1
|
Yoshimoto S, Katayama K, Suzuki T, Dohmae N, Simizu S. Regulation of N-glycosylation and secretion of Isthmin-1 by its C-mannosylation. Biochim Biophys Acta Gen Subj 2021; 1865:129840. [PMID: 33412225 DOI: 10.1016/j.bbagen.2020.129840] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 12/27/2020] [Accepted: 12/30/2020] [Indexed: 12/17/2022]
Abstract
BACKGROUND C-mannosylation is a type of protein glycosylation. Human Isthmin-1 (ISM1) is a 52-kDa secreted protein with a thrombospondin type 1 repeat (TSR) domain, containing two consensus C-mannosylation sequences at Trp223 and Trp226. In this study, we sought to examine the role of C-mannosylation in the secretion of ISM1. METHODS We established and cultured an ISM1-overexpressing HT1080 cell line and purified recombinant ISM1 for analysis from the conditioned medium by LC-MS/MS. Subcellular localization of ISM1 was observed by confocal fluorescence microscopy. RESULTS We found that ISM1 is C-mannosylated at Trp223 and Trp226 in the TSR domain. To determine the functions of the C-mannosylation of ISM1, we established a C-mannosylation-defective mutant ISM1-overexpressing HT1080 cell line and measured its secretion of ISM1. The secretion of ISM1 decreased significantly in this mutant ISM1-overexpressing line compared with wild-type cells. Furthermore, ISM1 was N-glycosylated only in these C-mannosylation-defective cells. CONCLUSIONS ISM1 is C-mannosylated in its TSR domain, and the status of the C-mannosylation of ISM1 affects its N-glycosylation. GENERAL SIGNIFICANCE The C-mannosylation of ISM1 regulates its N-glycosylation status.
Collapse
Affiliation(s)
- Satoshi Yoshimoto
- Department of Applied Chemistry, Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama 223-8522, Japan
| | - Kazuhiro Katayama
- Department of Applied Chemistry, Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama 223-8522, Japan
| | - Takehiro Suzuki
- Biomolecular Characterization Unit, RIKEN Center for Sustainable Resource Science, 2-1 Hirosawa, Wako 351-0198, Japan
| | - Naoshi Dohmae
- Biomolecular Characterization Unit, RIKEN Center for Sustainable Resource Science, 2-1 Hirosawa, Wako 351-0198, Japan
| | - Siro Simizu
- Department of Applied Chemistry, Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama 223-8522, Japan.
| |
Collapse
|
2
|
Heparanase: Cloning, Function and Regulation. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1221:189-229. [PMID: 32274711 DOI: 10.1007/978-3-030-34521-1_7] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
In 2019, we mark the 20th anniversary of the cloning of the human heparanase gene. Heparanase remains the only known enzyme to cleave heparan sulfate, which is an abundant component of the extracellular matrix. Thus, elucidating the mechanisms underlying heparanase expression and activity is critical to understanding its role in healthy and pathological settings. This chapter provides a historical account of the race to clone the human heparanase gene, describes the intracellular and extracellular function of the enzyme, and explores the various mechanisms regulating heparanase expression and activity at the gene, transcript, and protein level.
Collapse
|
3
|
Opposing Effects of Heparanase and Heparanase-2 in Head & Neck Cancer. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1221:847-856. [PMID: 32274741 DOI: 10.1007/978-3-030-34521-1_37] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Squamous cell carcinoma of head and neck (SCCHN) is the most common cancer in the head and neck and is the sixth most common neoplasm worldwide. SCCHN has a high propensity to lymph node metastases, especially cancer of the pharynx. Prognosis of patients with SCCHN is severely influenced by the status of metastatic cervical lymph nodes and survival rates drop down to half when patients are presented with a metastatic node. The clinical relevance of heparanase as a prognostic marker in SCCHN was reported in several publications. Low levels of heparanase in SCCHN tumor cells was correlated with prolonged disease-free and overall survival. Furthermore, nuclear localization of heparanase predicts a favorable outcome compared to cytoplasmic localization. Heparanase staining was positively correlated with lymphatic vessel density and lymph node metastasis associated with the elevation of vascular endothelial growth factor C (VEGF-C). Heparanase ability to enhance phosphorylation of epidermal growth factor receptor (EGFR), and signal transducer and activator of transcription 3 (STAT3) were postulated to serve as critical molecular mechanisms by which heparanase facilitates tumor growth.Heparanase-2 (HPA2) is a close homolog of heparanase that lacks intrinsic HS-degrading activity but retains the capacity to bind HS with high affinity. HPA2 expression was markedly elevated in SCCHN patients, correlating with prolonged follow-up time to recurrence and inversely correlating with patients' N-stage. HPA2 appears to inhibit tumor dissemination, suggesting that HPA2 functions as a tumor suppressor. Thus, Heparanase and Heparanase-2 seem to exert opposing effects on SCCHN.
Collapse
|
4
|
Zavada SR, Battsengel T, Scott TF. Radical-Mediated Enzymatic Polymerizations. Int J Mol Sci 2016; 17:E195. [PMID: 26848652 PMCID: PMC4783929 DOI: 10.3390/ijms17020195] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2016] [Revised: 01/25/2016] [Accepted: 01/27/2016] [Indexed: 02/04/2023] Open
Abstract
Polymerization reactions are commonly effected by exposing monomer formulations to some initiation stimulus such as elevated temperature, light, or a chemical reactant. Increasingly, these polymerization reactions are mediated by enzymes--catalytic proteins--owing to their reaction efficiency under mild conditions as well as their environmental friendliness. The utilization of enzymes, particularly oxidases and peroxidases, for generating radicals via reduction-oxidation mechanisms is especially common for initiating radical-mediated polymerization reactions, including vinyl chain-growth polymerization, atom transfer radical polymerization, thiol-ene step-growth polymerization, and polymerization via oxidative coupling. While enzyme-mediated polymerization is useful for the production of materials intended for subsequent use, it is especially well-suited for in situ polymerizations, where the polymer is formed in the place where it will be utilized. Such polymerizations are especially useful for biomedical adhesives and for sensing applications.
Collapse
Affiliation(s)
- Scott R Zavada
- Macromolecular Science and Engineering Program, University of Michigan, Ann Arbor, MI 48109, USA.
| | - Tsatsral Battsengel
- Department of Chemical Engineering, University of Michigan, Ann Arbor, MI 48109, USA.
| | - Timothy F Scott
- Department of Chemical Engineering and Macromolecular Science and Engineering Program, University of Michigan, Ann Arbor, MI 48109, USA.
| |
Collapse
|
5
|
Su T, Tang Z, He H, Li W, Wang X, Liao C, Sun Y, Wang Q. Glucose oxidase triggers gelation of N-hydroxyimide–heparin conjugates to form enzyme-responsive hydrogels for cell-specific drug delivery. Chem Sci 2014. [DOI: 10.1039/c4sc01603c] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
|
6
|
Hirshoren N, Bulvik R, Neuman T, Rubinstein AM, Meirovitz A, Elkin M. Induction of heparanase by HPV E6 oncogene in head and neck squamous cell carcinoma. J Cell Mol Med 2013; 18:181-6. [PMID: 24286246 PMCID: PMC3916129 DOI: 10.1111/jcmm.12179] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2013] [Accepted: 10/07/2013] [Indexed: 12/11/2022] Open
Abstract
High-risk human papillomavirus (HPV)-positive head and neck squamous cell carcinomas (HNSCCs) are highly invasive; however the identity of downstream effectors responsible for their aggressive phenotype remains underinvestigated. Here, we report that HPV-mediated up-regulation of heparanase enzyme can provide mechanistic explanation for augmented invasiveness of HPV-positive HNSCCs. Heparanase is the sole mammalian enzyme (endo-β-d-glucuronidase) degrading heparan sulphate glycosaminoglycan, key polysaccharide of the extracellular matrix. Cleavage of heparan sulphate by heparanase leads to disassembly of extracellular barriers, enabling local invasion and metastatic spread of the tumour, and releases heparan sulphate-bound growth factors from the extracellular depots. Heparanase is tightly implicated in head and neck cancer progression; yet, molecular mechanisms underlying transcriptional activation of the heparanase gene in HNSCC are largely unknown. We found that HPV16 oncogene E6 is capable of inducing overexpression of heparanase in HNSCC. Notably, radiation treatment dose-dependently suppresses E6-induced heparanase expression in vitro. Our results provide the first evidence for a functional involvement of HPV in heparanase induction in head and neck tumourigenesis and, given ongoing clinical testing of several heparanase-inhibiting compounds, offer important avenue for future therapeutic exploration in HNSCC, as well as other HPV-associated malignancies (i.e. cervical carcinoma).
Collapse
Affiliation(s)
- Nir Hirshoren
- Department of Otolaryngology, Head & Neck Surgery, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | | | | | | | | | | |
Collapse
|
7
|
An artificial miRNA against HPSE suppresses melanoma invasion properties, correlating with a down-regulation of chemokines and MAPK phosphorylation. PLoS One 2012; 7:e38659. [PMID: 22719918 PMCID: PMC3376136 DOI: 10.1371/journal.pone.0038659] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2011] [Accepted: 05/08/2012] [Indexed: 12/16/2022] Open
Abstract
Ribonucleic acid interference (RNAi) based on microRNA (miRNA) context may provide an efficient and safe therapeutic knockdown effect and can be driven by ribonucleic acid polymerase II (RNAP II). In this study, we designed and synthesized miR155-based artificial miRNAs against heparanase (HPSE) constructed with BLOCK-iT™ Pol II miR RNAi Expression Vector Kit. The expression levels of HPSE declined significantly in both the mRNA and protein levels in HPSE-miRNA transfected melanoma cells that exhibited reduction of adhesion, migration, and invasion ability in vitro and in vivo. We also observed that HPSE miRNA could inhibit the expressions of chemokines of interleukin-8 (IL8) and chemokine (C-X-C motif) ligand 1 (CXCL1), at both the transcriptional and translational levels. Further study on its probable mechanism declared that down-regulation of IL8 and CXCL1 by HPSE-miRNA may be correlated with reduced growth-factor simulated mitogen-activated kinase (MAPK) phosphorylation including p38 MAPK, c-Jun N-terminal kinase (JNK) and extracellular-signal-regulated kinase (ERK) 1 and 2, which could be rescued by miRNA incompatible mutated HPSE cDNA. In conclusion, we demonstrated that artificial miRNAs against HPSE might serve as an alterative mean of therapy to low HPSE expression and to block the adhesion, invasion, and metastasis of melanoma cells. Furthermore, miRNA-based RNAi was also a powerful tool for gene function study.
Collapse
|
8
|
Nagatsuka H, Siar CH, Tsujigiwa H, Naomoto Y, Han PP, Gunduz M, Sugahara T, Sasaki A, Nakajima M. Heparanase and cyclooxygenase-2 gene and protein expressions during progression of oral epithelial dysplasia to carcinoma. Ann Diagn Pathol 2012; 16:354-61. [PMID: 22575501 DOI: 10.1016/j.anndiagpath.2012.02.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2012] [Accepted: 02/24/2012] [Indexed: 12/16/2022]
Abstract
Heparanase and cyclooxygenase-2 (COX-2) are 2 key enzymes that modulate diverse physiological processes during embryonic development and in adult life. Their deregulations have been implicated in the growth and progression of many cancer types. To date, comparatively little is known about the roles of these molecules during oral carcinogenesis. The aim of this study was to investigate the expression patterns of heparanase and COX-2 during progression of oral epithelial dysplasia (OED) to carcinoma. In situ hybridization and immunohistochemistry were performed on 5 cases of normal mucosa, 15 cases of OED, 5 cases of carcinoma in situ and/or microinvasive carcinoma, and 40 cases of oral squamous cell carcinoma (OSCC). Results demonstrated that heparanase and COX-2 messenger RNA and protein were absent in normal oral mucosa but were coexpressed in increasing intensity as OED progressed to OSCC. Concomitant heparanase- and COX-2-positive staining in the stromal cells suggests that OED/OSCC progression may be modulated by stromal-cancer cell interactions. Diffuse intense staining of poorly differentiated OSCC compared with staining localized to tumor nest periphery in well- and moderately differentiated OSCC suggests that heparanase and COX-2 overexpressions correlated with tumor grade. Strong expression of these enzymes in tumor cells at the advancing front suggests a role in local tumor spread. These results, taken together, suggest that heparanase and COX-2 might play complementary roles in the stepwise progression of OED to carcinoma.
Collapse
Affiliation(s)
- Hitoshi Nagatsuka
- Department of Oral Pathology and Medicine, Graduate School of Medicine and Dentistry, Okayama University, Shikata-cho, Japan.
| | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Mogler C, Herold-Mende C, Dyckhoff G, Jenetzky E, Beckhove P, Helmke BM. Heparanase expression in head and neck squamous cell carcinomas is associated with reduced proliferation and improved survival. Histopathology 2011; 58:944-52. [PMID: 21585429 DOI: 10.1111/j.1365-2559.2011.03834.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
AIMS Cellular expression of heparanase, a degrading enzyme of the extracellular matrix, is associated with poorer prognosis in several cancers. The present analysis, has studied the role of heparanase in tumour growth and clinical outcome in patients with head and neck squamous cell carcinoma (HNSCC). METHODS AND RESULTS We analysed the cellular expression of the active form of heparanase in 71 human HNSCCs, using immunohistochemistry. The results were compared with clinicopathological data and, in 65 cases with immunoreactivity for the proliferation marker, MIB1. Cellular heparanase expression was detected in 41 of 71 (57.74%) cases; in particular, UICC IV-stage tumours showed high heparanase levels. Heparanase was localized mainly in the cytoplasm and, to a lesser extent, at the cell membrane. High levels of heparanase were significantly correlated with an almost four-fold decrease in MIB1 labelling (P = 0.006). Comparison with clinical outcome by multivariate analysis revealed that patients with high-level heparanase expression had prolonged overall survival (P = 0.029). CONCLUSIONS Although heparanase was mainly found in late-stage HNSCCs, cellular heparanase expression in HNSCCs was associated with prolonged overall survival. We propose that the proliferation-reducing effect of high heparanase levels might outweigh the tumour-promoting effects of heparanase, especially in advanced tumours.
Collapse
Affiliation(s)
- Carolin Mogler
- Institute of Pathology, University of Heidelberg, Heidelberg, Germany.
| | | | | | | | | | | |
Collapse
|
10
|
Iriyama S, Matsunaga Y, Amano S. Heparanase activation induces epidermal hyperplasia, angiogenesis, lymphangiogenesis and wrinkles. Exp Dermatol 2010; 19:965-72. [DOI: 10.1111/j.1600-0625.2009.01027.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
11
|
González-Alva P, Kikuchi K, Miyazaki Y, Okamoto E, Oku Y, Tsuchiya H, Noguchi Y, Sakashita H, Ide F, Kusama K. Expression of heparanase: a possible role in invasiveness and aggressive clinical behavior of ameloblastomas. J Oral Sci 2010; 52:39-47. [DOI: 10.2334/josnusd.52.39] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
|
12
|
Chow LQM, Gustafson DL, O'Bryant CL, Gore L, Basche M, Holden SN, Morrow MC, Grolnic S, Creese BR, Roberts KL, Davis K, Addison R, Eckhardt SG. A phase I pharmacological and biological study of PI-88 and docetaxel in patients with advanced malignancies. Cancer Chemother Pharmacol 2008; 63:65-74. [PMID: 18320191 PMCID: PMC2813677 DOI: 10.1007/s00280-008-0712-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2007] [Accepted: 02/17/2008] [Indexed: 12/30/2022]
Abstract
PURPOSE This study evaluated the safety, toxicity, pharmacological properties and biological activity of PI-88, a heparanase endoglycosidase enzyme inhibitor, with fixed weekly docetaxel in patients with advanced solid malignancies. EXPERIMENTAL DESIGN This was a phase I study to determine the maximal-tolerated dose of escalating doses of PI-88 administered subcutaneously for 4 days per week, along with docetaxel 30 mg/m(2) given on days 1, 8, 15 of a 28-day schedule. RESULTS Sixteen patients received a total of 42 courses of therapy. No dose-limiting toxicities were observed despite escalation to the highest planned dose level of PI-88 (250 mg/day). Frequent minor toxicities included fatigue (38%), dysgeusia (28.5%), thrombocytopenia (12%), diarrhea (14%), nausea (12%), and emesis (10%) in the 42 courses. No significant bleeding complications were observed. One patient developed a positive anti-heparin antibody test/serotonin releasing assay with positive anti-platelet factor 4/PI-88 antibodies and grade 1 thrombocytopenia in cycle 5, and was withdrawn from the study without any sequelae. PI-88 plasma concentrations (mirrored by APTT) and urinary elimination were linear and dose-proportional. Docetaxel did not alter the pharmacokinetic (PK) profile of PI-88, nor did PI-88 affect docetaxel PK. No significant relationship was determined between plasma or urine FGF-2, or plasma VEGF levels and PI-88 dose/response. Although no objective responses were observed; 9 of the 15 evaluable patients had stable disease for greater than two cycles of therapy. CONCLUSION PI-88 administered at 250 mg/day for 4 days each week for 3 weeks with docetaxel 30 mg/m(2) on days 1, 8 and 15, every 28 days, was determined to be the recommended dose level for phase II evaluation. This combination was well tolerated without severe toxicities or PK interactions.
Collapse
Affiliation(s)
- Laura Q M Chow
- University of Colorado Heath Sciences Center, Aurora, CO, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Lai NS, Simizu S, Morisaki D, Muroi M, Osada H. Requirement of the conserved, hydrophobic C-terminus region for the activation of heparanase. Exp Cell Res 2008; 314:2834-45. [PMID: 18662687 DOI: 10.1016/j.yexcr.2008.07.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2008] [Revised: 06/12/2008] [Accepted: 07/03/2008] [Indexed: 01/31/2023]
Abstract
Heparanase is an endo-beta-D-glucuronidase responsible for the cleavage of heparan sulfate, participating in extracellular matrix degradation and remodeling. Heparanase activity is well correlated with the potential for metastasis and angiogenesis in a large number of tumor-derived cell types, directly implicating the involvement of heparanase in tumor progression. Here, we provide the first evidence that the hydrophobic C-terminus region of heparanase has specific roles in intracellular trafficking, secretion, activation, and heparanase-mediated tumor cell migration. Furthermore, partial deletion of this hydrophobic C-terminus region, substitution within the hydrophobic C-terminus region to hydrophilic amino acids, and experiments of single amino acid mutations further point out the importance of the hydrophobic C-terminus region. Therefore, our findings suggest that the hydrophobic C-terminus region of heparanase is a determinant for its intracellular trafficking to the Golgi apparatus, followed by secretion, activation, and tumor cell migration.
Collapse
Affiliation(s)
- Ngit Shin Lai
- Antibiotics Laboratory, Advanced Science Institute, RIKEN, Saitama 351-0198, Japan
| | | | | | | | | |
Collapse
|
14
|
Pharmacological inhibition of DNA methylation induces proinvasive and prometastatic genes in vitro and in vivo. Neoplasia 2008; 10:266-78. [PMID: 18320071 DOI: 10.1593/neo.07947] [Citation(s) in RCA: 90] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2007] [Revised: 01/06/2008] [Accepted: 01/07/2008] [Indexed: 01/03/2023] Open
Abstract
The mechanism of action of DNA methylation inhibitor 5-aza-2'-deoxycytidine (5-aza-CdR), a potential anticancer agent is believed to be activated by the demethylation of tumor suppressor genes. We tested here the hypothesis that demethylating agents also demethylate and activate genes involved in invasion and metastasis and therefore might increase the risk of developing tumor metastasis. The effect of 5-aza-CdR on noninvasive human breast cancer cells MCF-7 and ZR-75-1 was evaluated by cell proliferation, invasion, and migration assay. The ability of 5-aza-CdR to activate a panel of silenced prometastatic and tumor suppressor genes was evaluated using reverse transcription-polymerase chain reaction and bisulfite DNA sequence analysis in vitro and for change in tumor growth and gene expression in vivo. Treatment of MCF-7 and ZR-75-1 with 5-aza-CdR diminished cell proliferation, induced tumor suppressor RASSF1A, and altered cell cycle kinetics' G(2)/M-phase cell cycle arrest. While these effects of 5-aza-CdR slowed the growth of tumors in nude mice, it also induced a battery of prometastatic genes, namely, uPA, CXCR4, HEPARANASE, SYNUCLEIN gamma, and transforming growth factor-beta (TGF-beta), by demethylation of their promoters. These results draw attention to the critical role of demethylation as a potential mechanism that can promote the development and progression of tumor metastasis after demethylation therapy as an anticancer treatment.
Collapse
|
15
|
Abstract
Heparan sulphate proteoglycans are ubiquitous macromolecules of cell surfaces and extracellular matrices. Numerous extracellular matrix proteins, growth factors, morphogens, cytokines, chemokines and coagulation factors are bound and regulated by heparan sulphate. Degradation of heparan sulphate thus potentially profoundly affects cell and tissue function. Although there is evidence that several heparan sulphate-degrading endoglucuronidases (heparanases) might exist, so far only one transcript encoding a functional heparanase has been identified: heparanase-1. In the first part of this review, we discuss the current knowledge about heparan sulphate proteoglycans and the functional importance of their versatile interactions. In the second part, we summarize recent findings that have contributed to the characterization of heparanase-1, focusing on the molecular properties, working mechanism, substrate specificity, expression pattern, cellular activation and localization of this enzyme. Additionally, we review data implicating heparanase-1 in several normal and pathological processes, focusing on tumour metastasis and angiogenesis, and on evidence for a potentially direct signalling function of the molecule. In that context, we also briefly discuss heparanase-2, an intriguing close homologue of heparanase-1, for which, so far, no heparan sulphate-degrading activity could be demonstrated.
Collapse
Affiliation(s)
- Veronique Vreys
- Department of Molecular and Developmental Genetics, VIB, Leuven, Belgium
- Laboratory for Glycobiology and Developmental Genetics, Department of Human Genetics, Catholic University of Leuven, Leuven, Belgium
- *Correspondence to: Guido DAVID Centre for Human Genetics, Campus Gasthuisberg, O&N1, Herestraat 49, 3000 Leuven, Belgium. Tel.: +32-16-345863; Fax: +32-16-347166; E-mail:
| | - Guido David
- Department of Molecular and Developmental Genetics, VIB, Leuven, Belgium
- Laboratory for Glycobiology and Developmental Genetics, Department of Human Genetics, Catholic University of Leuven, Leuven, Belgium
- *Correspondence to: Guido DAVID Centre for Human Genetics, Campus Gasthuisberg, O&N1, Herestraat 49, 3000 Leuven, Belgium. Tel.: +32-16-345863; Fax: +32-16-347166; E-mail:
| |
Collapse
|
16
|
Simizu S, Suzuki T, Muroi M, Lai NS, Takagi S, Dohmae N, Osada H. Involvement of disulfide bond formation in the activation of heparanase. Cancer Res 2007; 67:7841-9. [PMID: 17699790 DOI: 10.1158/0008-5472.can-07-1053] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Heparanase is overexpressed in many solid tumor cells and is capable of specifically cleaving heparan sulfate, and this activity is associated with the metastatic potential of tumor cells; however, the activation mechanism of heparanase has remained unknown. In this study, we investigated the link between disulfide bond formation and the activation of heparanase in human tumor cells. Mass spectrometry analysis of heparanase purified from a conditioned medium of human fibrosarcoma cells revealed two disulfide bonds, Cys127-Cys179 and Cys437-Cys542, and one S-cysteinylation at the Cys211 residue. It was shown that, although the formation of the Cys127-Cys179 bond and S-cysteinylation at Cys211 have little effect on heparanase function, the disulfide bond between Cys437 and Cys542 is necessary for the secretion and activation of heparanase. Thus, the present findings will provide a basis for the further refinement of heparanase structural studies and for the development of novel heparanase inhibitors.
Collapse
Affiliation(s)
- Siro Simizu
- Antibiotics Laboratory, Discovery Research Institute, RIKEN, Saitama, Japan
| | | | | | | | | | | | | |
Collapse
|
17
|
Doweck I, Kaplan-Cohen V, Naroditsky I, Sabo E, Ilan N, Vlodavsky I. Heparanase localization and expression by head and neck cancer: correlation with tumor progression and patient survival. Neoplasia 2007; 8:1055-61. [PMID: 17217623 PMCID: PMC1783722 DOI: 10.1593/neo.06577] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Heparanase is an endoglycosidase that specifically cleaves heparan sulfate (HS) side chains of HS proteoglycans, the major proteoglycans in the extracellular matrix and cell surfaces. Traditionally, heparanase activity was implicated in cellular invasion associated with angiogenesis, inflammation, and cancer metastasis. More recently, heparanase upregulation was documented in an increasing number of primary human tumors, correlating with reduced postoperative survival rate and enhanced tumor angiogenesis. In the present study, we examined the expression of heparanase in squamous cell carcinoma of the head and neck by means of immunostaining, and we correlated expression levels with patient outcome. The intensity and extent of heparanase staining correlated with tumor stage (P = .049 and P = .027, respectively), and the extent of staining further correlated with tumor grade (P = .047). Moreover, heparanase expression inversely correlated with patient status at the end of the study (P = .012). Notably, heparanase localization was found to be an important parameter for patient status. Thus, 63% of patients with nuclear staining, compared to 19% of patients with cytoplasmic staining (P = .0043), were alive, indicating that nuclear localization of the enzyme predicts a favorable outcome.
Collapse
Affiliation(s)
- Ilana Doweck
- Department of Otolaryngology, Head and Neck Surgery, Carmel Medical Center, Haifa, Israel.
| | | | | | | | | | | |
Collapse
|
18
|
Kobayashi M, Naomoto Y, Nobuhisa T, Okawa T, Takaoka M, Shirakawa Y, Yamatsuji T, Matsuoka J, Mizushima T, Matsuura H, Nakajima M, Nakagawa H, Rustgi A, Tanaka N. Heparanase regulates esophageal keratinocyte differentiation through nuclear translocation and heparan sulfate cleavage. Differentiation 2006; 74:235-43. [PMID: 16759289 DOI: 10.1111/j.1432-0436.2006.00072.x] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Heparanase is an endo-beta-glucuronidase that specifically cleaves heparan sulfate (HS) chains. Heparanase is involved in the process of metastasis and angiogenesis through the degradation of HS chains of the extracellular matrix and cell surface. Recently, we demonstrated that heparanase was localized in the cell nucleus of normal esophageal epithelium and esophageal cancer, and that its expression was correlated with cell differentiation. However, the nuclear function of heparanase remains unknown. To elucidate the role of heparanase in esophageal epithelial differentiation, primary human esophageal cells were grown in monolayer as well as organotypic cultures, and cell differentiation was induced. Expression of heparanase, HS, involucrin, and p27 was determined by immunostaining and Western blotting. SF4, a novel pharmacological inhibitor, was used to specifically inhibit heparanase activity. Upon esophageal cell differentiation, heparanase was translocated from the cytoplasm to the nucleus. Such translocation of heparanase appeared to be associated with the degradation of HS chains in the nucleus and changes in the expression of keratinocyte differentiation markers such as p27 and involucrin, whose induction was inhibited by SF4. Furthermore, these in vitro observations agreed with the expression pattern of heparanase, HS, involucrin, cytokeratin 13, and p27 in normal esophageal epithelium. Nuclear translocation of heparanase and its catalytic cleavage of HS may play a critical role in the differentiation of esophageal epithelial cells. Our study provides a novel insight into the role of heparanase in an essential differentiation process.
Collapse
Affiliation(s)
- Masahiko Kobayashi
- Department of Gastroenterological Surgery Transplant, and Surgical Oncology, Graduate School of Medicine and Dentistry, Okayama University, 2-5-1 Shikatacho, Okayama 700-8558, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Ilan N, Elkin M, Vlodavsky I. Regulation, function and clinical significance of heparanase in cancer metastasis and angiogenesis. Int J Biochem Cell Biol 2006; 38:2018-39. [PMID: 16901744 DOI: 10.1016/j.biocel.2006.06.004] [Citation(s) in RCA: 438] [Impact Index Per Article: 23.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2006] [Revised: 06/04/2006] [Accepted: 06/19/2006] [Indexed: 01/19/2023]
Abstract
Heparanase is an endoglycosidase which cleaves heparan sulfate (HS) and hence participates in degradation and remodeling of the extracellular matrix (ECM). Heparanase is preferentially expressed in human tumors and its over-expression in tumor cells confers an invasive phenotype in experimental animals. The enzyme also releases angiogenic factors from the ECM and thereby induces an angiogenic response in vivo. Heparanase upregulation correlates with increased tumor vascularity and poor post-operative survival of cancer patients. Heparanase is synthesized as a 65 kDa inactive precursor that undergoes proteolytic cleavage, yielding 8 and 50 kDa protein subunits that heterodimerize to form an active enzyme. Human heparanase is localized primarily within late endosomes and lysosomes and occasionally on the cell surface and within the cell nucleus. Transcriptional activity of the heparanase promoter is stimulated by demethylation, early growth response 1 (EGR1) transcription factor, estrogen, inflammatory cytokines and inactivation of p53. N-acetylated glycol-split species of heparin as well as siRNA heparanase gene silencing inhibit tumor metastasis and angiogenesis in experimental models. These observations and the unexpected identification of a single functional heparanase, suggest that the enzyme is a promising target for anti-cancer and anti-inflammatory drug development. Heparanase exhibits also non-enzymatic activities, independent of its involvement in ECM degradation and changes in the extracellular microenvironment. For example, cell surface expression of heparanase elicits a firm cell adhesion, reflecting an involvement in cell-ECM interaction. Heparanase enhances Akt signaling and stimulates PI3K- and p38-dependent endothelial cell migration and invasion. It also promotes VEGF expression via the Src pathway. The enzyme may thus activate endothelial cells and elicits angiogenic and survival responses. Studies with heparanase over-expressing transgenic mice revealed that the enzyme functions in normal processes involving cell mobilization, HS turnover, tissue vascularization and remodeling. In this review, we summarize the current status of heparanase research, emphasizing molecular and cellular aspects of the enzyme, including its mode of processing and activation, control of heparanase gene expression, enzymatic and non-enzymatic functions, and causal involvement in cancer metastasis and angiogenesis. We also discuss clinical aspects and strategies for the development of heparanase inhibitors.
Collapse
Affiliation(s)
- Neta Ilan
- Cancer and Vascular Biology Research Center, The Bruce Rappaport Faculty of Medicine, Technion, P.O. Box 9649, Haifa 31096, Israel
| | | | | |
Collapse
|
20
|
Zhang Y, Yeung MN, Liu J, Chau CH, Chan YS, Shum DKY. Mapping heparanase expression in the spinal cord of adult rats. J Comp Neurol 2006; 494:345-57. [PMID: 16320243 DOI: 10.1002/cne.20811] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
This work addresses the cellular localization of heparanase and its colocalization with syndecan-3, a transmembrane heparan sulfate proteoglycan in spinal cords of adult rats. Reverse transcriptase/polymerase chain reaction (RT-PCR) and in situ hybridization for the heparanase transcript revealed expression in neurons and white matter glia. This was confirmed by immunohistochemistry showing cytoplasmic localization of the heparanase protein. Double immunofluorescence for heparanase and syndecan-3 revealed colocalization of the proteins in cell bodies of neurons and oligodendrocytes, suggestive of constitutive expression in these cell types. In contrast, only subpopulations of astrocytes and NG2-expressing glia in the white matter expressed heparanase, and these did not show expression of syndecan-3. Cultures of astrocytes further evidenced upregulation of heparanase expression with TGF-beta(1) treatment, but no accompanying upregulation of syndecan-3 was detectable. These first findings of heparanase expression in the adult cord therefore provide the cellular basis for understanding functional interactions of heparanase and syndecan-3 in the normal neural network or otherwise in glial reactions to spinal cord injury.
Collapse
Affiliation(s)
- Yi Zhang
- Department of Biochemistry, Faculty of Medicine, The University of Hong Kong, China
| | | | | | | | | | | |
Collapse
|
21
|
Breidenbach M, Rein DT, Schöndorf T, Khan KN, Herrmann I, Schmidt T, Reynolds PN, Vlodavsky I, Haviv YS, Curiel DT. A new targeting approach for breast cancer gene therapy using the heparanase promoter. Cancer Lett 2005; 240:114-22. [PMID: 16271435 DOI: 10.1016/j.canlet.2005.09.007] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2005] [Accepted: 09/01/2005] [Indexed: 12/27/2022]
Abstract
Gene therapy with adenoviral (Ad) vectors is a promising new approach in the treatment of cancer. Strategies to restrict adenoviral-mediated transgene expression are important to avoid gene transfer into normal cells. Heparanase (HPR) is overexpressed in breast cancer but downregulated in differentiated normal tissue. Expression of the HPR gene was evaluated in breast cancer cells. Biodistribution and liver tropism was evaluated in a mouse model. HPR is highly expressed in breast cancer tissue. The HPR promoter retained its fidelity in an adenovirus context and was activated in breast cancer cells but showed low activity in normal breast cells and the murine liver. We conclude that the HPR pathway is a promising target for the development of breast cancer directed gene therapy strategies.
Collapse
Affiliation(s)
- Martina Breidenbach
- Division of Human Gene Therapy, Department of Medicine, Gene Therapy Center, 901 19th Street South, BMR2-508, University of Alabama at Birmingham, Birmingham, AL 35294-2172, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Simizu S, Takagi S, Tamura Y, Osada H. RECK-Mediated Suppression of Tumor Cell Invasion Is Regulated by Glycosylation in Human Tumor Cell Lines. Cancer Res 2005; 65:7455-61. [PMID: 16103099 DOI: 10.1158/0008-5472.can-04-4446] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
RECK, a glycosylphosphatidylinositol (GPI)-anchored glycoprotein, negatively regulates matrix metalloproteinases (MMP), such as MMP-9, and inhibits tumor invasion and metastasis. The predicted amino acid sequence of human RECK includes five putative N-glycosylation sites; however, the precise biochemical role of glycosylated RECK remains unknown. In this study, we examined the link between glycosylation and the function of RECK in human tumor cell lines. RECK protein was glycosylated at Asn86, Asn200, Asn297, and Asn352 residues but not at the Asn39 residue in HT1080 cells. Although the glycosylation of these asparagine sites did not play a role in the cell surface localization of RECK as a GPI-anchored protein, the glycosylation of RECK Asn297 residue was involved in the suppression of MMP-9 secretion and Asn352 residue was necessary to inhibit MMP-2 activation. Moreover, RECK-suppressed tumor cell invasion was reversed by inhibiting glycosylation at Asn86, Asn297, and Asn352 residues of RECK. Thus, these findings indicate that glycosylation mediates RECK suppression of tumor cell invasion by multiple mechanisms such as suppressing MMP-9 secretion and inhibiting MMP-2 activation.
Collapse
Affiliation(s)
- Siro Simizu
- Antibiotics Laboratory, Discovery Research Institute, RIKEN and Graduate School of Science and Engineering, Saitama University, Japan
| | | | | | | |
Collapse
|
23
|
de Mestre AM, Rao S, Hornby JR, Soe-Htwe T, Khachigian LM, Hulett MD. Early growth response gene 1 (EGR1) regulates heparanase gene transcription in tumor cells. J Biol Chem 2005; 280:35136-47. [PMID: 16093249 DOI: 10.1074/jbc.m503414200] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Heparanase is an endoglycosidase that degrades heparan sulfate chains of heparan sulfate proteoglycans, a key component of extracellular matrix and basement membranes. Studies using heparanase inhibitors and gene silencing have provided evidence to support an important role for heparanase in tumor metastasis and angiogenesis. The expression of heparanase is normally very tightly controlled, however, it is commonly deregulated in tumor cells, which express elevated heparanase activity that correlates with high levels of heparanase mRNA. We recently identified the transcription factor early growth response gene 1, EGR1, as a key regulator of inducible heparanase transcription in T cells. In this study using chromatin immunoprecipitation, we demonstrate for the first time that EGR1 binds to the heparanase gene promoter in vivo. The important question of the role of EGR1 in regulating heparanase transcription in tumor cells was then assessed. Studies were carried out in four epithelial tumor lines of different tissue origin. Functional dissection of the heparanase promoter identified a 280-bp region that was critical for transcription of the heparanase gene. Transactivation studies using an EGR1 expression vector co-transfected with a reporter construct containing the 280-bp region showed EGR1-activated heparanase promoter activity in a dose-dependent manner in prostate or breast adenocarcinoma and colon carcinoma cell lines. In contrast, overexpression of EGR1 resulted in a dose-dependent repression of promoter activity in melanoma cells. Using site-directed mutagenesis the 280-bp region was found to contain two functional EGR1 sites and electrophoretic mobility shift assays showed binding of EGR1 to both of these sites upon activation of tumor cells. Furthermore, the heparanase promoter region containing the EGR1 sites was also inducible in tumor cells and induction corresponded to HPSE expression levels. These studies show that EGR1 regulates heparanase transcription in tumor cells and importantly, can have a repressive or activating role depending on the tumor type.
Collapse
Affiliation(s)
- Amanda M de Mestre
- Cancer and Vascular Biology Group, Division of Immunology and Genetics, The John Curtin School of Medical Research, The Australian National University, Acton ACT 2601
| | | | | | | | | | | |
Collapse
|
24
|
Beckhove P, Helmke BM, Ziouta Y, Bucur M, Dörner W, Mogler C, Dyckhoff G, Herold-Mende C. Heparanase Expression at the Invasion Front of Human Head and Neck Cancers and Correlation with Poor Prognosis. Clin Cancer Res 2005; 11:2899-906. [PMID: 15837740 DOI: 10.1158/1078-0432.ccr-04-0664] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE Head and neck squamous cell carcinomas (HNSCC) are characterized by a poor prognosis due to aggressive, recurrent tumor growth. Expression of the extracellular matrix-degrading enzyme heparanase was associated with poorer prognosis in several cancers. We analyzed the presence of heparanase in HNSCC tissues and tumor cells and its potential prognostic significance. EXPERIMENTAL DESIGN We analyzed the expression of the active form of heparanase in HNSCC tissues in corresponding tumor cell cultures and after xenotransplantation of tumor cell cultures into NOD/Scid mice by immunohistochemistry, Western blot analysis, and reverse transcription-PCR in altogether 25 patients and did a comparison with clinicopathologic data of the patients. RESULTS Heparanase expression in situ was detected in all tumor biopsies in the tumor stroma and in tumor cells from 13 of 19 primary tumors and 9 of 12 lymph node metastases. Heparanase was localized in disseminated tumor cells, in tumor cell clusters invading adjacent stromal tissues, and in tumor cells at the tumor invasion front. Lymph node metastases expressed higher levels of heparanase compared with corresponding primary tumors. In contrast to a heterogeneous expression pattern in tumor tissues, all corresponding HNSCC tumor cell cultures showed a rather homogeneous heparanase expression on the mRNA and protein levels. Comparison of heparanase expression in situ and in corresponding tumor cell cultures in vitro or after xenotransplantation into NOD/Scid mice revealed that heparanase expression was regulated in vivo. Lack of heparanase in tumor cells from primary tumors or lymph node metastases was correlated with prolonged disease-free survival and overall survival. CONCLUSION Heparanase expression seems to be involved in the invasiveness and aggressiveness of HNSCC.
Collapse
MESH Headings
- Adult
- Aged
- Aged, 80 and over
- Animals
- Blotting, Western
- Cell Line, Tumor
- Female
- Gene Expression Regulation, Enzymologic
- Gene Expression Regulation, Neoplastic
- Glucuronidase/genetics
- Glucuronidase/metabolism
- Head and Neck Neoplasms/enzymology
- Head and Neck Neoplasms/genetics
- Head and Neck Neoplasms/pathology
- Humans
- Immunohistochemistry
- Lymphatic Metastasis
- Mice
- Mice, Inbred NOD
- Mice, SCID
- Middle Aged
- Neoplasm Invasiveness
- Neoplasm Transplantation
- Prognosis
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Reverse Transcriptase Polymerase Chain Reaction
- Survival Analysis
- Transplantation, Heterologous
Collapse
Affiliation(s)
- Philipp Beckhove
- Tumor Immunology Program, German Cancer Research Center, University of Heidelberg, Heidelberg, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
25
|
Levy-Adam F, Abboud-Jarrous G, Guerrini M, Beccati D, Vlodavsky I, Ilan N. Identification and characterization of heparin/heparan sulfate binding domains of the endoglycosidase heparanase. J Biol Chem 2005; 280:20457-66. [PMID: 15760902 DOI: 10.1074/jbc.m414546200] [Citation(s) in RCA: 102] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The endo-beta-glucuronidase, heparanase, is an enzyme that cleaves heparan sulfate at specific intra-chain sites, yielding heparan sulfate fragments with appreciable size and biological activities. Heparanase activity has been traditionally correlated with cell invasion associated with cancer metastasis, angiogenesis, and inflammation. In addition, heparanase up-regulation has been documented in a variety of primary human tumors, correlating with increased vascular density and poor postoperative survival, suggesting that heparanase may be considered as a target for anticancer drugs. In an attempt to identify the protein motif that would serve as a target for the development of heparanase inhibitors, we looked for protein domains that mediate the interaction of heparanase with its heparan sulfate substrate. We have identified three potential heparin binding domains and provided evidence that one of these is mapped at the N terminus of the 50-kDa active heparanase subunit. A peptide corresponding to this region (Lys(158)-Asp(171)) physically associates with heparin and heparan sulfate. Moreover, the peptide inhibited heparanase enzymatic activity in a dose-responsive manner, presumably through competition with the heparan sulfate substrate. Furthermore, antibodies directed to this region inhibited heparanase activity, and a deletion construct lacking this domain exhibited no enzymatic activity. NMR titration experiments confirmed residues Lys(158)-Asn(162) as amino acids that firmly bound heparin. Deletion of a second heparin binding domain sequence (Gln(270)-Lys(280)) yielded an inactive enzyme that failed to interact with cell surface heparan sulfate and hence accumulated in the culture medium of transfected HEK 293 cells to exceptionally high levels. The two heparin/heparan sulfate recognition domains are potentially attractive targets for the development of heparanase inhibitors.
Collapse
Affiliation(s)
- Flonia Levy-Adam
- Cancer and Vascular Biology Research Center, The Bruce Rappaport Faculty of Medicine, Technion, Haifa 31096, Israel
| | | | | | | | | | | |
Collapse
|
26
|
Ishida K, Wierzba MK, Teruya T, Simizu S, Osada H. Novel heparan sulfate mimetic compounds as antitumor agents. ACTA ACUST UNITED AC 2004; 11:367-77. [PMID: 15123266 DOI: 10.1016/j.chembiol.2004.02.015] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2003] [Revised: 12/08/2003] [Accepted: 12/12/2003] [Indexed: 11/25/2022]
Abstract
Heparan sulfate glycosaminoglycans (HSGAGs) are involved in tumor cell growth, adhesion, invasion, and migration, due to their interactions with various proteins. In this study, novel HSGAG-mimetic compounds (KI compounds) were designed and synthesized. As a result of cell-based assays, KI-105 was found to exert potent inhibitory activities against migration and invasion of human fibrosarcoma HT1080 cells. The present results indicate that a novel invasion/migration inhibitor, KI-105, can increase the adherence of HT1080 cells. It was conceivable that this cellular effect was caused by an increase in the amount of cell-surface HSGAGs and focal adhesions. Although further investigations are needed to decipher the molecular mechanism of KI-105, it is suggested that heparanase and Cdc42 are involved in its biological effects.
Collapse
Affiliation(s)
- Keisuke Ishida
- Antibiotics Laboratory, RIKEN Discovery Research Institute, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | | | | | | | | |
Collapse
|
27
|
Ishida K, Hirai G, Murakami K, Teruya T, Simizu S, Sodeoka M, Osada H. Structure-based design of a selective heparanase inhibitor as an antimetastatic agent. Mol Cancer Ther 2004. [DOI: 10.1158/1535-7163.1069.3.9] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Abstract
Heparanase is an endo-β-d-glucuronidase that degrades heparan sulfate glycosaminoglycans in the extracellular matrix and the basement membrane and is well known to be involved in tumor cell invasion and angiogenesis. We have focused on heparanase as a target for antitumor agents, especially antimetastatic agents. (R)-3-hexadecanoyl-5-hydroxymethyltetronic acid (RK-682) was found to display an inhibitory activity against heparanase in our screening of natural sources. Because RK-682 has been reported to show inhibitory activities against several enzymes, we have tried to develop selective heparanase inhibitors using the method of rational drug design. Based on the structure of the heparanase/RK-682 complex, we speculated that selective inhibitory activity against heparanase could be acquired by arylalkylation, namely, by benzylation of the 4-position of RK-682. Among the rationally designed 4-alkyl-RK-682 derivatives, 4-benzyl-RK-682 has been found to possess a selective inhibitory activity for heparanase (IC50 for heparanase, 17 μmol/L; IC50 for other enzymes, >100 μmol/L). 4-Benzyl-RK-682 also inhibited the invasion and migration of human fibrosarcoma HT1080 cells (IC50 for invasion, 1.5 μmol/L; IC50 for migration, 3.0 μmol/L). On the other hand, RK-682 had no inhibitory effect on the invasion and migration of HT1080 cells at doses of up to 100 μmol/L.
Collapse
Affiliation(s)
- Keisuke Ishida
- 1Antibiotics Laboratory, RIKEN Discovery Research Institute, Saitama, Japan
- 2Hanno Discovery Center, Taiho Pharmaceutical Co., Ltd., Saitama, Japan
| | - Go Hirai
- 3Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Miyagi, Japan; and
| | - Koji Murakami
- 2Hanno Discovery Center, Taiho Pharmaceutical Co., Ltd., Saitama, Japan
| | - Takayuki Teruya
- 1Antibiotics Laboratory, RIKEN Discovery Research Institute, Saitama, Japan
- 4Graduate School of Science and Engineering, Saitama University, Saitama, Japan
| | - Siro Simizu
- 1Antibiotics Laboratory, RIKEN Discovery Research Institute, Saitama, Japan
| | - Mikiko Sodeoka
- 3Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Miyagi, Japan; and
| | - Hiroyuki Osada
- 1Antibiotics Laboratory, RIKEN Discovery Research Institute, Saitama, Japan
- 4Graduate School of Science and Engineering, Saitama University, Saitama, Japan
| |
Collapse
|
28
|
Simizu S, Ishida K, Osada H. Heparanase as a molecular target of cancer chemotherapy. Cancer Sci 2004; 95:553-8. [PMID: 15245589 PMCID: PMC11158291 DOI: 10.1111/j.1349-7006.2004.tb02485.x] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2004] [Revised: 05/11/2004] [Accepted: 05/18/2004] [Indexed: 12/25/2022] Open
Abstract
Cancer cells require the ability to degrade the extracellular matrix (ECM) in order to turn into invasive and metastatic cancer cells. Many proteases and glycosidases are essential in the process of dissolving the components of the ECM. An endo-beta-D-glucuronidase, heparanase, is capable of specifically degrading one of the ECM components, heparan sulfate, and this activity is associated with the metastatic potential of tumor cells. Since heparanase mRNA is overexpressed in many human tumors (e.g., hepatomas, head and neck tumors, and esophageal carcinomas), the mechanisms regulating the activity of heparanase should be clarified; considering the possible role of heparanase in cancer, the development of heparanase inhibitors would appear to be advantageous. This review will focus on recent findings that have contributed to the characterization of heparanase and to the elucidation of the transcriptional regulation of heparanase mRNA expression, as well as the development of heparanase inhibitors.
Collapse
Affiliation(s)
- Siro Simizu
- Antibiotics Laboratory, Discovery Research Institute, RIKEN, Wako, Saitama 351-0198, Japan
| | | | | |
Collapse
|
29
|
Abstract
The contribution of the mRNA cap-binding protein, eIF-4E, to malignant transformation and progression has been illuminated over the past decade. eIF-4E overexpression has been demonstrated in human tumors of the breast, head and neck, colon, prostate, bladder, cervix and lung, and has been related to disease progression. Overexpression of eIF-4E in experimental models dramatically alters cellular morphology, enhances proliferation and induces cellular transformation, tumorigenesis and metastasis. Conversely, blocking eIF-4E function by expression of antisense RNA, or overexpression of the inhibitory eIF-4E binding proteins (4E-BPs), suppresses cellular transformation, tumor growth, tumor invasiveness and metastasis. Although eIF-4E regulates the recruitment of mRNA to ribosomes, and thereby globally regulates cap-dependent protein synthesis, eIF-4E contributes to malignancy by selectively enabling the translation of a limited pool of mRNAs--those that generally encode key proteins involved in cellular growth, angiogenesis, survival and malignancy (e.g. cyclin D1, c-myc, vascular endothelial growth factor, matrix metalloprotease 9). A deeper understanding of the role of eIF-4E in regulating the translation of the diverse gene products involved in all aspects of malignancy will improve the capacity to exploit eIF-4E as a therapeutic target and as a marker for human cancer progression.
Collapse
Affiliation(s)
- Arrigo De Benedetti
- Department of Biochemistry and Molecular Biology, Louisiana State University Medical Center, Shreveport, 1501 Kings Highway, PO Box 33932, Shreveport, LA 71130, USA.
| | | |
Collapse
|
30
|
Ishida K, Simizu S, Teruya T, Wierzba MK, Osada H. Rational design and synthesis of novel heparan sulfate mimetic compounds as antiadhesive agents. Bioorg Med Chem Lett 2004; 14:2505-9. [PMID: 15109641 DOI: 10.1016/j.bmcl.2004.03.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2004] [Accepted: 03/01/2004] [Indexed: 11/30/2022]
Abstract
A biological evaluation of the antiadhesive activity of novel heparan sulfate glycosaminoglycans mimetic compounds (KI-compounds) is described. In an adhesion assay, KI-111 [2-(4-fluoro-3-nitrobenzoyl)benzoic acetic anhydride] was found to exert potent inhibitory activities against the adhesion of human fibrosarcoma HT1080 cells and HeLa cells to fibronectin. Cell growth, migration, and invasion of HT1080 cells were also inhibited by KI-111 at almost equal concentrations.
Collapse
Affiliation(s)
- Keisuke Ishida
- Antibiotics Laboratory, RIKEN Discovery Research Institute, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | | | | | | | | |
Collapse
|
31
|
Simizu S, Ishida K, Wierzba MK, Osada H. Secretion of Heparanase Protein Is Regulated by Glycosylation in Human Tumor Cell Lines. J Biol Chem 2004; 279:2697-703. [PMID: 14573609 DOI: 10.1074/jbc.m300541200] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The endo-beta-d-glucuronidase, heparanase, is capable of specifically degrading heparan sulfate, and this activity is associated with the metastatic potential of tumor cells. The predicted amino acid sequence of heparanase includes six putative N-glycosylation sites; however, the precise biochemical role of glycosylated heparanase remains unknown. In this study, we examined the link between glycosylation and the function of heparanase in human tumor cell lines. Heparanase protein was glycosylated at six Asn residues in human tumor cell lines. Treatment with a glycosylation inhibitor demonstrated that glycosylation was not required for the activity of heparanase. However, glycosylation affected the kinetics of endoplasmic reticulum-to-Golgi transport and of secretion of the enzyme.
Collapse
Affiliation(s)
- Siro Simizu
- Antibiotics Laboratory, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | | | | | | |
Collapse
|
32
|
de Mestre AM, Khachigian LM, Santiago FS, Staykova MA, Hulett MD. Regulation of Inducible Heparanase Gene Transcription in Activated T Cells by Early Growth Response 1. J Biol Chem 2003; 278:50377-85. [PMID: 14522979 DOI: 10.1074/jbc.m310154200] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Cleavage of heparan sulfate by the beta-D-endoglucuronidase heparanase (HPSE) is a fundamental event in a number of important physiological processes including inflammation, wound healing, and angiogenesis. HPSE activity has also been directly correlated with pathological conditions such as tumor growth and metastasis and autoimmune disease. The tight regulation of HPSE expression and function is critical to ensure homeostasis of the normal physiological processes to which it contributes and to prevent imbalance toward pathological situations. Little is known about the transcriptional mechanisms that regulate HPSE expression. In this study we have shown human HPSE gene transcription in Jurkat T cells is induced upon activation. Functional analysis of the HPSE promoter has identified a 280-bp region that is highly inducible. Mutation studies together with supershift experiments have identified a 4-bp motif that binds the transcription factor early growth response-1 (Egr1) and is critical in regulating inducible HPSE gene transcription. Furthermore, the overexpression of Egr1 resulted in the enhanced activation of the HPSE promoter. By using MAPK pathway inhibitors, we have also shown that inducible expression of HPSE mRNA and the activity of the 280-bp HPSE promoter element are dependent on the ERK1/2 (MEK1/2) pathway. This pathway is critical for induction of Egr1 expression at both the mRNA and protein level in T cells, an observation that provides further support to Egr1 playing an important role as a key activator of HPSE expression. In addition, HPSE and Egr1 were shown to co-localize by immunohistochemistry to invading mononuclear leukocytes in actively induced experimental autoimmune encephalomyelitis in rats. These findings provide the first insight into the mechanisms controlling inducible transcription of the HPSE gene, and could represent an important lead into understanding how HPSE expression is deregulated in metastatic tumor cells.
Collapse
Affiliation(s)
- Amanda M de Mestre
- Cancer and Vascular Biology Group, John Curtin School of Medical Research, Australian National University, Acton ACT 2601
| | | | | | | | | |
Collapse
|
33
|
Levy-Adam F, Miao HQ, Heinrikson RL, Vlodavsky I, Ilan N. Heterodimer formation is essential for heparanase enzymatic activity. Biochem Biophys Res Commun 2003; 308:885-91. [PMID: 12927802 DOI: 10.1016/s0006-291x(03)01478-5] [Citation(s) in RCA: 94] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Heparanase is an endo-beta-D-glucuronidase involved in cleavage of heparan sulfate residues and hence participates in extracellular matrix degradation and remodeling. The heparanase cDNA encodes for a polypeptide of 543 amino acids that appears as a approximately 65 kDa band in SDS-PAGE analysis. The protein undergoes a proteolytic cleavage that is likely to occur at two potential cleavage sites, Glu(109)-Ser(110) and Gln(157)-Lys(158), yielding an 8 kDa polypeptide at the N-terminus, a 50 kDa polypeptide at the C-terminus, and a 6 kDa linker polypeptide that resides in-between. The active form of heparanase has long been thought to be a 50 kDa polypeptide isolated from cells and tissues. However, attempts to obtain heparanase activity after expression of the 50 kDa polypeptide failed, suggesting that the N-terminal region is important for heparanase enzymatic activity. It has been hypothesized that heterodimer formation between the 8 and 50 kDa heparanase subunits is important for heparanase enzymatic activity. By individually or co-expressing the 8 and 50 kDa heparanase subunits in mammalian cells, we demonstrate specific association between the heparanase subunits by means of co-immunoprecipitation and pull-down experiments. Moreover, a region in the 50 kDa heparanase subunit that mediates interaction with the 8 kDa subunit was identified. Altogether, our results clearly indicate that heterodimer formation is necessary and sufficient for heparanase enzymatic activity in mammalian cells.
Collapse
Affiliation(s)
- Flonia Levy-Adam
- Cancer and Vascular Biology Research Center, The Bruce Rappaport Faculty of Medicine, Technion, Haifa 31096, Israel
| | | | | | | | | |
Collapse
|