1
|
Li J, Dai F, Kou X, Wu B, Xu J, He S. β-Actin: An Emerging Biomarker in Ischemic Stroke. Cell Mol Neurobiol 2023; 43:683-696. [PMID: 35556192 DOI: 10.1007/s10571-022-01225-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 04/10/2022] [Indexed: 11/03/2022]
Abstract
At present, the diagnosis of ischemic stroke mainly depends on neuroimaging technology, but it still has many limitations. Therefore, it is very important to find new biomarkers of ischemic stroke. Recently, β-actin has attracted extensive attention as a biomarker of a variety of cancers. Although several recent studies have been investigating its role in ischemic stroke and other cerebrovascular diseases, the understanding of this emerging biomarker in neurology is still limited. We examined human and preclinical studies to gain a comprehensive understanding of the literature on the subject. Most relevant literatures focus on preclinical research, and pay more attention to the role of β-actin in the process of cerebral ischemia, but some recent literatures reported that in human studies, serum β-actin increased significantly in the early stage of acute cerebral ischemia. This review will investigate the basic biology of β-actin, pay attention to the potential role of serum β-actin as an early diagnostic blood biomarker of ischemic stroke, and explore its potential mechanism in ischemic stroke and new strategies for stroke treatment in the future.
Collapse
Affiliation(s)
- Jiaqian Li
- Department of Neurology, School of Medicine, Zhoushan Hospital, Zhejiang University, Zhoushan, 316000, Zhejiang Province, China
| | - Fangyu Dai
- Department of Neurology, School of Medicine, Zhoushan Hospital, Zhejiang University, Zhoushan, 316000, Zhejiang Province, China
| | - Xuelian Kou
- Department of Neurology, School of Medicine, Zhoushan Hospital, Zhejiang University, Zhoushan, 316000, Zhejiang Province, China
| | - Bin Wu
- Department of Neurology, School of Medicine, Zhoushan Hospital, Zhejiang University, Zhoushan, 316000, Zhejiang Province, China
| | - Jie Xu
- Department of Neurology, School of Medicine, Zhoushan Hospital, Zhejiang University, Zhoushan, 316000, Zhejiang Province, China
| | - Songbin He
- Department of Neurology, School of Medicine, Zhoushan Hospital, Zhejiang University, Zhoushan, 316000, Zhejiang Province, China.
| |
Collapse
|
2
|
Jin T, Wang R, Peng S, Liu X, Zhang H, He X, Teng W, Teng X. Developmental Hypothyroidism Influences the Development of the Entorhinal-Dentate Gyrus Pathway of Rat Offspring. Endocrinol Metab (Seoul) 2022; 37:290-302. [PMID: 35390249 PMCID: PMC9081305 DOI: 10.3803/enm.2021.1343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2021] [Revised: 01/21/2022] [Accepted: 02/10/2022] [Indexed: 11/11/2022] Open
Abstract
BACKGROUND Developmental hypothyroidism impairs learning and memory in offspring, which depend on extensive neuronal circuits in the entorhinal cortex, together with the hippocampus and neocortex. The entorhinal-dentate gyrus pathway is the main entrance of memory circuits. We investigated whether developmental hypothyroidism impaired the morphological development of the entorhinal-dentate gyrus pathway. METHODS We examined the structure and function of the entorhinal-dentate gyrus pathway in response to developmental hypothyroidism induced using 2-mercapto-1-methylimidazole. RESULTS 1,1´-Dioctadecyl-3,3,3´,3´-tetramethylindocarbocyanine perchlorate tract tracing indicated that entorhinal axons showed delayed growth in reaching the outer molecular layer of the dentate gyrus at postnatal days 2 and 4 in hypothyroid conditions. The proportion of fibers in the outer molecular layer was significantly smaller in the hypothyroid group than in the euthyroid group at postnatal day 4. At postnatal day 10, the pathway showed a layer-specific distribution in the outer molecular layer, similar to the euthyroid group. However, the projected area of entorhinal axons was smaller in the hypothyroid group than in the euthyroid group. An electrophysiological examination showed that hypothyroidism impaired the long-term potentiation of the perforant and the cornu ammonis 3-cornu ammonis 1 pathways. Many repulsive axon guidance molecules were involved in the formation of the entorhinaldentate gyrus pathway. The hypothyroid group had higher levels of erythropoietin-producing hepatocyte ligand A3 and semaphorin 3A than the euthyroid group. CONCLUSION We demonstrated that developmental hypothyroidism might influence the development of the entorhinal-dentate gyrus pathway, contributing to impaired long-term potentiation. These findings improve our understanding of neural mechanisms for memory function.
Collapse
Affiliation(s)
- Ting Jin
- Department of Endocrinology and Metabolism, Institute of Endocrinology, National Health Commission Key Laboratory of Thyroid Diseases, The First Affiliated Hospital of China Medical University, Shenyang, China
- Department of Endocrinology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Ranran Wang
- Department of Endocrinology and Metabolism, Institute of Endocrinology, National Health Commission Key Laboratory of Thyroid Diseases, The First Affiliated Hospital of China Medical University, Shenyang, China
- Department of Endocrinology, Chifeng College Affiliated Hospital, Chifeng, China
| | - Shiqiao Peng
- Department of Endocrinology and Metabolism, Institute of Endocrinology, National Health Commission Key Laboratory of Thyroid Diseases, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Xin Liu
- Department of Endocrinology and Metabolism, Institute of Endocrinology, National Health Commission Key Laboratory of Thyroid Diseases, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Hanyi Zhang
- Department of Endocrinology and Metabolism, Institute of Endocrinology, National Health Commission Key Laboratory of Thyroid Diseases, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Xue He
- Department of Endocrinology and Metabolism, Institute of Endocrinology, National Health Commission Key Laboratory of Thyroid Diseases, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Weiping Teng
- Department of Endocrinology and Metabolism, Institute of Endocrinology, National Health Commission Key Laboratory of Thyroid Diseases, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Xiaochun Teng
- Department of Endocrinology and Metabolism, Institute of Endocrinology, National Health Commission Key Laboratory of Thyroid Diseases, The First Affiliated Hospital of China Medical University, Shenyang, China
| |
Collapse
|
3
|
Domingues JT, Wajima CS, Cesconetto PA, Parisotto EB, Winkelmann-Duarte E, Santos KD, Saleh N, Filippin-Monteiro FB, Razzera G, Mena Barreto Silva FR, Pessoa-Pureur R, Zamoner A. Experimentally-induced maternal hypothyroidism alters enzyme activities and the sensorimotor cortex of the offspring rats. Mol Cell Endocrinol 2018; 478:62-76. [PMID: 30031104 DOI: 10.1016/j.mce.2018.07.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Revised: 07/17/2018] [Accepted: 07/17/2018] [Indexed: 01/19/2023]
Abstract
In this study, we used an experimental model of congenital hypothyroidism to show that deficient thyroid hormones (TH) disrupt different neurochemical, morphological and functional aspects in the cerebral cortex of 15-day-old offspring. Our results showing decreased glutamine synthetase (GS) activity and Ca2+ overload in the cerebral cortex of hypothyroid pups suggest misregulated glutamate metabolism associated with developmentally induced TH deficiency. The 14C-MeAIB accumulation indicates upregulated System A activity and glutamine uptake by neurons. Energy metabolism in hypothyroid cortical slices was preserved, as demonstrated by unaltered glucose metabolism. We also found upregulated acetylcholinesterase activity, depleting acetylcholine from the synaptic cleft, pointing to disrupted cholinergic system. Increased reactive oxygen species (ROS) generation, lipid peroxidation, glutathione (GSH) depletion, which were associated with glutathione peroxidase, superoxide dismutase and gamma-glutamyltransferase downregulation suggest redox imbalance. Disrupted astrocyte cytoskeleton was evidenced by downregulated and hyperphosphorylated glial fibrillary acidic protein (GFAP). Morphological and structural characterization of the sensorimotor cerebral cortex (SCC) showed unaltered thickness of the SCC. However, decreased size of neurons on the layers II & III and IV in the right SCC and increased NeuN positive neurons in specific SCC layers, suggest that they are differently affected by the low TH levels during neurodevelopment. Hypothyroid pups presented increased number of foot-faults in the gridwalk test indicating affected motor functions. Taken together, our results show that congenital hypothyroidism disrupts glutamatergic and cholinergic neurotransmission, Ca2+ equilibrium, redox balance, cytoskeleton integrity, morphological and functional aspects in the cerebral cortex of young rats.
Collapse
Affiliation(s)
- Juliana Tonietto Domingues
- Departamento de Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil
| | - Carolinne Sayury Wajima
- Departamento de Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil
| | - Patricia Acordi Cesconetto
- Departamento de Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil
| | - Eduardo Benedetti Parisotto
- Departamento de Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil
| | - Elisa Winkelmann-Duarte
- Departamento de Ciências Morfológicas, Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil
| | - Karin Dos Santos
- Departamento de Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil
| | - Najla Saleh
- Departamento de Análises Clínicas, Centro de Ciências da Saúde, Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil
| | - Fabíola Branco Filippin-Monteiro
- Departamento de Análises Clínicas, Centro de Ciências da Saúde, Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil
| | - Guilherme Razzera
- Departamento de Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil
| | | | - Regina Pessoa-Pureur
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Ariane Zamoner
- Departamento de Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil.
| |
Collapse
|
4
|
Ahmed R, Abdel-Latif M, Mahdi EA, El-Nesr KA. Immune stimulation improves endocrine and neural fetal outcomes in a model of maternofetal thyrotoxicosis. Int Immunopharmacol 2015; 29:714-721. [DOI: 10.1016/j.intimp.2015.09.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2015] [Revised: 09/04/2015] [Accepted: 09/08/2015] [Indexed: 10/23/2022]
|
5
|
Navarro D, Alvarado M, Navarrete F, Giner M, Obregon MJ, Manzanares J, Berbel P. Gestational and early postnatal hypothyroidism alters VGluT1 and VGAT bouton distribution in the neocortex and hippocampus, and behavior in rats. Front Neuroanat 2015; 9:9. [PMID: 25741243 PMCID: PMC4330898 DOI: 10.3389/fnana.2015.00009] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2014] [Accepted: 01/17/2015] [Indexed: 12/20/2022] Open
Abstract
Thyroid hormones are fundamental for the expression of genes involved in the development of the CNS and their deficiency is associated with a wide spectrum of neurological diseases including mental retardation, attention deficit-hyperactivity disorder and autism spectrum disorders. We examined in rat whether developmental and early postnatal hypothyroidism affects the distribution of vesicular glutamate transporter-1 (VGluT1; glutamatergic) and vesicular inhibitory amino acid transporter (VGAT; GABAergic) immunoreactive (ir) boutons in the hippocampus and somatosensory cortex, and the behavior of the pups. Hypothyroidism was induced by adding 0.02% methimazole (MMI) and 1% KClO4 to the drinking water starting at embryonic day 10 (E10; developmental hypothyroidism) and E21 (early postnatal hypothyroidism) until day of sacrifice at postnatal day 50. Behavior was studied using the acoustic prepulse inhibition (somatosensory attention) and the elevated plus-maze (anxiety-like assessment) tests. The distribution, density and size of VGluT1-ir and VGAT-ir boutons in the hippocampus and somatosensory cortex was abnormal in MMI pups and these changes correlate with behavioral changes, as prepulse inhibition of the startle response amplitude was reduced, and the percentage of time spent in open arms increased. In conclusion, both developmental and early postnatal hypothyroidism significantly decreases the ratio of GABAergic to glutamatergic boutons in dentate gyrus leading to an abnormal flow of information to the hippocampus and infragranular layers of the somatosensory cortex, and alter behavior in rats. Our data show cytoarchitectonic alterations in the basic excitatory hippocampal loop, and in local inhibitory circuits of the somatosensory cortex and hippocampus that might contribute to the delayed neurocognitive outcome observed in thyroid hormone deficient children born in iodine deficient areas, or suffering from congenital hypothyroidism.
Collapse
Affiliation(s)
- Daniela Navarro
- Departamento de Histología y Anatomía, Facultad de Medicina, Universidad Miguel HernándezAlicante, Spain
| | - Mayvi Alvarado
- Departamento de Histología y Anatomía, Facultad de Medicina, Universidad Miguel HernándezAlicante, Spain
- Instituto de Neuroetología, Universidad VeracruzanaXalapa, Veracruz, México
| | - Francisco Navarrete
- Instituto de Neurociencias de Alicante, Universidad Miguel Hernández and Consejo Superior de Investigaciones CientíficasAlicante, Spain
| | - Manuel Giner
- Departamento de Histología y Anatomía, Facultad de Medicina, Universidad Miguel HernándezAlicante, Spain
| | - Maria Jesus Obregon
- Instituto de investigaciones Biomédicas, Consejo Superior de Investigaciones Científicas and Universidad Autónoma de MadridMadrid, Spain
| | - Jorge Manzanares
- Instituto de Neurociencias de Alicante, Universidad Miguel Hernández and Consejo Superior de Investigaciones CientíficasAlicante, Spain
| | - Pere Berbel
- Departamento de Histología y Anatomía, Facultad de Medicina, Universidad Miguel HernándezAlicante, Spain
| |
Collapse
|
6
|
Berbel P, Navarro D, Román GC. An evo-devo approach to thyroid hormones in cerebral and cerebellar cortical development: etiological implications for autism. Front Endocrinol (Lausanne) 2014; 5:146. [PMID: 25250016 PMCID: PMC4158880 DOI: 10.3389/fendo.2014.00146] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2014] [Accepted: 08/25/2014] [Indexed: 12/11/2022] Open
Abstract
The morphological alterations of cortical lamination observed in mouse models of developmental hypothyroidism prompted the recognition that these experimental changes resembled the brain lesions of children with autism; this led to recent studies showing that maternal thyroid hormone deficiency increases fourfold the risk of autism spectrum disorders (ASD), offering for the first time the possibility of prevention of some forms of ASD. For ethical reasons, the role of thyroid hormones on brain development is currently studied using animal models, usually mice and rats. Although mammals have in common many basic developmental principles regulating brain development, as well as fundamental basic mechanisms that are controlled by similar metabolic pathway activated genes, there are also important differences. For instance, the rodent cerebral cortex is basically a primary cortex, whereas the primary sensory areas in humans account for a very small surface in the cerebral cortex when compared to the associative and frontal areas that are more extensive. Associative and frontal areas in humans are involved in many neurological disorders, including ASD, attention deficit-hyperactive disorder, and dyslexia, among others. Therefore, an evo-devo approach to neocortical evolution among species is fundamental to understand not only the role of thyroid hormones and environmental thyroid disruptors on evolution, development, and organization of the cerebral cortex in mammals but also their role in neurological diseases associated to thyroid dysfunction.
Collapse
Affiliation(s)
- Pere Berbel
- Departamento de Histología y Anatomía, Facultad de Medicina, Universidad Miguel Hernández, Alicante, Spain
| | - Daniela Navarro
- Departamento de Histología y Anatomía, Facultad de Medicina, Universidad Miguel Hernández, Alicante, Spain
| | - Gustavo C. Román
- Department of Neurology, Weill Cornell Medical College, Cornell University, New York, NY, USA
- Methodist Neurological Institute, Houston, TX, USA
| |
Collapse
|
7
|
Wu YJ, Xu MY, Wang L, Sun BL, Gu GX. Analysis of EphA5 receptor in the developing rat brain: an in vivo study in congenital hypothyroidism model. Eur J Pediatr 2013; 172:1077-83. [PMID: 23636281 DOI: 10.1007/s00431-013-2008-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2013] [Accepted: 04/16/2013] [Indexed: 12/24/2022]
Abstract
UNLABELLED The EphA5 receptor has recently been known to play an important role in the initiation of the early phase of synaptogenesis, during which irreparable harm would be done to the developing brain in the absence of sufficient thyroid hormone (TH). In the present article, we aimed to analyze the characteristics of EphA5 receptor expression in the brain of congenital hypothyroid rats. The results showed that the levels of the EphA5 receptor were downregulated by TH deficiency in the developing rat brain with remarkable spatial and temporal characteristics. In the hypothyroid rats, the mRNA and protein levels of EphA5 receptor decreased significantly in the hippocampus (27.92-53.26%), cerebral cortex (12.52-47.16%), and cerebellum (8.72-31.69%) compared with those in the normal rats from postnatal day 0 (P0) to P21 (p < 0.01). The expression of EphA5 receptor was highest and declined most as much as 53% in the hippocampus with TH deficiency. At P7, the EphA5 receptor decreased most prominently during all the observed time point. CONCLUSION The EphA5 receptor plays actively in the brain development in congenital hypothyroid rats. Our study highlights the high expression of EphA5 receptor protein in hippocampus and dramatic changes at P7 in condition of TH deficiency, which may provide important basis for further investigations in manipulating congenital hypothyroidism.
Collapse
Affiliation(s)
- You-jia Wu
- Department of Pediatric Healthcare, Children's Hospital of Soochow University, 303 Jingde Road, Suzhou 215003, Jiangsu Province, China
| | | | | | | | | |
Collapse
|
8
|
Liu W, Dong J, Wang Y, Xi Q, Chen J. Developmental iodine deficiency and hypothyroidism impairedin vivosynaptic plasticity and altered PKC activity and GAP-43 expression in rat hippocampus. Nutr Neurosci 2013. [DOI: 10.1179/147683010x12611460764525] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|
9
|
Tousson E, Beltagy DM, El-Gerbed MS, Gazia MA, Akela MA. The ameliorating role of folic acid in rat hippocampus after propylthiouracil-induced hypothyroidism. ACTA ACUST UNITED AC 2012. [DOI: 10.1016/j.biomag.2012.07.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
10
|
Effects of experimentally induced maternal hypothyroidism and hyperthyroidism on the development of rat offspring: II—The developmental pattern of neurons in relation to oxidative stress and antioxidant defense system. Int J Dev Neurosci 2012; 30:517-37. [PMID: 22664656 DOI: 10.1016/j.ijdevneu.2012.04.005] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2011] [Revised: 04/30/2012] [Accepted: 04/30/2012] [Indexed: 11/17/2022] Open
|
11
|
Wang Y, Hou Y, Dong J, Xu H, Gong J, Chen J. Developmental iodine deficiency and hypothyroidism reduce phosphorylation of calcium/calmodulin-dependent kinase II in the rat entorhinal cortex. Biol Trace Elem Res 2010; 137:353-63. [PMID: 20054663 DOI: 10.1007/s12011-009-8591-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2009] [Accepted: 12/08/2009] [Indexed: 10/20/2022]
Abstract
Iodine is essential for the synthesis of triiodothyronine (T₃) and thyroxine (T₄). Iodine deficiency leads to inadequate thyroid hormone. Hypothyroidism induced by iodine deficiency during gestation and postnatal period leads to cognitive deficits in learning and memory. However, the mechanism underlying these deficits is unclear. Calcium-dependent calmodulin kinase II (CaMKII) known as a potential memory molecule regulates important neuronal functions including learning and memory. Recent studies have shown that hypothyroidism alters phosphorylation of CaMKII in hippocampus or even in sympathetic ganglia of rats. Though the entorhinal cortex (EC) is an important functional structure within the neuronal network responsible for learning and memory, little is known about the effect of hypothyroidism on phosphorylation of CaMKII in the EC. Here, we report that iodine deficiency and propylthiouracil treatment through gestation and lactation reduce phosphorylation of CaMKII in the EC of pups. The increase of calcineurin, as well as reduction of neurogranin and calmodulin, may account for the reduced phosphorylation of CaMKII induced by developmental iodine deficiency and hypothyroidism. These findings in the EC may contribute to understanding the mechanisms that underlie impairment of learning and memory induced by developmental iodine deficiency and hypothyroidism.
Collapse
Affiliation(s)
- Yi Wang
- Department of Occupational and Environmental Health, China Medical University, Shenyang, People's Republic of China
| | | | | | | | | | | |
Collapse
|
12
|
Koromilas C, Liapi C, Schulpis KH, Kalafatakis K, Zarros A, Tsakiris S. Structural and functional alterations in the hippocampus due to hypothyroidism. Metab Brain Dis 2010; 25:339-54. [PMID: 20886273 DOI: 10.1007/s11011-010-9208-8] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/12/2010] [Accepted: 07/02/2010] [Indexed: 12/23/2022]
Abstract
Thyroid hormones (THs) exert a broad spectrum of effects on the central nervous system (CNS). Hypothyroidism, especially during CNS development, can lead to structural and functional changes (mostly resulting in mental retardation). The hippocampus is considered as one of the most important CNS structures, while the investigation and understanding of its direct and indirect interactions with the THs could provide crucial information on the neurobiological basis of the (frequently-faced in clinical practice) hypothyroidism-induced mental retardation and neurobehavioral dysfunction. THs-deficiency during the fetal and/or the neonatal period produces deleterious effects for neural growth and development (such as reduced synaptic connectivity, delayed myelination, disturbed neuronal migration, deranged axonal projections, decreased synaptogenesis and alterations in neurotransmitters' levels). On the other hand, the adult-onset thyroid dysfunction is usually associated with neurological and behavioural abnormalities. In both cases, genomic and proteomic changes seem to occur. The aim of this review is to provide an up-to-date synopsis of the available knowledge regarding the aforementioned alterations that take place in the hippocampus due to fetal-, neonatal- or adult-onset hypothyroidism.
Collapse
Affiliation(s)
- Christos Koromilas
- Department of Pharmacology, Medical School, National & Kapodistrian University of Athens, Athens, Greece
| | | | | | | | | | | |
Collapse
|
13
|
El‐bakry A, El‐Gareib A, Ahmed R. Comparative study of the effects of experimentally induced hypothyroidism and hyperthyroidism in some brain regions in albino rats. Int J Dev Neurosci 2010; 28:371-89. [DOI: 10.1016/j.ijdevneu.2010.04.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2010] [Revised: 04/07/2010] [Accepted: 04/09/2010] [Indexed: 11/17/2022] Open
Affiliation(s)
- A.M. El‐bakry
- Zoology Department, Faculty of ScienceBeni Suef UniversityEgypt
| | - A.W. El‐Gareib
- Zoology Department, Faculty of ScienceCairo UniversityEgypt
| | - R.G. Ahmed
- Zoology Department, Faculty of ScienceBeni Suef UniversityEgypt
| |
Collapse
|
14
|
Schreiber T, Gassmann K, Götz C, Hübenthal U, Moors M, Krause G, Merk HF, Nguyen NH, Scanlan TS, Abel J, Rose CR, Fritsche E. Polybrominated diphenyl ethers induce developmental neurotoxicity in a human in vitro model: evidence for endocrine disruption. ENVIRONMENTAL HEALTH PERSPECTIVES 2010; 118:572-8. [PMID: 20368126 PMCID: PMC2854737 DOI: 10.1289/ehp.0901435] [Citation(s) in RCA: 149] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2009] [Accepted: 12/07/2009] [Indexed: 05/18/2023]
Abstract
BACKGROUND Polybrominated diphenyl ethers (PBDEs) are persistent and bioaccumulative flame retardants, which are found in rising concentrations in human tissues. They are of concern for human health because animal studies have shown that they possess the potential to be developmentally neurotoxic. OBJECTIVE Because there is little knowledge of the effects of PBDEs on human brain cells, we investigated their toxic potential for human neural development in vitro. Moreover, we studied the involvement of thyroid hormone (TH) disruption in the effects caused by PBDEs. METHODS We used the two PBDE congeners BDE-47 and BDE-99 (0.1-10 microM), which are most prominent in human tissues. As a model of neural development, we employed primary fetal human neural progenitor cells (hNPCs), which are cultured as neurospheres and mimic basic processes of brain development in vitro: proliferation, migration, and differentiation. RESULTS PBDEs do not disturb hNPC proliferation but decrease migration distance of hNPCs. Moreover, they cause a reduction of differentiation into neurons and oligodendrocytes. Simultaneous exposure with the TH receptor (THR) agonist triiodothyronine rescues these effects on migration and differentiation, whereas the THR antagonist NH-3 does not exert an additive effect. CONCLUSION PBDEs disturb development of hNPCs in vitro via endocrine disruption of cellular TH signaling at concentrations that might be of relevance for human exposure.
Collapse
Affiliation(s)
- Timm Schreiber
- Group of Toxicology, Institut für umweltmedizinische Forschung gGmbH an der Heinrich Heine-Universität, Düsseldorf, Germany
| | - Kathrin Gassmann
- Group of Toxicology, Institut für umweltmedizinische Forschung gGmbH an der Heinrich Heine-Universität, Düsseldorf, Germany
| | - Christine Götz
- Group of Toxicology, Institut für umweltmedizinische Forschung gGmbH an der Heinrich Heine-Universität, Düsseldorf, Germany
| | - Ulrike Hübenthal
- Group of Toxicology, Institut für umweltmedizinische Forschung gGmbH an der Heinrich Heine-Universität, Düsseldorf, Germany
| | - Michaela Moors
- Group of Toxicology, Institut für umweltmedizinische Forschung gGmbH an der Heinrich Heine-Universität, Düsseldorf, Germany
| | - Guido Krause
- Institute for Neurobiology, Heinrich-Heine-University, Düsseldorf, Germany
| | - Hans F. Merk
- Department of Dermatology and Allergology, University clinic, RWTH Aachen University, Aachen, Germany
| | - Ngoc-Ha Nguyen
- Departments of Pharmaceutical Chemistry and Cellular and Molecular Pharmacology, University of California–San Francisco, San Francisco, California, USA
| | - Thomas S. Scanlan
- Department of Physiology and Pharmacology, Oregon Health and Science University, Portland, Oregon, USA
| | - Josef Abel
- Group of Toxicology, Institut für umweltmedizinische Forschung gGmbH an der Heinrich Heine-Universität, Düsseldorf, Germany
| | - Christine R. Rose
- Institute for Neurobiology, Heinrich-Heine-University, Düsseldorf, Germany
| | - Ellen Fritsche
- Group of Toxicology, Institut für umweltmedizinische Forschung gGmbH an der Heinrich Heine-Universität, Düsseldorf, Germany
- Department of Dermatology and Allergology, University clinic, RWTH Aachen University, Aachen, Germany
- Address correspondence to E. Fritsche, Institut für umweltmedizinische Forschung gGmbH an der Heinrich Heine-Universität, Toxicology, Auf’m Hennekamp 50, 40225 Düsseldorf, Germany. Telephone: 00492113389217. Fax: 00492113190910. E-mail:
| |
Collapse
|
15
|
Boda E, Pini A, Hoxha E, Parolisi R, Tempia F. Selection of reference genes for quantitative real-time RT-PCR studies in mouse brain. J Mol Neurosci 2008; 37:238-53. [PMID: 18607772 DOI: 10.1007/s12031-008-9128-9] [Citation(s) in RCA: 90] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2008] [Accepted: 06/13/2008] [Indexed: 10/21/2022]
Abstract
Since a growing number of studies based on the real-time reverse transcriptase polymerase chain reaction (RT-PCR) continue to be published in order to highlight genes specifically involved in brain development, maturation, and function, the identification of reference genes suitable for this kind of experiments is now an urgent need in the neuroscience field. The aim of this work was to verify the suitability of some very common housekeeping genes (such as Gapdh, 18s, and B2m) and of some relatively new control genes (such as Pgk1, Tfrc, and Gusb) during mouse brain maturation. We tested the candidate reference genes in mouse whole brain, cerebellum, brain stem, hippocampus, medial septum, frontal neocortex, and olfactory bulb. Moreover, we reported the first complete study of Pgk1 expression throughout the development and the aging of mouse brain. Although no tested gene showed to be the optimal reference for all mouse brain regions, in general, the new housekeeping genes were highly stable in most of the analyzed regions. Above all, with few exceptions, Pgk1 showed to be a reliable control for the analyzed mouse brain regions during development, maturation, and aging.
Collapse
Affiliation(s)
- Enrica Boda
- Department of Neuroscience, University of Torino, Torino, Italy.
| | | | | | | | | |
Collapse
|
16
|
Ahmed OM, El‐Gareib A, El‐bakry A, Abd El‐Tawab S, Ahmed R. Thyroid hormones states and brain development interactions. Int J Dev Neurosci 2007; 26:147-209. [PMID: 18031969 DOI: 10.1016/j.ijdevneu.2007.09.011] [Citation(s) in RCA: 202] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2007] [Revised: 09/17/2007] [Accepted: 09/26/2007] [Indexed: 12/20/2022] Open
Affiliation(s)
- Osama M. Ahmed
- Zoology Department, Faculty of ScienceBeni Suef UniversityEgypt
| | - A.W. El‐Gareib
- Zoology Department, Faculty of ScienceCairo UniversityEgypt
| | - A.M. El‐bakry
- Zoology Department, Faculty of ScienceBeni Suef UniversityEgypt
| | | | - R.G. Ahmed
- Zoology Department, Faculty of ScienceBeni Suef UniversityEgypt
| |
Collapse
|
17
|
Kirk AB. Environmental perchlorate: why it matters. Anal Chim Acta 2006; 567:4-12. [PMID: 17723372 DOI: 10.1016/j.aca.2006.03.047] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2005] [Revised: 03/09/2006] [Accepted: 03/12/2006] [Indexed: 12/30/2022]
Abstract
The only known mechanism of toxicity for perchlorate is interference with iodide uptake at the sodium-iodide symporter (NIS). The NIS translocates iodide across basolateral membranes to the thyroid gland so it can be used to form thyroid hormones (TH). NIS is also expressed in the mammary gland during lactation, so that iodide can be transferred from a mother to her child. Without adequate iodide, an infant cannot produce sufficient TH to meet its developmental needs. Effects expected from perchlorate are those that would be seen in conditions of hypothyroidism or hypothyroxinemia. The probability of a permanent adverse effect is greatest during early life, as successful neurodevelopment is TH-dependent. Study of perchlorate risk is complicated by a number of factors including thyroid status of the mother during gestation, thyroid status of the fetus, maternal and infant iodine intake, and exposure of each to other TH-disrupting chemicals. Perhaps the greatest standing issue, and the issue most relevant to the field of analytical chemistry, is the simple fact that human exposure has not been quantified. This review will summarize perchlorate's potential to adversely affect neurodevelopment. Whether current environmental exposures to perchlorate contribute to neuro-impairment is unknown. Risks posed by perchlorate must be considered in conjunction with iodine intake.
Collapse
Affiliation(s)
- Andrea B Kirk
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX 79409-1061, USA.
| |
Collapse
|
18
|
Sui L, Anderson WL, Gilbert ME. Impairment in short-term but enhanced long-term synaptic potentiation and ERK activation in adult hippocampal area CA1 following developmental thyroid hormone insufficiency. Toxicol Sci 2005; 85:647-56. [PMID: 15673845 DOI: 10.1093/toxsci/kfi095] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Thyroid hormones are critical for the development and maturation of the central nervous system. Insufficiency of thyroid hormones during development impairs performance on tasks of learning and memory that rely upon the hippocampus and impairs synaptic function in young hypothyroid animals. The present study was designed to determine if perturbations in synaptic function persist in adult euthyroid animals exposed developmentally to insufficient levels of hormone. Pre- and postnatal thyroid hormone insufficiency was induced by administration of 3 or 10 ppm propylthiouracil (PTU) to pregnant and lactating dams via the drinking water from gestation day (GD) 6 until postnatal day (PN) 30. This regimen produced a graded level of hormonal insufficiency in the dam and the offspring. Population spike and population excitatory postsynaptic potentials (EPSP) were recorded at the pyramidal cell layer and the stratum radiatum, respectively, in area CA1 of hippocampal slices from adult male offspring. PTU exposure increased baseline synaptic transmission, reduced paired-pulse facilitation, and increased the magnitude of the population spike long-term potentiation (LTP). Phosphorylation of the extracellular signal-regulated kinases (ERK1 and ERK2) was increased as a function of LTP stimulation in slices from PTU-exposed adult animals. On the other hand, no differences in the basal levels of synaptic proteins implicated in synaptic plasticity (total ERK, synapsin, growth-associated protein-43, and neurogranin) were detected. These results reinforce previous findings of persistent changes in synaptic function and, importantly extend these observations to moderate levels of thyroid hormone insufficiency that do not induce significant toxicity to the dams or the offspring. Such alterations in hippocampal synaptic function may contribute to persistent behavioral deficits associated with developmental hypothyroidism.
Collapse
Affiliation(s)
- L Sui
- National Research Council, Washington, DC 20001, USA
| | | | | |
Collapse
|
19
|
Tsim TY, Wong EYK, Leung MS, Wong CC. Expression of axon guidance molecules and their related genes during development and sexual differentiation of the olfactory bulb in rats. Neuroscience 2004; 123:951-65. [PMID: 14751288 DOI: 10.1016/j.neuroscience.2003.10.024] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Axon guidance molecules and related proteins such as semaphorin 3A, neuropilin-1, plexin-1, netrin-1, growth-associated protein, olfactory marker protein, cypin and collapsin response mediator proteins guide the development of neural circuits in the olfactory bulb. In this study, transcriptions of these genes were examined in the olfactory bulb of female, male and neonatal testosterone propionate-treated female rats at the ages of 2, 5, 10, 15, 20, 25, 30 and 45 days. The semaphorin 3A, neuropilin-1, growth-associated protein and collapsin response mediator protein 1-5 genes were expressed significantly higher during the early development stages than in adulthood while the opposite is true for the olfactory marker protein. The expression profile of cypin and netrin-1 was relatively constant through development. A late effect of the neonatal testosterone propionate treatment on netrin-1, growth-associated protein, olfactory marker protein, collapsin response mediator proteins 1, 3, 4 and cypin gene expression was observed. The expression profiles of collapsin response mediator proteins and their related genes in the developing olfactory bulb confirmed most studies on the relationship between collapsin response mediator proteins and development in the brain. Sex differences of semaphorin 3A, neuropilin-1 as well as collapsin response mediator protein 3 at the early development stage and the late effect of neonatal testosterone propionate treatment on the expressions of netrin-1, growth-associated marker protein, cypin and collapsin response mediator proteins 1, 3 and 5 genes may indicate a possible role of these molecules on sexual differentiation of the olfactory bulb.
Collapse
Affiliation(s)
- T Y Tsim
- Department of Physiology, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong
| | | | | | | |
Collapse
|
20
|
Charrier E, Reibel S, Rogemond V, Aguera M, Thomasset N, Honnorat J. Collapsin response mediator proteins (CRMPs): involvement in nervous system development and adult neurodegenerative disorders. Mol Neurobiol 2003; 28:51-64. [PMID: 14514985 DOI: 10.1385/mn:28:1:51] [Citation(s) in RCA: 225] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2003] [Accepted: 03/26/2003] [Indexed: 11/11/2022]
Abstract
The members of the collapsin response mediator protein (CRMP) family-five cytosolic phosphoproteins -are highly expressed throughout brain development. The first member to be cloned, CRMP2, was identified as an intracellular messenger required for the growth cone-collapse induced by semaphorin 3A (Sema3A). A rapidly expanding body of study indicates that the functions of CRMPs are not solely limited to the signaling transduction of the Sema3A guidance cue. They are probably involved in multiple cellular and molecular events involved in apoptosis/proliferation, cell migration, and differentiation. In the adult brain, the expression of CRMPs is dramatically downregulated. However, they remain expressed in structures that retain their capacity for differentiation and plasticity and also in a subpopulation of oligodendrocytes (CRMP2 and CRMP5). Moreover, the expression of CRMPs is altered in neurodegenerative diseases, and these proteins may be of key importance in the physiopathology of the adult nervous system.
Collapse
Affiliation(s)
- Emmanuelle Charrier
- Institut National de la Santé et de la Recherche Médicale U 433, Hôpital Neurologique, 59 Bd Pinel, 69003 Lyon, France
| | | | | | | | | | | |
Collapse
|
21
|
Yao HB, Shaw PC, Wong CC, Wan DCC. Expression of glycogen synthase kinase-3 isoforms in mouse tissues and their transcription in the brain. J Chem Neuroanat 2002; 23:291-7. [PMID: 12048112 DOI: 10.1016/s0891-0618(02)00014-5] [Citation(s) in RCA: 97] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Glycogen synthase kinase-3alpha and -3beta (GSK-3alpha and -3beta) are multi-substrate, serine/threonine-specific kinases that can phosphorylate microtubule-associated protein tau and other neuronal proteins. In this study, the expression level and mRNA distribution of two GSK-3 isoforms, GSK-3alpha and -3beta in mice were investigated. Northern blot analyses indicated that GSK-3alpha mRNA is encoded by a 2.5-kb transcript in adult tissues, whereas a 4.1-kb transcript was found in neonatal tissues. The GSK-3beta mRNA is encoded by a 1.6-kb transcript in the testis and a 7.6-kb transcript in the brain, and in many other adult tissues, but not neonatal tissues. Western blot analyses demonstrated that GSK-3beta protein was mainly expressed in the brain and heart, whereas GSK-3alpha was highly expressed in the brain, heart, and testis. A non-radioactive in situ hybridization study using specific digoxigenin-labeled RNA probes showed that GSK-3alpha and -3beta mRNAs were found in many brain regions, and were especially abundant in the hippocampus, cerebral cortex, and the Purkinje cells of the cerebellum. This implies the importance of GSK-3alpha and -3beta for brain function. The differential expression of GSK-3alpha and -3beta mRNAs as well as proteins in other tissues indicate that they play different roles in cellular functions and the developmental process.
Collapse
Affiliation(s)
- Hong-Bing Yao
- Department of Biochemistry, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong, China
| | | | | | | |
Collapse
|