1
|
Zhao Y, Xie M, Wang C, Wang Y, Peng Y, Nie X. Effects of atorvastatin on the Sirtuin/PXR signaling pathway in Mugilogobius chulae. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:60009-60022. [PMID: 37016258 DOI: 10.1007/s11356-023-26736-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 03/27/2023] [Indexed: 05/10/2023]
Abstract
Atorvastatin (ATV) is a hypolipidemic drug widely detected in the aquatic environment. Nevertheless, limited information is provided about the toxic effects of ATV on estuary or coastal species and the underlying mechanisms. In the present study, the responses of genes expression in pregnane X receptor (PXR) signaling pathway and enzymatic activities in the liver of the estuarine benthic fish (Mugilogobius chulae) were investigated under acute and sub-chronic ATV exposure. Results showed that PXR was significantly inhibited in the highest exposure concentration of ATV for a shorter time (24 h, 500 μg L-1) but induced in a lower concentration (72 h, 5 μg L-1). The downstream genes in PXR signaling pathway such as CYP3A, SULT, UGT, and GST showed similar trends to PXR. P-gp and MRP1 were repressed in most treatments. GCLC associated with GSH synthesis was mostly induced under ATV exposure for a long time (168 h), suggesting that reactive oxygen species (ROS) were generated under ATV exposure. Similarly, GST and SOD enzymatic activities significantly increased in most exposure treatments. Under ATV exposure, SIRT1 and SIRT2 displayed induction to some extent in most treatments, suggesting that SIRTs may affect PXR expression by regulating the acetylation levels of PXR. The investigation demonstrated that ATV exposure affected the expression of the Sirtuin/PXR signaling pathway, thus further interfered adaption of M. chulae to the environment.
Collapse
Affiliation(s)
- Yufei Zhao
- Department of Ecology, Jinan University, Guangzhou, 510632, China
| | - Meinan Xie
- Department of Ecology, Jinan University, Guangzhou, 510632, China
| | - Chao Wang
- Department of Ecology, Jinan University, Guangzhou, 510632, China
| | - Yimeng Wang
- Department of Ecology, Jinan University, Guangzhou, 510632, China
| | - Ying Peng
- Research and Development Center for Watershed Environmental Eco-Engineering, Beijing Normal University, Zhuhai, China
| | - Xiangping Nie
- Department of Ecology, Jinan University, Guangzhou, 510632, China.
| |
Collapse
|
2
|
Popova NM, Slepnev AA, Abalenikhina YV, Shchulkin AV, Rokunov ED, Yakusheva EN. [Quantitative assessment of breast cancer resistance protein during pregnancy in rabbits]. BIOMEDITSINSKAIA KHIMIIA 2023; 69:72-77. [PMID: 36857429 DOI: 10.18097/pbmc20236901072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/02/2023]
Abstract
Breast cancer resistance protein (BCRP,ABCG2) is an efflux transporter protein that transports various substrates from the cell to the extracellular space or organ cavities. The aim of this study was a complex assessment of the amount of BCRP during pregnancy in rabbits. The amount of BCRP in samples of the rabbit jejunum, liver, kidney, cerebral cortex, and placenta was determined by enzyme immunoassay, and in human hepatocellular carcinoma (HepG2) cells by the Western blot. To study the mechanisms involved in control of the dynamic BCRP levels during pregnancy, serum concentrations of sex hormones were investigated by radioimmunoassay and relative amounts of constitutive androstane receptor (CAR) and pregnane X receptor (PXR) in these organs were evaluated using the Western blot method. The putative role of CAR and PXR in regulation of the BCRP level by progesterone was evaluated in vitro experiments on HepG2 cells. It was found that amount of BCRP in the jejunum of pregnant rabbits was higher than in the placenta, liver, kidneys, and cerebral cortex. An increase in the amount of BCRP in the liver of rabbits was noted on the 21st day of pregnancy and a tendency to the increase was also detected on the 28th day; in the kidney and cerebral cortex increased BCRP levels were detected on the 28th day and 14th day of pregnancy, respectively, as compared with non-pregnant females. In vitro experiments with HepG2 cells have shown that the increase in the BCRP level is determined by the activating effect of progesterone on PXR.
Collapse
Affiliation(s)
- N M Popova
- Ryazan State Medical University, Ryazan, Russia
| | - A A Slepnev
- Ryazan State Medical University, Ryazan, Russia
| | | | | | - E D Rokunov
- Ryazan State Medical University, Ryazan, Russia
| | | |
Collapse
|
3
|
Extensive Summary of the Important Roles of Indole Propionic Acid, a Gut Microbial Metabolite in Host Health and Disease. Nutrients 2022; 15:nu15010151. [PMID: 36615808 PMCID: PMC9824871 DOI: 10.3390/nu15010151] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Revised: 12/22/2022] [Accepted: 12/26/2022] [Indexed: 12/30/2022] Open
Abstract
Increasing evidence suggests that metabolites produced by the gut microbiota play a crucial role in host-microbe interactions. Dietary tryptophan ingested by the host enters the gut, where indole-like metabolites such as indole propionic acid (IPA) are produced under deamination by commensal bacteria. Here, we summarize the IPA-producing bacteria, dietary patterns on IPA content, and functional roles of IPA in various diseases. IPA can not only stimulate the expression of tight junction (TJ) proteins to enhance gut barrier function and inhibit the penetration of toxic factors, but also modulate the immune system to exert anti-inflammatory and antioxidant effects to synergistically regulate body physiology. Moreover, IPA can act on target organs through blood circulation to form the gut-organ axis, which helps maintain systemic homeostasis. IPA shows great potential for the diagnosis and treatment of various clinical diseases, such as NAFLD, Alzheimer's disease, and breast cancer. However, the therapeutic effect of IPA depends on dose, target organ, or time. In future studies, further work should be performed to explore the effects and mechanisms of IPA on host health and disease to further improve the existing treatment program.
Collapse
|
4
|
Meinan X, Yimeng W, Chao W, Tianli T, Li J, Peng Y, Xiangping N. Response of the Sirtuin/PXR signaling pathway in Mugilogobius chulae exposed to environmentally relevant concentration Paracetamol. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2022; 249:106222. [PMID: 35728459 DOI: 10.1016/j.aquatox.2022.106222] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 06/09/2022] [Accepted: 06/10/2022] [Indexed: 06/15/2023]
Abstract
Paracetamol (APAP) is one of the most widely used non-steroidal anti-inflammatory drugs, which is frequently detected in various water bodies. Studies are limited about its toxic effects and mechanisms on non-target aquatic organisms. In this study, an estuarine bottom-dwelling fish named Mugilogobius chulae, distributed in southern China, was selected as experimental species and the changes of PXR signaling pathway, a key signaling pathway of detoxification metabolic system in liver, were investigated under APAP exposure (0.5 μg·L-1, 5 μg·L-1, 50 μg·L-1 and 500 μg·L-1) for 24 h, 72 h and 168 h. Results showed that the key genes (e.g., P-gp, MRP1, CYP1A, CYP3A, GST and SULT) and the enzymatic activities of GST, EROD and ERND in PXR signaling pathway were induced to meet the requirements of detoxification metabolism. By up-regulating the expression of GCLC gene, the reductive small molecule GSH can be rapidly synthesized to counteract the attack of free radicals produced by APAP exposure. The expressions of SIRT1 and SIRT2 proteins decreased, while the expressions of most genes in PXR signaling pathway increased. It was speculated that the expression of PXR and its downstream target genes may be regulated epigenetically by SIRT1 and SIRT2. Studies showed that the exposure to environmental relevant concentrations of APAP can affect the detoxification metabolism of non-target organisms such as Mugilogobius chulae.
Collapse
Affiliation(s)
- Xie Meinan
- Department of Ecology, Jinan University, Guangzhou, 510632, China
| | - Wang Yimeng
- Department of Ecology, Jinan University, Guangzhou, 510632, China
| | - Wang Chao
- Department of Ecology, Jinan University, Guangzhou, 510632, China
| | - Tang Tianli
- Department of Ecology, Jinan University, Guangzhou, 510632, China
| | - Jianjun Li
- Guangdong Laboratory Animals Monitoring Institute, Guangzhou, 510663, China
| | - Ying Peng
- Research and Development Center for Watershed Environmental Eco-Engineering, Beijing Normal University, Zhuhai, China
| | - Nie Xiangping
- Department of Ecology, Jinan University, Guangzhou, 510632, China.
| |
Collapse
|
5
|
Raggi C, M'Callum MA, Pham QT, Gaub P, Selleri S, Baratang NV, Mangahas CL, Cagnone G, Reversade B, Joyal JS, Paganelli M. Leveraging interacting signaling pathways to robustly improve the quality and yield of human pluripotent stem cell-derived hepatoblasts and hepatocytes. Stem Cell Reports 2022; 17:584-598. [PMID: 35120625 PMCID: PMC9039749 DOI: 10.1016/j.stemcr.2022.01.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 01/04/2022] [Accepted: 01/05/2022] [Indexed: 12/24/2022] Open
Abstract
Pluripotent stem cell (PSC)-derived hepatocyte-like cells (HLCs) have shown great potential as an alternative to primary human hepatocytes (PHHs) for in vitro modeling. Several differentiation protocols have been described to direct PSCs toward the hepatic fate. Here, by leveraging recent knowledge of the signaling pathways involved in liver development, we describe a robust, scalable protocol that allowed us to consistently generate high-quality bipotent human hepatoblasts and HLCs from both embryonic stem cells and induced PSC (iPSCs). Although not yet fully mature, such HLCs were more similar to adult PHHs than were cells obtained with previously described protocols, showing good potential as a physiologically representative alternative to PHHs for in vitro modeling. PSC-derived hepatoblasts effectively generated with this protocol could differentiate into mature hepatocytes and cholangiocytes within syngeneic liver organoids, thus opening the way for representative human 3D in vitro modeling of liver development and pathophysiology. We generated human hepatoblasts and hepatocyte-like cells (HLCs) from pluripotent stem cells Timed action on Wnt/β-catenin and TGFβ pathways improved maturity and yield of HLCs Hepatoblasts matured into hepatocytes and bile ducts within complex liver organoids The protocol is robust and showed potential for scalability and drug testing
Collapse
Affiliation(s)
- Claudia Raggi
- Liver Tissue Engineering and Cell Therapy Laboratory, CHU Sainte-Justine, Montreal, QC, Canada; Morphocell Technologies Inc., Montreal, QC, Canada
| | - Marie-Agnès M'Callum
- Liver Tissue Engineering and Cell Therapy Laboratory, CHU Sainte-Justine, Montreal, QC, Canada
| | - Quang Toan Pham
- Liver Tissue Engineering and Cell Therapy Laboratory, CHU Sainte-Justine, Montreal, QC, Canada
| | - Perrine Gaub
- CHU Sainte-Justine Research Center, Montreal, QC, Canada; Morphocell Technologies Inc., Montreal, QC, Canada
| | - Silvia Selleri
- Liver Tissue Engineering and Cell Therapy Laboratory, CHU Sainte-Justine, Montreal, QC, Canada
| | | | - Chenicka Lyn Mangahas
- Liver Tissue Engineering and Cell Therapy Laboratory, CHU Sainte-Justine, Montreal, QC, Canada
| | - Gaël Cagnone
- CHU Sainte-Justine Research Center, Montreal, QC, Canada
| | - Bruno Reversade
- Institute of Molecular and Cell Biology and Institute of Medical Biology, A(∗)STAR, Singapore, Singapore
| | - Jean-Sébastien Joyal
- CHU Sainte-Justine Research Center, Montreal, QC, Canada; Department of Pediatrics, Université de Montréal, Montreal, QC, Canada
| | - Massimiliano Paganelli
- Liver Tissue Engineering and Cell Therapy Laboratory, CHU Sainte-Justine, Montreal, QC, Canada; Department of Pediatrics, Université de Montréal, Montreal, QC, Canada; Morphocell Technologies Inc., Montreal, QC, Canada; Pediatric Hepatology, CHU Sainte-Justine, Montreal, QC, Canada.
| |
Collapse
|
6
|
Rogers RS, Parker A, Vainer PD, Elliott E, Sudbeck D, Parimi K, Peddada VP, Howe PG, D’Ambrosio N, Ruddy G, Stackable K, Carney M, Martin L, Osterholt T, Staudinger JL. The Interface between Cell Signaling Pathways and Pregnane X Receptor. Cells 2021; 10:cells10113262. [PMID: 34831484 PMCID: PMC8617909 DOI: 10.3390/cells10113262] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Revised: 11/15/2021] [Accepted: 11/16/2021] [Indexed: 12/19/2022] Open
Abstract
Highly expressed in the enterohepatic system, pregnane X receptor (PXR, NR1I2) is a well-characterized nuclear receptor (NR) that regulates the expression of genes in the liver and intestines that encode key drug metabolizing enzymes and drug transporter proteins in mammals. The net effect of PXR activation is to increase metabolism and clear drugs and xenobiotics from the body, producing a protective effect and mediating clinically significant drug interaction in patients on combination therapy. The complete understanding of PXR biology is thus important for the development of safe and effective therapeutic strategies. Furthermore, PXR activation is now known to specifically transrepress the inflammatory- and nutrient-signaling pathways of gene expression, thereby providing a mechanism for linking these signaling pathways together with enzymatic drug biotransformation pathways in the liver and intestines. Recent research efforts highlight numerous post-translational modifications (PTMs) which significantly influence the biological function of PXR. However, this thrust of research is still in its infancy. In the context of gene-environment interactions, we present a review of the recent literature that implicates PXR PTMs in regulating its clinically relevant biology. We also provide a discussion of how these PTMs likely interface with each other to respond to extracellular cues to appropriately modify PXR activity.
Collapse
Affiliation(s)
- Robert S. Rogers
- Division of Basic Sciences, Farber-McIntire Campus, College of Osteopathic Medicine, Kansas City University, Joplin, MO 64804, USA; (R.S.R.); (A.P.); (P.D.V.); (E.E.); (D.S.); (V.P.P.); (P.G.H.); (G.R.); (K.S.); (M.C.); (L.M.); (T.O.)
| | - Annemarie Parker
- Division of Basic Sciences, Farber-McIntire Campus, College of Osteopathic Medicine, Kansas City University, Joplin, MO 64804, USA; (R.S.R.); (A.P.); (P.D.V.); (E.E.); (D.S.); (V.P.P.); (P.G.H.); (G.R.); (K.S.); (M.C.); (L.M.); (T.O.)
| | - Phill D. Vainer
- Division of Basic Sciences, Farber-McIntire Campus, College of Osteopathic Medicine, Kansas City University, Joplin, MO 64804, USA; (R.S.R.); (A.P.); (P.D.V.); (E.E.); (D.S.); (V.P.P.); (P.G.H.); (G.R.); (K.S.); (M.C.); (L.M.); (T.O.)
| | - Elijah Elliott
- Division of Basic Sciences, Farber-McIntire Campus, College of Osteopathic Medicine, Kansas City University, Joplin, MO 64804, USA; (R.S.R.); (A.P.); (P.D.V.); (E.E.); (D.S.); (V.P.P.); (P.G.H.); (G.R.); (K.S.); (M.C.); (L.M.); (T.O.)
| | - Dakota Sudbeck
- Division of Basic Sciences, Farber-McIntire Campus, College of Osteopathic Medicine, Kansas City University, Joplin, MO 64804, USA; (R.S.R.); (A.P.); (P.D.V.); (E.E.); (D.S.); (V.P.P.); (P.G.H.); (G.R.); (K.S.); (M.C.); (L.M.); (T.O.)
| | - Kaushal Parimi
- Thomas Jefferson Independent Day School, Joplin, MO 64801, USA;
| | - Venkata P. Peddada
- Division of Basic Sciences, Farber-McIntire Campus, College of Osteopathic Medicine, Kansas City University, Joplin, MO 64804, USA; (R.S.R.); (A.P.); (P.D.V.); (E.E.); (D.S.); (V.P.P.); (P.G.H.); (G.R.); (K.S.); (M.C.); (L.M.); (T.O.)
| | - Parker G. Howe
- Division of Basic Sciences, Farber-McIntire Campus, College of Osteopathic Medicine, Kansas City University, Joplin, MO 64804, USA; (R.S.R.); (A.P.); (P.D.V.); (E.E.); (D.S.); (V.P.P.); (P.G.H.); (G.R.); (K.S.); (M.C.); (L.M.); (T.O.)
| | - Nick D’Ambrosio
- Division of Basic Sciences, Farber-McIntire Campus, College of Osteopathic Medicine, Kansas City University, Joplin, MO 64804, USA; (R.S.R.); (A.P.); (P.D.V.); (E.E.); (D.S.); (V.P.P.); (P.G.H.); (G.R.); (K.S.); (M.C.); (L.M.); (T.O.)
| | - Gregory Ruddy
- Division of Basic Sciences, Farber-McIntire Campus, College of Osteopathic Medicine, Kansas City University, Joplin, MO 64804, USA; (R.S.R.); (A.P.); (P.D.V.); (E.E.); (D.S.); (V.P.P.); (P.G.H.); (G.R.); (K.S.); (M.C.); (L.M.); (T.O.)
| | - Kaitlin Stackable
- Division of Basic Sciences, Farber-McIntire Campus, College of Osteopathic Medicine, Kansas City University, Joplin, MO 64804, USA; (R.S.R.); (A.P.); (P.D.V.); (E.E.); (D.S.); (V.P.P.); (P.G.H.); (G.R.); (K.S.); (M.C.); (L.M.); (T.O.)
| | - Megan Carney
- Division of Basic Sciences, Farber-McIntire Campus, College of Osteopathic Medicine, Kansas City University, Joplin, MO 64804, USA; (R.S.R.); (A.P.); (P.D.V.); (E.E.); (D.S.); (V.P.P.); (P.G.H.); (G.R.); (K.S.); (M.C.); (L.M.); (T.O.)
| | - Lauren Martin
- Division of Basic Sciences, Farber-McIntire Campus, College of Osteopathic Medicine, Kansas City University, Joplin, MO 64804, USA; (R.S.R.); (A.P.); (P.D.V.); (E.E.); (D.S.); (V.P.P.); (P.G.H.); (G.R.); (K.S.); (M.C.); (L.M.); (T.O.)
| | - Thomas Osterholt
- Division of Basic Sciences, Farber-McIntire Campus, College of Osteopathic Medicine, Kansas City University, Joplin, MO 64804, USA; (R.S.R.); (A.P.); (P.D.V.); (E.E.); (D.S.); (V.P.P.); (P.G.H.); (G.R.); (K.S.); (M.C.); (L.M.); (T.O.)
| | - Jeff L. Staudinger
- Division of Basic Sciences, Farber-McIntire Campus, College of Osteopathic Medicine, Kansas City University, Joplin, MO 64804, USA; (R.S.R.); (A.P.); (P.D.V.); (E.E.); (D.S.); (V.P.P.); (P.G.H.); (G.R.); (K.S.); (M.C.); (L.M.); (T.O.)
- Correspondence:
| |
Collapse
|
7
|
Yuan T, Li Y. Steroid profiling and genetic variants in Chinese women with gestational diabetes mellitus. J Steroid Biochem Mol Biol 2021; 214:105999. [PMID: 34547380 DOI: 10.1016/j.jsbmb.2021.105999] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 07/19/2021] [Accepted: 09/12/2021] [Indexed: 11/16/2022]
Abstract
Previous studies have demonstrated that steroids were associated with gestational diabetes mellitus (GDM). However, results from different studies remained inconsistent, and only a limited range of steroids were investigated in these studies. Therefore, we aimed to analyze comprehensive steroid profiling in Chinese women with GDM during third-trimester pregnancy. In 97 Chinese pregnant women, we measured steroid profile using a LC-MS/MS method, and calculated product-to-precursor ratios in metabolic pathways of steroids. Then sixteen genetic variants of genes encoding steroidogenic enzymes were genotyped by MassARRAY system. There were significant differences (P < 0.05) and obvious changes (fold change <0.67 or>1.5) in steroids (testosterone, estriol, pregnenolone and dehydroepiandrosterone) and product-to-precursor ratios (E2/T and T/AD) between GDM and control groups. After adjusting for maternal age, the TT genotype and T allele of CYP19A1 rs10046 were associated with an increased risk of GDM. And the CC genotype and C allele of HSD17B3 rs2257157 were also associated with an increased risk of GDM. Besides, pregnant women carrying TT genotype of CYP19A1 rs10046 and CC genotype of HSD17B3 rs2257157 had a lower E2/T ratio and higher T/AD ratio respectively comparing with those carrying other genotypes. In conclusion, our study suggested that testosterone, estriol, pregnenolone and dehydroepiandrosterone might be differential metabolites for gestational diabetes mellitus. The genetic variants rs10046 of CYP19A1 and rs2257157 of HSD17B3 could predispose to GDM in Chinese women.
Collapse
Affiliation(s)
- Tengfei Yuan
- Department of Clinical Laboratory, Renmin Hospital of Wuhan University, Wuhan, China
| | - Yan Li
- Department of Clinical Laboratory, Renmin Hospital of Wuhan University, Wuhan, China.
| |
Collapse
|
8
|
Matorras R, Valls R, Azkargorta M, Burgos J, Rabanal A, Elortza F, Mas JM, Sardon T. Proteomics based drug repositioning applied to improve in vitro fertilization implantation: an artificial intelligence model. Syst Biol Reprod Med 2021; 67:281-297. [PMID: 34126818 DOI: 10.1080/19396368.2021.1928792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Embryo implantation is one of the most inefficient steps in assisted reproduction, so the identifying drugs with a potential clinical application to improve it has a strong interest. This work applies artificial intelligence and systems biology-based mathematical modeling strategies to unveil potential treatments by computationally analyzing and integrating available molecular and clinical data from patients. The mathematical models of embryo implantation computationally generated here simulate the molecular networks underneath this biological process. Once generated, these models were analyzed in order to identify potential repositioned drugs (drugs already used for other indications) able to improve embryo implantation by modulating the molecular pathways involved. Interestingly, the repositioning analysis has identified drugs considering two endpoints: (1) drugs able to modulate the activity of proteins whose role in embryo implantation is already bibliographically acknowledged, and (2) drugs that modulate key proteins in embryo implantation previously predicted through a mechanistic analysis of the mathematical models. This second approach increases the scope open for examination and potential novelty of the repositioning strategy. As a result, a list of 23 drug candidates to improve embryo implantation after IVF was identified by the mathematical models. This list includes many of the compounds already tested for this purpose, which reinforces the predictive capacity of our approach, together with novel repositioned candidates (e.g., Infliximab, Polaprezinc, and Amrinone). In conclusion, the present study exploits existing molecular and clinical information to offer new hypotheses regarding molecular mechanisms in embryo implantation and therapeutic candidates to improve it. This information will be very useful to guide future research.Abbreviations: IVF: in vitro fertilization; EI: Embryo implantation; TPMS: Therapeutic Performance Mapping System; MM: mathematical models; ANN: Artificial Neuronal Networks; TNFα: tumour necrosis factor factor-alpha; HSPs: heat shock proteins; VEGF: vascular endothelial growth factor; PPARA: peroxisome proliferator activated receptor-α PXR: pregnane X receptor; TTR: transthyretin; BED: Biological Effectors Database; MLP: multilayer perceptron.
Collapse
Affiliation(s)
- Roberto Matorras
- Department of Obstetrics and Gynecology, University of the Basque Country, Bilbao, Spain.,IVIRMA Bilbao, Bilbao, Spain
| | | | - Mikel Azkargorta
- Proteomics Platform, CIC bioGUNE, Basque Research and Technology Alliance (BRTA), CIBERehd, ProteoRed-ISCIII, Bizkaia Science and Technology Park, Derio, Spain
| | - Jorge Burgos
- Biocruces Bizkaia Health Research Institute. Osakidetza. Cruces University Hospital, University of the Basque Country, Bilbao, Spain
| | - Aintzane Rabanal
- Department of Obstetrics and Gynecology, University of the Basque Country, Bilbao, Spain
| | - Felix Elortza
- Proteomics Platform, CIC bioGUNE, Basque Research and Technology Alliance (BRTA), CIBERehd, ProteoRed-ISCIII, Bizkaia Science and Technology Park, Derio, Spain
| | | | | |
Collapse
|
9
|
Baldwin WS. Phase 0 of the Xenobiotic Response: Nuclear Receptors and Other Transcription Factors as a First Step in Protection from Xenobiotics. NUCLEAR RECEPTOR RESEARCH 2019; 6:101447. [PMID: 31815118 PMCID: PMC6897393 DOI: 10.32527/2019/101447] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
This mini-review examines the crucial importance of transcription factors as a first line of defense in the detoxication of xenobiotics. Key transcription factors that recognize xenobiotics or xenobiotic-induced stress such as reactive oxygen species (ROS), include AhR, PXR, CAR, MTF, Nrf2, NF-κB, and AP-1. These transcription factors constitute a significant portion of the pathways induced by toxicants as they regulate phase I-III detoxication enzymes and transporters as well as other protective proteins such as heat shock proteins, chaperones, and anti-oxidants. Because they are often the first line of defense and induce phase I-III metabolism, could these transcription factors be considered the phase 0 of xenobiotic response?
Collapse
Affiliation(s)
- William S Baldwin
- Clemson University, Biological Sciences/Environmental Toxicology, 132 Long Hall, Clemson, SC 29634
| |
Collapse
|
10
|
Rasmussen LM, Sen N, Liu X, Craig ZR. Effects of oral exposure to the phthalate substitute acetyl tributyl citrate on female reproduction in mice. J Appl Toxicol 2017; 37:668-675. [PMID: 27866379 PMCID: PMC5400675 DOI: 10.1002/jat.3413] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Revised: 10/07/2016] [Accepted: 10/08/2016] [Indexed: 11/05/2022]
Abstract
Acetyl tributyl citrate (ATBC), is a phthalate substitute used in food and medical plastics, cosmetics and toys. Although systemically safe up to 1000 mg kg-1 day-1 , its ability to cause reproductive toxicity in females at levels below 50 mg kg-1 day-1 has not been examined. This study evaluated the effects of lower ATBC exposures on female reproduction using mice. Adult CD-1 females (n = 7-8 per treatment) were dosed orally with tocopherol-stripped corn oil (vehicle), 5 or 10 mg kg-1 day-1 ATBC daily for 15 days, and then bred with a proven breeder male. ATBC exposure did not alter body weights, estrous cyclicity, and gestational and litter parameters. Relative spleen weight was slightly increased in the 5 mg kg-1 day-1 group. ATBC at 10 mg kg-1 day-1 targeted ovarian follicles and decreased the number of primordial, primary and secondary follicles present in the ovary. These findings suggest that low levels of ATBC may be detrimental to ovarian function, thus, more information is needed to understand better the impact of ATBC on female reproduction. Copyright © 2016 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Lindsay M. Rasmussen
- School of Animal and Comparative Biomedical Sciences, University of Arizona, 1177 E 4Street, Tucson, AZ 85721
| | - Nivedita Sen
- School of Animal and Comparative Biomedical Sciences, University of Arizona, 1177 E 4Street, Tucson, AZ 85721
| | - Xiaosong Liu
- School of Animal and Comparative Biomedical Sciences, University of Arizona, 1177 E 4Street, Tucson, AZ 85721
| | - Zelieann R. Craig
- School of Animal and Comparative Biomedical Sciences, University of Arizona, 1177 E 4Street, Tucson, AZ 85721
| |
Collapse
|
11
|
Masuyama H, Nakamura K, Nobumoto E, Hiramatsu Y. Inhibition of pregnane X receptor pathway contributes to the cell growth inhibition and apoptosis of anticancer agents in ovarian cancer cells. Int J Oncol 2016; 49:1211-20. [PMID: 27572875 DOI: 10.3892/ijo.2016.3611] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2016] [Accepted: 06/28/2016] [Indexed: 11/06/2022] Open
Abstract
Epithelial ovarian cancer remains the most devastating gynecologic cancer with drug resistance and rapid recurrence. Pregnane X receptor (PXR) is a nuclear receptor that affects drug metabolism/efflux and drug-drug interaction through control of multiple drug resistance 1 (MDR1), which implies a major role in multidrug resistance, and other genes. We examined whether the inhibition of PXR-mediated pathway using siRNA interference and an antagonist for PXR could influence the paclitaxel and cisplatin cytotoxicity in ovarian cancer cells. PXR agonists, phthalate and pregnenolone had significant positive effects on cytochrome P450 (CYP) 3A4 expression and PXR-mediated transcription through the CYP3A4 promoter, whereas MDR1 expression and PXR-mediated transcription though the MDR1 promoter were significantly increased in the presence of paclitaxel or cisplatin. Downregulation of PXR suppressed the augmented MDR1 expression and PXR-mediated transcription by PXR ligands, and significantly enhanced cell growth inhibition and apoptosis in the presence of paclitaxel or cisplatin. Additionally, ketoconazole, a PXR antagonist, suppressed the augmented MDR1 expression and PXR-mediated transactivation by paclitaxel and cisplatin, and enhanced cell growth inhibition and apoptosis in their presence. In conclusion, inhibition of PXR-mediated pathways could be a novel means of augmenting sensitivity, or overcoming resistance to anticancer agents for ovarian cancer.
Collapse
Affiliation(s)
- Hisashi Masuyama
- Department of Obstetrics and Gynecology, Okayama University Graduate School of Medicine, Dentist and Pharmaceutical Science, Okayama, Japan
| | - Keiichiro Nakamura
- Department of Obstetrics and Gynecology, Okayama University Graduate School of Medicine, Dentist and Pharmaceutical Science, Okayama, Japan
| | - Etsuko Nobumoto
- Department of Obstetrics and Gynecology, Okayama University Graduate School of Medicine, Dentist and Pharmaceutical Science, Okayama, Japan
| | - Yuji Hiramatsu
- Department of Obstetrics and Gynecology, Okayama University Graduate School of Medicine, Dentist and Pharmaceutical Science, Okayama, Japan
| |
Collapse
|
12
|
Oca FGGMD, López-González MDL, Escobar-Wilches DC, Chavira-Ramírez R, Sierra-Santoyo A. Vinclozolin modulates hepatic cytochrome P450 isoforms during pregnancy. Reprod Toxicol 2015; 53:119-26. [DOI: 10.1016/j.reprotox.2015.04.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2014] [Revised: 04/16/2015] [Accepted: 04/20/2015] [Indexed: 12/15/2022]
|
13
|
Spruiell K, Jones DZ, Cullen JM, Awumey EM, Gonzalez FJ, Gyamfi MA. Role of human pregnane X receptor in high fat diet-induced obesity in pre-menopausal female mice. Biochem Pharmacol 2014; 89:399-412. [PMID: 24721462 DOI: 10.1016/j.bcp.2014.03.019] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2014] [Revised: 03/29/2014] [Accepted: 03/31/2014] [Indexed: 12/15/2022]
Abstract
Obesity is a complex metabolic disorder that is more prevalent among women. Until now, the only relevant rodent models of diet-induced obesity were via the use of ovariectomized ("postmenopausal") females. However, recent reports suggest that the xenobiotic nuclear receptor pregnane X receptor (PXR) may contribute to obesity. Therefore, we compared the roles of mouse and human PXRs in diet-induced obesity between wild type (WT) and PXR-humanized (hPXR) transgenic female mice fed either control or high-fat diets (HFD) for 16 weeks. HFD-fed hPXR mice gained weight more rapidly than controls, exhibited hyperinsulinemia, and impaired glucose tolerance. Fundamental differences were observed between control-fed hPXR and WT females: hPXR mice possessed reduced estrogen receptor α (ERα) but enhanced uncoupling protein 1 (UCP1) protein expression in white adipose tissue (WAT); increased protein expression of the hepatic cytochrome P450 3A11 (CYP3A11) and key gluconeogenic enzymes phosphoenolpyruvate carboxykinase and glucose 6-phosphatase, and increased total cholesterol. Interestingly, HFD ingestion induced both UCP1 and glucokinase protein expression in WT mice, but inhibited these enzymes in hPXR females. Unlike WT mice, CYP3A11 protein, serum 17β-estradiol levels, and WAT ERα expression were unaffected by HFD in hPXR females. Together, these studies indicate that the hPXR gene promotes obesity and metabolic syndrome by dysregulating lipid and glucose homeostasis while inhibiting UCP1 expression. Furthermore, our studies indicate that the human PXR suppresses the protective role of estrogen in metabolic disorders. Finally, these data identify PXR-humanized mice as a promising in vivo research model for studying obesity and diabetes in women.
Collapse
Affiliation(s)
- Krisstonia Spruiell
- Cardiovascular & Metabolic Diseases Research Program, Julius L. Chambers Biomedical/Biotechnology Research Institute, North Carolina Central University, 700 George St., Durham, NC 27707, USA; Department of Biology, North Carolina Central University, Durham, NC 27707, USA
| | - Dominique Z Jones
- Cardiovascular & Metabolic Diseases Research Program, Julius L. Chambers Biomedical/Biotechnology Research Institute, North Carolina Central University, 700 George St., Durham, NC 27707, USA
| | - John M Cullen
- North Carolina College of Veterinary Medicine, North Carolina State University, Raleigh, NC 27607, USA
| | - Emmanuel M Awumey
- Cardiovascular & Metabolic Diseases Research Program, Julius L. Chambers Biomedical/Biotechnology Research Institute, North Carolina Central University, 700 George St., Durham, NC 27707, USA; Department of Biology, North Carolina Central University, Durham, NC 27707, USA
| | - Frank J Gonzalez
- Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, Building 37, Room 3106, Bethesda, MD 20892, USA
| | - Maxwell A Gyamfi
- Cardiovascular & Metabolic Diseases Research Program, Julius L. Chambers Biomedical/Biotechnology Research Institute, North Carolina Central University, 700 George St., Durham, NC 27707, USA.
| |
Collapse
|
14
|
Robbins D, Chen T. Tissue-specific regulation of pregnane X receptor in cancer development and therapy. Cell Biosci 2014; 4:17. [PMID: 24690092 PMCID: PMC4237984 DOI: 10.1186/2045-3701-4-17] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2013] [Accepted: 02/19/2014] [Indexed: 11/10/2022] Open
Abstract
As a ligand-dependent transcription factor of the nuclear hormone receptor superfamily, the pregnane X receptor (PXR) has a multitude of functions including regulating xenobiotic and cholesterol metabolism, energy homeostasis, gut mucosal defense, and cancer development. Whereas the detoxification functions of PXR have been widely studied and well established, the role of PXR in cancer has become controversial. With more than 60% of non-prescription and prescription drugs being metabolized by cytochrome P450 enzyme 3A4 (CYP3A4), a transcriptional target of PXR, insights into the regulation of PXR during systemic administration of novel treatment modalities will lead to a better understanding of PXR function in the context of human disease. Previous studies have suggested that PXR activation decreases drug sensitivity and augments chemoresistance in certain colon cancers mainly through the upregulation of CYP3A4 and multidrug resistance protein-1 (MDR1). Later studies suggest that downregulation of PXR expression may be oncogenic in hormone-dependent breast and endometrial cancers by reducing estrogen metabolism via CYP3A4; thus, higher estradiol concentrations contribute to carcinogenesis. These results suggest a differential role of PXR in tumor growth regulation dependent on tissue type and tumor microenvironment. Here, we will summarize the various mechanisms utilized by PXR to induce its diverse effects on cancerous tissues. Moreover, current approaches will be explored to evaluate the exploitation of PXR-mediated pathways as a novel mechanistic approach to cancer therapy.
Collapse
Affiliation(s)
| | - Taosheng Chen
- Department of Chemical Biology and Therapeutics, St, Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA.
| |
Collapse
|
15
|
Ong SS, Goktug AN, Elias A, Wu J, Saunders D, Chen T. Stability of the human pregnane X receptor is regulated by E3 ligase UBR5 and serine/threonine kinase DYRK2. Biochem J 2014; 459:193-203. [PMID: 24438055 PMCID: PMC3959618 DOI: 10.1042/bj20130558] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The hPXR (human pregnane X receptor), a major chemical toxin sensor, is a ligand-induced transcription factor activated by various xenobiotics and toxins, resulting in the transcriptional up-regulation of detoxifying enzymes. To date, little is known about the upstream regulation of hPXR. Using MS analysis and a kinome-wide siRNA screen, we report that the E3 ligase UBR5 (ubiquitin protein ligase E3 component n-recognin 5) and DYRK2 (dual-specificity tyrosine-phosphorylation-regulated kinase 2) regulate hPXR stability. UBR5 knockdown resulted in accumulation of cellular hPXR and a concomitant increase in hPXR activity, whereas the rescue of UBR5 knockdown decreased the cellular hPXR level and activity. Importantly, UBR5 exerted its effect in concert with the serine/threonine kinase DYRK2, as the knockdown of DYRK2 phenocopied UBR5 knockdown. hPXR was shown to be a substrate for DYRK2, and DYRK2-dependent phosphorylation of hPXR facilitated its subsequent ubiquitination by UBR5. This is the first report of the post-translational regulation of hPXR via phosphorylation-facilitated ubiquitination by DYRK2 and UBR5. The results of the present study reveal the role of the ubiquitin-proteasomal pathway in modulating hPXR activity and indicate that pharmacological inhibitors of the ubiquitin-proteasomal pathway that regulate hPXR stability may negatively affect treatment outcome from unintended hPXR-mediated drug-drug interactions.
Collapse
Affiliation(s)
- Su Sien Ong
- Department of Chemical Biology and Therapeutics, St. Jude Children’s Research Hospital, 262 Danny Thomas Place, Memphis, Tennessee 38105, USA
| | - Asli N. Goktug
- Department of Chemical Biology and Therapeutics, St. Jude Children’s Research Hospital, 262 Danny Thomas Place, Memphis, Tennessee 38105, USA
| | - Ayesha Elias
- Department of Chemical Biology and Therapeutics, St. Jude Children’s Research Hospital, 262 Danny Thomas Place, Memphis, Tennessee 38105, USA
| | - Jing Wu
- Department of Chemical Biology and Therapeutics, St. Jude Children’s Research Hospital, 262 Danny Thomas Place, Memphis, Tennessee 38105, USA
| | - Darren Saunders
- Cancer Research Program, Garvan Institute of Medical Research, 384 Victoria St, Darlinghurst NSW 2010, Australia
| | - Taosheng Chen
- Department of Chemical Biology and Therapeutics, St. Jude Children’s Research Hospital, 262 Danny Thomas Place, Memphis, Tennessee 38105, USA
| |
Collapse
|
16
|
Chalmey C, Giton F, Chalmel F, Fiet J, Jégou B, Mazaud-Guittot S. Systemic compensatory response to neonatal estradiol exposure does not prevent depletion of the oocyte pool in the rat. PLoS One 2013; 8:e82175. [PMID: 24358151 PMCID: PMC3864944 DOI: 10.1371/journal.pone.0082175] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2013] [Accepted: 10/21/2013] [Indexed: 11/19/2022] Open
Abstract
The formation of ovarian follicles is a finely tuned process that takes place within a narrow time-window in rodents. Multiple factors and pathways have been proposed to contribute to the mechanisms triggering this process but the role of endocrine factors, especially estrogens, remains elusive. It is currently hypothesized that removal from the maternal hormonal environment permits follicle formation at birth. However, experimentally-induced maintenance of high 17β-estradiol (E2) levels leads to subtle, distinct, immediate effects on follicle formation and oocyte survival depending on the species and dose. In this study, we examined the immediate effects of neonatal E2 exposure from post-natal day (PND) 0 to PND2 on the whole organism and on ovarian follicle formation in rats. Measurements of plasma E2, estrone and their sulfate conjugates after E2 exposure showed that neonatal female rats rapidly acquire the capability to metabolize and clear excessive E2 levels. Concomitant modifications to the mRNA content of genes encoding selected E2 metabolism enzymes in the liver and the ovary in response to E2 exposure indicate that E2 may modify the neonatal maturation of these organs. In the liver, E2 treatment was associated with lower acquisition of the capability to metabolize E2. In the ovary, E2 depleted the oocyte pool in a dose dependent manner by PND3. In 10 µg/day E2-treated ovaries, apoptotic oocytes were observed in newly formed follicles in addition to areas of ovarian cord remodeling. At PND6, follicles without any visible oocyte were present and multi-oocyte follicles were not observed. Our study reveals a major species-difference. Indeed, neonatal exposure to E2 depletes the oocyte pool in the rat ovary, whereas in the mouse it is well known to increase oocyte survival.
Collapse
Affiliation(s)
- Clémentine Chalmey
- Institut National de la Santé et de la Recherche Médicale, Unité 1085 Institut de Recherche en Santé Environnement et Travail, Institut Fédératif de Recherche 140, Université de Rennes 1, Rennes, France
| | - Franck Giton
- AP-HP, Hôpital H. Mondor - A. Chenevier, service de Biochimie et de Génétique, Créteil, France
- Institut National de la Santé et de la Recherche Médicale, U955 Équipe 07, Créteil, France
| | - Frédéric Chalmel
- Institut National de la Santé et de la Recherche Médicale, Unité 1085 Institut de Recherche en Santé Environnement et Travail, Institut Fédératif de Recherche 140, Université de Rennes 1, Rennes, France
| | - Jean Fiet
- Institut National de la Santé et de la Recherche Médicale, U955 Équipe 07, Créteil, France
| | - Bernard Jégou
- Institut National de la Santé et de la Recherche Médicale, Unité 1085 Institut de Recherche en Santé Environnement et Travail, Institut Fédératif de Recherche 140, Université de Rennes 1, Rennes, France
- Ecole des Hautes Études en Santé Publique, Rennes, France
| | - Séverine Mazaud-Guittot
- Institut National de la Santé et de la Recherche Médicale, Unité 1085 Institut de Recherche en Santé Environnement et Travail, Institut Fédératif de Recherche 140, Université de Rennes 1, Rennes, France
- * E-mail:
| |
Collapse
|
17
|
Kodama S, Negishi M. Sulfotransferase genes: regulation by nuclear receptors in response to xeno/endo-biotics. Drug Metab Rev 2013; 45:441-9. [PMID: 24025090 DOI: 10.3109/03602532.2013.835630] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Pregnane X receptor (PXR) and constitutive active/androstane receptor (CAR), members of the nuclear receptor superfamily, are two major xeno-sensing transcription factors. They can be activated by a broad range of lipophilic xenobiotics including therapeutics drugs. In addition to xenobiotics, endogenous compounds such as steroid hormones and bile acids can also activate PXR and/or CAR. These nuclear receptors regulate genes that encode enzymes and transporters that metabolize and excrete both xenobiotics and endobiotics. Sulfotransferases (SULTs) are a group of these enzymes and sulfate xenobiotics for detoxification. In general, inactivation by sulfation constitutes the mechanism to maintain homeostasis of endobiotics. Thus, deciphering the molecular mechanism by which PXR and CAR regulate SULT genes is critical for understanding the roles of SULTs in the alterations of physiological and pathophysiological processes caused by drug treatment or environmental exposures.
Collapse
Affiliation(s)
- Susumu Kodama
- Division of Drug Metabolism and Molecular Toxicology, Graduate School of Pharmaceutical Sciences, Tohoku University , Sendai , Japan and
| | | |
Collapse
|
18
|
Pavek P, Smutny T. Nuclear receptors in regulation of biotransformation enzymes and drug transporters in the placental barrier. Drug Metab Rev 2013; 46:19-32. [PMID: 24020384 DOI: 10.3109/03602532.2013.835819] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Over the past 20 years, the toxicological and protective roles of the placental barrier with respect to drug detoxification and transporter-controlled protection of the fetus have been intensively examined. Several cytochrome P450 enzymes are expressed in placental trophoblast at different stages of pregnancy, though only a few of these have functional activity to metabolize xenobiotics. Drug transporters such as P-glycoprotein/MDR1 or breast cancer resistance protein (BCRP) are highly expressed in the placenta, and their functional activities have been demonstrated in the placenta both in vitro and in vivo. In addition, several studies have reported on ligand-activated transcription factors and nuclear receptors referred to as "xenosensors" in the placenta. The xenosensors control transcriptional regulation of both xenobiotic-metabolizing enzymes and drug transporters in different organs. Their ligands include toxic compounds and environmental pollutants, drugs, as well as herbal, dietary or vitamin supplements. Nevertheless, it remains debatable whether the placental barrier adapts to toxic injuries coming either from maternal medication or environmental contamination and whether the placenta contains a mechanism to respond dynamically in protecting the developing fetus. In the present paper, we summarize current knowledge about the activity and expression of major ligand-activated transcriptional mechanisms involved in biotransformation enzymes and transporters regulation in human placenta. In particular, we highlight the emerging roles of aryl hydrocarbon (AHR), vitamin D (VDR), glucocorticoid (GR) and pregnane X (PXR) receptors in that regulation. We show that the placenta constitute a unique metabolizing organ with significant overlap of exogenous and endogenous compounds metabolism controlled by nuclear receptors.
Collapse
Affiliation(s)
- Petr Pavek
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Centre for Drug Development, Charles University in Prague , Hradec Kralove , Czech Republic
| | | |
Collapse
|
19
|
Keitel V, Spomer L, Marin J, Williamson C, Geenes V, Kubitz R, Häussinger D, Macias R. Effect of maternal cholestasis on TGR5 expression in human and rat placenta at term. Placenta 2013; 34:810-6. [DOI: 10.1016/j.placenta.2013.06.302] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2013] [Revised: 05/31/2013] [Accepted: 06/18/2013] [Indexed: 01/26/2023]
|
20
|
Kodama S, Negishi M. PXR cross-talks with internal and external signals in physiological and pathophysiological responses. Drug Metab Rev 2013; 45:300-10. [DOI: 10.3109/03602532.2013.795585] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
21
|
Frye CA, Koonce CJ, Walf AA, Rusconi JC. Motivated behaviors and levels of 3α,5α-THP in the midbrain are attenuated by knocking down expression of pregnane xenobiotic receptor in the midbrain ventral tegmental area of proestrous rats. J Sex Med 2013; 10:1692-706. [PMID: 23634744 DOI: 10.1111/jsm.12173] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
INTRODUCTION Progesterone (P4 ) and its product, 5α-pregnan-3α-ol-20-one (3α,5α-THP), act in the midbrain ventral tegmental area (VTA) to alter motivated behaviors, such as mating, and motor and anxiety behavior. Of interest is whether 3α,5α-THP formation requires the pregnane xenobiotic receptor (PXR), which is expressed in the midbrain of rats. AIM The role of PXR in the midbrain for 3α,5α-THP formation, which precedes modulation of motivated behaviors, was investigated. METHODS Rats had estrous cycle phase determined and were assessed when they were in diestrus or proestrus. Diestrous and proestrous rats were infused with control or antisense oligodeoxyribonucleotides (AS-ODNs) targeted against PXR to the VTA. MAIN OUTCOME MEASURES In pilot studies, PXR gene and protein expression in the midbrain were determined with quantitative reverse transcriptase polymerase chain reaction and Western blotting, respectively. Diestrous and proestrous rats infused with control or AS-ODNs to the VTA were tested for anxiety (open field and plus maze), social (social interaction), and sexual (paced mating) behavior. Expression of PXR in the midbrain was verified with Western blotting. Plasma estradiol, P4 , dihydroprogesterone (DHP), and 3α,5α-THP levels, and brain P4 , DHP, and 3α,5α-THP levels were measured. We predicted that proestrous rats infused with PXR AS-ODNs would have decreased anti-anxiety, social, and sexual behavior, lower midbrain expression of PXR, and lower midbrain levels of 3α,5α-THP compared with controls. RESULTS Results supported the hypothesis that formation of 3α,5α-THP requires PXR and may be important for motivated behaviors. PXR AS-ODN, compared with control, infusions to the VTA reduced PXR expression and 3α,5α-THP levels in the midbrain and attenuated sexual receptivity of proestrous rats. CONCLUSIONS Knockdown of PXR in the midbrain reduces 3α,5α-THP levels and sexual receptivity of proestrous rats. Thus, PXR in the midbrain may be required for the observed increase in 3α-5α-THP during proestrus, which has subsequent effects on motivated, reproductive behaviors.
Collapse
Affiliation(s)
- Cheryl Anne Frye
- Department of Psychology, The University at Albany-SUNY, Albany, NY, USA.
| | | | | | | |
Collapse
|
22
|
|
23
|
Qiao E, Ji M, Wu J, Ma R, Zhang X, He Y, Zha Q, Song X, Zhu LW, Tang J. Expression of the PXR gene in various types of cancer and drug resistance. Oncol Lett 2013; 5:1093-1100. [PMID: 23599746 PMCID: PMC3628904 DOI: 10.3892/ol.2013.1149] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2012] [Accepted: 01/02/2013] [Indexed: 01/13/2023] Open
Abstract
Pregnane X receptor (PXR) is a member of the nuclear receptor superfamily of ligand-regulated transcription factors. PXR is a key xenobiotic receptor that regulates the expression of genes implicated in drug metabolism, detoxification and clearance, including drug metabolizing enzymes and transporters, suggesting that it is significant in the drug resistance of cancer cells. PXR is expressed in a wide range of tissues in the human body. Studies have demonstrated that PXR is expressed in a variety of tumor types, correlating not only with drug resistance but also with the cell proliferation, apoptosis and prognosis of cancer. The purpose of the present review is to provide a comprehensive review of PXR and its potential roles in multidrug resistance and the biological characteristics of PXR-positive tumors.
Collapse
Affiliation(s)
- Enqi Qiao
- Department of General Surgery, Jiangsu Cancer Hospital, Affiliated to Nanjing Medical University, Nanjing 210009
| | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Yue X, Utsunomiya H, Akahira JI, Suzuki F, Ito K, Nagase S, Sasano H, Yaegashi N. Expression of steroid and xenobiotic receptor in uterine carcinosarcoma, leiomyosarcoma and endometrial stromal sarcoma. Oncol Lett 2012; 5:835-839. [PMID: 23443531 PMCID: PMC3576214 DOI: 10.3892/ol.2012.1094] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2012] [Accepted: 10/24/2012] [Indexed: 11/16/2022] Open
Abstract
We analyzed the expression of the steroid and xenobiotic receptor (SXR) in human uterine sarcomas and evaluated its clinical significance. Forty-seven cases with archival specimens were examined for SXR expression using immunohistochemistry. All cases were scored using a semi-quantitative histological scoring (HSCORE) method. Specimens with a HSCORE >40 were regarded as SXR-positive. Various clinicopathological variables, including the expression status of estrogen receptor (ER)-α, progesterone receptor (PR) and Ki67 (MIB-1) were examined. The mean SXR HSCOREs of carcinosarcoma (CS) and leiomyosarcoma (LMS) were 9.13 and 23.6, respectively, and SXR-positive rates were 3 out of 24 (12.5%) and 4 out of 17 (23.5%), respectively. SXR was not detected in endometrial stromal sarcoma (ESS). In CS cases, significant differences were detected between the expression of SXR and age and disease stages. There was no significant correlation between SXR-positive status and either disease-free survival or overall survival. Our results support an association between SXR and malignant behavior. Our results show that overexpression of SXR may represent a useful marker to identify patients with advanced-stage CS. In addition, our results showed that SXR may aid in the diagnosis of uterine sarcomas.
Collapse
Affiliation(s)
- Xiaoni Yue
- Departments of Obstetrics and Gynecology, Graduate School of Medicine, Tohoku University, Sendai 980-8574, Japan ; ; Department of Obstetrics and Gynecology, Fudan University, Shanghai 042465, P.R. China
| | | | | | | | | | | | | | | |
Collapse
|
25
|
Rana R, Coulter S, Kinyamu H, Goldstein JA. RBCK1, an E3 ubiquitin ligase, interacts with and ubiquinates the human pregnane X receptor. Drug Metab Dispos 2012; 41:398-405. [PMID: 23160820 DOI: 10.1124/dmd.112.048728] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The pregnane X receptor (PXR, NR1I2) plays a pivotal role in the disposition and detoxification of numerous foreign and endogenous chemicals by increasing transcription of numerous target genes, including phase I and II drug-metabolizing enzymes and transporters. In the present study, yeast two-hybrid screening identified an E3 ubiquitin ligase, RBCK1 (Ring-B-box-coiled-coil protein interacting with protein kinase C-1), as a human pregnane X receptor (hPXR)-interacting protein. Coimmunoprecipitation studies confirmed the interaction between RBCK1 and hPXR when both were ectopically expressed in AD-293 cells. Domain mapping studies showed that the interaction between RBCK1 and hPXR involves all RBCK1 domains. We further demonstrate that RBCK1 ubiquitinates hPXR, and this may target hPXR for degradation by the ubiquitin-proteasome pathway. Simultaneous ectopic overexpression of RBCK1 and PXR decreased PXR levels in AD-293 cells, and this decrease was inhibited by the proteasomal inhibitor MG-132 (carbobenzoxy-Leu-Leu-leucinal). Furthermore, overexpression of RBCK1 decreased endogenous levels of PXR in HepG2 cells. Of importance, ectopic overexpression and silencing of endogenous RBCK1 in primary human hepatocytes resulted in a decrease and increase, respectively, in endogenous PXR protein levels and in the induction of PXR target genes by rifampicin. These results suggest that RBCK1 is important for the ubiquitination of PXR and may play a role in its proteasomal degradation.
Collapse
Affiliation(s)
- Ritu Rana
- Laboratory of Toxicology & Pharmacology, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709, USA
| | | | | | | |
Collapse
|
26
|
Nem D, Baranyai D, Qiu H, Gödtel-Armbrust U, Nestler S, Wojnowski L. Pregnane X receptor and yin yang 1 contribute to the differential tissue expression and induction of CYP3A5 and CYP3A4. PLoS One 2012; 7:e30895. [PMID: 22292071 PMCID: PMC3264657 DOI: 10.1371/journal.pone.0030895] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2011] [Accepted: 12/23/2011] [Indexed: 11/19/2022] Open
Abstract
The hepato-intestinal induction of the detoxifying enzymes CYP3A4 and CYP3A5 by the xenosensing pregnane X receptor (PXR) constitutes a key adaptive response to oral drugs and dietary xenobiotics. In contrast to CYP3A4, CYP3A5 is additionally expressed in several, mostly steroidogenic organs, which creates potential for induction-driven disturbances of the steroid homeostasis. Using cell lines and mice transgenic for a CYP3A5 promoter we demonstrate that the CYP3A5 expression in these organs is non-inducible and independent from PXR. Instead, it is enabled by the loss of a suppressing yin yang 1 (YY1)-binding site from the CYP3A5 promoter which occurred in haplorrhine primates. This YY1 site is conserved in CYP3A4, but its inhibitory effect can be offset by PXR acting on response elements such as XREM. Taken together, the loss of YY1 binding site from promoters of the CYP3A5 gene lineage during primate evolution may have enabled the utilization of CYP3A5 both in the adaptive hepato-intestinal response to xenobiotics and as a constitutively expressed gene in other organs. Our results thus constitute a first description of uncoupling induction from constitutive expression for a major detoxifying enzyme. They also suggest an explanation for the considerable tissue expression differences between CYP3A5 and CYP3A4.
Collapse
Affiliation(s)
- Dieudonné Nem
- Department of Pharmacology, University Medical Center, Johannes Gutenberg University Mainz, Mainz, Germany
| | - Dorothea Baranyai
- Department of Pharmacology, University Medical Center, Johannes Gutenberg University Mainz, Mainz, Germany
| | - Huan Qiu
- Department of Pharmacology, University Medical Center, Johannes Gutenberg University Mainz, Mainz, Germany
| | - Ute Gödtel-Armbrust
- Department of Pharmacology, University Medical Center, Johannes Gutenberg University Mainz, Mainz, Germany
| | - Sebastian Nestler
- Department of Pharmacology, University Medical Center, Johannes Gutenberg University Mainz, Mainz, Germany
| | - Leszek Wojnowski
- Department of Pharmacology, University Medical Center, Johannes Gutenberg University Mainz, Mainz, Germany
- * E-mail:
| |
Collapse
|
27
|
Masuyama H, Hiramatsu Y. Potential role of estradiol and progesterone in insulin resistance through constitutive androstane receptor. J Mol Endocrinol 2011; 47:229-39. [PMID: 21768169 DOI: 10.1530/jme-11-0046] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Normal pregnancy is characterized by insulin resistance, which contributes to the development of gestational diabetes mellitus and preeclampsia by incompletely understood mechanisms. The constitutive androstane receptor (CAR) may participate in insulin resistance in pregnancy, and sex steroids, estradiol (E(2)) and progesterone, may also be involved. We applied glucose and insulin tolerance tests and measured the expression of gluconeogenic and lipogenic genes in the livers of oophorectomized mice treated with E(2) and progesterone with or without CAR ligands. We also investigated how E(2) and progesterone affected CAR-mediated signaling and the activity of transcription factors in gluconeogenesis in vitro. Mice with the concentrations of E(2) and progesterone within normal physiological range during pregnancy exhibited increased insulin resistance along with increased expression of gluconeogenic and lipogenic genes, and CAR activation rescued the abnormal glucose metabolism. In HepG2 cells, CAR ligands suppressed the gluconeogenic and lipogenic gene expression in the presence of E(2) and/or progesterone. DNA affinity immunoblotting and chromatin immunoprecipitation assay revealed that CAR ligand enhanced the recruitment of the gluconeogenic transcription factors, forkhead box O1 (FOXO1) and hepatocyte nuclear factor 4α (HNF4α), but sex steroids suppressed these recruitments on the CAR responsive element. Moreover, CAR ligand suppressed the recruitment of FOXO1 and HNF4α on their responsive element in gluconeogenic gene promoters and E(2) and progesterone augmented these recruitments on their responsive element. Taken together, these findings suggest that the activation of CAR-mediated signaling may ameliorate insulin resistance under relatively high concentrations of E(2) and progesterone, which were compatible with pregnancy via decreased activities of transcription factors in gluconeogenesis in combination with CAR.
Collapse
Affiliation(s)
- Hisashi Masuyama
- Department of Obstetrics and Gynecology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata, Kita-ku, Okayama 700-8558, Japan.
| | | |
Collapse
|
28
|
Nonylphenol-mediated CYP induction is PXR-dependent: The use of humanized mice and human hepatocytes suggests that hPXR is less sensitive than mouse PXR to nonylphenol treatment. Toxicol Appl Pharmacol 2011; 252:259-67. [PMID: 21376070 DOI: 10.1016/j.taap.2011.02.017] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2010] [Revised: 02/22/2011] [Accepted: 02/23/2011] [Indexed: 12/22/2022]
Abstract
Nonylphenol (NP), a by-product of alkylphenol ethoxylates, is a pervasive surfactant that activates the xenosensing nuclear receptor, the pregnane X-receptor (PXR) in transactivation assays in vitro. We are interested in determining if NP activates PXR in vivo, determining if hPXR and mPXR act similarly, and investigating the role of PXR in protecting individuals from NP. Wild-type (WT), PXR-null, and humanized PXR (hPXR) mice were treated with NP at 0, 50 or 75mg/kg/day for one week, and cytochrome P450 (CYP) induction, liver histopathology, and serum NP concentrations were examined. WT mice treated with NP showed induction of Cyp2b, and male-specific induction of Cyp2c and Cyp3a. CYPs were not induced in PXR-null mice, demonstrating that PXR is necessary for NP-mediated CYP induction. CAR-mediated CYP induction was not observed in the PXR-null mice despite previous data demonstrating that NP is also a CAR activator. hPXR mice only showed moderate Cyp induction, suggesting that hPXR is not as sensitive to NP as mPXR in vivo. NP-mediated Cyp3a induction from three human hepatocyte donors was not significant, confirming that hPXR is not very sensitive to NP-mediated CYP induction. Lastly, mice with PXR (mPXR and hPXR) showed lower NP serum concentrations than PXR-null mice treated with NP suggesting that PXR plays a role in decreasing liver toxicity by basally regulating phase I-III detoxification enzymes that promote the metabolism and elimination of NP. In summary, PXR is required for NP-mediated CYP-induction, mPXR mediates greater CYP induction than hPXR in vivo, and the presence of PXR, especially mPXR, is associated with altered histopathology and increased clearance of NP.
Collapse
|
29
|
Gahir SS, Piquette-Miller M. Gestational and pregnane X receptor-mediated regulation of placental ATP-binding cassette drug transporters in mice. Drug Metab Dispos 2010; 39:465-71. [PMID: 21127142 DOI: 10.1124/dmd.110.034983] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
The ATP-binding cassette (ABC) drug transporters in the placenta are involved in controlling the exchange of endogenous and exogenous moieties. Pregnane X receptor (PXR) is a nuclear receptor that regulates the hepatic expression of several key ABC transporters, but it is unclear whether PXR is involved in the regulation of these transporters in the placenta. This study explores the role of PXR in the regulation of placental drug transporters. The placental mRNA expression of Mdr1a, Bcrp, and Mrp1, 2, and 3 was examined in PXR knockout (-/-), heterozygote (+/-), and wild-type (+/+) mice by quantitative PCR. The impact of PXR activation was examined in pregnant pregnane-16α-carbonitrile (PCN)-treated mice. Compared with that in controls, the basal expression of Mdr1a, Bcrp, Mrp1, and Mrp2 was significantly higher in (+/-) and (-/-) mice. Alterations in the expression of mdr1a, bcrp, and mrp1, 2, and 3 between gestational day (GD) 10 and GD 17 was dissimilar between (+/+) and (-/-) mice. Although PCN treatment induced maternal and fetal hepatic expression of Cyp3a11; placental expression of transporters were not significantly changed. Overall, our results suggest a repressive role of PXR in the basal expression of several placental transporters and a tissue-specific induction of these target genes after PXR activation.
Collapse
Affiliation(s)
- Sarabjit S Gahir
- Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, Ontario, Canada
| | | |
Collapse
|
30
|
Overcoming drug resistance by regulating nuclear receptors. Adv Drug Deliv Rev 2010; 62:1257-64. [PMID: 20691230 DOI: 10.1016/j.addr.2010.07.008] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2010] [Revised: 07/21/2010] [Accepted: 07/23/2010] [Indexed: 12/12/2022]
Abstract
Drug resistance involves multiple mechanisms. Multidrug resistance (MDR) is the leading cause of treatment failure in cancer therapy. Elevated levels of MDR proteins [members of the ATP-binding cassette (ABC) transporter family] increase cellular efflux and decrease the effectiveness of chemotherapeutic agents. As a salvage approach to overcome drug resistance, inhibitors of MDR proteins have been developed, but have had limited success mainly due to undesired toxicities. Nuclear receptors (NRs), including pregnane X receptor (PXR), regulate the expression of proteins (including MDR proteins) involved in drug metabolism and drug clearance, suggesting that it is possible to overcome drug resistance by regulating NR. This review discusses the progress in the development of MDR inhibitors, with a focus on MDR1 inhibitors. Recent development of PXR antagonists to pharmacologically modulate PXR is also reviewed. The review proposes that selectively preventing the elevation of MDR levels by regulating NRs rather than non-selectively inhibiting the MDR activity by using MDR inhibitors can be a less toxic approach to overcome drug resistance during cancer therapy.
Collapse
|
31
|
Koh KH, Xie H, Yu AM, Jeong H. Altered cytochrome P450 expression in mice during pregnancy. Drug Metab Dispos 2010; 39:165-9. [PMID: 20971892 DOI: 10.1124/dmd.110.035790] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Human pregnancy is known to influence hepatic drug metabolism in a cytochrome (P450)-specific manner. However, the underlying mechanisms remain unknown, in part due to a lack of experimental models to study altered drug metabolism during pregnancy. In this study, we examined how pregnancy influences expression of major P450 isoforms in mice. Liver tissues were isolated from female FVB/N-mice at different gestational time points: prepregnancy, 7, 14, and 21 days of pregnancy, and 7 days postpartum. mRNA expression levels of major P450 isoforms (Cyp1a2, Cyp2a5, Cyp2b10, Cyp2c37, Cyp2d22, Cyp2e1, Cyp3a11, and Cyp3a41) in the liver tissues were determined by quantitative real-time polymerase chain reaction. Whereas Cyp2a5 expression was unchanged, Cyp3a41 expression was significantly increased during pregnancy. In contrast, expression of Cyp1a2, Cyp2c37, Cyp2d22, Cyp2e1, and Cyp3a11 was decreased. Expression of Cyp2d22 and Cyp2e1 isoforms correlated with that of peroxisome proliferator-activated receptor (PPAR)α in the mouse livers, suggesting potential involvement of PPARα in down-regulation of the P450 expression during pregnancy. Effects of pregnancy on expression of other P450 mouse isoforms as well as on in vivo drug disposition remain to be characterized. These results provide a guide for future studies on P450 regulation during pregnancy.
Collapse
Affiliation(s)
- Kwi Hye Koh
- Department of Biopharmaceutical Sciences, College of Pharmacy, University of Illinois at Chicago, Chicago, Illinois 60612, USA.
| | | | | | | |
Collapse
|
32
|
Jeong H. Altered drug metabolism during pregnancy: hormonal regulation of drug-metabolizing enzymes. Expert Opin Drug Metab Toxicol 2010; 6:689-99. [PMID: 20367533 DOI: 10.1517/17425251003677755] [Citation(s) in RCA: 102] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
IMPORTANCE OF THE FIELD Medication use during pregnancy is prevalent, but pharmacokinetic information of most drugs used during pregnancy is lacking in spite of known effects of pregnancy on drug disposition. Accurate pharmacokinetic information is essential for optimal drug therapy in mother and fetus. Thus, understanding how pregnancy influences drug disposition is important for better prediction of pharmacokinetic changes of drugs in pregnant women. AREAS COVERED IN THIS REVIEW Pregnancy is known to affect hepatic drug metabolism, but the underlying mechanisms remain unknown. Physiological changes accompanying pregnancy are probably responsible for the reported alteration in drug metabolism during pregnancy. These include elevated concentrations of various hormones such as estrogen, progesterone, placental growth hormones and prolactin. This review covers how these hormones influence expression of drug-metabolizing enzymes (DMEs), thus potentially responsible for altered drug metabolism during pregnancy. WHAT THE READER WILL GAIN The reader will gain a greater understanding of the altered drug metabolism in pregnant women and the regulatory effects of pregnancy hormones on expression of DMEs. TAKE HOME MESSAGE In-depth studies in hormonal regulatory mechanisms as well as confirmatory studies in pregnant women are warranted for systematic understanding and prediction of the changes in hepatic drug metabolism during pregnancy.
Collapse
Affiliation(s)
- Hyunyoung Jeong
- Department of Pharmacy Practice, University of Illinois at Chicago, College of Pharmacy, Departments of Pharmacy Practice and Biopharmaceutical Sciences, Chicago, IL 60612, USA.
| |
Collapse
|
33
|
Yue X, Akahira JI, Utsunomiya H, Miki Y, Takahashi N, Niikura H, Ito K, Sasano H, Okamura K, Yaegashi N. Steroid and Xenobiotic Receptor (SXR) as a possible prognostic marker in epithelial ovarian cancer. Pathol Int 2010; 60:400-6. [PMID: 20518891 DOI: 10.1111/j.1440-1827.2010.02546.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We examined the expression of the steroid and xenobiotic receptor (SXR) and evaluated its clinical significance in human epithelial ovarian carcinoma. One hundred forty-one cases were examined using immunohistochemistry for SXR with archival specimens. All cases were scored using a semi-quantitative histological scoring (HSCORE) method. Specimens with an HSCORE > 60 were regarded as SXR-positive. Various clinicopathologic variables were examined. SXR showed significant differences in age, histology, grade, ER alpha and PR. SXR was detected in 35 of 141 (24.8%) ovarian cancer tissues. There was a statistically significant negative correlation between SXR-positive status and both disease-free survival and overall survival (P= 0.0415 and 0.0316, respectively), independent of stage (P= 0.0167 and 0.021, respectively). In multivariate analysis, SXR was a statistically independent risk factor for both disease-free survival and overall survival (P= 0.049 and 0.0354). Our results support an association of SXR between ER alpha and PR in epithelial ovarian cancers. Our data suggest that SXR is a prognostic factor in epithelial ovarian cancer and may represent a useful marker to identify patients at risk of recurrence or death.
Collapse
Affiliation(s)
- Xiaoni Yue
- Department of Obstetrics and Gynecology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Plant N, Aouabdi S. Nuclear receptors: the controlling force in drug metabolism of the liver? Xenobiotica 2009; 39:597-605. [PMID: 19622002 DOI: 10.1080/00498250903098218] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
The body is in a constant battle to achieve homeostasis; indeed, the robustness with which it can respond to moves away from homeostasis is a vital part in the survival of the organism as a whole. There thus exists a need for a network of sensors that are able to capture, interpret, and respond to alterations in chemical levels that move the body away from homeostasis and this applies to both endogenous and exogenous chemicals. With respect to external chemicals (xenobiotics), this xenosensing is often carried out through specific interactions with cellular receptors. The phenomenon of 'xenosensing' has attracted much interest of late, whereby xenobiotics interact with receptors resulting in the activation of a battery of genes mediating oxidative drug metabolism, conjugation, and transport, thereby enhancing the elimination of the xenobiotic by the organism. However, this beneficial response is counterbalanced by the increasingly recognized role of nuclear receptors in mediating drug-drug interactions via enzyme induction or the production of toxicity through interaction with endogenous pathways. This review will focus on the role of nuclear receptors in mediating these effects, and how such knowledge will contribute to a mechanism-based risk assessment for xenobiotics.
Collapse
Affiliation(s)
- N Plant
- Centre for Toxicology, Faculty of Health and Medical Sciences, University of Surrey, Guildford GU27XH, UK.
| | | |
Collapse
|
35
|
Hernandez J, Mota L, Baldwin W. Activation of CAR and PXR by Dietary, Environmental and Occupational Chemicals Alters Drug Metabolism, Intermediary Metabolism, and Cell Proliferation. CURRENT PHARMACOGENOMICS AND PERSONALIZED MEDICINE 2009; 7:81-105. [PMID: 20871735 PMCID: PMC2944248 DOI: 10.2174/187569209788654005] [Citation(s) in RCA: 104] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
The constitutive androstane receptor (CAR) and the pregnane × receptor (PXR) are activated by a variety of endogenous and exogenous ligands, such as steroid hormones, bile acids, pharmaceuticals, and environmental, dietary, and occupational chemicals. In turn, they induce phase I-III detoxification enzymes and transporters that help eliminate these chemicals. Because many of the chemicals that activate CAR and PXR are environmentally-relevant (dietary and anthropogenic), studies need to address whether these chemicals or mixtures of these chemicals may increase the susceptibility to adverse drug interactions. In addition, CAR and PXR are involved in hepatic proliferation, intermediary metabolism, and protection from cholestasis. Therefore, activation of CAR and PXR may have a wide variety of implications for personalized medicine through physiological effects on metabolism and cell proliferation; some beneficial and others adverse. Identifying the chemicals that activate these promiscuous nuclear receptors and understanding how these chemicals may act in concert will help us predict adverse drug reactions (ADRs), predict cholestasis and steatosis, and regulate intermediary metabolism. This review summarizes the available data on CAR and PXR, including the environmental chemicals that activate these receptors, the genes they control, and the physiological processes that are perturbed or depend on CAR and PXR action. This knowledge contributes to a foundation that will be necessary to discern interindividual differences in the downstream biological pathways regulated by these key nuclear receptors.
Collapse
Affiliation(s)
- J.P. Hernandez
- Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA
| | - L.C. Mota
- Institute of Environmental Toxicology, Clemson University, Pendleton, SC, USA
| | - W.S. Baldwin
- Institute of Environmental Toxicology, Clemson University, Pendleton, SC, USA
| |
Collapse
|
36
|
di Masi A, De Marinis E, Ascenzi P, Marino M. Nuclear receptors CAR and PXR: Molecular, functional, and biomedical aspects. Mol Aspects Med 2009; 30:297-343. [PMID: 19427329 DOI: 10.1016/j.mam.2009.04.002] [Citation(s) in RCA: 217] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2009] [Accepted: 04/28/2009] [Indexed: 12/31/2022]
Abstract
Nuclear receptors (NRs) are ligand-activated transcription factors sharing a common evolutionary history and having similar sequence features at the protein level. Selective ligand(s) for some NRs is not known, therefore these NRs have been named "orphan receptors". Whenever ligands have been recognized for any of the orphan receptor, it has been categorized and grouped as "adopted" orphan receptor. This group includes the constitutive androstane receptor (CAR) and the pregnane X receptor (PXR). They function as sensors of toxic byproducts derived from endogenous metabolites and of exogenous chemicals, in order to enhance their elimination. This unique function of CAR and PXR sets them apart from the steroid hormone receptors. The broad response profile has established that CAR and PXR are xenobiotic sensors that coordinately regulate xenobiotic clearance in the liver and intestine via induction of genes involved in drug and xenobiotic metabolism. In the past few years, research has revealed new and mostly unsuspected roles for CAR and PXR in modulating hormone, lipid, and energy homeostasis as well as cancer and liver steatosis. The purpose of this review is to highlight the structural and molecular bases of CAR and PXR impact on human health, providing information on mechanisms through which diet, chemical exposure, and environment ultimately impact health and disease.
Collapse
Affiliation(s)
- Alessandra di Masi
- Department of Biology, University Roma Tre, Viale Guglielmo Marconi 446, I-00146 Roma, Italy
| | | | | | | |
Collapse
|
37
|
Baldwin WS, Marko PB, Nelson DR. The cytochrome P450 (CYP) gene superfamily in Daphnia pulex. BMC Genomics 2009; 10:169. [PMID: 19383150 PMCID: PMC2678163 DOI: 10.1186/1471-2164-10-169] [Citation(s) in RCA: 134] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2008] [Accepted: 04/21/2009] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Cytochrome P450s (CYPs) in animals fall into two categories: those that synthesize or metabolize endogenous molecules and those that interact with exogenous chemicals from the diet or the environment. The latter form a critical component of detoxification systems. RESULTS Data mining and manual curation of the Daphnia pulex genome identified 75 functional CYP genes, and three CYP pseudogenes. These CYPs belong to 4 clans, 13 families, and 19 subfamilies. The CYP 2, 3, 4, and mitochondrial clans are the same four clans found in other sequenced protostome genomes. Comparison of the CYPs from D. pulex to the CYPs from insects, vertebrates and sea anemone (Nematostella vectensis) show that the CYP2 clan, and to a lesser degree, the CYP4 clan has expanded in Daphnia pulex, whereas the CYP3 clan has expanded in insects. However, the expansion of the Daphnia CYP2 clan is not as great as the expansion observed in deuterostomes and the nematode C. elegans. Mapping of CYP tandem repeat regions demonstrated the unusual expansion of the CYP370 family of the CYP2 clan. The CYP370s are similar to the CYP15s and CYP303s that occur as solo genes in insects, but the CYP370s constitute approximately 20% of all the CYP genes in Daphnia pulex. Lastly, our phylogenetic comparisons provide new insights into the potential origins of otherwise mysterious CYPs such as CYP46 and CYP19 (aromatase). CONCLUSION Overall, the cladoceran, D. pulex has a wide range of CYPs with the same clans as insects and nematodes, but with distinct changes in the size and composition of each clan.
Collapse
Affiliation(s)
- William S Baldwin
- Clemson University, Biological Sciences, Institute of Environmental Toxicology, 509 Westinghouse Road, PO Box 709, Pendleton, SC, USA
| | - Peter B Marko
- Clemson University, Biological Sciences, 132 Long Hall, Clemson, SC, USA
| | - David R Nelson
- University of Tennessee-Memphis, Department of Molecular Sciences, G01 Molecular Science Building, Memphis, TN, USA
| |
Collapse
|
38
|
Xu C, Wang X, Staudinger JL. Regulation of tissue-specific carboxylesterase expression by pregnane x receptor and constitutive androstane receptor. Drug Metab Dispos 2009; 37:1539-47. [PMID: 19359405 DOI: 10.1124/dmd.109.026989] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The liver- and intestine-enriched carboxylesterase 2 (CES2) enzyme catalyzes the hydrolysis of several clinically important anticancer agents administered as prodrugs. For example, irinotecan, a carbamate prodrug used in the treatment of colorectal cancer, is biotransformed in vivo by CES2 in intestine and liver, thereby producing a potent topoisomerase I inhibitor. Pregnane X receptor (PXR) and constitutive androstane receptor (CAR), two members of the nuclear receptor superfamily of ligand-activated transcription factors, mediate gene activation in response to xenobiotic stress. Together, these receptors comprise a protective response in mammals that coordinately regulate hepatic transport, metabolism, and elimination of numerous xenobiotic compounds. In the present study, microarray analysis was used to identify PXR target genes in duodenum in mice. Here, we show that a gene encoding a member of the CES2 subtype of liver- and intestine-enriched CES enzymes, called Ces6, is induced after treatment with pregnenolone 16alpha-carbonitrile in a PXR-dependent manner in duodenum and liver in mice. Treatment of mice with the CAR activator 1,4-bis[2-(3,5-dichloropyridyloxy)] benzene also induced expression of Ces6 in duodenum and liver in a CAR-dependent manner, whereas treatment with phenobarbital produced induction of Ces6 exclusively in liver. These data identify a key role for PXR and CAR in regulating the drug-inducible expression and activity of an important CES enzyme in vivo. Future studies should focus on determining whether these signaling pathways governing drug-inducible CES expression in intestine and liver are conserved in humans.
Collapse
Affiliation(s)
- Chenshu Xu
- Pharmacology and Toxicology, University of Kansas, 1251 Wescoe Hall Drive, 5038a Malott Hall, Lawrence, KS 66045, USA
| | | | | |
Collapse
|
39
|
Sakuma T, Kawasaki Y, Jarukamjorn K, Nemoto N. Sex Differences of Drug-metabolizing Enzyme: Female Predominant Expression of Human and Mouse Cytochrome P450 3A Isoforms. ACTA ACUST UNITED AC 2009. [DOI: 10.1248/jhs.55.325] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Tsutomu Sakuma
- Department of Toxicology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama
| | - Yuki Kawasaki
- Department of Toxicology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama
| | - Kanokwan Jarukamjorn
- Department of Toxicology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama
- Academic Office of Pharmaceutical Sciences, Faculty of Pharmaceutical Sciences, Khon Kaen University
| | - Nobuo Nemoto
- Department of Toxicology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama
| |
Collapse
|
40
|
Jeong H, Choi S, Song JW, Chen H, Fischer JH. Regulation of UDP-glucuronosyltransferase (UGT) 1A1 by progesterone and its impact on labetalol elimination. Xenobiotica 2008; 38:62-75. [PMID: 18098064 DOI: 10.1080/00498250701744633] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
The authors recently reported the increased oral clearance of labetalol in pregnant women. To elucidate the mechanism of the elevated oral clearance, it was hypothesized that female hormones, at the high concentrations attainable during pregnancy, enhance hepatic metabolism of labetalol. Labetalol glucuronidation, which is the major elimination pathway of labetalol, was characterized by screening six recombinant human UGTs (UGT1A1, 1A4, 1A6, 1A9, 2B4, and 2B7) for their capacity to catalyse labetalol glucuronidation. The effect of female hormones (progesterone, oestradiol, oestriol, or oestrone) on the promoter activities of relevant UDP glucuronosyltransferases (UGT) was investigated using a luciferase reporter assay in HepG2 cells. The involvement of oestrogen receptor alpha (ERalpha) and pregnane X receptor (PXR) was examined by co-transfecting ERalpha- or PXR-constructs. UGT1A1 and UGT2B7 were identified as the major UGT enzymes producing labetalol glucuronides (trace amount of glucuronide conjugate was formed by UGT1A9). The activities of the UGT1A1 promoter containing PXR response elements were enhanced by progesterone, but not by oestrogens, indicating PXR-mediated induction of UGT1A1 promoter activity by progesterone. Results from semi-quantitative real-time polymerase chain reaction (PCR) assays are consistent with the above findings. This effect of progesterone on UGT1A1 promoter activities was concentration dependent. Promoter activities of UGT2B7 were not affected by either oestrogens or progesterone. The results suggest a potential role for progesterone in regulating labetalol elimination by modulating the expression of UGT1A1, leading to enhanced drug metabolism during pregnancy.
Collapse
Affiliation(s)
- H Jeong
- Department of Pharmacy Practice, College of Pharmacy, Universit of Illinois at Chicago, Chicago, IL 60612, USA
| | | | | | | | | |
Collapse
|
41
|
Malorni W, Campesi I, Straface E, Vella S, Franconi F. Redox features of the cell: a gender perspective. Antioxid Redox Signal 2007; 9:1779-801. [PMID: 17822369 DOI: 10.1089/ars.2007.1596] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Reactive oxygen and nitrogen species have been implicated in diverse subcellular activities, including cell proliferation,differentiation and, in some instances, cell injury and death. The implications of reactive species inhuman pathology have also been studied in detail. However, although the role of free radicals in the pathogenesis of human diseases has been extensively analyzed in different systems (i.e., in vitro, ex vivo, and in vivo),it is still far from elucidated. In particular, the possible role of gender 4 differences in human pathophysiology associated with reactive species is a promising new field of investigation. Although the complex scenario this presents is still incomplete, important gender-associated "redox features" of cells have already been described in the literature. Here we summarize the different aspects of redox-associated molecules and enzymes in regard to gender differences in terms of the intracellular production and biochemical activity of reactive species. These are often associated with the pathogenetic mechanisms underlying several human morbidities(e.g., degenerative diseases) and can represent a specific target for new pharmacologic strategies. Gender differences may thus pose an important challenge for future studies aimed at the clinical management of diseases characterized by a redox imbalance.
Collapse
Affiliation(s)
- Walter Malorni
- Department of Drug Research and Evaluation, Istituto Superiore di Sanita', Rome, Italy.
| | | | | | | | | |
Collapse
|
42
|
Masuyama H, Nakatsukasa H, Takamoto N, Hiramatsu Y. Down-Regulation of Pregnane X Receptor Contributes to Cell Growth Inhibition and Apoptosis by Anticancer Agents in Endometrial Cancer Cells. Mol Pharmacol 2007; 72:1045-53. [PMID: 17636047 DOI: 10.1124/mol.107.037937] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Recent studies have revealed that pregnane X receptor (PXR) can function as a master regulator to control the expression of drug-metabolizing enzymes, cytochrome P450 3A (CYP3A) family, and members of the drug transporter family, including multiple drug resistance 1 (MDR1). We demonstrated previously that steroid/xenobiotic metabolism by tumor tissue through the PXR-CYP3A pathway might play an important role in endometrial cancer and that PXR ligands enhance PXR-mediated transcription in a ligand- and promoter-dependent fashion, leading to differential regulation of individual PXR targets, especially CYP3A4 and MDR1. In this study, we investigated the potential contribution of PXR down-regulation by RNA interference toward the augmentation of drug sensitivity and the overcoming of drug resistance. We observed the protein levels of both CYP3A4 and MDR1 in PXR small interfering RNA (siRNA)-transfected cells were not increased in the presence of PXR ligands, paclitaxel, cisplatin, estradiol, or medroxyprogesterone acetate (MPA) compared with control siRNA-transfected cells. There was no PXR-mediated transactivation or augmentation of transcription by coactivators in the presence of these ligands. We then found that PXR down-regulation caused a significant increase in cell growth inhibition and enhancement of apoptosis in the presence of the anticancer agents, paclitaxel, cisplatin, and MPA. Finally, we demonstrated that PXR overexpression caused a significant decrease in cell growth inhibition and inhibited apoptosis in the presence of paclitaxel or cisplatin. These data suggest that PXR down-regulation could be a novel therapeutic approach for the augmentation of sensitivity to anticancer agents, or to overcome resistance to them, in the treatment of endometrial cancer.
Collapse
Affiliation(s)
- Hisashi Masuyama
- Department of Obstetrics and Gynecology, Okayama University Graduate School of Medicine, Dentist and Pharmaceutical Science, Shikata, Okayama, 700-8558, Japan.
| | | | | | | |
Collapse
|
43
|
Hagedorn KA, Cooke CL, Falck JR, Mitchell BF, Davidge ST. Regulation of vascular tone during pregnancy: a novel role for the pregnane X receptor. Hypertension 2006; 49:328-33. [PMID: 17159084 DOI: 10.1161/01.hyp.0000253478.51950.27] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
During pregnancy, maternal vascular function is altered through mechanisms that remain unclear. Progesterone synthesis and metabolism are also increased. Progesterone metabolites are potent endogenous ligands for the pregnane X receptor (PXR), a nuclear receptor that induces the expression of hepatic cytochrome P450 enzymes. Cytochrome P450 enzymes located in the vasculature can metabolize arachidonic acid to produce epoxyeicosatrienoic acids, known vasodilators. We hypothesized that PXR is present in vascular tissue and contributes to vascular adaptations to pregnancy. PXR mRNA was detected in mouse mesenteric arteries by quantitative RT-PCR. Constrictor and relaxation responses in wildtype (PXR(+/+)) and PXR-deficient (PXR(-/-)) mice were compared by wire myography. Relative to nonpregnant controls, arteries from pregnant PXR(+/+) mice had reduced sensitivity to phenylephrine-induced constriction (EC(50): 2.77+/-0.32 mumol/L versus 5.13+/-0.36 mumol/L; P=0.009) and enhanced maximal vasorelaxation to bradykinin (26+/-3% versus 44+/-16%; P=0.013). However, these pregnancy adaptations were absent in PXR(-/-) mice. We also hypothesized that PXR is activated by progesterone metabolites. Treatment of PXR(+/+) and PXR(-/-) nonpregnant mice with 5beta-dihydroprogesterone for 7 days enhanced endothelium-dependent relaxation in only the PXR(+/+) mice, similarly to that seen in pregnancy. In treated mice, inhibition of cytochrome P450 epoxygenase activity with N-methylsulphonyl-6-(2-propargyloxyphenyl)hexanamide attenuated vasorelaxation in arteries from PXR(+/+) but not PXR(-/-) mice. We conclude that PXR contributes to the development of vascular adaptations to pregnancy, likely in response to activation by progesterone metabolites, and that PXR-dependent increases in vasorelaxation may be because of activation of cytochrome P450 epoxygenases.
Collapse
Affiliation(s)
- Kathryn A Hagedorn
- Perinatal Research Centre, Department of Obstetrics/Gynecology, University of Alberta, Edmonton, Alberta, Canada T6G 2S2
| | | | | | | | | |
Collapse
|
44
|
Augereau P, Badia E, Carascossa S, Castet A, Fritsch S, Harmand PO, Jalaguier S, Cavaillès V. The nuclear receptor transcriptional coregulator RIP140. NUCLEAR RECEPTOR SIGNALING 2006; 4:e024. [PMID: 17088940 PMCID: PMC1630689 DOI: 10.1621/nrs.04024] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/27/2006] [Accepted: 10/17/2006] [Indexed: 12/21/2022]
Abstract
The nuclear receptor superfamily comprises ligand-regulated transcription factors that control various developmental and physiological pathways. These receptors share a common modular structure and regulate gene expression through the recruitment of a large set of coregulatory proteins. These transcription cofactors regulate, either positively or negatively, chromatin structure and transcription initiation. One of the first proteins to be identified as a hormone-recruited cofactor was RIP140. Despite its recruitment by agonist-liganded receptors, RIP140 exhibits a strong transcriptional repressive activity which involves several inhibitory domains and different effectors. Interestingly, the RIP140 gene, located on chromosome 21 in humans, is finely regulated at the transcriptional level by various nuclear receptors. In addition, the protein undergoes several post-translational modifications which control its repressive activity. Finally, experiments performed in mice devoid of the RIP140 gene indicate that this transcriptional cofactor is essential for female fertility and energy homeostasis. RIP140 therefore appears to be an important modulator of nuclear receptor activity which could play major roles in physiological processes and hormone-dependent diseases.
Collapse
|
45
|
Anakk S, Huang W, Staudinger JL, Tan K, Cole TJ, Moore DD, Strobel HW. Gender dictates the nuclear receptor-mediated regulation of CYP3A44. Drug Metab Dispos 2006; 35:36-42. [PMID: 17020958 DOI: 10.1124/dmd.106.011270] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The CYP3As are broad-spectrum drug-metabolizing enzymes that are collectively responsible for more than 50% of xenobiotic metabolism. Unlike other CYP3As, murine CYP3A44 is expressed predominantly in the female liver, with much lower levels in male livers and no detectable expression in brain or kidney in either gender. In this study, we examined the role of nuclear hormone receptors in the regulation of Cyp3a44 gene expression. Interestingly, we observed differential effects of pregnane X receptor (PXR) and constitutive androstane receptor (CAR) -mediated activation of Cyp3a44 gene expression, which was gender-specific. For example, activation of PXR by pregnenolone-16alpha-carbonitrile (PCN) and dexamethasone (DEX) induced CYP3A44 mRNA levels in a PXR-dependent fashion in male mice, whereas no induction was detected in female mice. In contrast, PCN and DEX down-regulated CYP3A44 expression in female PXR null animals. Similar to PXR, CAR activation also showed a male-specific induction with no effect on CYP3A44 levels in females. When PXR knockout mice were challenged with the CAR activator phenobarbital, a significant up-regulation of male CYP3A44 levels was observed, whereas levels in females remained unchanged. We conclude that gender has a critical impact on PXR- and CAR-mediated effects of CYP3A44 expression.
Collapse
Affiliation(s)
- Sayeepriyadarshini Anakk
- Department of Biochemistry and Molecular Biology, University of Texas Medical School of Houston, P.O. Box 20708, Houston, TX 77225, USA
| | | | | | | | | | | | | |
Collapse
|
46
|
Stanley LA, Horsburgh BC, Ross J, Scheer N, Wolf CR. PXR and CAR: nuclear receptors which play a pivotal role in drug disposition and chemical toxicity. Drug Metab Rev 2006; 38:515-97. [PMID: 16877263 DOI: 10.1080/03602530600786232] [Citation(s) in RCA: 92] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Xenobiotic metabolism and detoxification is regulated by receptors (e.g., PXR, CAR) whose characterization has contributed significantly to our understanding of drug responses in humans. Technologies facilitating the screening of compounds for receptor interactions provide valuable tools applicable in drug development. Most use in vitro systems or mice humanized for receptors in vivo. In vitro assays are limited by the reporter systems and cell lines chosen and are uninformative about effects in vivo. Humanized mouse models provide novel, exciting ways of understanding the functions of these genes. This article evaluates these technologies and current knowledge on PXR/CAR-mediated regulation of gene expression.
Collapse
Affiliation(s)
- Lesley A Stanley
- Consultant in Investigative Toxicology, St. Andrews, Fife, United Kingdom
| | | | | | | | | |
Collapse
|
47
|
Cheng X, Klaassen CD. Regulation of mRNA expression of xenobiotic transporters by the pregnane x receptor in mouse liver, kidney, and intestine. Drug Metab Dispos 2006; 34:1863-7. [PMID: 16928788 DOI: 10.1124/dmd.106.010520] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Multiple transporter systems are involved in the disposition of xenobiotics and endogenous compounds. The pregnane X receptor (PXR) is a major chemical sensor known to activate the expression of CYP3A/Cyp3a in humans and rodents. The purpose of this study is to systematically determine whether the major xenobiotic transporters in liver, kidney, duodenum, jejunum, and ileum are induced by pregnenolone-16alpha-carbonitrile (PCN), and whether this increase is mediated by the nuclear receptor PXR. In liver, PCN induced the expression of Oatp1a4 and Mrp3 mRNA in wild-type (WT) mouse liver, but not in PXR-null mice. In kidney, PCN did not alter the expression of any drug transporter. In duodenum, PCN increased Abca1 and Mdr1a mRNA expression in WT mice, but not in PXR-null mice. In jejunum and ileum, PCN increased Mdr1a and Mrp2 mRNA, but decreased Cnt2 mRNA in WT mice, but none of these transporters was altered when PCN was administered to PXR-null mice. Therefore, PCN regulates the expression of some transporters, namely, Oatp1a4 and Mrp3 in liver, as well as Abca1, Cnt2, Mdr1a, and Mrp2 in small intestine via a PXR-mediated mechanism.
Collapse
Affiliation(s)
- Xingguo Cheng
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | | |
Collapse
|
48
|
Christian M, White R, Parker MG. Metabolic regulation by the nuclear receptor corepressor RIP140. Trends Endocrinol Metab 2006; 17:243-50. [PMID: 16815031 DOI: 10.1016/j.tem.2006.06.008] [Citation(s) in RCA: 90] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2006] [Revised: 05/25/2006] [Accepted: 06/20/2006] [Indexed: 01/07/2023]
Abstract
Whereas the importance of activating gene expression in metabolic pathways to control energy homeostasis is well established, the contribution of transcriptional inhibition is less well defined. In this review we highlight a crucial role of RIP140, a transcriptional corepressor for nuclear receptors, in the regulation of energy expenditure. Mice devoid of the RIP140 gene are lean, exhibit resistance to high-fat-diet-induced obesity, and have increased glucose tolerance and insulin sensitivity. Consistent with these observations, RIP140 suppresses the expression of gene clusters that are involved in lipid and carbohydrate metabolism, including fatty acid oxidation, oxidative phosphorylation and mitochondrial uncoupling. Therefore, the functional interplay between transcriptional activators and the corepressor RIP140 is an essential process in metabolic regulation.
Collapse
Affiliation(s)
- Mark Christian
- Institute of Reproductive and Developmental Biology, Imperial College London, Faculty of Medicine, Du Cane Road, London W12 0NN, UK
| | | | | |
Collapse
|
49
|
Abstract
Observational studies have documented that women take a variety of medications during pregnancy. It is well known that pregnancy can induce changes in the plasma concentrations of some drugs. The use of mechanistic-based approaches to drug interactions has significantly increased our ability to predict clinically significant drug interactions and improve clinical care. This same method can also be used to improve our understanding regarding the effect of pregnancy on pharmacokinetics of drugs. Limited studies suggest bioavailability of drugs is not altered during pregnancy. Increased plasma volume and protein binding changes can alter the apparent volume of distribution (Vd) of drugs. Through changes in Vd and clearance, pregnancy can cause increases or decreases in the terminal elimination half-life of drugs. Depending on whether a drug is excreted unchanged by the kidneys or which metabolic isoenzyme is involved in the metabolism of a drug can determine whether or not a change in dosage is needed during pregnancy. The renal excretion of unchanged drugs is increased during pregnancy. The metabolism of drugs catalysed by select cytochrome P450 (CYP) isoenzymes (i.e. CYP3A4, CYP2D6 and CYP2C9) and uridine diphosphate glucuronosyltransferase (UGT) isoenzymes (i.e. UGT1A4 and UGT2B7) are increased during pregnancy. Dosages of drugs predominantly metabolised by these isoenzymes or excreted by the kidneys unchanged may need to be increased during pregnancy in order to avoid loss of efficacy. In contrast, CYP1A2 and CYP2C19 activity is decreased during pregnancy, suggesting that dosage reductions may be needed to minimise potential toxicity of their substrates. There are limitations to the available data. This analysis is based primarily on observational studies, many including small numbers of women. For some isoenzymes, the effect of pregnancy on only one drug has been evaluated. The full-time course of pharmacokinetic changes during pregnancy is often not studied. The effect of pregnancy on transport proteins is unknown. Drugs eliminated by non-CYP or non-UGT pathways or multiple pathways will need to be evaluated individually. In conclusion, by evaluating the pharmacokinetic data of a variety of drugs during pregnancy and using a mechanistic-based approach, we can start to predict the effect of pregnancy for a large number of clinically used drugs. However, because of the limitations, more clinical, evidence-based studies are needed to fully elucidate the effects of pregnancy on the pharmacokinetics of drugs.
Collapse
Affiliation(s)
- Gail D Anderson
- Department of Pharmacy, University of Washington, Seattle, Washington 98195, USA.
| |
Collapse
|
50
|
Katragadda S, Budda B, Anand BS, Mitra AK. Role of efflux pumps and metabolising enzymes in drug delivery. Expert Opin Drug Deliv 2005; 2:683-705. [PMID: 16296794 DOI: 10.1517/17425247.2.4.683] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
The impact of efflux pumps and metabolic enzymes on the therapeutic activity of various drugs has been well established. The presence of efflux pumps on various tissues and tumours has been shown to regulate the intracellular concentration needed to achieve therapeutic activity. The notable members of efflux proteins include P-glycoprotein, multi-drug resistance protein and breast cancer resistance protein. These efflux pumps play a pivotal role not only in extruding xenobiotics but also in maintaining the body's homeostasis by their ubiquitous presence and ability to coordinate among themselves. In this review, the role of efflux pumps in drug delivery and the importance of their tissue distribution is discussed in detail. To improve pharmacokinetic parameters of substrates, various strategies that modulate the activity of efflux proteins are also described. Drug metabolising enzymes mainly include the cytochrome P450 family of enzymes. Extensive drug metabolism due to the this family of enzymes is the leading cause of therapeutic inactivity. Therefore, the role of metabolising enzymes in drug delivery and disposition is extensively discussed in this review. The synergistic relationship between metabolising enzymes and efflux proteins is also described in detail. In summary, this review emphasises the urgent need to make changes in drug discovery and drug delivery as efflux pumps and metabolising enzymes play an important role in drug delivery and disposition.
Collapse
Affiliation(s)
- Suresh Katragadda
- University of Missouri-Kansas City, Division of Pharmaceutical Sciences, School of Pharmacy, 64110-2499, USA
| | | | | | | |
Collapse
|