1
|
Flégeau K, Jing J, Brusini R, Gallet M, Moreno C, Walker L, Bourdon F, Faivre J. Multidose Hyaluronidase Administration as an Optimal Procedure to Degrade Resilient Hyaluronic Acid Soft Tissue Fillers. Molecules 2023; 28:molecules28031003. [PMID: 36770671 PMCID: PMC9919540 DOI: 10.3390/molecules28031003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 01/13/2023] [Accepted: 01/13/2023] [Indexed: 01/20/2023] Open
Abstract
Minimally invasive hyaluronan (HA) tissue fillers are routinely employed to provide tissue projection and correct age-related skin depressions. HA fillers can advantageously be degraded by hyaluronidase (HAase) administration in case of adverse events. However, clear guidelines regarding the optimal dosage and mode of administration of HAase are missing, leaving a scientific gap for practitioners in their daily practice. In this study, we implemented a novel rheological procedure to rationally evaluate soft tissue filler degradability and optimize their degradation kinetics. TEOSYAL RHA® filler degradation kinetics in contact with HAase was monitored in real-time by rheological time sweeps. Gels were shown to degrade as a function of enzymatic activity, HA concentration, and BDDE content, with a concomitant loss of their viscoelastic properties. We further demonstrated that repeated administration of small HAase doses improved HA degradation kinetics over large single doses. Mathematical analyses were developed to evaluate the degradation potential of an enzyme. Finally, we tuned the optimal time between injections and number of enzymatic units, maximizing degradation kinetics. In this study, we have established a scientific rationale for the degradation of HA fillers by multidose HAase administration that could serve as a basis for future clinical management of adverse events.
Collapse
Affiliation(s)
- Killian Flégeau
- Research and Development Department, Teoxane SA, Rue de Lyon 105, 1203 Geneva, Switzerland
| | - Jing Jing
- Research and Development Department, Teoxane SA, Rue de Lyon 105, 1203 Geneva, Switzerland
| | - Romain Brusini
- Research and Development Department, Teoxane SA, Rue de Lyon 105, 1203 Geneva, Switzerland
| | - Mélanie Gallet
- Research and Development Department, Teoxane SA, Rue de Lyon 105, 1203 Geneva, Switzerland
| | - Capucine Moreno
- Research and Development Department, Teoxane SA, Rue de Lyon 105, 1203 Geneva, Switzerland
| | - Lee Walker
- Private Practice, B City Clinic, 88 Rodney Street, Liverpool L1 9AR, UK
| | - François Bourdon
- Research and Development Department, Teoxane SA, Rue de Lyon 105, 1203 Geneva, Switzerland
| | - Jimmy Faivre
- Research and Development Department, Teoxane SA, Rue de Lyon 105, 1203 Geneva, Switzerland
- Correspondence:
| |
Collapse
|
2
|
Zhu XH, Du JX, Zhu D, Ren SZ, Chen K, Zhu HL. Recent Research on Methods to Improve Tumor Hypoxia Environment. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:5721258. [PMID: 33343807 PMCID: PMC7725563 DOI: 10.1155/2020/5721258] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 07/26/2020] [Accepted: 10/18/2020] [Indexed: 12/13/2022]
Abstract
Cancer is a major disease burden worldwide. In recent years, in addition to surgical resection, radiotherapy and chemotherapy are recognized as the most effective methods for treating solid tumors. These methods have been introduced to treat tumors of different origins and stages clinically. However, due to insufficient blood flow and oxygen (O2) supply in solid tumors, hypoxia is caused, leading to decreased sensitivity of tumor cells and poor therapeutic effects. In addition, hypoxia will also lead to resistance to most anticancer drugs, accelerate malignant progress, and increase metastasis. In solid tumors, adequate O2 supply and adequate delivery of anticancer drugs are essential to improve radiotherapy and chemotherapy sensitivity. In recent decades, the researches on relieving tumor hypoxia have attracted researchers' extensive attention and achieved good results. However, as far as we know, there is no detailed review of the researches on alleviating tumor hypoxia. Therefore, in this contribution, we hope to give an overview of the researches on methods to improve tumor hypoxia environment and summarize their effect and application in tumor therapy, to provide a methodological reference for the research and development of new antitumor agents.
Collapse
Affiliation(s)
- Xiao-Hua Zhu
- The Joint Research Center of Guangzhou University and Keele University for Gene Interference and Application, School of Life Science, Guangzhou University, Guangzhou 510006, China
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, China
| | - Jun-Xi Du
- The Joint Research Center of Guangzhou University and Keele University for Gene Interference and Application, School of Life Science, Guangzhou University, Guangzhou 510006, China
| | - Dan Zhu
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, China
| | - Shen-Zhen Ren
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, China
- Key Laboratory of Molecular Biophysics, Hebei Province, Institute of Biophysics, School of Sciences, Hebei University of Technology, Tianjin 300401, China
| | - Kun Chen
- The Joint Research Center of Guangzhou University and Keele University for Gene Interference and Application, School of Life Science, Guangzhou University, Guangzhou 510006, China
| | - Hai-Liang Zhu
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, China
| |
Collapse
|
3
|
Kadoya H, Yu N, Schiessl IM, Riquier-Brison A, Gyarmati G, Desposito D, Kidokoro K, Butler MJ, Jacob CO, Peti-Peterdi J. Essential role and therapeutic targeting of the glomerular endothelial glycocalyx in lupus nephritis. JCI Insight 2020; 5:131252. [PMID: 32870819 PMCID: PMC7566710 DOI: 10.1172/jci.insight.131252] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Accepted: 08/26/2020] [Indexed: 01/11/2023] Open
Abstract
Lupus nephritis (LN) is a major organ complication and cause of morbidity and mortality in patients with systemic lupus erythematosus (SLE). There is an unmet medical need for developing more efficient and specific, mechanism-based therapies, which depends on improved understanding of the underlying LN pathogenesis. Here we present direct visual evidence from high-power intravital imaging of the local kidney tissue microenvironment in mouse models showing that activated memory T cells originated in immune organs and the LN-specific robust accumulation of the glomerular endothelial glycocalyx played central roles in LN development. The glomerular homing of T cells was mediated via the direct binding of their CD44 to the hyaluronic acid (HA) component of the endothelial glycocalyx, and glycocalyx-degrading enzymes efficiently disrupted homing. Short-course treatment with either hyaluronidase or heparinase III provided long-term organ protection as evidenced by vastly improved albuminuria and survival rate. This glycocalyx/HA/memory T cell interaction is present in multiple SLE-affected organs and may be therapeutically targeted for SLE complications, including LN. A combined immunology and renal pathophysiology study of the local kidney tissue microenvironment in lupus identifies a key role of glomerular endothelial glycocalyx in disease development.
Collapse
Affiliation(s)
- Hiroyuki Kadoya
- Department of Physiology and Neuroscience and Department of Medicine, Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, California, USA.,Department of Nephrology/Hypertension, Kawasaki Medical School, Kurashiki, Japan
| | - Ning Yu
- Division of Rheumatology, Department of Medicine, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Ina Maria Schiessl
- Department of Physiology and Neuroscience and Department of Medicine, Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Anne Riquier-Brison
- Department of Physiology and Neuroscience and Department of Medicine, Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Georgina Gyarmati
- Department of Physiology and Neuroscience and Department of Medicine, Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Dorinne Desposito
- Department of Physiology and Neuroscience and Department of Medicine, Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Kengo Kidokoro
- Department of Physiology and Neuroscience and Department of Medicine, Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, California, USA.,Department of Nephrology/Hypertension, Kawasaki Medical School, Kurashiki, Japan
| | - Matthew J Butler
- Academic Renal Unit, School of Clinical Sciences, University of Bristol, Bristol, United Kingdom
| | - Chaim O Jacob
- Division of Rheumatology, Department of Medicine, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - János Peti-Peterdi
- Department of Physiology and Neuroscience and Department of Medicine, Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| |
Collapse
|
4
|
Sun X, Ni N, Ma Y, Wang Y, Leong DT. Retooling Cancer Nanotherapeutics' Entry into Tumors to Alleviate Tumoral Hypoxia. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2020; 16:e2003000. [PMID: 32803846 DOI: 10.1002/smll.202003000] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 06/20/2020] [Indexed: 06/11/2023]
Abstract
Anti-hypoxia cancer nanomedicine (AHCN) holds exciting potential in improving oxygen-dependent therapeutic efficiencies of malignant tumors. However, most studies regarding AHCN focus on optimizing structure and function of nanomaterials with presupposed successful entry into tumor cells. From such a traditional perspective, the main barrier that AHCN needs to overcome is mainly the tumor cell membrane. However, such an oversimplified perspective would neglect that real tumors have many biological, physiological, physical, and chemical defenses preventing the current state-of-the-art AHCNs from even reaching the targeted tumor cells. Fortunately, in recent years, some studies are beginning to intentionally focus on overcoming physiological barriers to alleviate hypoxia. In this Review, the limitations behind the traditional AHCN delivery mindset are addressed and the key barriers that need to be surmounted before delivery to cancer cells and some good ways to improve cell membrane attachment, internalization, and intracellular retention are summarized. It is aimed to contribute to Review literature on this emerging topic through refreshing perspectives based on this work and what is also learnt from others. This Review would therefore assist AHCNs researchers to have a quick overview of the essential information and glean thought-provoking ideas to advance this sub-field in cancer nanomedicine.
Collapse
Affiliation(s)
- Xiao Sun
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore, 117585, Singapore
| | - Nengyi Ni
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore, 117585, Singapore
| | - Yanling Ma
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore, 117585, Singapore
| | - Yan Wang
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore, 117585, Singapore
| | - David Tai Leong
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore, 117585, Singapore
| |
Collapse
|
5
|
Haidar Saify Nabiabad, Massoumeh Amini. Fabrication of an Impedimetric Immunosensor for Screening and Determination of Vincristine in Biological Samples. JOURNAL OF ANALYTICAL CHEMISTRY 2020. [DOI: 10.1134/s1061934820080092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
6
|
Li X, Kwon N, Guo T, Liu Z, Yoon J. Innovative Strategies for Hypoxic‐Tumor Photodynamic Therapy. Angew Chem Int Ed Engl 2018; 57:11522-11531. [DOI: 10.1002/anie.201805138] [Citation(s) in RCA: 611] [Impact Index Per Article: 101.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Indexed: 01/16/2023]
Affiliation(s)
- Xingshu Li
- Department of Chemistry and Nano ScienceEwha Womans University Seoul 120–750 Korea
| | - Nahyun Kwon
- Department of Chemistry and Nano ScienceEwha Womans University Seoul 120–750 Korea
| | - Tian Guo
- Department of Chemistry and Nano ScienceEwha Womans University Seoul 120–750 Korea
| | - Zhuang Liu
- Institute of Functional Nano&Soft Materials (FUNSOM)Jiangsu Key Laboratory for Carbon-based Functional Materials and DevicesSoochow University Suzhou Jiangsu 215123 China
| | - Juyoung Yoon
- Department of Chemistry and Nano ScienceEwha Womans University Seoul 120–750 Korea
| |
Collapse
|
7
|
Li X, Kwon N, Guo T, Liu Z, Yoon J. Innovative Strategien für die photodynamische Therapie hypoxischer Tumore. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201805138] [Citation(s) in RCA: 79] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Affiliation(s)
- Xingshu Li
- Department of Chemistry and Nano Science; Ewha Womans University; Seoul 120-750 Korea
| | - Nahyun Kwon
- Department of Chemistry and Nano Science; Ewha Womans University; Seoul 120-750 Korea
| | - Tian Guo
- Department of Chemistry and Nano Science; Ewha Womans University; Seoul 120-750 Korea
| | - Zhuang Liu
- Institute of Functional Nano&Soft Materials (FUNSOM); Jiangsu Key Laboratory for Carbon-based Functional Materials and Devices; Soochow University; Suzhou Jiangsu 215123 China
| | - Juyoung Yoon
- Department of Chemistry and Nano Science; Ewha Womans University; Seoul 120-750 Korea
| |
Collapse
|
8
|
Wang N, Manabe Y, Sugawara T, Paul NA, Zhao J. Identification and biological activities of carotenoids from the freshwater alga Oedogonium intermedium. Food Chem 2017; 242:247-255. [PMID: 29037686 DOI: 10.1016/j.foodchem.2017.09.075] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Revised: 09/11/2017] [Accepted: 09/14/2017] [Indexed: 11/19/2022]
Abstract
The chemical and biological properties of carotenoids in the freshwater alga Oedogonium intermedium were investigated in this study. Carotenoids were extracted from the alga by dichloromethane and purified by saponification. The carotenoid content was determined both spectrometrically and by HPLC, the carotenoids identified by HPLC-PDA-APCI-IT-TOF-MS and the extracts analysed for several health-related bioactivities. The crude and saponified extracts contained 3,411.2±20.7 and 2,929.6±5.9µg carotenoids/g dry algal biomass, respectively. Seven major carotenoids were identified, namely neoxanthin, 9'-cis-neoxanthin, loroxanthin, violaxanthin, lutein, α-carotene and β-carotene, which were present in similar amounts in the alga. Both the crude and saponified carotenoid extracts exhibited significant antioxidant activities as well as potent inhibitory effects against several metabolically important enzymes including α-amylase, α-glucosidase, pancreatic lipase and hyaluronidase, but they were poor inhibitors of angiotensin converting enzyme (ACE). Oedogonium could be an important new source of carotenoids, specifically loroxanthin, which is lacking in terrestrial plants.
Collapse
Affiliation(s)
- Na Wang
- School of Chemical Engineering, The University of New South Wales, Sydney, New South Wales 2052, Australia
| | - Yuki Manabe
- Marine Bioproducts Technology, Kyoto University, Kyoto 606-8502, Japan
| | - Tatsuya Sugawara
- Marine Bioproducts Technology, Kyoto University, Kyoto 606-8502, Japan
| | - Nicholas A Paul
- Faculty of Science, Health, Education and Engineering, University of the Sunshine Coast, Maroochydore, Queensland 4558, Australia
| | - Jian Zhao
- School of Chemical Engineering, The University of New South Wales, Sydney, New South Wales 2052, Australia.
| |
Collapse
|
9
|
Hall AA, Mendoza MI, Zhou H, Shaughness M, Maudlin-Jeronimo E, McCarron RM, Ahlers ST. Repeated Low Intensity Blast Exposure Is Associated with Damaged Endothelial Glycocalyx and Downstream Behavioral Deficits. Front Behav Neurosci 2017. [PMID: 28649193 PMCID: PMC5465256 DOI: 10.3389/fnbeh.2017.00104] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Current clinical research into mild traumatic brain injury (mTBI) has focused on white matter changes as identified by advanced MRI based imaging techniques. However, perivascular tau accumulation in the brains of individuals diagnosed with mTBI suggests that the vasculature plays a key role in the pathology. This study used a rat model to examine whether the endothelial glycocalyx, a layer of the vasculature responsible for sensing luminal shear forces, is damaged by exposure to repeated low intensity blast, and whether this layer is associated with observed behavioral deficits. The blast exposure used consisted of 12, 40 kPa blast exposures conducted with a minimum of 24 h between blasts. We found that repeated blast exposure reduced glycocalyx length and density in various brain regions indicating damage. This blast exposure paradigm was associated with a mild performance decrement in the Morris water maze (MWM) which assesses learning and memory. Administration of hyaluronidase, an enzyme that binds to and degrades hyaluronan (a major structural component of the glycocalyx) prior to blast exposure reduced the observed behavioral deficits and induced a thickening of the glycocalyx layer. Taken together these findings demonstrate that the endothelial glycocalyx degradation following repeated blast is associated with behavioral decrements which can be prevented by treatment with hyaluronidase.
Collapse
Affiliation(s)
- Aaron A Hall
- Neurotrauma Department, Operational and Undersea Medicine, Naval Medical Research Center, Silver SpringMD, United States
| | - Mirian I Mendoza
- Neurotrauma Department, Operational and Undersea Medicine, Naval Medical Research Center, Silver SpringMD, United States
| | - Hanbing Zhou
- Neurotrauma Department, Operational and Undersea Medicine, Naval Medical Research Center, Silver SpringMD, United States
| | - Michael Shaughness
- Neurotrauma Department, Operational and Undersea Medicine, Naval Medical Research Center, Silver SpringMD, United States
| | - Eric Maudlin-Jeronimo
- Neurotrauma Department, Operational and Undersea Medicine, Naval Medical Research Center, Silver SpringMD, United States
| | - Richard M McCarron
- Neurotrauma Department, Operational and Undersea Medicine, Naval Medical Research Center, Silver SpringMD, United States
| | - Stephen T Ahlers
- Neurotrauma Department, Operational and Undersea Medicine, Naval Medical Research Center, Silver SpringMD, United States
| |
Collapse
|
10
|
Tang KSC, Konczak I, Zhao J. Phenolic compounds of the Australian native herb Prostanthera rotundifolia and their biological activities. Food Chem 2017; 233:530-539. [PMID: 28530609 DOI: 10.1016/j.foodchem.2017.04.137] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2016] [Revised: 03/10/2017] [Accepted: 04/23/2017] [Indexed: 11/15/2022]
Abstract
The chemical identity and bioactivities of phenolic components of the Australian native herb Prostanthera rotundifolia were studied. Phenolic compounds were extracted with 80% (v/v) aqueous methanol and purified by liquid chromatography. The antioxidant capacity of the extract and its inhibiting activity against α-glucosidase, pancreatic lipase and hyaluronidase were determined. Phenolic compounds were identified by a combination of HPLC-PDA, LC-high resolution MS (LC-HRMS), LC-tandem MS (LC-MS/MS) and nuclear magnetic resonance (NMR) spectroscopy. Compared to spearmint, mint bush showed comparable antioxidant capacity, stronger inhibitory activity on pancreatic lipase and comparable and lower activity on α-glucosidase and hyaluronidase, respectively. Major compounds identified were verbascoside (48.8%), 4-methoxycinnamic acid (36.4%), p-coumaric acid glucose ester (9.2%) and 1-O-β-d-glucopyranosyl sinapate (5.6%), while caffeic acid, p-coumaric acid, hesperidin and naringenin were present in trace quantities. 4-Methoxycinnamic acid, p-coumaric acid glucose ester and 1-O-β-d-glucopyranosyl sinapate were identified for the first time in the genus of Prostanthera.
Collapse
Affiliation(s)
- Kitty S C Tang
- Food Science and Technology, School of Chemical Engineering, UNSW Australia, Sydney 2052, Australia
| | - Izabela Konczak
- Food Science and Technology, School of Chemical Engineering, UNSW Australia, Sydney 2052, Australia
| | - Jian Zhao
- Food Science and Technology, School of Chemical Engineering, UNSW Australia, Sydney 2052, Australia.
| |
Collapse
|
11
|
Practical Considerations for Self-Administration of Subcutaneous Immunoglobulin G Utilizing Recombinant Human Hyaluronidase, an Advanced Method of Subcutaneous Administration: A Nurse's Perspective. JOURNAL OF INFUSION NURSING 2016; 39:359-368. [PMID: 27828933 DOI: 10.1097/nan.0000000000000182] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
An approved subcutaneous infusion of immunoglobulin G using recombinant human hyaluronidase (IGHy) allows adult patients with primary immunodeficiency disease to self-administer every 3 to 4 weeks using 1 to 2 subcutaneous infusion site(s). This article reviews the practical considerations for nurses to simplify patient education and training. Key considerations include pump choice and parameters, ancillary supplies, and technique. Patient education includes infusion log upkeep and management of potential reactions. Educational initiatives should be designed to meet specific patient needs. Successful IGHy self-administration depends on proper patient training and continuing interaction between the health care team and the patient to optimize the patient experience.
Collapse
|
12
|
Gong H, Chao Y, Xiang J, Han X, Song G, Feng L, Liu J, Yang G, Chen Q, Liu Z. Hyaluronidase To Enhance Nanoparticle-Based Photodynamic Tumor Therapy. NANO LETTERS 2016; 16:2512-21. [PMID: 27022664 DOI: 10.1021/acs.nanolett.6b00068] [Citation(s) in RCA: 231] [Impact Index Per Article: 28.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Photodynamic therapy (PDT) is considered as a safe and selective way to treat a wide range of cancers as well as nononcological disorders. However, as oxygen is required in the process of PDT, the hypoxic tumor microenvironment has largely limited the efficacy of PDT to treat tumors especially those with relatively large sizes. To this end, we uncover that hyaluronidase (HAase), which breaks down hyaluronan, a major component of extracellular matrix (ECM) in tumors, would be able to enhance the efficacy of nanoparticle-based PDT for in vivo cancer treatment. It is found that the administration of HAase would lead to the increase of tumor vessel densities and effective vascular areas, resulting in increased perfusion inside the tumor. As a result, the tumor uptake of nanomicelles covalently linked with chlorine e6 (NM-Ce6) would be increased by ∼2 folds due to the improved "enhanced permeability and retention" (EPR) effect, while the tumor oxygenation level also shows a remarkable increase, effectively relieving the hypoxia state inside the tumor. Those effects taken together offer significant benefits in greatly improving the efficacy of PDT delivered by nanoparticles. Taking advantage of the effective migration of HAase from the primary tumor to its drainage sentinel lymph nodes (SLNs), we further demonstrate that this strategy would be helpful to the treatment of metastatic lymph nodes by nanoparticle-based PDT. Lastly, both enhanced EPR effect of NM-Ce6 and relieved hypoxia state of tumor are also observed after systemic injection of modified HAase, proving its potential for clinical translation. Therefore, our work presents a new concept to improve the efficacy of nanomedicine by modulating the tumor microenvironment.
Collapse
Affiliation(s)
- Hua Gong
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University , Suzhou, Jiangsu 215123, China
| | - Yu Chao
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University , Suzhou, Jiangsu 215123, China
| | - Jian Xiang
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University , Suzhou, Jiangsu 215123, China
| | - Xiao Han
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University , Suzhou, Jiangsu 215123, China
| | - Guosheng Song
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University , Suzhou, Jiangsu 215123, China
| | - Liangzhu Feng
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University , Suzhou, Jiangsu 215123, China
| | - Jingjing Liu
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University , Suzhou, Jiangsu 215123, China
| | - Guangbao Yang
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University , Suzhou, Jiangsu 215123, China
| | - Qian Chen
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University , Suzhou, Jiangsu 215123, China
| | - Zhuang Liu
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University , Suzhou, Jiangsu 215123, China
| |
Collapse
|
13
|
Li RR, Yu QL, Han L, Rong LY, Yang MM, An MR. Isolation and enzymatic characterization of the first reported hyaluronidase from Yak (Bos grunniens) testis. KOREAN J CHEM ENG 2014. [DOI: 10.1007/s11814-014-0135-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
14
|
Enhancement of the hyaluronidase production from isolated Staphylococcus aureus using factorial design technique and partial purification. ACTA ACUST UNITED AC 2014. [DOI: 10.1016/j.molcatb.2014.02.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
15
|
Jin P, Kang Z, Zhang N, Du G, Chen J. High-yield novel leech hyaluronidase to expedite the preparation of specific hyaluronan oligomers. Sci Rep 2014; 4:4471. [PMID: 24667183 PMCID: PMC3966032 DOI: 10.1038/srep04471] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2014] [Accepted: 03/10/2014] [Indexed: 11/25/2022] Open
Abstract
Hyaluronidases (HAases), particularly leech HAases, have attracted intense attention due to their broad applications in medical treatments and great potential for the enzymatic production of hyaluronan oligosaccharides. However, little is known about this third interesting family of HAases. Here, we applied the random amplification of cDNA ends polymerase chain reaction (RACE-PCR) approach to identify the first leech HAase-encoding gene. By combining protein engineering and high-density culture, we achieved high-level production (8.42 × 105 U ml−1) in the yeast Pichia pastoris secretory expression system. Compared with the commercial bovine testicular HAase, the recombinant leech HAase exhibited superior enzymatic properties. Furthermore, analysis of the hydrolytic process suggested that this novel enzyme adopts a nonprocessive endolytic mode, yielding a narrow-spectrum of specific HA oligosaccharides with different incubation times. Large-scale production of this novel leech HAase will not only greatly promote medical applications but also facilitate the enzymatic production of specific HA oligosaccharides.
Collapse
Affiliation(s)
- Peng Jin
- 1] Synergetic Innovation Center of Food Safety and Nutrition, Jiangnan University, Wuxi 214122, P. R. China [2] The Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, P. R. China [3] School of Biotechnology, Jiangnan University, Wuxi 214122, P. R. China
| | - Zhen Kang
- 1] Synergetic Innovation Center of Food Safety and Nutrition, Jiangnan University, Wuxi 214122, P. R. China [2] The Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, P. R. China [3] School of Biotechnology, Jiangnan University, Wuxi 214122, P. R. China [4] Synergetic Innovation Center of Modern Industrial Fermentation, Wuxi 214122, P. R. China
| | - Na Zhang
- 1] Synergetic Innovation Center of Food Safety and Nutrition, Jiangnan University, Wuxi 214122, P. R. China [2] The Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, P. R. China [3] School of Biotechnology, Jiangnan University, Wuxi 214122, P. R. China
| | - Guocheng Du
- 1] Synergetic Innovation Center of Food Safety and Nutrition, Jiangnan University, Wuxi 214122, P. R. China [2] School of Biotechnology, Jiangnan University, Wuxi 214122, P. R. China [3] The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, P. R. China [4] Synergetic Innovation Center of Modern Industrial Fermentation, Wuxi 214122, P. R. China
| | - Jian Chen
- 1] Synergetic Innovation Center of Food Safety and Nutrition, Jiangnan University, Wuxi 214122, P. R. China [2] School of Biotechnology, Jiangnan University, Wuxi 214122, P. R. China [3] National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, Wuxi 214122, P. R. China [4] Synergetic Innovation Center of Modern Industrial Fermentation, Wuxi 214122, P. R. China
| |
Collapse
|
16
|
Determination of vinblastine in tumour tissue with liquid chromatography–high resolution mass spectrometry. Talanta 2013; 116:887-93. [DOI: 10.1016/j.talanta.2013.08.009] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2013] [Revised: 08/06/2013] [Accepted: 08/07/2013] [Indexed: 11/19/2022]
|
17
|
Exploiting nanotechnology to overcome tumor drug resistance: Challenges and opportunities. Adv Drug Deliv Rev 2013; 65:1731-47. [PMID: 24036273 DOI: 10.1016/j.addr.2013.09.001] [Citation(s) in RCA: 177] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2013] [Revised: 08/15/2013] [Accepted: 09/03/2013] [Indexed: 02/06/2023]
Abstract
Tumor cells develop resistance to chemotherapeutic drugs through multiple mechanisms. Overexpression of efflux transporters is an important source of drug resistance. Efflux transporters such as P-glycoprotein reduce intracellular drug accumulation and compromise drug efficacy. Various nanoparticle-based approaches have been investigated to overcome efflux-mediated resistance. These include the use of formulation excipients that inhibit transporter activity and co-delivery of the anticancer drug with a specific inhibitor of transporter function or expression. However, the effectiveness of nanoparticles can be diminished by poor transport in the tumor tissue. Hence, adjunct therapies that improve the intratumoral distribution of nanoparticles may be vital to the successful application of nanotechnology to overcome tumor drug resistance. This review discusses the mechanisms of tumor drug resistance and highlights the opportunities and challenges in the use of nanoparticles to improve the efficacy of anticancer drugs against resistant tumors.
Collapse
|
18
|
Thompson CB, Shepard HM, O'Connor PM, Kadhim S, Jiang P, Osgood RJ, Bookbinder LH, Li X, Sugarman BJ, Connor RJ, Nadjsombati S, Frost GI. Enzymatic depletion of tumor hyaluronan induces antitumor responses in preclinical animal models. Mol Cancer Ther 2010; 9:3052-64. [PMID: 20978165 DOI: 10.1158/1535-7163.mct-10-0470] [Citation(s) in RCA: 221] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Hyaluronan (HA) is a glycosaminoglycan polymer that often accumulates in malignancy. Megadalton complexes of HA with proteoglycans create a hydrated connective tissue matrix, which may play an important role in tumor stroma formation. Through its colloid osmotic effects, HA complexes contribute to tumor interstitial fluid pressure, limiting the effect of therapeutic molecules on malignant cells. The therapeutic potential of enzymatic remodeling of the tumor microenvironment through HA depletion was initially investigated using a recombinant human HA-degrading enzyme, rHuPH20, which removed HA-dependent tumor cell extracellular matrices in vitro. However, rHuPH20 showed a short serum half-life (t(1/2) < 3 minutes), making depletion of tumor HA in vivo impractical. A pegylated variant of rHuPH20, PEGPH20, was therefore evaluated. Pegylation improved serum half-life (t(1/2) = 10.3 hours), making it feasible to probe the effects of sustained HA depletion on tumor physiology. In high-HA prostate PC3 tumors, i.v. administration of PEGPH20 depleted tumor HA, decreased tumor interstitial fluid pressure by 84%, decreased water content by 7%, decompressed tumor vessels, and increased tumor vascular area >3-fold. Following repeat PEGPH20 administration, tumor growth was significantly inhibited (tumor growth inhibition, 70%). Furthermore, PEGPH20 enhanced both docetaxel and liposomal doxorubicin activity in PC3 tumors (P < 0.05) but did not significantly improve the activity of docetaxel in low-HA prostate DU145 tumors. The ability of PEGPH20 to enhance chemotherapy efficacy is likely due to increased drug perfusion combined with other tumor structural changes. These results support enzymatic remodeling of the tumor stroma with PEGPH20 to treat tumors characterized by the accumulation of HA.
Collapse
Affiliation(s)
- Curtis B Thompson
- Halozyme Therapeutics, Inc., 11388 Sorrento Valley Road, San Diego, CA 92121, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Lee JH, Moore LD, Kumar S, Pritchard DG, Ponnazhagan S, Deivanayagam C. Bacteriophage hyaluronidase effectively inhibits growth, migration and invasion by disrupting hyaluronan-mediated Erk1/2 activation and RhoA expression in human breast carcinoma cells. Cancer Lett 2010; 298:238-49. [PMID: 20688428 DOI: 10.1016/j.canlet.2010.07.011] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2010] [Revised: 07/08/2010] [Accepted: 07/12/2010] [Indexed: 10/19/2022]
Abstract
Aberrant hyaluronan production has been implicated in many types of tumor. In this context, hyaluronidase has been explored as a viable therapeutic approach to reduce tumoral hyaluronan. However, elevated levels of hyaluronan in tumors are often associated with high expression levels of cellular hyaluronidases, which consequently produce various sizes of saturated hyaluronan fragments with divergent pro-tumoral activities. The current study shows that different hyaluronan metabolisms of mammalian and microbial hyaluronidases could elicit distinct alterations in cancer cell behavior. Unlike saturated hyaluronan metabolites, unsaturated hyaluronan oligosaccharides produced by bacteriophage hyaluronidase, HylP, had no biological effect on growth of breast carcinoma cells. More importantly, HylP's metabolic process of hyaluronan into non-detrimental oligosaccharides significantly decreased breast cancer cell proliferation, migration and invasion by disrupting Erk1/2 activation and RhoA expression. Our results suggest that it may be possible to exploit HylP's unique enzymatic activity in suppressing hyaluronan-mediated tumor growth and progression.
Collapse
Affiliation(s)
- Joo Hyoung Lee
- Department of Physiology and Biophysics, University of Alabama, Birmingham, AL 35294-4400, USA
| | | | | | | | | | | |
Collapse
|
20
|
Van Sluis GL, Nieuwdorp M, Kamphuisen PW, van der Vlag J, Van Noorden CJF, Spek CA. A low molecular weight heparin inhibits experimental metastasis in mice independently of the endothelial glycocalyx. PLoS One 2010; 5:e11200. [PMID: 20574516 PMCID: PMC2888573 DOI: 10.1371/journal.pone.0011200] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2010] [Accepted: 05/31/2010] [Indexed: 01/12/2023] Open
Abstract
Background Some low molecular weight heparins (LMWHs) prolong survival of cancer patients and inhibit experimental metastasis. The underlying mechanisms are still not clear but it has been suggested that LMWHs (at least in part) limit metastasis by preventing cancer cell-induced destruction of the endothelial glycocalyx. Methodology/Principal Findings To prove or refute this hypothesis, we determined the net effects of the endothelial glycocalyx in cancer cell extravasation and we assessed the anti-metastatic effect of a clinically used LMWH in the presence and absence of an intact endothelial glycocalyx. We show that both exogenous enzymatic degradation as well as endogenous genetic modification of the endothelial glycocalyx decreased pulmonary tumor formation in a murine experimental metastasis model. Moreover, LMWH administration significantly reduced the number of pulmonary tumor foci and thus experimental metastasis both in the presence or absence of an intact endothelial glycocalyx. Conclusions In summary, this paper shows that the net effect of the endothelial glycocalyx enhances experimental metastasis and that a LMWH does not limit experimental metastasis by a process involving the endothelial glycocalyx.
Collapse
Affiliation(s)
- Geerte L. Van Sluis
- Department of Vascular Medicine, Academic Medical Center, Amsterdam, The Netherlands
- Center for Experimental and Molecular Medicine, Academic Medical Center, Amsterdam, The Netherlands
- Department of Cell Biology and Histology, Academic Medical Center, Amsterdam, The Netherlands
- Department Clinical Oncology, Academic Medical Center, Amsterdam, The Netherlands
| | - Max Nieuwdorp
- Department of Vascular Medicine, Academic Medical Center, Amsterdam, The Netherlands
| | - Pieter W. Kamphuisen
- Department of Vascular Medicine, Academic Medical Center, Amsterdam, The Netherlands
| | - Johan van der Vlag
- Nephrology Research Laboratory, Department of Nephrology, Nijmegen Centre for Molecular Life Sciences, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands
| | | | - C. Arnold Spek
- Center for Experimental and Molecular Medicine, Academic Medical Center, Amsterdam, The Netherlands
- * E-mail:
| |
Collapse
|
21
|
El-Safory NS, Fazary AE, Lee CK. Hyaluronidases, a group of glycosidases: Current and future perspectives. Carbohydr Polym 2010. [DOI: 10.1016/j.carbpol.2010.02.047] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
22
|
High-yield recombinant expression of the extremophile enzyme, bee hyaluronidase in Pichia pastoris. Protein Expr Purif 2008; 57:226-33. [DOI: 10.1016/j.pep.2007.10.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2007] [Revised: 09/28/2007] [Accepted: 10/03/2007] [Indexed: 11/17/2022]
|
23
|
Frost GI. Recombinant human hyaluronidase (rHuPH20): an enabling platform for subcutaneous drug and fluid administration. Expert Opin Drug Deliv 2007; 4:427-40. [PMID: 17683255 DOI: 10.1517/17425247.4.4.427] [Citation(s) in RCA: 219] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
The extracellular matrix is a significant barrier to the effective subcutaneous delivery of many drugs, limiting both pharmacokinetic parameters and injection volumes. The space outside adipocytes in the hypodermis is not a fluid, but rather a solid extracellular matrix of collageneous fibrils embedded within a glycosaminoglycan-rich viscoelastic gel that buffers convective forces. The extracellular matrix limits the volume of drug that can be injected at a single site, as well as the rate and amount that reach the vascular compartment. A fully human recombinant DNA-derived hyaluronidase enzyme (rHuPH20) has been developed to leverage the historical efficacy of animal testes extract-derived spreading factors to reversibly modify the hypodermis, in light of discovery of the human hyaluronidase gene family. The application of this technology to increase both injection volumes and bioavailability from subcutaneous injection may overcome some key limitations of this route of administration in multiple settings of care.
Collapse
Affiliation(s)
- Gregory I Frost
- Halozyme Therapeutics, Inc., 11588 Sorrento Valley Road, San Diego, CA 92121, USA.
| |
Collapse
|
24
|
Hofinger ESA, Hoechstetter J, Oettl M, Bernhardt G, Buschauer A. Isoenzyme-specific differences in the degradation of hyaluronic acid by mammalian-type hyaluronidases. Glycoconj J 2007; 25:101-9. [PMID: 17620008 DOI: 10.1007/s10719-007-9058-8] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2007] [Revised: 06/12/2007] [Accepted: 06/15/2007] [Indexed: 10/23/2022]
Abstract
Bovine testicular hyaluronidase (BTH) has been used as a spreading factor for many years and was primarily characterized by its enzymatic activity. As recombinant human hyaluronidases are now available the bovine preparations can be replaced by the human enzymes. However, data on the pH-dependent activity of hyaluronidases reported in literature are inconsistent in part or even contradictory. Detection of the pH-dependent activity of PH-20 type hyaluronidases, i.e. recombinant human PH-20 (rhPH-20) and BTH, showed a shift of the pH optimum from acidic pH values in a colorimetric activity assay to higher pH values in a turbidimetric activity assay. Contrarily, recombinant human Hyal-1 (rhHyal-1) and bee venom hyaluronidase (BVH) exhibited nearly identical pH profiles in both commonly used types of activity assays. Analysis of the hyaluronic acid (HA) degradation products by capillary zone electrophoresis showed that hyaluronan was catabolized by rhHyal-1 continuously into HA oligosaccharides. BTH and, to a less extent, rhPH-20 exhibited a different mode of action: at acidic pH (pH 4.5) HA was degraded as described for rhHyal-1, while at elevated pH (pH 5.5) small oligosaccharides were produced in addition to HA fragments of medium molecular weight, thus explaining the pH-dependent discrepancies in the activity assays. Our results suggest a sub-classification of mammalian-type hyaluronidases into a PH-20/BTH and a Hyal-1/BVH subtype. As the biological effects of HA fragments are reported to depend on the size of the molecules it can be speculated that different pH values at the site of hyaluronan degradation may result in different biological responses.
Collapse
Affiliation(s)
- Edith S A Hofinger
- Institute of Pharmacy, Faculty of Chemistry and Pharmacy, University of Regensburg, Universitätsstrasse 31, 93053 Regensburg, Germany
| | | | | | | | | |
Collapse
|
25
|
Girish KS, Kemparaju K. The magic glue hyaluronan and its eraser hyaluronidase: a biological overview. Life Sci 2007; 80:1921-43. [PMID: 17408700 DOI: 10.1016/j.lfs.2007.02.037] [Citation(s) in RCA: 439] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2006] [Revised: 02/04/2007] [Accepted: 02/19/2007] [Indexed: 01/09/2023]
Abstract
Hyaluronan (HA) is a multifunctional high molecular weight polysaccharide found throughout the animal kingdom, especially in the extracellular matrix (ECM) of soft connective tissues. HA is thought to participate in many biological processes, and its level is markedly elevated during embryogenesis, cell migration, wound healing, malignant transformation, and tissue turnover. The enzymes that degrade HA, hyaluronidases (HAases) are expressed both in prokaryotes and eukaryotes. These enzymes are known to be involved in physiological and pathological processes ranging from fertilization to aging. Hyaluronidase-mediated degradation of HA increases the permeability of connective tissues and decreases the viscosity of body fluids and is also involved in bacterial pathogenesis, the spread of toxins and venoms, acrosomal reaction/ovum fertilization, and cancer progression. Furthermore, these enzymes may promote direct contact between pathogens and the host cell surfaces. Depolymerization of HA also adversely affects the role of ECM and impairs its activity as a reservoir of growth factors, cytokines and various enzymes involved in signal transduction. Inhibition of HA degradation therefore may be crucial in reducing disease progression and spread of venom/toxins and bacterial pathogens. Hyaluronidase inhibitors are potent, ubiquitous regulating agents that are involved in maintaining the balance between the anabolism and catabolism of HA. Hyaluronidase inhibitors could also serve as contraceptives and anti-tumor agents and possibly have antibacterial and anti-venom/toxin activities. Additionally, these molecules can be used as pharmacological tools to study the physiological and pathophysiological role of HA and hyaluronidases.
Collapse
Affiliation(s)
- K S Girish
- Department of Biochemistry, University of Mysore, Manasagangothri, Mysore, Karnataka State, 560007, India.
| | | |
Collapse
|
26
|
Oettl M, Hoechstetter J, Asen I, Bernhardt G, Buschauer A. Comparative characterization of bovine testicular hyaluronidase and a hyaluronate lyase from Streptococcus agalactiae in pharmaceutical preparations. Eur J Pharm Sci 2003; 18:267-77. [PMID: 12659938 DOI: 10.1016/s0928-0987(03)00022-8] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Although bovine testicular hyaluronidase (BTH) has been used in several medical fields for many years, these drugs are poorly characterized. We compared pharmaceutical BTH preparations (Neopermease, Hylase "Dessau") and a hyaluronate lyase from Streptococcus agalactiae. The BTH preparations were complex mixtures of proteins (SDS-PAGE, gel filtration) with enzymatic activity in different fractions. In the case of Neopermease the highest specific activity was found in the 58 kDa fraction (optimum at pH 3.6), whereas the 77 and 33 kDa fractions showed markedly lower specific activities at an optimal pH of 6.2. Maximum specific activity of the bacterial enzyme (approx. 1000 micromol min(-1) mg(-1)) was found at pH 5.0, being 410- and 5100-times higher compared to Neopermease and Hylase "Dessau", respectively. The hyaluronate lyase preparation was separated into two main proteins [100 kDa (pI=8.9) and 85 kDa (pI=9.2)] which were enzymatically active in SDS substrate-PAGE. Zymography after limited proteolysis of the bacterial enzyme with trypsin revealed active fragments (75-50 kDa). Our results suggest that hyaluronate lyase is an alternative for BTH, of which there has been a shortage, since companies have stopped the production of BTH preparations due to the risk of BSE.
Collapse
Affiliation(s)
- Martin Oettl
- Institut für Pharmazie, Universität Regensburg, Universitätsstrasse 31, D-93040, Regensburg, Germany
| | | | | | | | | |
Collapse
|
27
|
Muckenschnabel I, Bernhardt G, Spruss T, Dietl B, Buschauer A. Quantitation of hyaluronidases by the Morgan-Elson reaction: comparison of the enzyme activities in the plasma of tumor patients and healthy volunteers. Cancer Lett 1998; 131:13-20. [PMID: 9839615 DOI: 10.1016/s0304-3835(98)00196-7] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The Morgan-Elson reaction, a method for the determination of hyaluronidase activity, was optimized for the quantitation of the enzyme in biological material. Based on HPLC and spectrometric (UV-Vis, LC-MS) studies, the structure of the red-colored product (mesomeric forms of N3-protonated 3-acetylimino-2-(4-dimethylaminophenyl)methylidene-5-(1,2-++ +dihydroxyethyl)furane) formed by condensation of chromogen III with p-dimethylaminobenzaldehyde is proposed. Activities corresponding to > or = 0.1 IU of endogenous and therapeutically administered hyaluronidase can be detected in 50 microl samples. Application of the method for the determination of the enzyme in plasma of tumor patients revealed no difference in activity levels, interindividual variability and pH profile compared to healthy volunteers.
Collapse
|