1
|
Ma RJ, Zhang M, Wu JS, Wang ZP, Wang GL, He N, Luo MJ, Tan JH. Role of miRNAs in glucose metabolism of mouse cumulus cells†. Biol Reprod 2024; 110:895-907. [PMID: 38267362 DOI: 10.1093/biolre/ioae013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 12/26/2023] [Accepted: 01/10/2024] [Indexed: 01/26/2024] Open
Abstract
It is known that the oocyte has a limited capacity to acquire and metabolize glucose, and it must rely on cumulus cells (CCs) to take up glucose and produce pyruvate for use to produce ATP through oxidative phosphorylation. We therefore propose that miRNAs might regulate glucose metabolism (GM) in CCs and might be used as markers for oocyte quality assessment. Here, mouse CC models with impaired glycolysis or pentose phosphate pathway (PPP) were established, and miRNAs targeting the key enzymes in glycolysis/PPP were predicted using the miRNA target prediction databases. Expression of the predicted miRNAs was compared between CCs with normal and impaired glycolysis/PPP to identify candidate miRNAs. Function of the candidate miRNAs was validated by transfecting CCs or cumulus-oocyte-complexes (COCs) with miRNA inhibitors and observing effects on glucose metabolites of CCs and on competence of oocytes. The results validated that miR-23b-3p, let-7b-5p, 34b-5p and 145a-5p inhibited glycolysis, and miR-24-3p, 3078-3p,183-5p and 7001-5p inhibited PPP of CCs. Our observation using a more physiologically relevant model (intact cultured COCs) further validated the four glycolysis-targeting miRNAs we identified. Furthermore, miR-let-7b-5p, 34b-5p and 145a-5p may also inhibit PPP, as they decreased the production of glucose-6-phosphate. In conclusion, miRNAs play critical roles in GM of CCs and may be used as markers for oocyte quality assessment. Summary sentence: We identified and validated eight new miRNAs that inhibit glycolysis and/or pentose phosphate pathways in cumulus cells (CCs) suggesting that miRNAs play critical roles in glucose metabolism of CCs and may be used for oocyte quality markers.
Collapse
Affiliation(s)
- Rui-Jie Ma
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai'an City 271018, P. R. China
| | - Min Zhang
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai'an City 271018, P. R. China
| | - Jia-Shun Wu
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai'an City 271018, P. R. China
| | - Zhi-Peng Wang
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai'an City 271018, P. R. China
| | - Guo-Liang Wang
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai'an City 271018, P. R. China
| | - Nan He
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai'an City 271018, P. R. China
| | - Ming-Jiu Luo
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai'an City 271018, P. R. China
| | - Jing-He Tan
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai'an City 271018, P. R. China
| |
Collapse
|
2
|
Pan B, Zhan X, Li J. MicroRNA-574 Impacts Granulosa Cell Estradiol Production via Targeting TIMP3 and ERK1/2 Signaling Pathway. Front Endocrinol (Lausanne) 2022; 13:852127. [PMID: 35813635 PMCID: PMC9261285 DOI: 10.3389/fendo.2022.852127] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 05/12/2022] [Indexed: 11/17/2022] Open
Abstract
Estradiol represents a key steroid ovarian hormone that not only plays a vital role in ovarian follicular development but also is associated with many other reproductive functions. Our primary study revealed that miR-574 expression decreased in porcine granulosa cells during development from small to large follicles, and the increase of ERK1/2 phosphorylation accompanies this change. Since it has been well established that the ERK1/2 activity is tightly associated with granulosa cell functions, including ovarian hormone production, we thus further investigate if the miRNA is involved in the regulation of estradiol production in granulosa cells. We found that overexpression of miR-574 decreased phosphorylated ERK1/2 without affecting the level of ERK1/2 protein, and on the other hand, the inhibition of miR-574 increased phosphorylated ERK1/2 level (P<0.05); meanwhile, overexpression of miR-574 increased estradiol production but knockdown of miR-574 decreased estradiol level in granulosa cells. To further identify the potential mechanism involved in the miR-574 regulatory effect, in silico screening was performed and revealed a potential binding site on the 3'UTR region of the tissue inhibitor of metalloproteinase 3 (TIMP3). Our gain-, loss- of function experiments, and luciferase reporter assay confirmed that TIMP3 is indeed the target of miR-574 in granulosa cell. Furthermore, the siRNA TIMP3 knockdown resulted in decreased phosphorylated ERK1/2, and an increase in estradiol production. In contrast, the addition of recombinant TIMP3 increased phosphorylated ERK1/2 level and decreased estradiol production. In summary, our results suggest that the miR-574-TIMP3-pERK1/2 cascade may be one of the pathways by which microRNAs regulate granulosa cell estradiol production.
Collapse
Affiliation(s)
- Bo Pan
- Department of Animal Biosciences, University of Guelph, Guelph, ON, Canada
- Cell and Developmental Biology Center, National Heart, Lung, and Blood Institute, National Institute of Health, Bethesda, MD, United States
| | - Xiaoshu Zhan
- Department of Animal Biosciences, University of Guelph, Guelph, ON, Canada
| | - Julang Li
- Department of Animal Biosciences, University of Guelph, Guelph, ON, Canada
- *Correspondence: Julang Li,
| |
Collapse
|
3
|
Dadashzadeh A, Moghassemi S, Shavandi A, Amorim CA. A review on biomaterials for ovarian tissue engineering. Acta Biomater 2021; 135:48-63. [PMID: 34454083 DOI: 10.1016/j.actbio.2021.08.026] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 07/26/2021] [Accepted: 08/18/2021] [Indexed: 12/19/2022]
Abstract
Considerable challenges in engineering the female reproductive tissue are the follicle's unique architecture, the need to recapitulate the extracellular matrix, and tissue vascularization. Over the years, various strategies have been developed for preserving fertility in women diagnosed with cancer, such as embryo, oocyte, or ovarian tissue cryopreservation. While autotransplantation of cryopreserved ovarian tissue is a viable choice to restore fertility in prepubertal girls and women who need to begin chemo- or radiotherapy soon after the cancer diagnosis, it is not suitable for all patients due to the risk of having malignant cells present in the ovarian fragments in some types of cancer. Advances in tissue engineering such as 3D printing and ovary-on-a-chip technologies have the potential to be a translational strategy for precisely recapitulating normal tissue in terms of physical structure, vascularization, and molecular and cellular spatial distribution. This review first introduces the ovarian tissue structure, describes suitable properties of biomaterials for ovarian tissue engineering, and highlights recent advances in tissue engineering for developing an artificial ovary. STATEMENT OF SIGNIFICANCE: The increase of survival rates in young cancer patients has been accompanied by a rise in infertility/sterility in cancer survivors caused by the gonadotoxic effect of some chemotherapy regimens or radiotherapy. Such side-effect has a negative impact on these patients' quality of life as one of their main concerns is generating biologically related children. To aid female cancer patients, several research groups have been resorting to tissue engineering strategies to develop an artificial ovary. In this review, we discuss the numerous biomaterials cited in the literature that have been tested to encapsulate and in vitro culture or transplant isolated preantral follicles from human and different animal models. We also summarize the recent advances in tissue engineering that can potentially be optimal strategies for developing an artificial ovary.
Collapse
|
4
|
Sarabadani M, Tavana S, Mirzaeian L, Fathi R. Co-culture with peritoneum mesothelial stem cells supports the in vitro growth of mouse ovarian follicles. J Biomed Mater Res A 2021; 109:2685-2694. [PMID: 34228401 DOI: 10.1002/jbm.a.37260] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 06/21/2021] [Accepted: 06/22/2021] [Indexed: 12/23/2022]
Abstract
The important roles played by the ovarian microenvironment and cell interactions in folliculogenesis suggest promising approaches for in vivo growth of ovarian follicles using appropriate scaffolds containing suitable cell sources. In this study, we have investigated the growth of early preantral follicles in the presence of decellularized mesenteric peritoneal membrane (MPM), peritoneum mesothelial stem cells (PMSCs), and conditioned medium (CM) of PMSCs. MPM of mouse was first decellularized; PMSCs were isolated from MPM and cultured and their conditioned medium (CM) was collected. Mouse follicles were separated into four groups: (1) culture in base medium (control), (2) culture in decellularized MPM (DMPM), (3) co-culture with PMSCs (Co-PMSCs), and (4) culture in CM of PMSCs (CM-PMSCs). Qualitative and quantitative assessments were performed to evaluate intact mesenteric peritoneal membrane (IMPM) as well as decellularized ones. After culturing the ovarian follicles, follicular and oocyte diameter, viability, eccentric oocyte percentage, and estradiol hormone amounts were evaluated. Quantitative and qualitative evaluations confirmed removal of cells and retention of the essential fibers in MPM after the decellularization process. Follicular parameters showed that Co-PMSCs better support in vitro growth and development of ovarian follicles than the other groups. The eccentric rate and estradiol production were statistically higher for the Co-PMSCs group than for the CM-PMSCs and control groups. Although the culture of early preantral follicles on DMPM and CM-PMSCs could improve in vitro follicular growth, co-culture of follicles with PMSCs showed even greater improvements in terms of follicular growth and diameter.
Collapse
Affiliation(s)
- Mahdieh Sarabadani
- Department of Embryology, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran.,Department of Developmental Biology, University of Science and Culture, Tehran, Iran
| | - Somayeh Tavana
- Department of Embryology, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran
| | - Leila Mirzaeian
- Department of Embryology, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran
| | - Rouhollah Fathi
- Department of Embryology, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran
| |
Collapse
|
5
|
Maksura H, Akon N, Islam MN, Akter I, Modak AK, Khatun A, Alam MH, Hashem MA, Amin MR, Moniruzzaman M. Effects of estradiol on in vitro maturation of buffalo and goat oocytes. Reprod Med Biol 2021; 20:62-70. [PMID: 33488284 PMCID: PMC7812509 DOI: 10.1002/rmb2.12350] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 08/17/2020] [Accepted: 08/30/2020] [Indexed: 12/29/2022] Open
Abstract
PURPOSE The effects of estradiol on oocyte development seem to be varied among species. The present study investigated the effects of 17β-estradiol on in vitro maturation of buffalo and goat oocytes. METHODS Cumulus oocyte complexes (COCs) were aspirated from large antral follicles of slaughtered buffalo and goat ovaries. COCs were cultured in TCM-199 medium supplemented with 0, 0.5, 1, and 1.5 µg/mL of 17β-estradiol for in vitro maturation. Then, oocytes were used for the examination of state of nuclear maturation and cumulus expansion. RESULTS In both species, oocytes treated with 17β-estradiol showed higher cumulus expansion rate than control (0 µg/mL treated). In buffalo, the percentage of oocytes matured to the metaphase II (MII) stage increased in the concentration-dependent manner of 17β-estradiol. Similarly, estradiol positively influenced nuclear maturation of goat oocytes in vitro. CONCLUSIONS Estradiol has promoting effects on normalprogress of in vitro oocyte meiosis in buffalos and goats.
Collapse
Affiliation(s)
- Hurum Maksura
- Department of Animal ScienceBangladesh Agricultural UniversityMymensinghBangladesh
| | - Narsisa Akon
- Department of Animal ScienceBangladesh Agricultural UniversityMymensinghBangladesh
| | - Md Nuronnabi Islam
- Department of Animal ScienceBangladesh Agricultural UniversityMymensinghBangladesh
| | - Ireen Akter
- Department of Animal ScienceBangladesh Agricultural UniversityMymensinghBangladesh
| | - Avijit Kumar Modak
- Department of Animal ScienceBangladesh Agricultural UniversityMymensinghBangladesh
| | - Asma Khatun
- Department of Animal ScienceBangladesh Agricultural UniversityMymensinghBangladesh
| | - Md Hasanur Alam
- Department of Animal ScienceBangladesh Agricultural UniversityMymensinghBangladesh
| | - Md Abul Hashem
- Department of Animal ScienceBangladesh Agricultural UniversityMymensinghBangladesh
| | - Md Ruhul Amin
- Department of Animal ScienceBangladesh Agricultural UniversityMymensinghBangladesh
| | | |
Collapse
|
6
|
Lin J, Wang L. Oxidative Stress in Oocytes and Embryo Development: Implications for In Vitro Systems. Antioxid Redox Signal 2020; 34:1394-1406. [PMID: 33115254 DOI: 10.1089/ars.2020.8209] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Significance: To improve the outcomes of in vitro culture of human oocytes and embryos, the dynamic balance and roles of reactive oxygen species (ROS) in folliculogenesis and embryo development merit further consideration. Recent Advances: ROS have been demonstrated to participate in various signaling processes and act as mediators in various physiological events in germ cells. An imbalance between pro-oxidants and antioxidants seems to explain the high failure rate of assisted reproduction. Critical Issues: Oxidative stress induced by excessive ROS or insufficient antioxidant protection can cause detrimental effects on both male and female reproduction. In this study, oxidative stress in folliculogenesis and embryo development are summarized and the multiple modifiable factors of in vitro culture systems in relation to ROS are discussed. Future Directions: More studies are needed to establish an optimal redox state in in vitro culture systems for human oocytes and embryos.
Collapse
Affiliation(s)
- Jing Lin
- Laboratory for Reproductive Immunology, Hospital and Institute of Obstetrics and Gynecology, Shanghai Medical College, Fudan University, Shanghai, China
- Academy of Integrative Medicine, Fudan University, Shanghai, China
- Shanghai Key Laboratory of Female Reproductive Endocrine-Related Diseases, Shanghai, China
| | - Ling Wang
- Laboratory for Reproductive Immunology, Hospital and Institute of Obstetrics and Gynecology, Shanghai Medical College, Fudan University, Shanghai, China
- Academy of Integrative Medicine, Fudan University, Shanghai, China
- Shanghai Key Laboratory of Female Reproductive Endocrine-Related Diseases, Shanghai, China
| |
Collapse
|
7
|
Impact of oxidative stress on oocyte competence for in vitro embryo production programs. Res Vet Sci 2020; 132:342-350. [PMID: 32738731 DOI: 10.1016/j.rvsc.2020.07.013] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 07/13/2020] [Accepted: 07/21/2020] [Indexed: 11/22/2022]
Abstract
Producing high-competent oocytes during the in vitro maturation (IVM) is considered a key step for the success of the in vitro production (IVP) of embryos. One of the known disruptors of oocyte developmental competence on IVP is oxidative stress (OS), which appears due to the imbalance between the production and neutralization of reactive oxygen species (ROS). The in vitro conditions induce supraphysiological ROS levels due to the exposure to an oxidative environment and the isolation of the oocyte from the follicle protective antioxidant milieu. In juvenile in vitro embryo transfer (JIVET), which aims to produce embryos from prepubertal females, the oocytes are more sensitive to OS as they have inherent lower quality. Therefore, the IVM strategies that aim to prevent OS have great interest for both IVP and JIVET programs. The focus of this review is on the effects of ROS on oocyte IVM and the main antioxidants that have been tested for protecting the oocyte from OS. Considering the importance that OS has on oocyte competence, it is crucial to create standardized antioxidant IVM systems for improving the overall IVP success.
Collapse
|
8
|
Anastácio A, Rodriguez-Wallberg KA, Chardonnet S, Pionneau C, Fédérici C, Almeida Santos T, Poirot C. Protein profile of mouse ovarian follicles grown in vitro. Mol Hum Reprod 2017; 23:827-841. [PMID: 29069483 PMCID: PMC5909860 DOI: 10.1093/molehr/gax056] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2017] [Revised: 08/28/2017] [Accepted: 10/16/2017] [Indexed: 02/02/2023] Open
Abstract
STUDY QUESTION Could the follicle proteome be mapped by identifying specific proteins that are common or differ between three developmental stages from the secondary follicle (SF) to the antrum-like stage? SUMMARY ANSWER From a total of 1401 proteins identified in the follicles, 609 were common to the three developmental stages investigated and 444 were found uniquely at one of the stages. WHAT IS KNOWN ALREADY The importance of the follicle as a functional structure has been recognized; however, up-to-date the proteome of the whole follicle has not been described. A few studies using proteomics have previously reported on either isolated fully-grown oocytes before or after meiosis resumption or cumulus cells. STUDY DESIGN, SIZE, DURATION The experimental design included a validated mice model for isolation and individual culture of SFs. The system was chosen as it allows continuous evaluation of follicle growth and selection of follicles for analysis at pre-determined developmental stages: SF, complete Slavjanski membrane rupture (SMR) and antrum-like cavity (AF). The experiments were repeated 13 times independently to acquire the material that was analyzed by proteomics. PARTICIPANTS/MATERIALS, SETTING, METHODS SFs (n = 2166) were isolated from B6CBA/F1 female mice (n = 42), 12 days old, from 15 l. About half of the follicles isolated as SF were analyzed as such (n = 1143) and pooled to obtain 139 μg of extracted protein. Both SMR (n = 359) and AF (n = 124) were obtained after individual culture of 1023 follicles in a microdrop system under oil, selected for analysis and pooled, to obtain 339 μg and 170 μg of protein, respectively. The follicle proteome was analyzed combining isoelectric focusing (IEF) fractionation with 1D and 2D LC-MS/MS analysis to enhance protein identification. The three protein lists were submitted to the 'Compare gene list' tool in the PANTHER website to gain insights on the Gene Ontology Biological processes present and to Ingenuity Pathway Analysis to highlight protein networks. A label-free quantification was performed with 1D LC-MS/MS analyses to emphasize proteins with different expression profiles between the three follicular stages. Supplementary western blot analysis (using new biological replicates) was performed to confirm the expression variations of three proteins during follicle development in vitro. MAIN RESULTS AND THE ROLE OF CHANCE It was found that 609 out of 1401 identified proteins were common to the three follicle developmental stages investigated. Some proteins were identified uniquely at one stage: 71 of the 775 identified proteins in SF, 181 of 1092 in SMR and 192 of 1100 in AF. Additional qualitative and quantitative analysis highlighted 44 biological processes over-represented in our samples compared to the Mus musculus gene database. In particular, it was possible to identify proteins implicated in the cell cycle, calcium ion binding and glycolysis, with specific expressions and abundance, throughout in vitro follicle development. LARGE SCALE DATA Data are available via ProteomeXchange with identifier PXD006227. LIMITATIONS, REASONS FOR CAUTION The proteome analyses described in this study were performed after in vitro development. Despite fractionation of the samples before LC-MS/MS, proteomic approaches are not exhaustive, thus proteins that are not identified in a group are not necessarily absent from that group, although they are likely to be less abundant. WIDER IMPLICATIONS OF THE FINDINGS This study allowed a general view of proteins implicated in follicle development in vitro and it represents the most complete catalog of the whole follicle proteome available so far. Not only were well known proteins of the oocyte identified but also proteins that are probably expressed only in granulosa cells. STUDY FUNDING/COMPETING INTEREST(S) This study was supported by the Portuguese Foundation for Science and Technology, FCT (PhD fellowship SFRH/BD/65299/2009 to A.A.), the Swedish Childhood Cancer Foundation (PR 2014-0144 to K.A.R-.W.) and Stockholm County Council to K.A.R-.W. The authors of the study have no conflict of interest to report.
Collapse
Affiliation(s)
- Amandine Anastácio
- Université Paris VI (UPMC), Paris, France
- Department of Oncology-Pathology, Karolinska Institutet and Laboratory of Translational Fertility Preservation, Cancer Center Karolinska (CCK), Stockholm, Sweden
| | - Kenny A Rodriguez-Wallberg
- Department of Oncology-Pathology, Karolinska Institutet and Laboratory of Translational Fertility Preservation, Cancer Center Karolinska (CCK), Stockholm, Sweden
- Reproductive Medicine, Department of Gynecology and Reproduction, Karolinska University Hospital, Stockholm, Sweden
| | - Solenne Chardonnet
- Sorbonne Universités, UPMC Univ Paris 06, Inserm, UMS Omique, Plateforme P3S, Paris, France
| | - Cédric Pionneau
- Sorbonne Universités, UPMC Univ Paris 06, Inserm, UMS Omique, Plateforme P3S, Paris, France
| | | | - Teresa Almeida Santos
- Department of Human Reproduction, University Hospital of Coimbra, Coimbra, Portugal
- Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| | - Catherine Poirot
- Université Paris VI (UPMC), Paris, France
- Service d’Hématologie-Unité AJA, Hôpital Saint Louis, Paris, France
| |
Collapse
|
9
|
Protective effects of ethanol extracts of Artemisia asiatica Nakai ex Pamp. on ageing-induced deterioration in mouse oocyte quality. ZYGOTE 2017. [DOI: 10.1017/s0967199417000296] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
SummaryFollowing ovulation, oocytes undergo a time-dependent deterioration in quality referred to as post-ovulatory ageing. Although various factors influence the post-ovulatory ageing of oocytes, oxidative stress is a key factor involved in deterioration of oocyte quality. Artemisia asiatica Nakai ex Pamp. has been widely used in East Asia as a food ingredient and traditional medicine for the treatment of inflammation, cancer, and microbial infections. Recent studies have shown that A. asiatica exhibits antioxidative effects. In this study, we investigated whether A. asiatica has the potential to attenuate deterioration in oocyte quality during post-ovulatory ageing. Freshly ovulated mouse oocytes were cultured with 0, 50, 100 or 200 μg/ml ethanol extracts of A. asiatica Nakai ex Pamp. After culture for up to 24 h, various ageing-induced oocyte abnormalities, including morphological changes, reactive oxygen species (ROS) accumulation, apoptosis, chromosome and spindle defects, and mitochondrial aggregation were determined. Treatment of oocytes with A. asiatica extracts reduced ageing-induced morphological changes. Moreover, A. asiatica extracts decreased ROS generation and the onset of apoptosis by preventing elevation of the Bax/Bcl-2 expression ratio during post-ovulatory ageing. Furthermore, A. asiatica extracts attenuated the ageing-induced abnormalities including spindle defects, chromosome misalignment and mitochondrial aggregation. Our results demonstrate that A. asiatica can relieve deterioration in oocyte quality and delay the onset of apoptosis during post-ovulatory ageing.
Collapse
|
10
|
DAS DEBABRATA, ARUR SWATHI. Conserved insulin signaling in the regulation of oocyte growth, development, and maturation. Mol Reprod Dev 2017; 84:444-459. [PMID: 28379636 PMCID: PMC5477485 DOI: 10.1002/mrd.22806] [Citation(s) in RCA: 99] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Accepted: 03/31/2017] [Indexed: 01/01/2023]
Abstract
Insulin signaling regulates various aspects of physiology, such as glucose homeostasis and aging, and is a key determinant of female reproduction in metazoans. That insulin signaling is crucial for female reproductive health is clear from clinical data linking hyperinsulinemic and hypoinsulinemic condition with certain types of ovarian dysfunction, such as altered steroidogenesis, polycystic ovary syndrome, and infertility. Thus, understanding the signaling mechanisms that underlie the control of insulin-mediated ovarian development is important for the accurate diagnosis of and intervention for female infertility. Studies of invertebrate and vertebrate model systems have revealed the molecular determinants that transduce insulin signaling as well as which biological processes are regulated by the insulin-signaling pathway. The molecular determinants of the insulin-signaling pathway, from the insulin receptor to its downstream signaling components, are structurally and functionally conserved across evolution, from worms to mammals-yet, physiological differences in signaling still exist. Insulin signaling acts cooperatively with gonadotropins in mammals and lower vertebrates to mediate various aspects of ovarian development, mainly owing to evolution of the endocrine system in vertebrates. In contrast, insulin signaling in Drosophila and Caenorhabditis elegans directly regulates oocyte growth and maturation. In this review, we compare and contrast insulin-mediated regulation of ovarian functions in mammals, lower vertebrates, C. elegans, and Drosophila, and highlight conserved signaling pathways and regulatory mechanisms in general while illustrating insulin's unique role in specific reproductive processes.
Collapse
Affiliation(s)
- DEBABRATA DAS
- Department of Genetics, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - SWATHI ARUR
- Department of Genetics, The University of Texas MD Anderson Cancer Center, Houston, Texas
| |
Collapse
|
11
|
Effect of insulin-transferrin-selenium (ITS) and l-ascorbic acid (AA) during in vitro maturation on in vitro bovine embryo development. ZYGOTE 2016; 24:890-899. [PMID: 27748220 DOI: 10.1017/s0967199416000228] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
The aim of this study was to evaluate the effect of adding a combination of insulin, transferrin and selenium (ITS) and l-ascorbic acid (AA) during in vitro maturation (IVM) and in vitro culture (IVC) on in vitro embryo production. To verify the effect of the supplements, cleavage and blastocyst rates, embryo size and total cell number were performed. Embryonic development data, embryo size categorization and kinetics of maturation were analyzed by chi-squared test, while the total cell number was analyzed by a Kruskal-Wallis test (P < 0.05). When ITS was present during IVM, IVC or the entire culture, all treatments had a cleavage and blastocyst rates and embryo quality, similar to those of the control group (P < 0.05). Supplementation of IVM medium with ITS and AA for 12 h or 24 h showed that the last 12 h increased embryo production (51.6%; n = 220) on D7 compared with the control (39.5%; n = 213). However, no improvement was observed in blastocyst rate when less competent oocytes, obtained from 1-3 mm follicles, were exposed to ITS + AA for the last 12 h of IVM, with a blastocyst rate of 14.9% (n = 47) compared with 61.0% (n = 141) in the control group. The results suggest that the addition of ITS alone did not affect embryo production; however, when combined with AA in the last 12 h of maturation, there was improvement in the quantity and quality of embryos produced. Furthermore, the use of ITS and AA during IVM did not improve the competence of oocytes obtained from small follicles.
Collapse
|
12
|
Park YS, You SY, Cho S, Jeon HJ, Lee S, Cho DH, Kim JS, Oh JS. Eccentric localization of catalase to protect chromosomes from oxidative damages during meiotic maturation in mouse oocytes. Histochem Cell Biol 2016; 146:281-8. [PMID: 27160095 DOI: 10.1007/s00418-016-1446-3] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/02/2016] [Indexed: 01/12/2023]
Abstract
The maintenance of genomic integrity and stability is essential for the survival of every organism. Unfortunately, DNA is vulnerable to attack by a variety of damaging agents. Oxidative stress is a major cause of DNA damage because reactive oxygen species (ROS) are produced as by-products of normal cellular metabolism. Cells have developed eloquent antioxidant defense systems to protect themselves from oxidative damage along with aerobic metabolism. Here, we show that catalase (CAT) is present in mouse oocytes to protect the genome from oxidative damage during meiotic maturation. CAT was expressed in the nucleus to form unique vesicular structures. However, after nuclear envelope breakdown, CAT was redistributed in the cytoplasm with particular focus at the chromosomes. Inhibition of CAT activity increased endogenous ROS levels, but did not perturb meiotic maturation. In addition, CAT inhibition produced chromosomal defects, including chromosome misalignment and DNA damage. Therefore, our data suggest that CAT is required not only to scavenge ROS, but also to protect DNA from oxidative damage during meiotic maturation in mouse oocytes.
Collapse
Affiliation(s)
- Yong Seok Park
- Department of Genetic Engineering, College of Biotechnology and Bioengineering, Sungkyunkwan University, Suwon, Gyeonggi-do, 440-746, Korea
| | - Seung Yeop You
- Department of Genetic Engineering, College of Biotechnology and Bioengineering, Sungkyunkwan University, Suwon, Gyeonggi-do, 440-746, Korea
| | - Sungrae Cho
- Department of Genetic Engineering, College of Biotechnology and Bioengineering, Sungkyunkwan University, Suwon, Gyeonggi-do, 440-746, Korea
| | - Hyuk-Joon Jeon
- Department of Genetic Engineering, College of Biotechnology and Bioengineering, Sungkyunkwan University, Suwon, Gyeonggi-do, 440-746, Korea
| | - Sukchan Lee
- Department of Genetic Engineering, College of Biotechnology and Bioengineering, Sungkyunkwan University, Suwon, Gyeonggi-do, 440-746, Korea
| | - Dong-Hyung Cho
- Department of East-West Medical Science, Graduate School of East-West Medical Science, Kyung Hee University, Yongin, South Korea
| | - Jae-Sung Kim
- Division of Radiation Cancer Research, Korea Institute of Radiological and Medical Sciences, Seoul, Republic of Korea
| | - Jeong Su Oh
- Department of Genetic Engineering, College of Biotechnology and Bioengineering, Sungkyunkwan University, Suwon, Gyeonggi-do, 440-746, Korea.
| |
Collapse
|
13
|
Sá NAR, Araújo VR, Correia HHV, Ferreira ACA, Guerreiro DD, Sampaio AM, Escobar E, Santos FW, Moura AA, Lôbo CH, Ceccatto VM, Campello CC, Rodrigues APR, Leal-Cardoso JH, Figueiredo JR. Anethole improves the in vitro development of isolated caprine secondary follicles. Theriogenology 2015; 89:226-234. [PMID: 28043356 DOI: 10.1016/j.theriogenology.2015.12.014] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Revised: 12/18/2015] [Accepted: 12/18/2015] [Indexed: 11/26/2022]
Abstract
The aim of this study was to investigate the effect of three concentrations of anethole (30, 300, and 2000 μg/mL) on survival, antrum formation, follicular diameter, and oocyte maturation in the caprine species. The study also evaluated the effects of anethole on transcripts of ICAM-1, CAV-1, TIMP-2, and PAI-1 genes and levels of reactive oxygen species (ROS) in isolated goat preantral ovarian follicles before and after in vitro culture for 18 days. Preantral follicles were isolated from goat ovaries and individually cultured in alpha minimum essential medium modified (α-MEM+), defined as the control treatment, α-MEM+ supplemented with ascorbic acid at a concentration of 100 μg/mL (AA), or α-MEM+ supplemented with three different concentrations of anethole (30, 300, 2000 μg/mL) for a period of 18 days. Treatments were named as α-MEM+, AA, AN30, AN300, and AN2000, respectively. After culture, the follicles were opened, the cumulus oocytes complex (COCs) were removed and matured in vitro. The walls of the follicles were used for the quantitation of mRNA by quantitative real-time polymerase chain reaction. Finally, the medium collected at the end of culture was used for the measurements of ROS. After 18 days of culture, the AA treatment showed the percentage of intact follicles and follicular diameter significantly higher compared with the other treatments. However, daily growth rate, antrum formation, and also oocyte diameter were similar among the treatments. In addition, compared with AA, the rate of oocytes for in vitro maturation (diameter ≥ 110 μm) and the meiosis resumption rate were significantly higher in the treatments AN30 and AN2000, respectively. When assessing gene related to remodeling of the basement membrane, significant differences in mRNA levels for ICAM-1, CAV-1, TIMP-2, and PAI-1 were observed in comparison with Day 0, i.e., in the noncultured control. In addition, the ROS from Day 12, all treatments with the addition of anethole have significantly lower values of ROS than α-MEM+ and AA. In conclusion, the addition of anethole to the in vitro culture medium was able to improve the development of goat preantral follicles by reducing concentrations of ROS and increasing the percentage of oocytes able to resume meiosis.
Collapse
Affiliation(s)
- N A R Sá
- Laboratory of Manipulation of Oocytes and Preantral Follicles, Faculty of Veterinary Medicine, State University of Ceará, Fortaleza, CE, Brazil.
| | - V R Araújo
- Laboratory of Manipulation of Oocytes and Preantral Follicles, Faculty of Veterinary Medicine, State University of Ceará, Fortaleza, CE, Brazil
| | - H H V Correia
- Laboratory of Manipulation of Oocytes and Preantral Follicles, Faculty of Veterinary Medicine, State University of Ceará, Fortaleza, CE, Brazil
| | - A C A Ferreira
- Laboratory of Manipulation of Oocytes and Preantral Follicles, Faculty of Veterinary Medicine, State University of Ceará, Fortaleza, CE, Brazil
| | - D D Guerreiro
- Laboratory of Manipulation of Oocytes and Preantral Follicles, Faculty of Veterinary Medicine, State University of Ceará, Fortaleza, CE, Brazil
| | - A M Sampaio
- Laboratory of Manipulation of Oocytes and Preantral Follicles, Faculty of Veterinary Medicine, State University of Ceará, Fortaleza, CE, Brazil
| | - E Escobar
- Laboratory of Reproduction Biotechnology, Campus Uruguayana, Federal University of Pampa, Uruguaiana, RS, Brazil
| | - F W Santos
- Laboratory of Reproduction Biotechnology, Campus Uruguayana, Federal University of Pampa, Uruguaiana, RS, Brazil
| | - A A Moura
- Department of Zootecnia, Federal University of Ceará, Fortaleza, CE, Brazil
| | - C H Lôbo
- Laboratory of Manipulation of Oocytes and Preantral Follicles, Faculty of Veterinary Medicine, State University of Ceará, Fortaleza, CE, Brazil
| | - V M Ceccatto
- Laboratory of Electrophysiology, Superior Institute of Biomedical Sciences, State University of Ceará, Fortaleza, CE, Brazil
| | - C C Campello
- Laboratory of Manipulation of Oocytes and Preantral Follicles, Faculty of Veterinary Medicine, State University of Ceará, Fortaleza, CE, Brazil
| | - A P R Rodrigues
- Laboratory of Manipulation of Oocytes and Preantral Follicles, Faculty of Veterinary Medicine, State University of Ceará, Fortaleza, CE, Brazil
| | - J H Leal-Cardoso
- Laboratory of Electrophysiology, Superior Institute of Biomedical Sciences, State University of Ceará, Fortaleza, CE, Brazil
| | - J R Figueiredo
- Laboratory of Manipulation of Oocytes and Preantral Follicles, Faculty of Veterinary Medicine, State University of Ceará, Fortaleza, CE, Brazil
| |
Collapse
|
14
|
Morohaku K, Hirao Y, Obata Y. Developmental competence of oocytes grown in vitro: Has it peaked already? J Reprod Dev 2015; 62:1-5. [PMID: 26685717 PMCID: PMC4768772 DOI: 10.1262/jrd.2015-148] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In vitro growth of immature oocytes provides opportunities to increase gametic resources and
to understand the mechanisms underlying oocyte development. Many studies on the in vitro
growth of oocytes have been reported thus far; however, only a few cases have been reported, which
demonstrated that oocytes can support full-term development after in vitro fertilization. Our
research group recently found that culture of mouse neonatal primordial follicles increased the birthrate;
however, the establishment of an in vitro system that can completely mimic follicle or oocyte
growth in vivo and control oogenesis remains an ongoing challenge.
Collapse
Affiliation(s)
- Kanako Morohaku
- Department of Bioscience, Tokyo University of Agriculture, Tokyo 156-8502, Japan
| | | | | |
Collapse
|
15
|
Ferreira ACA, Maside C, Sá NAR, Guerreiro DD, Correia HHV, Leiva-Revilla J, Lobo CH, Araújo VR, Apgar GA, Brandão FZ, Figueiredo JR, Campello CC. Balance of insulin and FSH concentrations improves the in vitro development of isolated goat preantral follicles in medium containing GH. Anim Reprod Sci 2015; 165:1-10. [PMID: 26723481 DOI: 10.1016/j.anireprosci.2015.10.010] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Revised: 10/05/2015] [Accepted: 10/30/2015] [Indexed: 11/25/2022]
Abstract
The aim of this study was to evaluate the effect of different combinations of insulin and FSH concentrations in culture media containing GH on the in vitro follicle morphology, antrum formation, growth rates, estradiol (E2) production, oocyte viability and maturation as well as gene expression for FSHR, GHR, INSR, CYP19A1, CYP17, 3ßHSD. Secondary follicles were individually cultured for 18 days in a basic medium containing 50ng/mL GH supplemented with low insulin concentration (INS-LW: 10ng/mL) or high insulin concentration (INS-HG: 10μg/mL) alone or with a fixed FSH concentration (FSH100: 100ng/mL) or with increasing FSH concentrations (FSH-SEQ: 100ng/mL, days 0-6; 500ng/mL, days 6-12; 1000ng/mL days 12-18). In the INS-LW treatment was observed a higher (P<0.05) incidence of normal follicles at day 18 of culture. However, overall higher (P<0.05) follicular growth, oocyte diameter and meiotic resumption rates were obtained using INS-HG+FSH 100. The INS-HG and INS-HG+FSH100 treatments showed higher E2 production and mRNA levels for CYP19A1, CYP17, 3βHSD when compared to INS-LW and INS-LW+FSH100. However, the addition of increasing FSH concentration, regardless of insulin concentration, did not improve the follicular growth, meotic resumption, E2 production or gene expression of steroidogenic enzymes when compared with INS-HG+FSH100. In conclusion, in presence of GH, a basic medium supplemented with 10μg/mL insulin and 100μg/mL FSH throughout the culture period, improves follicular and oocyte growth, oocyte meiotic resumption and E2 production from isolated preantral caprine follicles cultured in vitro.
Collapse
Affiliation(s)
- A C A Ferreira
- Laboratory of Manipulation of Oocytes and Preantral Follicles, Faculty of Veterinary, State University of Ceará, Fortaleza, CE, Brazil.
| | - C Maside
- Laboratory of Manipulation of Oocytes and Preantral Follicles, Faculty of Veterinary, State University of Ceará, Fortaleza, CE, Brazil
| | - N A R Sá
- Laboratory of Manipulation of Oocytes and Preantral Follicles, Faculty of Veterinary, State University of Ceará, Fortaleza, CE, Brazil
| | - D D Guerreiro
- Laboratory of Manipulation of Oocytes and Preantral Follicles, Faculty of Veterinary, State University of Ceará, Fortaleza, CE, Brazil
| | - H H V Correia
- Laboratory of Manipulation of Oocytes and Preantral Follicles, Faculty of Veterinary, State University of Ceará, Fortaleza, CE, Brazil
| | - J Leiva-Revilla
- Laboratory of Manipulation of Oocytes and Preantral Follicles, Faculty of Veterinary, State University of Ceará, Fortaleza, CE, Brazil
| | - C H Lobo
- Laboratory of Animal Physiology, Department of Animal Science, Federal University of Ceará, Fortaleza, CE, Brazil
| | - V R Araújo
- Laboratory of Manipulation of Oocytes and Preantral Follicles, Faculty of Veterinary, State University of Ceará, Fortaleza, CE, Brazil; Health Sciences Center, State University of Ceará, Fortaleza, CE, Brazil
| | - G A Apgar
- Department of Animal Science, Food and Nutrition, Southern Illinois University, Carbondale, USA
| | - F Z Brandão
- Department of Animal Reproduction, Faculty of Veterinary, Federal University Fluminense, Rio de Janeiro, RJ, Brazil
| | - J R Figueiredo
- Laboratory of Manipulation of Oocytes and Preantral Follicles, Faculty of Veterinary, State University of Ceará, Fortaleza, CE, Brazil
| | - C C Campello
- Laboratory of Manipulation of Oocytes and Preantral Follicles, Faculty of Veterinary, State University of Ceará, Fortaleza, CE, Brazil
| |
Collapse
|
16
|
El-Hayek S, Clarke HJ. Follicle-Stimulating Hormone Increases Gap Junctional Communication Between Somatic and Germ-Line Follicular Compartments During Murine Oogenesis. Biol Reprod 2015; 93:47. [PMID: 26063870 DOI: 10.1095/biolreprod.115.129569] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2015] [Accepted: 06/01/2015] [Indexed: 01/30/2023] Open
Abstract
Germ cells develop in intimate contact and communication with somatic cells of the gonad. In female mammals, oocyte development depends crucially on gap junctions that couple it to the surrounding somatic granulosa cells of the follicle, yet the mechanisms that regulate this essential intercellular communication remain incompletely understood. Follicle-stimulating hormone (FSH) drives the terminal stage of follicular development. We found that FSH increases the steady-state levels of mRNAs encoding the principal connexins that constitute gap junctions and cadherins that mediate cell attachment. This increase occurs both in granulosa cells, which express the FSH-receptor, and in oocytes, which do not. FSH also increased the number of transzonal projections that provide the sites of granulosa cell-oocyte contact. Consistent with increased connexin expression, FSH increased gap junctional communication between granulosa cells and between the oocyte and granulosa cells, and it accelerated oocyte development. These results demonstrate that FSH regulates communication between the female germ cell and its somatic microenvironment. We propose that FSH-regulated gap junctional communication ensures that differentiation processes occurring in distinct cellular compartments within the follicle are precisely coordinated to ensure production of a fertilizable egg.
Collapse
Affiliation(s)
- Stephany El-Hayek
- Department of Obstetrics and Gynecology, McGill University, Montreal, Quebec, Canada Department of Biology, McGill University, Montreal, Quebec, Canada Research Institute of the McGill University Health Centre, Montreal, Quebec, Canada
| | - Hugh J Clarke
- Department of Obstetrics and Gynecology, McGill University, Montreal, Quebec, Canada Department of Biology, McGill University, Montreal, Quebec, Canada Division of Experimental Medicine, McGill University, Montreal, Quebec, Canada Research Institute of the McGill University Health Centre, Montreal, Quebec, Canada
| |
Collapse
|
17
|
Moussa M, Shu J, Zhang X, Zeng F. Maternal control of oocyte quality in cattle “a review”. Anim Reprod Sci 2015; 155:11-27. [DOI: 10.1016/j.anireprosci.2015.01.011] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2014] [Revised: 11/20/2014] [Accepted: 01/15/2015] [Indexed: 02/09/2023]
|
18
|
Tagler D, Makanji Y, Tu T, Bernabé BP, Lee R, Zhu J, Kniazeva E, Hornick JE, Woodruff TK, Shea LD. Promoting extracellular matrix remodeling via ascorbic acid enhances the survival of primary ovarian follicles encapsulated in alginate hydrogels. Biotechnol Bioeng 2014; 111:1417-29. [PMID: 24375265 DOI: 10.1002/bit.25181] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2013] [Revised: 12/18/2013] [Accepted: 12/23/2013] [Indexed: 01/12/2023]
Abstract
The in vitro growth of ovarian follicles is an emerging technology for fertility preservation. Various strategies support the culture of secondary and multilayer follicles from various species including mice, non-human primate, and human; however, the culture of early stage (primary and primordial) follicles, which are more abundant in the ovary and survive cryopreservation, has been limited. Hydrogel-encapsulating follicle culture systems that employed feeder cells, such as mouse embryonic fibroblasts (MEFs), stimulated the growth of primary follicles (70-80 µm); yet, survival was low and smaller follicles (<70 µm) rapidly lost structure and degenerated. These morphologic changes were associated with a breakdown of the follicular basement membrane; hence, this study investigated ascorbic acid based on its role in extracellular matrix (ECM) deposition/remodeling for other applications. The selection of ascorbic acid was further supported by a microarray analysis that suggested a decrease in mRNA levels of enzymes within the ascorbate pathway between primordial, primary, and secondary follicles. The supplementation of ascorbic acid (50 µg/mL) significantly enhanced the survival of primary follicles (<80 µm) cultured in alginate hydrogels, which coincided with improved structural integrity. Follicles developed antral cavities and increased to diameters exceeding 250 µm. Consistent with improved structural integrity, the gene/protein expression of ECM and cell adhesion molecules was significantly changed. This research supports the notion that modifying the culture environment (medium components) can substantially enhance the survival and growth of early stage follicles.
Collapse
Affiliation(s)
- David Tagler
- Department of Chemical and Biological Engineering, McCormick School of Engineering, Northwestern University, Technological Institute E-136, 2145 Sheridan Road, Evanston, Illinois, 60208; Institute for BioNanotechnology in Medicine (IBNAM), Northwestern University, 303 E. Superior Street, Suite 11-131, Chicago, Illinois, 60611
| | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Li M, Zhao Y, Zhao CH, Yan J, Yan YL, Rong L, Liu P, Feng HL, Yu Y, Qiao J. High FSH decreases the developmental potential of mouse oocytes and resulting fertilized embryos, but does not influence offspring physiology and behavior in vitro or in vivo. Hum Reprod 2013; 28:1309-23. [DOI: 10.1093/humrep/det014] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
20
|
Frank LA, Sutton-McDowall ML, Russell DL, Wang X, Feil DK, Gilchrist RB, Thompson JG. Effect of varying glucose and glucosamine concentration in vitro on mouse oocyte maturation and developmental competence. Reprod Fertil Dev 2013; 25:1095-104. [DOI: 10.1071/rd12275] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2012] [Accepted: 10/07/2012] [Indexed: 11/23/2022] Open
Abstract
The effects of hyper- and hypo-glycaemic conditions during the in vitro maturation of mouse cumulus–oocyte complexes on developmental competence were examined, with an emphasis on the role of the hexosamine biosynthesis pathway. A low (1 mM) glucose concentration achieved optimal oocyte competence (3-fold higher blastocyst development rate compared with high (30 mM) glucose, P < 0.05). In addition, glucose supplementation during only the first hour after release from the follicle was necessary and sufficient to support oocyte maturation and embryo development to the blastocyst stage. Glucosamine (a known hyperglycaemic mimetic and specific activator of the hexosamine pathway) was able to substitute for glucose during this first hour, indicating that flux through the hexosamine pathway is essential for oocyte competence. In the absence of glucose throughout the maturation period, glucosamine was not able to increase developmental competence, and at higher concentrations (2.5 and 5 mM) had a detrimental effect on MII and blastocyst development rates, compared with controls (P < 0.05). These experiments underscore the importance of glucose metabolic pathways during in vitro maturation and support the concept that excess flux through the hexosamine pathway has detrimental consequences.
Collapse
|
21
|
Abstract
The oocyte is at the center of the equation that results in female fertility. Many factors influence oocyte quality, including external factors such as maternal nutrition, stress, and environmental exposures, as well as ovarian factors such as steroids, intercellular communication, antral follicle count, and follicular fluid composition. These influences are interconnected; changes in the external environment of the female translate into ovarian changes that affect the oocyte. The lengthy period during which the oocyte remains arrested in the ovary provides ample time and opportunity for environmental factors to take their toll. An appropriate environment for growth and maturation of the oocyte, in vivo and in vitro, is critical to ensure optimal oocyte quality, which determines the success of fertilization and preimplantation embryo development, and has long-term implications for implantation, fetal growth, and offspring health.
Collapse
Affiliation(s)
- Rebecca L Krisher
- National Foundation for Fertility Research, Lone Tree, Colorado 80124;
| |
Collapse
|
22
|
Hirao Y. Isolation of ovarian components essential for growth and development of mammalian oocytes in vitro. J Reprod Dev 2012; 58:167-74. [PMID: 22738899 DOI: 10.1262/jrd.2011-052] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Mammalian ovaries contain a large number of oocytes, most of which degenerate either before or at various stages of growth. Dynamic and precise regulation in the ovary involves many factors, each with a unique role. Identifying the single most important factor is impossible; however, it may be possible to identify factors essential for oocyte growth. It is evident that oocytes can grow into competent ova in vitro; however, how faithfully the follicle should mimic the in vivo conditions remains unclear. In the culture system discussed in this review, bovine and mouse oocyte-granulosa cell complexes, at approximately the late mid-growth stage, spread on a substratum without the involvement of theca cells. The structural simplicity of this system is advantageous because it reduces the basic conditions essential for regulation of oocyte growth. Apart from biological factors, high concentrations of polyvinylpyrrolidone (molecular weight: 360000) improved oocyte growth. Among ovarian factors, androstenedione was used to compensate for the absence of theca cells, and it promoted both follicular growth and acquisition of oocyte meiotic competence. Most oocytes cultured in a group were viable after long-term culture, suggesting that unlike ovarian events, there was no exhaustive follicle selection. Collectively, oocytes and their associated granulosa cells can establish independent units capable of supporting oocyte growth in appropriately modified culture media.
Collapse
Affiliation(s)
- Yuji Hirao
- Livestock and Forage Research Division, Tohoku Agricultural Research Center (TARC), National Agriculture and Food Research Organization (NARO), Morioka 020-0198, Japan.
| |
Collapse
|
23
|
Endocrine disruptive actions of inhaled benzo(a)pyrene on ovarian function and fetal survival in fisher F-344 adult rats. Reprod Toxicol 2012; 34:635-43. [PMID: 23059060 DOI: 10.1016/j.reprotox.2012.09.003] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2012] [Revised: 09/06/2012] [Accepted: 09/18/2012] [Indexed: 01/06/2023]
Abstract
This study evaluated the effect of inhaled BaP on female reproductive function. Rats were exposed to 50, or 75 or 100 μg BaP/m(3), 4 h a day for 14 days via inhalation. Plasma E(2), P(4), LH and FSH concentrations were determined. Ovarian BaP metabolism and aryl hydrocarbon hydrolase (AHH) activity at proestrus were determined and fertility evaluations were conducted. Ovulation rate and number of pups/litter were reduced in rats exposed to 100 μg BaP/m(3) compared with other treatment and control groups. Plasma concentrations of E(2), and LH were significantly reduced at proestrus in BaP-exposed versus those of controls whereas those of P(4) were significantly reduced at diestrus I. The activity of AHH in ovarian and liver tissues and concentrations of BaP 7,8-diol and BaP 3,6-dione metabolites increased in an exposure concentration-dependent manner. These data suggest that exposure of rats to BaP prior to mating contributes to reduced ovarian function and fetal survival.
Collapse
|
24
|
Chaves RN, Duarte ABG, Rodrigues GQ, Celestino JJ, Silva GM, Lopes CAP, Almeida AP, Donato MA, Peixoto C, Moura AA, Lobo CH, Locatelli Y, Mermillod P, Campello CC, Figueiredo JR. The Effects of Insulin and Follicle-Simulating Hormone (FSH) During In Vitro Development of Ovarian Goat Preantral Follicles and the Relative mRNA Expression for Insulin and FSH Receptors and Cytochrome P450 Aromatase in Cultured Follicles1. Biol Reprod 2012; 87:69. [DOI: 10.1095/biolreprod.112.099010] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
|
25
|
Demeestere I, Streiff AK, Suzuki J, Al-Khabouri S, Mahrous E, Tan SL, Clarke HJ. Follicle-Stimulating Hormone Accelerates Mouse Oocyte Development In Vivo1. Biol Reprod 2012; 87:3, 1-11. [DOI: 10.1095/biolreprod.112.099929] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
|
26
|
Chawalit S, Nguyen NT, Tseng JK, Lo NW, Tu CF, Ju JC. Trichostatin A and Ascorbic Acid Assist in the Development of Porcine Handmade Cloned Embryos via Different Physiologic Pathways. Reprod Sci 2012; 19:976-86. [DOI: 10.1177/1933719112440049] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Siriboon Chawalit
- Department of Animal Science, National Chung Hsing University, Taichung, Taiwan, Republic of China
| | - Ngoc Tan Nguyen
- Department of Animal Science, National Chung Hsing University, Taichung, Taiwan, Republic of China
- Agricultural Biotechnology Center, Institute of Agriculture Sciences for Southern Vietnam, Ho Chi Minh City, Vietnam
| | - Jung-Kai Tseng
- School of Optometry, Chung Shan Medical University, Taichung, Taiwan, Republic of China
| | - Neng-Wen Lo
- Department of Animal Science and Biotechnology, Tunghai University, Taichung, Taiwan, Republic of China
| | - Ching-Fu Tu
- Animal Technology Institute Taiwan, Ding-Pu LII, Chunan, Miaoli, Taiwan, Republic of China
| | - Jyh-Cherng Ju
- Department of Animal Science, National Chung Hsing University, Taichung, Taiwan, Republic of China
- Agricultural Biotechnology Center, National Chung Hsing University, 250 Kuokuang Road, Taichung 402, Taiwan, ROC
| |
Collapse
|
27
|
Wang W, Tang Y, Ni L, Jongwutiwes T, Liu HC, Rosenwaks Z. A modified protocol for <i>in vitro</i> maturation of mouse oocytes from secondary preantral follicles. ACTA ACUST UNITED AC 2012. [DOI: 10.4236/abb.2012.31010] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
28
|
Sánchez F, Romero S, Albuz FK, Smitz J. In vitro follicle growth under non-attachment conditions and decreased FSH levels reduces Lhcgr expression in cumulus cells and promotes oocyte developmental competence. J Assist Reprod Genet 2011; 29:141-52. [PMID: 22190081 DOI: 10.1007/s10815-011-9690-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2011] [Accepted: 11/30/2011] [Indexed: 10/14/2022] Open
Abstract
PURPOSE The in-vitro environment influences oocyte competence and gene expression in cumulus cells and oocytes. Effects of culturing under non-attachment conditions and varying follicle exposure to FSH were investigated at the mRNA level and on oocyte developmental capacity. METHODS Quantitative PCR analysis of Gdf9, Mater, Nmp2 (in oocytes), Lhcgr and Amh (in cumulus cells), and oocyte developmental competence after in vitro follicle culture were evaluated. RESULTS Follicle survival (98.7%) and polar body rate (94%) were similar for all conditions. Estradiol and progesterone production were significantly lower in non-attachment follicles (10-fold and 3-fold, respectively). Under non-attachment conditions, a higher two-cell rate (69.9%) and total blastocyst yield (48.5%) were obtained and, by decreasing FSH levels during culture, Lhcgr transcripts were significantly reduced to levels similar to in-vivo. Levels of oocyte-specific transcripts were not significantly influenced by in-vitro conditions. CONCLUSION Non-attachment conditions influence follicle steroid secretory capacity and, together with dynamic FSH doses, positively influence cumulus cell gene expression and oocyte developmental competence.
Collapse
Affiliation(s)
- Flor Sánchez
- Follicle Biology Laboratory (FOBI), Vrije Universiteit Brussel, Laarbeeklaan, Brussels, Belgium.
| | | | | | | |
Collapse
|
29
|
Abstract
Mammalian ovaries contain a large number of oocytes at different stages of growth. To utilize potential female gametes, it is important to develop culture systems that permit oocytes to achieve full growth and competence in order to undergo maturation, fertilization and development. The desired culture systems should meet at least the following three conditions: (i) oocytes remain healthy and functional so that they can execute intrinsic programs that direct their growth and development; (ii) granulosa cells that are adjacent to oocytes proliferate efficiently to prevent oocytes from becoming denuded; and (iii) granulosa cells maintain (and develop) appropriate associations with oocytes during the culture period. For this reason, several systems have been developed, and they can be classified into four categories based on the structure and components of the follicle/oocyte-granulosa cell complex and the location of the oocyte in the physical organization of the complex. The resultant diverse morphologies are due to multiple factors, including the method for initial isolation of follicles, the culture substrate, and hormones and other factors added into the medium. It is important to find an optimal combination of such factors involved in the process to facilitate future research efforts.
Collapse
Affiliation(s)
- Yuji Hirao
- National Agricultural Research Center for Tohoku Region, National Agriculture and Food Research Organization, Morioka, Japan.
| |
Collapse
|
30
|
Oocyte growth in vitro: potential model for studies of oocyte-granulosa cell interactions. Reprod Med Biol 2011; 11:1-9. [PMID: 29699101 DOI: 10.1007/s12522-011-0096-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2011] [Accepted: 06/06/2011] [Indexed: 02/01/2023] Open
Abstract
Various factors such as gonadotrophins, growth factors, and steroid hormones play important roles in the regulation of oocyte/follicular growth in mammalian ovaries. In addition to these factors, there is a bidirectional interaction between oocytes and granulosa cells that is essential for achieving optimal oocyte developmental competence. Oocytes play a key role in this interaction by secreting paracrine factors that alter the activities of neighboring cumulus cells, such as the expression of a specific amino acid transporter, cholesterol biosynthesis, and levels of glycolysis in the cumulus cells. Among the known oocyte-derived factors, growth differentiation factor 9 (GDF9) is the dominant factor mediating the regulation by oocytes leading to cumulus expansion and granulosa cell proliferation. GDF9 frequently interacts with other oocyte-derived factors in a synergistic manner. It seems reasonable to speculate that oocytes growing in vitro require interactions similar to those in vivo. Some of the oocyte-mediated regulations have been confirmed in vitro, providing evidence of the usefulness of culture systems as a strong tool for such studies. This review discusses in vitro culture of growing oocytes in terms of oocyte-granulosa cell interactions.
Collapse
|
31
|
Mainigi MA, Ord T, Schultz RM. Meiotic and developmental competence in mice are compromised following follicle development in vitro using an alginate-based culture system. Biol Reprod 2011; 85:269-76. [PMID: 21490243 DOI: 10.1095/biolreprod.111.091124] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
Culture systems that support development and maturation of oocytes in vitro with a high efficiency would have great impact not only on research addressed at underlying mechanisms of oocyte development but also on preservation of fertility. Recently, attention has turned to using culture systems that preserve follicle integrity, in contrast to existing systems that do not maintain follicle integrity, with the hope of improving oocyte development. We report that an alginate-based follicle culture system supports both follicular and oocyte growth in vitro, with little effect on the oocyte transcriptome. Nevertheless, oocytes obtained from these follicles exhibit an increased incidence of defects in spindle formation and chromosome alignment as well as pronounced abnormalities in cortical granule biogenesis. Developmental competence is also highly compromised, because few matured oocytes develop into 1-cell embryos with pronuclei. This situation contrasts with a high incidence of pronuclear formation following development using an existing in vitro culture system that does not preserve follicle integrity.
Collapse
Affiliation(s)
- Monica A Mainigi
- Reproductive Endocrinology and Infertility, Departments of Obstetrics and Gynecology University of Pennsylvania, Philadelphia, PA 19104-6018, USA
| | | | | |
Collapse
|
32
|
Córdova B, Morató R, Izquierdo D, Paramio T, Mogas T. Effect of the addition of insulin-transferrin-selenium and/or L-ascorbic acid to the in vitro maturation of prepubertal bovine oocytes on cytoplasmic maturation and embryo development. Theriogenology 2010; 74:1341-8. [DOI: 10.1016/j.theriogenology.2010.06.003] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2010] [Revised: 05/14/2010] [Accepted: 06/02/2010] [Indexed: 11/28/2022]
|
33
|
McGinnis LK, Albertini DF. Dynamics of protein phosphorylation during meiotic maturation. J Assist Reprod Genet 2010; 27:169-82. [PMID: 20174967 DOI: 10.1007/s10815-010-9391-x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2009] [Accepted: 01/14/2010] [Indexed: 01/22/2023] Open
Abstract
PURPOSE To ask whether distinct kinase signaling pathways mediate cytoplasmic or nuclear maturation of mouse oocytes and if in vitro maturation influences the distribution and timing of these phosphorylation events. METHODS Mouse cumulus oocyte complexes (COCs) were matured under conditions known to influence oocyte quality (basal or supplemented media) and assayed with epitope specific antibodies that would distinguish between Cdk1 or tyrosine kinase targets at 0, 2, 4, 8, and 16 hrs. Semi-quantitative image analysis was used to assess the topographical patterns of protein phosphorylation during in vitro maturation. In vitro fertilization and embryo culture were used to examine the effects of culture conditions on developmental potential. RESULTS Protein tyrosine phosphorylation increased during meiotic progression from methaphase-I to metaphase-II. Levels were significantly higher in the oocyte cortex. Levels of cortical staining are enhanced in oocytes matured in supplemented media that displayed higher developmental competence. In contrast, bulk substrates for Cdk1 kinase localize to the meiotic spindle while cytoplasmic levels of kinase activity increase throughout meiotic progression; culture media had no measurable effect. Ablation of the tyrosine kinase Fyn significantly reduced cortical levels of tyrosine phosphorylation. CONCLUSIONS The findings indicate that distinct signaling pathways mediate nuclear and cytoplasmic maturation during in vitro maturation in a fashion consistent with a role for tyrosine kinases in cortical maturation and oocyte quality.
Collapse
Affiliation(s)
- Lynda K McGinnis
- Department of Anatomy & Cell Biology, University of Kansas Medical Center, 3901 Rainbow Blvd., mail stop 3038, Kansas City, KS 66160, USA.
| | | |
Collapse
|
34
|
Sutton-McDowall ML, Gilchrist RB, Thompson JG. The pivotal role of glucose metabolism in determining oocyte developmental competence. Reproduction 2010; 139:685-95. [PMID: 20089664 DOI: 10.1530/rep-09-0345] [Citation(s) in RCA: 347] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The environment that the cumulus oocyte complex (COC) is exposed to during either in vivo or in vitro maturation (IVM) can have profound effects on the success of fertilisation and subsequent embryo development. Glucose is a pivotal metabolite for the COC and is metabolised by glycolysis, the pentose phosphate pathway (PPP), the hexosamine biosynthesis pathway (HBP) and the polyol pathway. Over the course of oocyte maturation, a large proportion of total glucose is metabolised via the glycolytic pathway to provide substrates such as pyruvate for energy production. Glucose is also the substrate for many cellular functions during oocyte maturation, including regulation of nuclear maturation and redox state via the PPP and for the synthesis of substrates of extracellular matrices (cumulus expansion) and O-linked glycosylation (cell signalling) via the HBP. However, the oocyte is susceptible to glucose concentration-dependent perturbations in nuclear and cytoplasmic maturation, leading to poor embryonic development post-fertilisation. For example, glucose concentrations either too high or too low result in precocious resumption of nuclear maturation. This review will discuss the relevant pathways of glucose metabolism by COCs during in vivo maturation and IVM, including the relative contribution of the somatic and gamete compartments of the COC to glucose metabolism. The consequences of exposing COCs to abnormal glucose concentrations will also be examined, either during IVM or by altered maternal environments, such as during hyperglycaemia induced by diabetes and obesity.
Collapse
Affiliation(s)
- Melanie L Sutton-McDowall
- School of Paediatrics and Reproductive Health, The Robinson Institute, Research Centre for Reproductive Health, The University of Adelaide, Adelaide, South Australia 5005, Australia.
| | | | | |
Collapse
|
35
|
Effect of insulin on oogenesis from mouse fetal germ cells in a serum-free 3D culture system. Reprod Biomed Online 2010; 20:11-25. [DOI: 10.1016/j.rbmo.2009.11.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2009] [Revised: 04/01/2009] [Accepted: 10/07/2009] [Indexed: 11/17/2022]
|
36
|
Combelles CMH, Gupta S, Agarwal A. Could oxidative stress influence the in-vitro maturation of oocytes? Reprod Biomed Online 2009; 18:864-80. [PMID: 19490793 DOI: 10.1016/s1472-6483(10)60038-7] [Citation(s) in RCA: 193] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
In the efforts aimed at improving the quality of in-vitro-matured human oocytes, the dynamic balance and roles of pro-/antioxidants merit further consideration. In-vitro maturation (IVM) is emerging as a popular technology at the forefront of fertility treatment and preservation. However, standard in-vitro culture conditions exert oxidative stress or an imbalance between oxidants and antioxidants. Reactive oxygen species (ROS) are oxygen-derived molecules formed as intermediary products of cellular metabolism. By acting as powerful oxidants, ROS can oxidatively modify any molecule, resulting in structural and functional alterations. ROS are neutralized by an elaborate defence system consisting of enzymatic and nonenzymatic antioxidants. This review captures the inherent and external factors that may modulate the oxidative stress status of oocytes. It discusses the suspected impacts of oxidative stress on the gamut of events associated with IVM, including prematuration arrest, meiotic progression, chromosomal segregation, cytoskeletal architecture and gene expression. In-vivo and in-vitro strategies that may overcome the potential influences of oxidative stress on oocyte IVM are presented. Future studies profiling the oxidative stress status of the oocyte may permit not only the formulation of a superior IVM medium that maintains an adequate pro-/antioxidant balance, but also the identification of predictors of oocyte quality.
Collapse
|
37
|
Yeo CX, Gilchrist RB, Lane M. Disruption of bidirectional oocyte-cumulus paracrine signaling during in vitro maturation reduces subsequent mouse oocyte developmental competence. Biol Reprod 2009; 80:1072-80. [PMID: 19144958 PMCID: PMC2849833 DOI: 10.1095/biolreprod.108.073908] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2008] [Revised: 10/23/2008] [Accepted: 01/06/2009] [Indexed: 11/01/2022] Open
Abstract
Oocyte-cumulus cell bidirectional communication is essential for normal development of the oocyte and cumulus cells (CCs) within the follicle. We showed recently that addition of recombinant growth differentiation factor 9 (GDF9), which signals through the SMAD2/3 pathway, during mouse oocyte in vitro maturation (IVM) increased fetal viability. This study thus aimed to observe the effects of disrupting oocyte-CC bidirectional communication during IVM on oocyte developmental competence and fetal outcomes. Cumulus-oocyte complexes (COCs) from equine chorionic gonadotropin-primed prepubertal (CBA/C57BL6) mice were cultured with or without 50 mIU/ml follicle-stimulating hormone (FSH) and 10 ng/ml epidermal growth factor (EGF) or 4 muM SMAD2/3 inhibitor SB-431542. Cumulus expansion and first polar body extrusion were then assessed, or COCs were fertilized and stained to evaluate sperm entry or cultured to the blastocyst stage. Embryo development and blastocyst quality were assessed, and Day 4.5 blastocysts were transferred to pseudopregnant recipients to analyze fetal outcomes. SMAD2/3 inhibition or FSH/EGF absence during IVM resulted in decreased cumulus expansion. First polar body extrusion and sperm entry were decreased in the absence of FSH/EGF, whereas only sperm entry was affected in SB-431542-matured COCs. Embryo development and blastocyst rates were unaffected; however, blastocyst quality was significantly altered, with reduced inner cell mass cell numbers in embryos derived from COCs matured in both treatments. When COCs were matured with SB-431542 in the absence of FSH/EGF, cumulus expansion was reduced, but fertilization, embryo development, and embryo quality were not. Inhibition of SMAD2/3 signaling in the presence of FSH/EGF significantly reduced fetal survival but had no effect on implantation or fetal and placental dimensions and morphology.
Collapse
Affiliation(s)
- Christine X. Yeo
- Research Centre for Reproductive Health, Discipline of Obstetrics and Gynaecology, The University of Adelaide, and Repromed, Adelaide, South Australia, Australia
| | - Robert B. Gilchrist
- Research Centre for Reproductive Health, Discipline of Obstetrics and Gynaecology, The University of Adelaide, and Repromed, Adelaide, South Australia, Australia
| | - Michelle Lane
- Research Centre for Reproductive Health, Discipline of Obstetrics and Gynaecology, The University of Adelaide, and Repromed, Adelaide, South Australia, Australia
| |
Collapse
|
38
|
Saitoh T, Tsuchiya Y, Kinoshita T, Itoh M, Yamashita S. Inhibition of apoptosis by ascorbic and dehydroascorbic acids in Xenopus egg extracts. Reprod Med Biol 2008; 8:3-9. [PMID: 29699301 DOI: 10.1007/s12522-008-0001-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2008] [Accepted: 09/16/2008] [Indexed: 11/30/2022] Open
Abstract
Purpose The viability of mammalian eggs after ovulation is reported to be improved by the presence of ascorbic acid in the culture medium. However, the pro-survival mechanisms of ascorbic acid are poorly understood. The molecular pathways of apoptosis are evolutionarily conserved among animal species, and Xenopus eggs are technically and ethically more suitable for biochemical analyses than mammalian eggs. We used Xenopus egg cytoplasmic extracts to examine the direct intracellular effects of ascorbic acid. Methods Incubation of egg extracts for more than 4 h induces the spontaneous release of cytochrome c from mitochondria. This event triggers the activation of caspases, cleavage of substrate proteins, and execution of apoptosis. Multiple signal transduction pathways including proteolysis and protein phosphorylation are also involved in this process. We examined whether any of these events might be inhibited by the addition of ascorbic acid. Results Ascorbic acid showed no effect against cytochrome c release, but prevented caspase activation and substrate cleavage. Ascorbic acid also blocked the proteolysis of apoptosis inhibitor proteins and the dephosphorylation of p42 MAP kinase. However, dehydroascorbic acid (oxidized form of ascorbic acid) and acetate (unrelated acid) were equally effective, indicating that these effects were primarily due to their acidity. In addition, dehydroascorbic acid inhibited caspase activities directly in vitro. Conclusions The anti-apoptotic effect of ascorbic acid in Xenopus egg extracts is mainly due to cytoplasmic acidification rather than its intracellular antioxidant activity. Instead, oxidative conversion of ascorbic acid into dehydroascorbic acid may inhibit apoptosis through the inhibition of caspases.
Collapse
Affiliation(s)
- Tomohiro Saitoh
- Department of Obstetrics and Gynecology Toho University Medical Center Sakura Hospital 564-1 Shimoshizu Sakura-shi 285-8741 Chiba Japan
| | - Yuichi Tsuchiya
- Department of Biochemistry Toho University School of Medicine 5-21-16 Omori-nishi Ota-ku 143-8540 Tokyo Japan
| | - Toshihiko Kinoshita
- Department of Obstetrics and Gynecology Toho University Medical Center Sakura Hospital 564-1 Shimoshizu Sakura-shi 285-8741 Chiba Japan
| | - Motohiro Itoh
- Department of Obstetrics and Gynecology Toho University Medical Center Sakura Hospital 564-1 Shimoshizu Sakura-shi 285-8741 Chiba Japan
| | - Shigeru Yamashita
- Department of Biochemistry Toho University School of Medicine 5-21-16 Omori-nishi Ota-ku 143-8540 Tokyo Japan
| |
Collapse
|
39
|
McGinnis LK, Kinsey WH, Albertini DF. Functions of Fyn kinase in the completion of meiosis in mouse oocytes. Dev Biol 2008; 327:280-7. [PMID: 19118543 DOI: 10.1016/j.ydbio.2008.11.038] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2008] [Revised: 11/12/2008] [Accepted: 11/14/2008] [Indexed: 11/24/2022]
Abstract
Oocyte maturation invokes complex signaling pathways to achieve cytoplasmic and nuclear competencies for fertilization and development. The Src-family kinases FYN, YES and SRC are expressed in mammalian oocytes but their function during oocyte maturation remains an open question. Using chemical inhibitor, siRNA knockdown, and gene deletion strategies the function of Src-family kinases was evaluated in mouse oocytes during maturation under in vivo and in vitro conditions. Suppression of Src-family as a group with SKI606 greatly reduced meiotic cell cycle progression to metaphase-II. Knockdown of FYN kinase expression after injection of FYN siRNA resulted in an approximately 50% reduction in progression to metaphase-II similar to what was observed in oocytes isolated from FYN (-/-) mice matured in vitro. Meiotic cell cycle impairment due to a Fyn kinase deficiency was also evident during oocyte maturation in vivo since ovulated cumulus oocyte complexes collected from FYN (-/-) mice included immature metaphase-I oocytes (18%). Commonalities in meiotic spindle and chromosome alignment defects under these experimental conditions demonstrate a significant role for Fyn kinase activity in meiotic maturation.
Collapse
Affiliation(s)
- Lynda K McGinnis
- Department of Molecular and Integrative Physiology, University of Kansas Medical Center, 3901 Rainbow Blvd, mail stop 3043, Kansas City, KS 66160, USA.
| | | | | |
Collapse
|
40
|
Li Q, McKenzie LJ, Matzuk MM. Revisiting oocyte-somatic cell interactions: in search of novel intrafollicular predictors and regulators of oocyte developmental competence. Mol Hum Reprod 2008; 14:673-8. [PMID: 18996952 PMCID: PMC2639448 DOI: 10.1093/molehr/gan064] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2008] [Revised: 10/27/2008] [Accepted: 10/29/2008] [Indexed: 12/15/2022] Open
Abstract
Prediction and improvement of oocyte competence are two critical issues in assisted reproductive technology to improve infertility therapy. The lack of reliable and objective predictors of oocyte developmental competence for oocyte/embryo selection during in vitro fertilization hampers the effectiveness of this technology. Likewise, the low pregnancy rate resulting from in vitro maturation of human oocytes represents a major obstacle for its clinical application. Oocyte competence is progressively acquired during follicular development, and the oocyte plays a dominant role in regulating granulosa cell functions and maintaining the microenvironment appropriate for the development of its competence. Hence, granulosa cell functions are reflective of oocyte competence, and molecular markers of granulosa cells are potentially reliable predictors of oocyte quality. With the advent of the functional genomics era, the transcriptome of granulosa cells has been extensively characterized. Experimental data supporting granulosa cell markers as predictors of oocyte competence are now emerging in both animal models and humans. Future efforts should focus on integrating granulosa cell genetic markers as parameters for oocyte/embryo selection. Moreover, novel in vitro evidence highlights the effectiveness of exogenous oocyte-secreted factors in promoting oocyte developmental competence in animal models. The challenge in evaluating the effect of oocyte-secreted factors on oocyte quality in a clinical setting is to standardize the various preparations of these recombinant proteins and decipher their complex interactions/cooperativity within the germline-somatic cell regulatory loop.
Collapse
Affiliation(s)
- Qinglei Li
- Department of Pathology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - Laurie J. McKenzie
- Department of Pathology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
- Houston IVF, Memorial Hermann Memorial City Hospital, Houston, TX 77024, USA
| | - Martin M. Matzuk
- Department of Pathology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
- Department of Molecular and Cellular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
- Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| |
Collapse
|
41
|
West-Farrell ER, Xu M, Gomberg MA, Chow YH, Woodruff TK, Shea LD. The mouse follicle microenvironment regulates antrum formation and steroid production: alterations in gene expression profiles. Biol Reprod 2008; 80:432-9. [PMID: 19005169 DOI: 10.1095/biolreprod.108.071142] [Citation(s) in RCA: 88] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
Folliculogenesis is a coordinated process, and the genes that regulate development are difficult to investigate in vivo. In vitro culture systems permit the assessment of individual follicles during development, thereby enabling gene expression patterns to be monitored during follicle development. Mouse multilayered secondary follicles (150-180 microm in diameter) were cultured in three-dimensional matrices of varying physical properties for up to 8 days. During this period of follicle growth in vitro, antrum formation and steroid production were monitored, and mRNA was isolated. The expression levels of genes (Star, Cyp11a1, Cyp17a1, Hsd3b1, Cyp19a1, Fshr, Lhcgr, Aqp7, Aqp8, Aqp9, and Hif1a) were measured and correlated to follicle developmental status. Follicles that developed an antrum and produced appropriate levels of estrogen and progesterone had unchanging expression of Star, Aqp7, Aqp8, and Hif1a and a 34-fold increase in Cyp19a1 expression at Day 8 of culture and had elevated Lhcgr at Days 6 and 8 of culture. Follicles that were healthy but did not form an antrum or produce appropriate levels of steroids, however, demonstrated increasing levels of Star, Aqp7, Aqp8, and Hif1a and a 15-fold increase in Cyp19a1 at Day 8 of culture, and Lhcgr levels were not elevated until Day 8 of culture. To our knowledge, this study provides the first temporal analysis of gene expression using individual culture in alginate hydrogels that correlates growth and steroidogenesis during follicle development and identifies expression patterns in healthy follicles and in developmentally disadvantaged follicles.
Collapse
Affiliation(s)
- Erin R West-Farrell
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois 60208, USA
| | | | | | | | | | | |
Collapse
|
42
|
Agarwal A, Gupta S, Sekhon L, Shah R. Redox considerations in female reproductive function and assisted reproduction: from molecular mechanisms to health implications. Antioxid Redox Signal 2008; 10:1375-403. [PMID: 18402550 DOI: 10.1089/ars.2007.1964] [Citation(s) in RCA: 204] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Physiological levels of reactive oxygen species (ROS) play an important regulatory role through various signaling transduction pathways in folliculogenesis, oocyte maturation, endometrial cycle, luteolysis, implantation, embryogenesis, and pregnancy. Persistent and elevated generation of ROS leads to a disturbance of redox potential that in turn causes oxidative stress (OS). Our literature review captures the role of ROS in modulating a range of physiological functions and pathological processes affecting the female reproductive life span and even thereafter (i.e., menopause). The role of OS in female reproduction is becoming increasingly important, as recent evidence suggest that it plays a part in conditions such as polycystic ovarian disease, endometriosis, spontaneous abortions, preeclampsia, hydatidiform mole, embryopathies, preterm labor, and intrauterine growth retardation. OS has been implicated in different reproductive scenarios and is detrimental to both natural and assisted fertility. Many extrinsic and intrinsic conditions exist in assisted reproduction settings that can be tailored to reduce the toxic effects of ROS. Laboratory personnel should avoid procedures that are known to be deleterious, especially when safer procedures that can prevent OS are available. Although antioxidants such as folate, zinc, and thiols may help enhance fertility, the available data are contentious and must be evaluated in controlled studies with larger populations.
Collapse
Affiliation(s)
- Ashok Agarwal
- Reproductive Research Center, Department of Obstetrics and Gynecology, Glickman Urological and Kidney Institute, Cleveland Clinic, Cleveland, Ohio 44195, USA.
| | | | | | | |
Collapse
|
43
|
Verit FF, Erel O. Oxidative Stress in Nonobese Women with Polycystic Ovary Syndrome: Correlations with Endocrine and Screening Parameters. Gynecol Obstet Invest 2008; 65:233-9. [DOI: 10.1159/000113046] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2007] [Accepted: 07/06/2007] [Indexed: 11/19/2022]
|
44
|
[State of the art on in vitro folliculogenesis in mouse]. ACTA ACUST UNITED AC 2008; 36:6-16. [PMID: 18178507 DOI: 10.1016/j.gyobfe.2007.07.042] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2007] [Accepted: 07/09/2007] [Indexed: 11/21/2022]
Abstract
Follicle culture systems have been developed so as to achieve in vitro fertilization of oocytes coming from immature follicles. The in vitro folliculogenesis methods would be especially useful in reproductive medicine to restore fertility in women having undergone ovarian cryopreservation. Several culture systems allowing in vitro growth of small follicles have been developed in mouse. These have proven to be successful by the birth of healthy offsprings. Some elements determine the outcome of culture: follicle isolations at a defined stage of development, follicular morphology preservation, and supplementation of growth factors or hormones. Development of follicle culture in the mouse model led to a better understanding of ovarian physiology, in particular the relation between endocrine and paracrine factors on follicle development. The in vitro techniques in mouse became a valuable tool for improving reproductive technics improvement, and for toxicology studies.
Collapse
|
45
|
Association of increased total antioxidant capacity and anovulation in nonobese infertile patients with clomiphene citrate–resistant polycystic ovary syndrome. Fertil Steril 2007; 88:418-24. [DOI: 10.1016/j.fertnstert.2006.11.172] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2006] [Revised: 11/27/2006] [Accepted: 11/27/2006] [Indexed: 12/13/2022]
|
46
|
Abstract
In vitro ovarian follicle culture provides a tool to investigate folliculogenesis, and may one day provide women with fertility-preservation options. The application of tissue engineering principles to ovarian follicle maturation may enable the creation of controllable microenvironments that will coordinate the growth of the multiple cellular compartments within the follicle. Three-dimensional culture systems can preserve follicle architecture, thereby maintaining critical cell-cell and cell-matrix signaling lost in traditional two-dimensional attached follicle culture systems. Maintaining the follicular structure while manipulating the biochemical and mechanical environment will enable the development of controllable systems to investigate the fundamental biological principles underlying follicle maturation. This review describes recent advances in ovarian follicle culture, and highlights the tissue engineering principles that may be applied to follicle culture, with the ultimate objective of germline preservation for females facing premature infertility.
Collapse
Affiliation(s)
- Erin R. West
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois
| | - Lonnie D. Shea
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois
- Center for Reproductive Research, Northwestern University, Evanston, Illinois
- The Robert H. Lurie Comprehensive Cancer Center of Northwestern University, Chicago, Illinois
| | - Teresa K. Woodruff
- Center for Reproductive Research, Northwestern University, Evanston, Illinois
- The Robert H. Lurie Comprehensive Cancer Center of Northwestern University, Chicago, Illinois
- Department of Obstetrics and Gynecology, The Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| |
Collapse
|
47
|
Abstract
Continuous exposure of follicles/oocytes to elevated levels of insulin compromises embryonic developmental competence, although the underlying cellular mechanisms are unknown. The objectives of the present study were to determine whether mouse oocytes have insulin receptors and a functional insulin signaling cascade, and whether insulin exposure during oocyte growth or maturation influences meiotic progression and chromatin remodeling. Immunoblot and immunocytochemical analyses of germinal vesicle-intact (GVI) oocytes demonstrated the presence of insulin receptor-beta. Insulin receptor expression in oocytes was increased by gonadotropin stimulation, and remained elevated throughout meiotic maturation. Fully grown GVI oocytes contained 3-phosphoinositide-dependent protein kinase-1 (PDPK1), thymoma viral proto-oncogene 1 (AKT1), and glycogen synthase kinase 3 (GSK3). In vitro maturation of GVI oocytes in 5 microg/ml insulin had no influence on meiotic progression or the incidence of normal metaphase II (MII) chromosome condensation. Treatment of oocytes during maturation had no effect on GSK3A/B protein expression or phosphorylation of S21/9. However, the culturing of preantral follicles for 10 days with 5 microg/ml insulin increased the phosphorylation of oocyte GSK3B, indicating GSK3 inactivation. The rates of development to metaphase I (MI) were similar for oocytes obtained from insulin-treated follicles and controls, whereas the incidence of abnormal MI chromatin condensation was significantly higher in oocytes obtained from follicles cultured with insulin compared to those cultured without insulin. These results demonstrate that oocytes contain a functional insulin signaling pathway, and that insulin exposure during oocyte growth results in chromatin remodeling aberrations. These findings begin to elucidate the mechanisms by which chronic elevated insulin influences oocyte meiosis, chromatin remodeling, and embryonic developmental competence.
Collapse
Affiliation(s)
- Nicole Acevedo
- Reproductive Sciences Program, University of Michigan, Ann Arbor, Michigan 48109, USA
| | | | | |
Collapse
|
48
|
Sirard MA, Desrosier S, Assidi M. In vivo and in vitro effects of FSH on oocyte maturation and developmental competence. Theriogenology 2007; 68 Suppl 1:S71-6. [PMID: 17588652 DOI: 10.1016/j.theriogenology.2007.05.053] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
There is increasing evidence demonstrating that oocyte quality depends on the events that occur before germinal vesicle breakdown (GVBD), suggesting that the oocyte must accumulate the appropriate information for meiotic resumption fertilization and early embryonic development before chromosome condensation. This situation seems to prevail in large mammals and particularly in the bovine where we have more information than in other species. Signaling events at two different levels controls the changes that must take place for follicular growth and attainment of oocyte developmental competence. The first signaling event comes from the proper differentiation of the follicle as it normally occurs in the dominant follicle in preparation for ovulation. The second signaling event occurs as the process of follicle differentiation signals directly to the oocyte, possibly through the cumulus cells, that conditions are suitable for further embryo development. The first signal, follicular differentiation, becomes possible though a rise and fall of FSH in the circulation, while the second signal might be mimicked partially by the same hormone acting on the cumulus cells. Although FSH is likely involved in these two signaling events, the processes involved are quite different and analysis of gene expression in granulosa, cumulus and oocyte is starting to reveal the complexity of this system. The next challenge is to combine these two pathways into a functional signaling cascade. To be successful and obtain meaningful information, these genomic analyses must be developed and performed in precisely defined conditions of follicular growth and differentiation or culture conditions. Functional genomics already started with the study of function of several genes and genes families in the regulation of follicular growth and follicle-oocyte co-differentiation (i.e. IGF and BMP genes families, EGF).
Collapse
Affiliation(s)
- M-A Sirard
- Centre de Recherche en Biologie de la Reproduction, Department of Animal Sciences, Laval University, Pav. Comtois, Sainte-Foy, Québec, Canada G1K 7P4.
| | | | | |
Collapse
|
49
|
Smitz J, Picton HM, Platteau P, Rutherford A, Cortvrindt R, Clyde J, Nogueira D, Devroey P, Lyby K, Gröndahl C. Principal findings from a multicenter trial investigating the safety of follicular-fluid meiosis-activating sterol for in vitro maturation of human cumulus-enclosed oocytes. Fertil Steril 2007; 87:949-64. [PMID: 17198705 DOI: 10.1016/j.fertnstert.2006.10.009] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2006] [Revised: 08/31/2006] [Accepted: 10/11/2006] [Indexed: 10/23/2022]
Abstract
OBJECTIVE To evaluate the safety of applying follicular-fluid meiosis-activating sterol (FF-MAS) in vitro to immature human oocytes. DESIGN Phase I bicenter, randomized, parallel-group, controlled, partially blinded trial. SETTING Third-level referral academic centers, including reproductive biology and genetics laboratories. PATIENTS Endocrinologically normal women with a medical indication for IVF or intracytoplasmic sperm injection, or healthy volunteers. INTERVENTION(S) Subjects were randomized at a ratio 1 to 6 into either conventional GnRH-agonist and recombinant FSH stimulation (IVO) for oocyte retrieval, or minimally stimulated in vitro maturation (IVM) with the use of recombinant FSH. Retrieved immature oocyte cumulus complexes were cultured for 30 or 36 hours in one of six IVM culture conditions containing FF-MAS (range, 0.1-20 microM). Polar body-extruded oocytes from the IVO and IVM groups were processed for chromosomal analysis. MAIN OUTCOME MEASURE(S) The primary endpoint was the incidence of metaphase II stage oocytes with numeric chromosomal abnormalities, using full (spectral karyotyping) or partial (fluorescent in situ hybridization with seven probes) karyotyping or Giemsa count. A secondary objective was to document the frequency of metaphase II oocytes after IVM with FF-MAS supplements. RESULT(S) Oocyte cumulus complexes obtained from the IVO (mean, 8.9) and IVM (mean, 6.2) groups had equal maturation rates. Compared to IVO, exposure of germinal-vesicle oocytes for a maturation period of 30 hours did not increase aneuploidy. An exposure period of 36 hours doubled the aneuploidy rate, but this was significant only for the 20-muM dose of FF-MAS. CONCLUSION Inclusion of 1-10 microM FF-MAS in a 30-hour IVM protocol is safe.
Collapse
Affiliation(s)
- Johan Smitz
- Center for Reproductive Medicine, Academisch Ziekenhuis, Vrije Universiteit Brussel, Brussels, Belgium
| | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Songsasen N, Wildt DE. Oocyte biology and challenges in developing in vitro maturation systems in the domestic dog. Anim Reprod Sci 2006; 98:2-22. [PMID: 17097840 PMCID: PMC1868673 DOI: 10.1016/j.anireprosci.2006.10.004] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
The oocyte of the domestic dog is unique from that of other mammalian species studied to date. Ovulation occurs either once or twice per year, with the oocyte released at the germinal vesicle stage, and then completing nuclear and cytoplasmic maturation within the oviduct under the influence of rising circulating progesterone. In vivo meiotic maturation of the bitch oocyte is completed within 48-72 h after ovulation, which is longer than 12-36 h required for oocytes from most other mammalian species. Due to these inherently novel traits, in vitro culture systems developed for maturing oocytes of other species have been found inadequate for maturation of dog oocytes. On average, only 15-20% of ovarian oocytes achieve the metaphase II stage after 48-72 h of in vitro culture. Thus far, no offspring have been produced in the dog (or other canids) by transferring embryos derived from in vitro matured oocytes. This review addresses current knowledge about dog reproductive physiology, specifically those factors influencing in vitro developmental competence of the oocyte. This summary lays a foundation for identifying the next steps to understanding the mechanisms regulating meiotic maturation and developmental competence of the dog oocyte.
Collapse
Affiliation(s)
- N Songsasen
- Department of Reproductive Sciences, Conservation and Research Center, Smithsonian's National Zoological Park, Front Royal, VA 22630, USA.
| | | |
Collapse
|