copenhagen Copenhagen, Denmark
| |
Collapse
|
14
|
Koumandou VL, Wickstead B, Ginger ML, van der Giezen M, Dacks JB, Field MC. Molecular paleontology and complexity in the last eukaryotic common ancestor. Crit Rev Biochem Mol Biol 2014; 48:373-96. [PMID: 23895660 PMCID: PMC3791482 DOI: 10.3109/10409238.2013.821444] [Citation(s) in RCA: 133] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Eukaryogenesis, the origin of the eukaryotic cell, represents one of the fundamental evolutionary transitions in the history of life on earth. This event, which is estimated to have occurred over one billion years ago, remains rather poorly understood. While some well-validated examples of fossil microbial eukaryotes for this time frame have been described, these can provide only basic morphology and the molecular machinery present in these organisms has remained unknown. Complete and partial genomic information has begun to fill this gap, and is being used to trace proteins and cellular traits to their roots and to provide unprecedented levels of resolution of structures, metabolic pathways and capabilities of organisms at these earliest points within the eukaryotic lineage. This is essentially allowing a molecular paleontology. What has emerged from these studies is spectacular cellular complexity prior to expansion of the eukaryotic lineages. Multiple reconstructed cellular systems indicate a very sophisticated biology, which by implication arose following the initial eukaryogenesis event but prior to eukaryotic radiation and provides a challenge in terms of explaining how these early eukaryotes arose and in understanding how they lived. Here, we provide brief overviews of several cellular systems and the major emerging conclusions, together with predictions for subsequent directions in evolution leading to extant taxa. We also consider what these reconstructions suggest about the life styles and capabilities of these earliest eukaryotes and the period of evolution between the radiation of eukaryotes and the eukaryogenesis event itself.
Collapse
Affiliation(s)
- V Lila Koumandou
- Biomedical Research Foundation, Academy of Athens, Soranou Efesiou 4, Athens 115 27, Greece
| | | | | | | | | | | |
Collapse
|
15
|
Adaptive divergence in experimental populations of Pseudomonas fluorescens. V. Insight into the niche specialist fuzzy spreader compels revision of the model Pseudomonas radiation. Genetics 2013; 195:1319-35. [PMID: 24077305 DOI: 10.1534/genetics.113.154948] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Pseudomonas fluorescens is a model for the study of adaptive radiation. When propagated in a spatially structured environment, the bacterium rapidly diversifies into a range of niche specialist genotypes. Here we present a genetic dissection and phenotypic characterization of the fuzzy spreader (FS) morphotype-a type that arises repeatedly during the course of the P. fluorescens radiation and appears to colonize the bottom of static broth microcosms. The causal mutation is located within gene fuzY (pflu0478)-the fourth gene of the five-gene fuzVWXYZ operon. fuzY encodes a β-glycosyltransferase that is predicted to modify lipopolysaccharide (LPS) O antigens. The effect of the mutation is to cause cell flocculation. Analysis of 92 independent FS genotypes showed each to have arisen as the result of a loss-of-function mutation in fuzY, although different mutations have subtly different phenotypic and fitness effects. Mutations within fuzY were previously shown to suppress the phenotype of mat-forming wrinkly spreader (WS) types. This prompted a reinvestigation of FS niche preference. Time-lapse photography showed that FS colonizes the meniscus of broth microcosms, forming cellular rafts that, being too flimsy to form a mat, collapse to the vial bottom and then repeatably reform only to collapse. This led to a reassessment of the ecology of the P. fluorescens radiation. Finally, we show that ecological interactions between the three dominant emergent types (smooth, WS, and FS), combined with the interdependence of FS and WS on fuzY, can, at least in part, underpin an evolutionary arms race with bacteriophage SBW25Φ2, to which mutation in fuzY confers resistance.
Collapse
|
16
|
Ladau J, Sharpton TJ, Finucane MM, Jospin G, Kembel SW, O'Dwyer J, Koeppel AF, Green JL, Pollard KS. Global marine bacterial diversity peaks at high latitudes in winter. THE ISME JOURNAL 2013; 7:1669-77. [PMID: 23514781 PMCID: PMC3749493 DOI: 10.1038/ismej.2013.37] [Citation(s) in RCA: 122] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/21/2012] [Revised: 01/25/2013] [Accepted: 01/31/2013] [Indexed: 11/17/2022]
Abstract
Genomic approaches to characterizing bacterial communities are revealing significant differences in diversity and composition between environments. But bacterial distributions have not been mapped at a global scale. Although current community surveys are way too sparse to map global diversity patterns directly, there is now sufficient data to fit accurate models of how bacterial distributions vary across different environments and to make global scale maps from these models. We apply this approach to map the global distributions of bacteria in marine surface waters. Our spatially and temporally explicit predictions suggest that bacterial diversity peaks in temperate latitudes across the world's oceans. These global peaks are seasonal, occurring 6 months apart in the two hemispheres, in the boreal and austral winters. This pattern is quite different from the tropical, seasonally consistent diversity patterns observed for most macroorganisms. However, like other marine organisms, surface water bacteria are particularly diverse in regions of high human environmental impacts on the oceans. Our maps provide the first picture of bacterial distributions at a global scale and suggest important differences between the diversity patterns of bacteria compared with other organisms.
Collapse
Affiliation(s)
- Joshua Ladau
- The Gladstone Institutes, University of California, San Francisco, CA 94158, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Gibb GC, Kennedy M, Penny D. Beyond phylogeny: pelecaniform and ciconiiform birds, and long-term niche stability. Mol Phylogenet Evol 2013; 68:229-38. [PMID: 23562800 DOI: 10.1016/j.ympev.2013.03.021] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2012] [Revised: 03/14/2013] [Accepted: 03/16/2013] [Indexed: 01/14/2023]
Abstract
Phylogenetic trees are a starting point for the study of further evolutionary and ecological questions. We show that for avian evolutionary relationships, improved taxon sampling, longer sequences and additional data sets are giving stability to the prediction of the grouping of pelecaniforms and ciconiiforms, thus allowing inferences to be made about long-term niche occupancy. Here we report the phylogeny of the pelecaniform birds and their water-carnivore allies using complete mitochondrial genomes, and show that the basic groupings agree with nuclear sequence phylogenies, even though many short branches are not yet fully resolved. In detail, we show that the Pelecaniformes (minus the tropicbird) and the Ciconiiformes (storks, herons and ibises) form a natural group within a seabird water-carnivore clade. We find pelicans are the closest relatives of the shoebill (in a clade with the hammerkop), and we confirm that tropicbirds are not pelecaniforms. In general, the group appears to be an adaptive radiation into an 'aquatic carnivore' niche that it has occupied for 60-70 million years. From an ecological and life history perspective, the combined pelecaniform-ciconiform group is more informative than focusing on differences in morphology. These findings allow a start to integrating molecular evolution and macroecology.
Collapse
Affiliation(s)
- Gillian C Gibb
- Institute of Agriculture & Environment, and Institute of Fundamental Sciences, Massey University, Palmerston North, New Zealand.
| | | | | |
Collapse
|
18
|
Rübben A, Nordhoff O. A systems approach defining constraints of the genome architecture on lineage selection and evolvability during somatic cancer evolution. Biol Open 2012; 2:49-62. [PMID: 23336076 PMCID: PMC3545268 DOI: 10.1242/bio.20122543] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2012] [Accepted: 10/15/2012] [Indexed: 12/22/2022] Open
Abstract
Most clinically distinguishable malignant tumors are characterized by specific mutations, specific patterns of chromosomal rearrangements and a predominant mechanism of genetic instability but it remains unsolved whether modifications of cancer genomes can be explained solely by mutations and selection through the cancer microenvironment. It has been suggested that internal dynamics of genomic modifications as opposed to the external evolutionary forces have a significant and complex impact on Darwinian species evolution. A similar situation can be expected for somatic cancer evolution as molecular key mechanisms encountered in species evolution also constitute prevalent mutation mechanisms in human cancers. This assumption is developed into a systems approach of carcinogenesis which focuses on possible inner constraints of the genome architecture on lineage selection during somatic cancer evolution. The proposed systems approach can be considered an analogy to the concept of evolvability in species evolution. The principal hypothesis is that permissive or restrictive effects of the genome architecture on lineage selection during somatic cancer evolution exist and have a measurable impact. The systems approach postulates three classes of lineage selection effects of the genome architecture on somatic cancer evolution: i) effects mediated by changes of fitness of cells of cancer lineage, ii) effects mediated by changes of mutation probabilities and iii) effects mediated by changes of gene designation and physical and functional genome redundancy. Physical genome redundancy is the copy number of identical genetic sequences. Functional genome redundancy of a gene or a regulatory element is defined as the number of different genetic elements, regardless of copy number, coding for the same specific biological function within a cancer cell. Complex interactions of the genome architecture on lineage selection may be expected when modifications of the genome architecture have multiple and possibly opposed effects which manifest themselves at disparate times and progression stages. Dissection of putative mechanisms mediating constraints exerted by the genome architecture on somatic cancer evolution may provide an algorithm for understanding and predicting as well as modifying somatic cancer evolution in individual patients.
Collapse
Affiliation(s)
- Albert Rübben
- Independent Institute of Systems Sciences Aachen , 52064 Aachen , Germany ; Department of Dermatology, RWTH Aachen University , 52074 Aachen , Germany
| | | |
Collapse
|
19
|
Koonin EV, Wolf YI. Evolution of microbes and viruses: a paradigm shift in evolutionary biology? Front Cell Infect Microbiol 2012; 2:119. [PMID: 22993722 PMCID: PMC3440604 DOI: 10.3389/fcimb.2012.00119] [Citation(s) in RCA: 83] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2012] [Accepted: 08/27/2012] [Indexed: 01/21/2023] Open
Abstract
When Charles Darwin formulated the central principles of evolutionary biology in the Origin of Species in 1859 and the architects of the Modern Synthesis integrated these principles with population genetics almost a century later, the principal if not the sole objects of evolutionary biology were multicellular eukaryotes, primarily animals and plants. Before the advent of efficient gene sequencing, all attempts to extend evolutionary studies to bacteria have been futile. Sequencing of the rRNA genes in thousands of microbes allowed the construction of the three- domain “ribosomal Tree of Life” that was widely thought to have resolved the evolutionary relationships between the cellular life forms. However, subsequent massive sequencing of numerous, complete microbial genomes revealed novel evolutionary phenomena, the most fundamental of these being: (1) pervasive horizontal gene transfer (HGT), in large part mediated by viruses and plasmids, that shapes the genomes of archaea and bacteria and call for a radical revision (if not abandonment) of the Tree of Life concept, (2) Lamarckian-type inheritance that appears to be critical for antivirus defense and other forms of adaptation in prokaryotes, and (3) evolution of evolvability, i.e., dedicated mechanisms for evolution such as vehicles for HGT and stress-induced mutagenesis systems. In the non-cellular part of the microbial world, phylogenomics and metagenomics of viruses and related selfish genetic elements revealed enormous genetic and molecular diversity and extremely high abundance of viruses that come across as the dominant biological entities on earth. Furthermore, the perennial arms race between viruses and their hosts is one of the defining factors of evolution. Thus, microbial phylogenomics adds new dimensions to the fundamental picture of evolution even as the principle of descent with modification discovered by Darwin and the laws of population genetics remain at the core of evolutionary biology.
Collapse
Affiliation(s)
- Eugene V Koonin
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health Bethesda, MD, USA.
| | | |
Collapse
|
20
|
Parallel genetic changes and nonparallel gene-environment interactions characterize the evolution of drug resistance in yeast. Genetics 2012; 192:241-52. [PMID: 22714405 DOI: 10.1534/genetics.112.142620] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Beneficial mutations are required for adaptation to novel environments, yet the range of mutational pathways that are available to a population has been poorly characterized, particularly in eukaryotes. We assessed the genetic changes of the first mutations acquired during adaptation to a novel environment (exposure to the fungicide, nystatin) in 35 haploid lines of Saccharomyces cerevisiae. Through whole-genome resequencing we found that the genomic scope for adaptation was narrow; all adapted lines acquired a mutation in one of four late-acting genes in the ergosterol biosynthesis pathway, with very few other mutations found. Lines that acquired different ergosterol mutations in the same gene exhibited very similar tolerance to nystatin. All lines were found to have a cost relative to wild type in an unstressful environment; the level of this cost was also strongly correlated with the ergosterol gene bearing the mutation. Interestingly, we uncovered both positive and negative effects on tolerance to other harsh environments for mutations in the different ergosterol genes, indicating that these beneficial mutations have effects that differ in sign among environmental challenges. These results demonstrate that although the genomic target was narrow, different adaptive mutations can lead populations down different evolutionary pathways, with respect to their ability to tolerate (or succumb to) other environmental challenges.
Collapse
|
21
|
A Short-Term Advantage for Syngamy in the Origin of Eukaryotic Sex: Effects of Cell Fusion on Cell Cycle Duration and Other Effects Related to the Duration of the Cell Cycle-Relationship between Cell Growth Curve and the Optimal Size of the Species, and Circadian Cell Cycle in Photosynthetic Unicellular Organisms. INTERNATIONAL JOURNAL OF EVOLUTIONARY BIOLOGY 2012; 2012:746825. [PMID: 22666626 PMCID: PMC3361227 DOI: 10.1155/2012/746825] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/28/2011] [Revised: 12/21/2011] [Accepted: 12/23/2011] [Indexed: 11/24/2022]
Abstract
The origin of sex is becoming a vexatious issue for Evolutionary Biology. Numerous hypotheses have been proposed, based on the genetic effects of sex, on trophic effects or on the formation of cysts and syncytia. Our approach addresses the change in cell cycle duration which would cause cell fusion. Several results are obtained through graphical and mathematical analysis and computer simulations. (1) In poor environments, cell fusion would be an advantageous strategy, as fusion between cells of different size shortens the cycle of the smaller cell (relative to the asexual cycle), and the majority of mergers would occur between cells of different sizes. (2) The easiest-to-evolve regulation of cell proliferation (sexual/asexual) would be by modifying the checkpoints of the cell cycle. (3) A regulation of this kind would have required the existence of the G2 phase, and sex could thus be the cause of the appearance of this phase. Regarding cell cycle, (4) the exponential curve is the only cell growth curve that has no effect on the optimal cell size in unicellular species; (5) the existence of a plateau with no growth at the end of the cell cycle explains the circadian cell cycle observed in unicellular algae.
Collapse
|
22
|
Egel R. Primal eukaryogenesis: on the communal nature of precellular States, ancestral to modern life. Life (Basel) 2012; 2:170-212. [PMID: 25382122 PMCID: PMC4187143 DOI: 10.3390/life2010170] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2011] [Revised: 12/29/2011] [Accepted: 01/11/2012] [Indexed: 02/08/2023] Open
Abstract
This problem-oriented, exploratory and hypothesis-driven discourse toward the unknown combines several basic tenets: (i) a photo-active metal sulfide scenario of primal biogenesis in the porespace of shallow sedimentary flats, in contrast to hot deep-sea hydrothermal vent conditions; (ii) an inherently complex communal system at the common root of present life forms; (iii) a high degree of internal compartmentalization at this communal root, progressively resembling coenocytic (syncytial) super-cells; (iv) a direct connection from such communal super-cells to proto-eukaryotic macro-cell organization; and (v) multiple rounds of micro-cellular escape with streamlined reductive evolution-leading to the major prokaryotic cell lines, as well as to megaviruses and other viral lineages. Hopefully, such nontraditional concepts and approaches will contribute to coherent and plausible views about the origins and early life on Earth. In particular, the coevolutionary emergence from a communal system at the common root can most naturally explain the vast discrepancy in subcellular organization between modern eukaryotes on the one hand and both archaea and bacteria on the other.
Collapse
Affiliation(s)
- Richard Egel
- Department of Biology, University of Copenhagen Biocenter, Ole Maaløes Vej 5, DK-2200 Copenhagen, Denmark.
| |
Collapse
|
23
|
Greenbury SF, Johnston IG, Smith MA, Doye JPK, Louis AA. The effect of scale-free topology on the robustness and evolvability of genetic regulatory networks. J Theor Biol 2010; 267:48-61. [PMID: 20696172 DOI: 10.1016/j.jtbi.2010.08.006] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2010] [Revised: 08/03/2010] [Accepted: 08/03/2010] [Indexed: 01/29/2023]
Abstract
We investigate how scale-free (SF) and Erdos-Rényi (ER) topologies affect the interplay between evolvability and robustness of model gene regulatory networks with Boolean threshold dynamics. In agreement with Oikonomou and Cluzel (2006) we find that networks with SF(in) topologies, that is SF topology for incoming nodes and ER topology for outgoing nodes, are significantly more evolvable towards specific oscillatory targets than networks with ER topology for both incoming and outgoing nodes. Similar results are found for networks with SF(both) and SF(out) topologies. The functionality of the SF(out) topology, which most closely resembles the structure of biological gene networks (Babu et al., 2004), is compared to the ER topology in further detail through an extension to multiple target outputs, with either an oscillatory or a non-oscillatory nature. For multiple oscillatory targets of the same length, the differences between SF(out) and ER networks are enhanced, but for non-oscillatory targets both types of networks show fairly similar evolvability. We find that SF networks generate oscillations much more easily than ER networks do, and this may explain why SF networks are more evolvable than ER networks are for oscillatory phenotypes. In spite of their greater evolvability, we find that networks with SF(out) topologies are also more robust to mutations (mutational robustness) than ER networks. Furthermore, the SF(out) topologies are more robust to changes in initial conditions (environmental robustness). For both topologies, we find that once a population of networks has reached the target state, further neutral evolution can lead to an increase in both the mutational robustness and the environmental robustness to changes in initial conditions.
Collapse
Affiliation(s)
- Sam F Greenbury
- Rudolf Peierls Centre for Theoretical Physics, University of Oxford, 1 Keble Road, Oxford OX1 3NP, UK.
| | | | | | | | | |
Collapse
|
24
|
Gibb GC, Penny D. Two aspects along the continuum of pigeon evolution: A South-Pacific radiation and the relationship of pigeons within Neoaves. Mol Phylogenet Evol 2010; 56:698-706. [DOI: 10.1016/j.ympev.2010.04.016] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2009] [Revised: 03/24/2010] [Accepted: 04/12/2010] [Indexed: 10/19/2022]
|
25
|
Koonin EV, Wolf YI. The fundamental units, processes and patterns of evolution, and the tree of life conundrum. Biol Direct 2009; 4:33. [PMID: 19788730 PMCID: PMC2761301 DOI: 10.1186/1745-6150-4-33] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2009] [Accepted: 09/29/2009] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The elucidation of the dominant role of horizontal gene transfer (HGT) in the evolution of prokaryotes led to a severe crisis of the Tree of Life (TOL) concept and intense debates on this subject. CONCEPT Prompted by the crisis of the TOL, we attempt to define the primary units and the fundamental patterns and processes of evolution. We posit that replication of the genetic material is the singular fundamental biological process and that replication with an error rate below a certain threshold both enables and necessitates evolution by drift and selection. Starting from this proposition, we outline a general concept of evolution that consists of three major precepts. 1. The primary agency of evolution consists of Fundamental Units of Evolution (FUEs), that is, units of genetic material that possess a substantial degree of evolutionary independence. The FUEs include both bona fide selfish elements such as viruses, viroids, transposons, and plasmids, which encode some of the information required for their own replication, and regular genes that possess quasi-independence owing to their distinct selective value that provides for their transfer between ensembles of FUEs (genomes) and preferential replication along with the rest of the recipient genome. 2. The history of replication of a genetic element without recombination is isomorphously represented by a directed tree graph (an arborescence, in the graph theory language). Recombination within a FUE is common between very closely related sequences where homologous recombination is feasible but becomes negligible for longer evolutionary distances. In contrast, shuffling of FUEs occurs at all evolutionary distances. Thus, a tree is a natural representation of the evolution of an individual FUE on the macro scale, but not of an ensemble of FUEs such as a genome. 3. The history of life is properly represented by the "forest" of evolutionary trees for individual FUEs (Forest of Life, or FOL). Search for trends and patterns in the FOL is a productive direction of study that leads to the delineation of ensembles of FUEs that evolve coherently for a certain time span owing to a shared history of vertical inheritance or horizontal gene transfer; these ensembles are commonly known as genomes, taxa, or clades, depending on the level of analysis. A small set of genes (the universal genetic core of life) might show a (mostly) coherent evolutionary trend that transcends the entire history of cellular life forms. However, it might not be useful to denote this trend "the tree of life", or organismal, or species tree because neither organisms nor species are fundamental units of life. CONCLUSION A logical analysis of the units and processes of biological evolution suggests that the natural fundamental unit of evolution is a FUE, that is, a genetic element with an independent evolutionary history. Evolution of a FUE on the macro scale is naturally represented by a tree. Only the full compendium of trees for individual FUEs (the FOL) is an adequate depiction of the evolution of life. Coherent evolution of FUEs over extended evolutionary intervals is a crucial aspect of the history of life but a "species" or "organismal" tree is not a fundamental concept. REVIEWERS This articles was reviewed by Valerian Dolja, W. Ford Doolittle, Nicholas Galtier, and William Martin.
Collapse
Affiliation(s)
- Eugene V Koonin
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA.
| | | |
Collapse
|
26
|
Wagner A. Evolutionary constraints permeate large metabolic networks. BMC Evol Biol 2009; 9:231. [PMID: 19747381 PMCID: PMC2753571 DOI: 10.1186/1471-2148-9-231] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2009] [Accepted: 09/11/2009] [Indexed: 11/22/2022] Open
Abstract
BACKGROUND Metabolic networks show great evolutionary plasticity, because they can differ substantially even among closely related prokaryotes. Any one metabolic network can also effectively compensate for the blockage of individual reactions by rerouting metabolic flux through other pathways. These observations, together with the continual discovery of new microbial metabolic pathways and enzymes, raise the possibility that metabolic networks are only weakly constrained in changing their complement of enzymatic reactions. RESULTS To ask whether this is the case, I characterized pairwise and higher-order associations in the co-occurrence of genes encoding metabolic enzymes in more than 200 completely sequenced representatives of prokaryotic genera. The majority of reactions show constrained evolution. Specifically, genes encoding most reactions tend to co-occur with genes encoding other reaction(s). Constrained reaction pairs occur in small sets whose number is substantially greater than expected by chance alone. Most such sets are associated with single biochemical pathways. The respective genes are not always tightly linked, which renders horizontal co-transfer of constrained reaction sets an unlikely sole cause for these patterns of association. CONCLUSION Even a limited number of available genomes suffices to show that metabolic network evolution is highly constrained by reaction combinations that are favored by natural selection. With increasing numbers of completely sequenced genomes, an evolutionary constraint-based approach may enable a detailed characterization of co-evolving metabolic modules.
Collapse
Affiliation(s)
- Andreas Wagner
- University of Zurich, Dept. of Biochemistry, CH-8057 Zurich, Switzerland.
| |
Collapse
|
27
|
de Nooijer S, Holland BR, Penny D. The emergence of predators in early life: there was no Garden of Eden. PLoS One 2009; 4:e5507. [PMID: 19492046 PMCID: PMC2685975 DOI: 10.1371/journal.pone.0005507] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2008] [Accepted: 03/30/2009] [Indexed: 11/25/2022] Open
Abstract
Background Eukaryote cells are suggested to arise somewhere between 0.85∼2.7 billion years ago. However, in the present world of unicellular organisms, cells that derive their food and metabolic energy from larger cells engulfing smaller cells (phagocytosis) are almost exclusively eukaryotic. Combining these propositions, that eukaryotes were the first phagocytotic predators and that they arose only 0.85∼2.7 billion years ago, leads to an unexpected prediction of a long period (∼1–3 billion years) with no phagocytotes – a veritable Garden of Eden. Methodology We test whether such a long period is reasonable by simulating a population of very simple unicellular organisms - given only basic physical, biological and ecological principles. Under a wide range of initial conditions, cellular specialization occurs early in evolution; we find a range of cell types from small specialized primary producers to larger opportunistic or specialized predators. Conclusions Both strategies, specialized smaller cells and phagocytotic larger cells are apparently fundamental biological strategies that are expected to arise early in cellular evolution. Such early predators could have been ‘prokaryotes’, but if the earliest cells on the eukaryote lineage were predators then this explains most of their characteristic features.
Collapse
Affiliation(s)
- Silvester de Nooijer
- Allan Wilson Center for Molecular Ecology and Evolution, Massey University, Palmerston North, New Zealand
| | - Barbara R. Holland
- Allan Wilson Center for Molecular Ecology and Evolution, Massey University, Palmerston North, New Zealand
| | - David Penny
- Allan Wilson Center for Molecular Ecology and Evolution, Massey University, Palmerston North, New Zealand
- * E-mail:
| |
Collapse
|
28
|
Abstract
Evolvability, the ability of populations to adapt, has recently emerged as a major unifying concept in biology. Although the study of evolvability offers new insights into many important biological questions, the conceptual bases of evolvability, and the mechanisms of its evolution, remain controversial. We used simulated evolution of a model of gene network dynamics to test the contentious hypothesis that natural selection can favour high evolvability, in particular in sexual populations. Our results conclusively demonstrate that fluctuating natural selection can increase the capacity of model gene networks to adapt to new environments. Detailed studies of the evolutionary dynamics of these networks establish a broad range of validity for this result and quantify the evolutionary forces responsible for changes in evolvability. Analysis of the genotype-phenotype map of these networks also reveals mechanisms connecting evolvability, genetic architecture and robustness. Our results suggest that the evolution of evolvability can have a pervasive influence on many aspects of organisms.
Collapse
Affiliation(s)
- J Draghi
- Department of Biology, University of Pennsylvania, Philadelphia, PA 19104, USA.
| | | |
Collapse
|
29
|
|
30
|
Abstract
The suggestion that there are characteristics of living organisms that have evolved because they increase the rate of evolution is controversial and difficult to study. In this review, we examine the role that experimental evolution might play in resolving this issue. We focus on three areas in which experimental evolution has been used previously to examine questions of evolvability; the evolution of mutational supply, the evolution of genetic exchange and the evolution of genetic architecture. In each case, we summarize what studies of experimental evolution have told us so far and speculate on where progress might be made in the future. We show that, while experimental evolution has helped us to begin to understand the evolutionary dynamics of traits that affect evolvability, many interesting questions remain to be answered.
Collapse
|
31
|
|
32
|
Egel R, Penny D. On the Origin of Meiosis in Eukaryotic Evolution: Coevolution of Meiosis and Mitosis from Feeble Beginnings. RECOMBINATION AND MEIOSIS 2007. [DOI: 10.1007/7050_2007_036] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
33
|
SANTOS M. Evolution of total net fitness in thermal lines: Drosophila subobscura likes it ‘warm’. J Evol Biol 2007; 20:2361-70. [DOI: 10.1111/j.1420-9101.2007.01408.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
34
|
Aldana M, Balleza E, Kauffman S, Resendiz O. Robustness and evolvability in genetic regulatory networks. J Theor Biol 2006; 245:433-48. [PMID: 17188715 DOI: 10.1016/j.jtbi.2006.10.027] [Citation(s) in RCA: 129] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2006] [Revised: 10/17/2006] [Accepted: 10/25/2006] [Indexed: 10/24/2022]
Abstract
Living organisms are robust to a great variety of genetic changes. Gene regulation networks and metabolic pathways self-organize and reaccommodate to make the organism perform with stability and reliability under many point mutations, gene duplications and gene deletions. At the same time, living organisms are evolvable, which means that these kind of genetic perturbations can eventually make the organism acquire new functions and adapt to new environments. It is still an open problem to determine how robustness and evolvability blend together at the genetic level to produce stable organisms that yet can change and evolve. Here we address this problem by studying the robustness and evolvability of the attractor landscape of genetic regulatory network models under the process of gene duplication followed by divergence. We show that an intrinsic property of this kind of networks is that, after the divergence of the parent and duplicate genes, with a high probability the previous phenotypes, encoded in the attractor landscape of the network, are preserved and new ones might appear. The above is true in a variety of network topologies and even for the case of extreme divergence in which the duplicate gene bears almost no relation with its parent. Our results indicate that networks operating close to the so-called "critical regime" exhibit the maximum robustness and evolvability simultaneously.
Collapse
Affiliation(s)
- Maximino Aldana
- Centro de Ciencias Físicas, Universidad Nacional Autónoma de México, C.P. 62251, Apartado Postal 48-3, Cuernavaca, Morelos, Mexico.
| | | | | | | |
Collapse
|
35
|
Imhof M, Schlötterer C. E. coli microcosms indicate a tight link between predictability of ecosystem dynamics and diversity. PLoS Genet 2006; 2:e103. [PMID: 16839191 PMCID: PMC1500808 DOI: 10.1371/journal.pgen.0020103] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2005] [Accepted: 05/23/2006] [Indexed: 11/23/2022] Open
Abstract
The diversity-stability hypothesis proposes that ecosystem diversity is positively correlated with stability. The impact of ecosystem diversity is, however, still debated. In a microcosm experiment using diverged Escherichia coli cells, we show that the fitness of community members depends on the complexity (number of participants) of the system. Interestingly, the spread of a community member with a superior genotype is mostly stochastic in low-complexity systems, but highly deterministic in a more complex environment. We conclude that system complexity provides a buffer against stochastic effects. The impact of diversity loss on the stability of ecosystems is a central issue in ecology. In today's world the continuous reduction in number of species, subspecies, and locally adapted populations, often with anthropogenic causes, turns it into a matter with increased significance for the scientific community. However, a longstanding debate about the importance of variability of a system for its stability has evoked many theoretical and empirical studies. Here the authors introduce a new approach using experimental bacterial microcosms to address this question. For this study stability is defined as nonstochastic, reproducible population dynamics. The authors started with a low-diversity population and let it diversify until an adaptive event occurred. The superior genotype gradually out-competed all other competitors resulting in a selective sweep. This adaptive event served as reference “state” to test the resilience of the system. The authors investigated the reproducibility of the dynamic with competition experiments by gradual disassembly of the community. Their findings showed an increase in fitness of the superior genotype and less variation among replicate experiments with increasing complexity (number of competitors) of the system. The main implication of this study is that diversity buffers against stochastic effects.
Collapse
Affiliation(s)
| | - Christian Schlötterer
- Institut für Tierzucht und Genetik, Wien, Austria
- * To whom correspondence should be addressed. E-mail:
| |
Collapse
|
36
|
Koonin EV. The origin of introns and their role in eukaryogenesis: a compromise solution to the introns-early versus introns-late debate? Biol Direct 2006; 1:22. [PMID: 16907971 PMCID: PMC1570339 DOI: 10.1186/1745-6150-1-22] [Citation(s) in RCA: 187] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2006] [Accepted: 08/14/2006] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Ever since the discovery of 'genes in pieces' and mRNA splicing in eukaryotes, origin and evolution of spliceosomal introns have been considered within the conceptual framework of the 'introns early' versus 'introns late' debate. The 'introns early' hypothesis, which is closely linked to the so-called exon theory of gene evolution, posits that protein-coding genes were interrupted by numerous introns even at the earliest stages of life's evolution and that introns played a major role in the origin of proteins by facilitating recombination of sequences coding for small protein/peptide modules. Under this scenario, the absence of spliceosomal introns in prokaryotes is considered to be a result of "genome streamlining". The 'introns late' hypothesis counters that spliceosomal introns emerged only in eukaryotes, and moreover, have been inserted into protein-coding genes continuously throughout the evolution of eukaryotes. Beyond the formal dilemma, the more substantial side of this debate has to do with possible roles of introns in the evolution of eukaryotes. RESULTS I argue that several lines of evidence now suggest a coherent solution to the introns-early versus introns-late debate, and the emerging picture of intron evolution integrates aspects of both views although, formally, there seems to be no support for the original version of introns-early. Firstly, there is growing evidence that spliceosomal introns evolved from group II self-splicing introns which are present, usually, in small numbers, in many bacteria, and probably, moved into the evolving eukaryotic genome from the alpha-proteobacterial progenitor of the mitochondria. Secondly, the concept of a primordial pool of 'virus-like' genetic elements implies that self-splicing introns are among the most ancient genetic entities. Thirdly, reconstructions of the ancestral state of eukaryotic genes suggest that the last common ancestor of extant eukaryotes had an intron-rich genome. Thus, it appears that ancestors of spliceosomal introns, indeed, have existed since the earliest stages of life's evolution, in a formal agreement with the introns-early scenario. However, there is no evidence that these ancient introns ever became widespread before the emergence of eukaryotes, hence, the central tenet of introns-early, the role of introns in early evolution of proteins, has no support. However, the demonstration that numerous introns invaded eukaryotic genes at the outset of eukaryotic evolution and that subsequent intron gain has been limited in many eukaryotic lineages implicates introns as an ancestral feature of eukaryotic genomes and refutes radical versions of introns-late. Perhaps, most importantly, I argue that the intron invasion triggered other pivotal events of eukaryogenesis, including the emergence of the spliceosome, the nucleus, the linear chromosomes, the telomerase, and the ubiquitin signaling system. This concept of eukaryogenesis, in a sense, revives some tenets of the exon hypothesis, by assigning to introns crucial roles in eukaryotic evolutionary innovation. CONCLUSION The scenario of the origin and evolution of introns that is best compatible with the results of comparative genomics and theoretical considerations goes as follows: self-splicing introns since the earliest stages of life's evolution--numerous spliceosomal introns invading genes of the emerging eukaryote during eukaryogenesis--subsequent lineage-specific loss and gain of introns. The intron invasion, probably, spawned by the mitochondrial endosymbiont, might have critically contributed to the emergence of the principal features of the eukaryotic cell. This scenario combines aspects of the introns-early and introns-late views. REVIEWERS this article was reviewed by W. Ford Doolittle, James Darnell (nominated by W. Ford Doolittle), William Martin, and Anthony Poole.
Collapse
Affiliation(s)
- Eugene V Koonin
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA.
| |
Collapse
|
37
|
Koepsell SA, Larson MA, Griep MA, Hinrichs SH. Staphylococcus aureus helicase but not Escherichia coli helicase stimulates S. aureus primase activity and maintains initiation specificity. J Bacteriol 2006; 188:4673-80. [PMID: 16788176 PMCID: PMC1482979 DOI: 10.1128/jb.00316-06] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2006] [Accepted: 04/17/2006] [Indexed: 11/20/2022] Open
Abstract
Bacterial primases are essential for DNA replication due to their role in polymerizing the formation of short RNA primers repeatedly on the lagging-strand template and at least once on the leading-strand template. The ability of recombinant Staphylococcus aureus DnaG primase to utilize different single-stranded DNA templates was tested using oligonucleotides of the sequence 5'-CAGA (CA)5 XYZ (CA)3-3', where XYZ represented the variable trinucleotide. These experiments demonstrated that S. aureus primase synthesized RNA primers predominately on templates containing 5'-d(CTA)-3' or TTA and to a much lesser degree on GTA-containing templates, in contrast to results seen with the Escherichia coli DnaG primase recognition sequence 5'-d(CTG)-3'. Primer synthesis was initiated complementarily to the middle nucleotide of the recognition sequence, while the third nucleotide, an adenosine, was required to support primer synthesis but was not copied into the RNA primer. The replicative helicases from both S. aureus and E. coli were tested for their ability to stimulate either S. aureus or E. coli primase. Results showed that each bacterial helicase could only stimulate the cognate bacterial primase. In addition, S. aureus helicase stimulated the production of full-length primers, whereas E. coli helicase increased the synthesis of only short RNA polymers. These studies identified important differences between E. coli and S. aureus related to DNA replication and suggest that each bacterial primase and helicase may have adapted unique properties optimized for replication.
Collapse
Affiliation(s)
- Scott A Koepsell
- Department of Microbiology and Pathology, University of Nebraska Medical Center, Omaha, Nebraska 68198-6495, USA
| | | | | | | |
Collapse
|
38
|
Affiliation(s)
- K. Dobney
- Department of Archaeology, University of Durham, Durham, UK
| | - G. Larson
- Department of Zoology, Henry Wellcome Ancient Biomolecules Centre, University of Oxford, UK
| |
Collapse
|
39
|
Koonin EV, Dolja VV. Evolution of complexity in the viral world: the dawn of a new vision. Virus Res 2006; 117:1-4. [PMID: 16497406 DOI: 10.1016/j.virusres.2006.01.018] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2005] [Accepted: 01/19/2006] [Indexed: 11/15/2022]
Abstract
Recent sequencing of the genomes of numerous large viruses provide for unprecedented opportunities to study the emergence and evolution of complexity in the virus world. This special issue of Virus Research explores trends in the evolution of complex genomes in most major classes of viruses.
Collapse
Affiliation(s)
- Eugene V Koonin
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA.
| | | |
Collapse
|
40
|
Brosius J. Echoes from the past--are we still in an RNP world? Cytogenet Genome Res 2005; 110:8-24. [PMID: 16093654 DOI: 10.1159/000084934] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2004] [Accepted: 05/04/2004] [Indexed: 11/19/2022] Open
Abstract
Availability of the human genome sequence and those of other species is unmeasured in their value for a comprehensive understanding of the architecture, function and evolution of genomes and cells. Various mechanisms keep genomes in flux and generate intra- and interspecies variation. The conversion of RNA modules into DNA and their more or less random integration into chromosomes (retroposition) is in many lineages including our own the most pervasive and perhaps the most enigmatic. The proclivity of such events in extant multicellular eukaryotes, even in more recent evolutionary times, gives the impression that the transition period from the RNP (ribonucleoprotein) world to the emergence of modern cells, where DNA became the predominant carrier of genetic information, has lasted billions of years and is an endlessly drawn-out process rather than the punctuated event one might expect. Apart from the impact of such RNA-mediated processes as retroposition, the role of RNA in a wide variety of cellular functions has only recently become more widely appreciated.
Collapse
Affiliation(s)
- J Brosius
- Institute of Experimental Pathology, ZMBE, University of Munster, Munster, Germany.
| |
Collapse
|
41
|
Emery R. "Bioplutonism" and the evolutionary implications of beneficial genes from another biosphere. Biosystems 2005; 82:83-92. [PMID: 16024162 DOI: 10.1016/j.biosystems.2005.06.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2004] [Revised: 05/16/2005] [Accepted: 06/03/2005] [Indexed: 11/17/2022]
Abstract
Could exogenous genes from another biosphere have aided the evolution of life on Earth's surface over the last half-billion years? That possibility was considered by Thomas Gold in 1992, when he hypothesized that a "deep hot biosphere" (DHB) resides independently well below its cooler surface counterpart. And he suggested that "... in the long term ... there may occasionally be beneficial exchanges of genetic material between microbial life at depth and the surface life." Thus, the question: what evidence is there to support Gold's notion that exogenous genes from the DHB--let us call them "bioplutons"--ever bestowed benefits on the evolution of surface life? In pursuit of this question I drafted a null hypothesis: "Nothing beyond our own biosphere, as we know it today, renders any kind of genetic benefits to biological evolution." After objectively analyzing the evidence and arguments pro and con I failed to reject the null hypothesis, given what we know today, especially the fact that no genetic imprint from the DHB has been identified in eukaryotic genomes. But my conclusion is regarded as tentative, because the fundamentals of Gold's argument, collectively referred to herein as "bioplutonism," might be confirmed eventually with successful probes into the DHB, and with the sampling of its alleged genetic material.
Collapse
Affiliation(s)
- Richard Emery
- Mathematics, Engineering, Science and Health Division, Olympic College, Bremerton, WA 98337-1699, USA.
| |
Collapse
|
42
|
Abstract
Biological systems, from macromolecules to whole organisms, are robust if they continue to function, survive, or reproduce when faced with mutations, environmental change, and internal noise. I focus here on biological systems that are robust to mutations and ask whether such systems are more or less evolvable, in the sense that they can acquire novel properties. The more robust a system is, the more mutations in it are neutral, that is, without phenotypic effect. I argue here that such neutral change--and thus robustness--can be a key to future evolutionary innovation, if one accepts that neutrality is not an essential feature of a mutation. That is, a once neutral mutation may cause phenotypic effects in a changed environment or genetic background. I argue that most, if not all, neutral mutations are of this sort, and that the essentialist notion of neutrality should be abandoned. This perspective reconciles two opposing views on the forces dominating organismal evolution, natural selection and random drift: neutral mutations occur and are especially abundant in robust systems, but they do not remain neutral indefinitely, and eventually become visible to natural selection, where some of them lead to evolutionary innovations.
Collapse
Affiliation(s)
- Andreas Wagner
- Department of Biology, 167 Castetter Hall, The University of New Mexico, Albuquerque, NM 87131, USA.
| |
Collapse
|
43
|
Penny D, Phillips MJ. The rise of birds and mammals: are microevolutionary processes sufficient for macroevolution? Trends Ecol Evol 2004; 19:516-22. [PMID: 16701316 DOI: 10.1016/j.tree.2004.07.015] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2004] [Revised: 07/07/2004] [Accepted: 07/26/2004] [Indexed: 10/26/2022]
Abstract
It is a basis of darwinian evolution that the microevolutionary mechanisms that can be studied in the present are sufficient to account for macroevolution. However, this idea needs to be tested explicitly, as highlighted here by the example of the superceding of dinosaurs and pterosaurs by birds and placental mammals that occurred near the Cretaceous/Tertiary boundary approximately 65 million years ago. A major problem for testing the sufficiency of microevolutionary processes is that independent ideas (such as the existence of an extraterrestrial impact, and the extinction of dinosaurs) were linked without the evidence for each idea being evaluated separately. Here, we suggest and discuss five testable models for the times and divergences of modern mammals and birds. Determination of the model that best represents these events will enable the role of microevolutionary mechanisms to be evaluated. The question of the sufficiency of microevolutionary processes for macroevolution is solvable, and available evidence supports an important role for biological processes in the initial decline of dinosaurs and pterosaurs.
Collapse
Affiliation(s)
- David Penny
- Allan Wilson Center for Molecular Ecology and Evolution, Massey University, Palmerston North, New Zealand.
| | | |
Collapse
|
44
|
Shykind BM, Rohani SC, O'Donnell S, Nemes A, Mendelsohn M, Sun Y, Axel R, Barnea G. Gene switching and the stability of odorant receptor gene choice. Cell 2004; 117:801-15. [PMID: 15186780 DOI: 10.1016/j.cell.2004.05.015] [Citation(s) in RCA: 185] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2004] [Revised: 04/08/2004] [Accepted: 05/20/2004] [Indexed: 10/26/2022]
Abstract
Individual olfactory sensory neurons express only a single odorant receptor from a large family of genes, and this singularity is an essential feature in models of olfactory perception. We have devised a genetic strategy to examine the stability of receptor choice. We observe that immature olfactory sensory neurons that express a given odorant receptor can switch receptor expression, albeit at low frequency. Neurons that express a mutant receptor gene switch receptor transcription with significantly greater probability, suggesting that the expression of a functional odorant receptor elicits a feedback signal that terminates switching. This process of receptor gene switching assures that a neuron will ultimately express a functional receptor and that the choice of this receptor will remain stable for the life of the cell.
Collapse
Affiliation(s)
- Benjamin M Shykind
- Department of Biochemistry and Molecular Biophysics and Howard Hughes Medical Institute, College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA
| | | | | | | | | | | | | | | |
Collapse
|
45
|
|
46
|
Abstract
Sober and Steel (J. Theor. Biol. 218, 395-408) give important limits on the use of current models with sequence data for studying ancient aspects of evolution; but they go too far in suggesting that several fundamental aspects of evolutionary theory cannot be tested in a normal scientific manner. To the contrary, we show examples of how some alternatives to the theory of descent can be formulated in such a way that they lead to predictions that can be evaluated (and rejected). The critical factor is a logical formulation of the alternatives, even though not all possible alternatives can be tested simultaneously. Similarly, some of the limits using DNA sequence data can be overcome by other types of sequence derived characters. The uniqueness (or not) of the origin of life, though still difficult, is similarly amenable to the testing of alternative hypotheses.
Collapse
Affiliation(s)
- David Penny
- Allan Wilson Center for Molecular Ecology and Evolution, Massey University, Palmerston North, New Zealand.
| | | | | |
Collapse
|