1
|
Wang J, Hang Y, Tan H, Jiang T, Qu X, Hua J. Two new colorimetric and ratiometric fluorescent probes based on diketopyrrolopyrrole (DPP) for detecting and imaging of mitochondrial SO 2 derivatives in cancer cells. J Photochem Photobiol A Chem 2017. [DOI: 10.1016/j.jphotochem.2017.06.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
2
|
Kanwal M, Ding XJ, Cao Y. Familial risk for lung cancer. Oncol Lett 2017; 13:535-542. [PMID: 28356926 PMCID: PMC5351216 DOI: 10.3892/ol.2016.5518] [Citation(s) in RCA: 79] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2015] [Accepted: 08/26/2016] [Indexed: 01/07/2023] Open
Abstract
Lung cancer, which has a low survival rate, is a leading cause of cancer-associated mortality worldwide. Smoking and air pollution are the major causes of lung cancer; however, numerous studies have demonstrated that genetic factors also contribute to the development of lung cancer. A family history of lung cancer increases the risk for the disease in both smokers and never-smokers. This review focuses on familial lung cancer, in particular on the familial aggregation of lung cancer. The development of familial lung cancer involves shared environmental and genetic factors among family members. Familial lung cancer represents a good model for investigating the association between environmental and genetic factors, as well as for identifying susceptibility genes for lung cancer. In addition, studies on familial lung cancer may help to elucidate the etiology and mechanism of lung cancer, and may identify novel biomarkers for early detection and diagnosis, targeted therapy and improved prevention strategies. This review presents the aetiology and molecular biology of lung cancer and then systematically introduces and discusses several aspects of familial lung cancer, including the characteristics of familial lung cancer, population-based studies on familial lung cancer and the genetics of familial lung cancer.
Collapse
Affiliation(s)
- Madiha Kanwal
- Laboratory of Molecular and Experimental Pathology, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, P.R. China
- Kunming College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, P.R. China
| | - Xiao-Ji Ding
- Laboratory of Molecular and Experimental Pathology, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, P.R. China
| | - Yi Cao
- Laboratory of Molecular and Experimental Pathology, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, P.R. China
| |
Collapse
|
3
|
Qin G, Wu M, Sang N. Sulfur dioxide and benzo(a)pyrene trigger apoptotic and anti-apoptotic signals at different post-exposure times in mouse liver. CHEMOSPHERE 2015; 139:318-325. [PMID: 26162325 DOI: 10.1016/j.chemosphere.2015.06.052] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2015] [Revised: 06/18/2015] [Accepted: 06/21/2015] [Indexed: 06/04/2023]
Abstract
There is considerable concern that exposure to PAHs in combination with other air pollutants may lead to cancer or apoptosis in different cells. This study investigated the interaction effects between SO2 and BaP in mouse liver after long-term exposure. Mice were exposed to BaP for 5days or SO2 inhalation for 4weeks alone or together. The mitochondrial membrane potential (MMP) was assessed using the lipophilic cationic probe JC-1. The mRNA and protein level of several mitochondrial respiratory complex subunits and apoptosis-related genes were analyzed by real-time RT-PCR and/or western blot, respectively. We observed the pathology change of the mouse liver after 4-week treatments. It was revealed that MMP was reduced after co-exposure of SO2 and BaP after a 4-week treatment (1day post-exposure, p.e. 1d), with the suppression of the mRNA expression of complexes IV and V subunits, CO1, CO4, and ATP6. Co-exposure of SO2 and BaP appeared to be able to cause apoptotic signals, as judged by the suppression of bcl-2 and the bcl-2/bax ratio and the elevation of bax, caspase 3 activation, p53 accumulation and phosphorylation 1d post-exposure to SO2 and BaP, while the anti-apoptotic signal was detected by the elevation of bcl-2 and the bcl-2/bax ratio as well as the suppression of bax and p53 expression after a 13-week post-exposure (p.e. 13w) of SO2 and BaP. These results indicate that co-exposure to SO2 and BaP appears to lead to apoptotic as well as anti-apoptotic signals at different post-exposure times.
Collapse
Affiliation(s)
- Guohua Qin
- College of Environment and Resource, Shanxi University, Taiyuan, Shanxi 030006, China
| | - Meiqiong Wu
- College of Environment and Resource, Shanxi University, Taiyuan, Shanxi 030006, China
| | - Nan Sang
- College of Environment and Resource, Shanxi University, Taiyuan, Shanxi 030006, China.
| |
Collapse
|
4
|
Tseng CY, Huang YC, Su SY, Huang JY, Lai CH, Lung CC, Ho CC, Liaw YP. Cell type specificity of female lung cancer associated with sulfur dioxide from air pollutants in Taiwan: an ecological study. BMC Public Health 2012; 12:4. [PMID: 22214195 PMCID: PMC3398293 DOI: 10.1186/1471-2458-12-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2011] [Accepted: 01/04/2012] [Indexed: 11/25/2022] Open
Abstract
Background Many studies have examined the association between air pollutants (including sulfur dioxide [SO2], carbon monoxide [CO], nitrogen dioxide [NO2], nitric oxide [NO], ozone [O3], and particulate matter < 10 μm [PM10]) and lung cancer. However, data from previous studies on pathological cell types were limited, especially for SO2 exposure. We aimed to explore the association between SO2 exposure from outdoor air pollutants and female lung cancer incidence by cell type specificity. Methods We conducted an ecological study and calculated annual average concentration of 6 air pollutants (SO2, CO, NO2, NO, O3, and PM10) using data from Taiwan Environmental Protection Administration air quality monitoring stations. The Poisson regression models were used to evaluate the association between SO2 and age-standardized incidence rate of female lung cancer by two major pathological types (adenocarcinoma [AC] and squamous cell carcinoma [SCC]). In order to understand whether there is a dose-response relationship between SO2 and two major pathological types, we analyzed 4 levels of exposure based on quartiles of concentration of SO2. Results The Poisson regression results showed that with the first quartile of SO2 concentration as the baseline, the relative risks for AC/SCC type cancer among females were 1.20 (95% confidence interval [CI], 1.04-1.37)/1.39 (95% CI, 0.96-2.01) for the second, 1.22 (95% CI, 1.04-1.43)/1.58 (95% CI, 1.06-2.37) for the third, and 1.27 (95% CI, 1.06-1.52)/1.80 (95% CI, 1.15-2.84) for the fourth quartile of SO2 concentration. The tests for trend were statistically significant for both AC and SCC at P = 0.0272 and 0.0145, respectively. Conclusion The current study suggests that SO2 exposure as an air pollutant may increase female lung cancer incidence and the associations with female lung cancer is much stronger for SCC than for AC. The findings of this study warrant further investigation on the role of SO2 in the etiology of SCC.
Collapse
Affiliation(s)
- Ching-Yu Tseng
- Taipei Physical Education College, Taipei City 11153, Taiwan, R.O.C
| | | | | | | | | | | | | | | |
Collapse
|
5
|
Raaschou-Nielsen O, Andersen ZJ, Hvidberg M, Jensen SS, Ketzel M, Sørensen M, Loft S, Overvad K, Tjønneland A. Lung cancer incidence and long-term exposure to air pollution from traffic. ENVIRONMENTAL HEALTH PERSPECTIVES 2011; 119:860-5. [PMID: 21227886 PMCID: PMC3114823 DOI: 10.1289/ehp.1002353] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2010] [Accepted: 01/12/2011] [Indexed: 05/03/2023]
Abstract
BACKGROUND Previous studies have shown associations between air pollution and risk for lung cancer. OBJECTIVE We investigated whether traffic and the concentration of nitrogen oxides (NOx) at the residence are associated with risk for lung cancer. METHODS We identified 592 lung cancer cases in the Danish Cancer Registry among 52,970 members of the Diet, Cancer and Health cohort and traced residential addresses from 1 January 1971 in the Central Population Registry. We calculated the NOx concentration at each address by dispersion models and calculated the time-weighted average concentration for all addresses for each person. We used Cox models to estimate incidence rate ratios (IRRs) after adjustment for smoking (status, duration, and intensity), environmental tobacco smoke, length of school attendance, occupation, and dietary intake of fruit. RESULTS For the highest compared with the lowest quartile of NOx concentration at the residence, we found an IRR for lung cancer of 1.30 [95% confidence interval (CI), 1.05-1.61], and the IRR for lung cancer in association with living within 50 m of a major road (>10,000 vehicles/day) was 1.21 (95% CI, 0.95-1.55). The results showed tendencies of stronger associations among nonsmokers, among those with a relatively low fruit intake, and among those with a longer school attendance; only length of school attendance modified the effect significantly. CONCLUSIONS This study supports that risk for lung cancer is associated with different markers of air pollution from traffic near the residence.
Collapse
|
6
|
Toxicological evaluation of diesel emissions on A549 cells. Toxicol In Vitro 2010; 24:363-9. [DOI: 10.1016/j.tiv.2009.11.004] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2009] [Revised: 10/09/2009] [Accepted: 11/04/2009] [Indexed: 11/19/2022]
|
7
|
Sang N, Yun Y, Li H, Hou L, Han M, Li G. SO2 Inhalation Contributes to the Development and Progression of Ischemic Stroke in the Brain. Toxicol Sci 2010; 114:226-36. [DOI: 10.1093/toxsci/kfq010] [Citation(s) in RCA: 230] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
8
|
Omura S, Koike E, Kobayashi T. Microarray analysis of gene expression in rat alveolar epithelial cells exposed to fractionated organic extracts of diesel exhaust particles. Toxicology 2009; 262:65-72. [DOI: 10.1016/j.tox.2009.05.012] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2009] [Revised: 05/01/2009] [Accepted: 05/10/2009] [Indexed: 12/24/2022]
|
9
|
Effects of sulfur dioxide derivatives on expression of oncogenes and tumor suppressor genes in human bronchial epithelial cells. Food Chem Toxicol 2009; 47:734-44. [DOI: 10.1016/j.fct.2009.01.005] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2008] [Revised: 12/11/2008] [Accepted: 01/04/2009] [Indexed: 12/30/2022]
|
10
|
García-Pérez J, Pollán M, Boldo E, Pérez-Gómez B, Aragonés N, Lope V, Ramis R, Vidal E, López-Abente G. Mortality due to lung, laryngeal and bladder cancer in towns lying in the vicinity of combustion installations. THE SCIENCE OF THE TOTAL ENVIRONMENT 2009; 407:2593-2602. [PMID: 19187950 DOI: 10.1016/j.scitotenv.2008.12.062] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2008] [Revised: 12/15/2008] [Accepted: 12/22/2008] [Indexed: 05/27/2023]
Abstract
BACKGROUND Installations that burn fossil fuels to generate power may represent a health problem due to the toxic substances which they release into the environment. OBJECTIVES To investigate whether there might be excess mortality due to tumors of lung, larynx and bladder in the population residing near Spanish combustion installations included in the European Pollutant Emission Register. METHODS Ecologic study designed to model sex-specific standardized mortality ratios for the above three tumors in Spanish towns, over the period 1994-2003. Population exposure to pollution was estimated on the basis of distance from town of residence to pollution source. Using mixed Poisson regression models, we analyzed: risk of dying from cancer in a 5-kilometer zone around installations that commenced operations before 1990; effect of type of fuel used; and risk gradient within a 50-kilometer radius of such installations. RESULTS Excess mortality (relative risk, 95% confidence interval) was detected in the vicinity of pre-1990 installations for lung cancer (1.066, 1.041-1.091 in the overall population; 1.084, 1.057-1.111 in men), and laryngeal cancer among men (1.067, 0.992-1.148). Lung cancer displayed excess mortality for all types of fuel used, whereas in laryngeal and bladder cancer, the excess was associated with coal-fired industries. There was a risk gradient effect in the proximity of a number of installations. CONCLUSIONS Our results could support the hypothesis of an association between risk of lung, laryngeal and bladder cancer mortality and proximity to Spanish combustion installations.
Collapse
Affiliation(s)
- Javier García-Pérez
- Environmental and Cancer Epidemiology Unit, National Center for Epidemiology, Carlos III Institute of Health, C/Sinesio Delgado 6, 28029 Madrid, Spain.
| | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Lifestyle-related factors and environmental agents causing cancer: an overview. Biomed Pharmacother 2007; 61:640-58. [PMID: 18055160 DOI: 10.1016/j.biopha.2007.10.006] [Citation(s) in RCA: 162] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2007] [Accepted: 10/10/2007] [Indexed: 02/09/2023] Open
Abstract
The increasing incidence of a variety of cancers after the Second World War confronts scientists with the question of their origin. In Western countries, expansion and ageing of the population as well as progress in cancer detection using new diagnostic and screening tests cannot fully account for the observed growing incidence of cancer. Our hypothesis is that environmental factors play a more important role in cancer genesis than it is usually agreed. (1) Over the last 2-3 decades, alcohol consumption and tobacco smoking in men have significantly decreased in Western Europe and North America. (2) Obesity is increasing in many countries, but the growing incidence of cancer also concerns cancers not related to obesity nor to other known lifestyle-related factors. (3) There is evidence that the environment has changed over the time period preceding the recent rise in cancer incidence, and that this change, still continuing, included the accumulation of many new carcinogenic factors in the environment. (4) Genetic susceptibility to cancer due to genetic polymorphism cannot have changed over one generation and actually favours the role of exogenous factors through gene-environment interactions. (5) Age is not the unique factor to be considered since the rising incidence of cancers is seen across all age categories, including children, and adolescents. (6) The fetus is specifically vulnerable to exogenous factors. A fetal exposure during a critical time window may explain why current epidemiological studies may still be negative in adults. We therefore propose that the involuntary exposure to many carcinogens in the environment, including microorganisms (viruses, bacteria and parasites), radiations (radioactivity, UV and pulsed electromagnetic fields) and many xenochemicals, may account for the recent growing incidence of cancer and therefore that the risk attributable to environmental carcinogen may be far higher than it is usually agreed. Of major concern are: outdoor air pollution by carbon particles associated with polycyclic aromatic hydrocarbons; indoor air pollution by environmental tobacco smoke, formaldehyde and volatile organic compounds such as benzene and 1,3 butadiene, which may particularly affect children and food contamination by food additives and by carcinogenic contaminants such as nitrates, pesticides, dioxins and other organochlorines. In addition, carcinogenic metals and metalloids, pharmaceutical medicines and some ingredients and contaminants in cosmetics may be involved. Although the risk fraction attributable to environmental factors is still unknown, this long list of carcinogenic and especially mutagenic factors supports our working hypothesis according to which numerous cancers may in fact be caused by the recent modification of our environment.
Collapse
|
12
|
Belpomme D, Irigaray P, Hardell L, Clapp R, Montagnier L, Epstein S, Sasco AJ. The multitude and diversity of environmental carcinogens. ENVIRONMENTAL RESEARCH 2007; 105:414-29. [PMID: 17692309 DOI: 10.1016/j.envres.2007.07.002] [Citation(s) in RCA: 140] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2007] [Revised: 06/25/2007] [Accepted: 07/05/2007] [Indexed: 05/16/2023]
Abstract
We have recently proposed that lifestyle-related factors, screening and aging cannot fully account for the present overall growing incidence of cancer. In order to propose the concept that in addition to lifestyle related factors, exogenous environmental factors may play a more important role in carcinogenesis than it is expected, and may therefore account for the growing incidence of cancer, we overview herein environmental factors, rated as certainly or potentially carcinogenic by the International Agency for Research on Cancer (IARC). We thus analyze the carcinogenic effect of microorganisms (including viruses), radiations (including radioactivity, UV and pulsed electromagnetic fields) and xenochemicals. Chemicals related to environmental pollution appear to be of critical importance, since they can induce occupational cancers as well as other cancers. Of major concerns are: outdoor air pollution by carbon particles associated with polycyclic aromatic hydrocarbons; indoor air pollution by environmental tobacco smoke, formaldehyde and volatile organic compounds such as benzene and 1,3 butadiene, which may particularly affect children, and food pollution by food additives and by carcinogenic contaminants such as nitrates, pesticides, dioxins and other organochlorines. In addition, carcinogenic metals and metalloids, pharmaceutical medicines and cosmetics may be involved. Although the risk fraction attributable to environmental factors is still unknown, this long list of carcinogenic and especially mutagenic factors supports our working hypothesis according to which numerous cancers may in fact be caused by the recent modification of our environment.
Collapse
Affiliation(s)
- D Belpomme
- Department of Medical Oncology, European Hospital Georges Pompidou (HEGP), University of Paris, F-75015Paris, France.
| | | | | | | | | | | | | |
Collapse
|
13
|
Kraft M, Eikmann T, Kappos A, Künzli N, Rapp R, Schneider K, Seitz H, Voss JU, Wichmann HE. The German view: effects of nitrogen dioxide on human health--derivation of health-related short-term and long-term values. Int J Hyg Environ Health 2005; 208:305-18. [PMID: 16078645 DOI: 10.1016/j.ijheh.2005.04.002] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The presented overview concerning health relevant effects caused by nitrogen dioxide (NO2) resumes the current state of results from animal experiments and human studies (epidemiology and short-term chambers studies). NO2 concentrations applied in animal experiments were mostly considerably higher than in ambient air. Therefore, short- and long-term limit values were derived from human data. Experimental studies conducted with humans demonstrate effects after short-term exposure to concentrations at or above 400 microg NO2/m3. Effects on patients with light asthma could not be observed after short-term exposure to concentrations below 200 microg/m3. On basis of epidemiological long-term studies a threshold below which no effect on human health is expected could not be specified. Two short-term limit values have been proposed to protect public health: a 1-h value of 100 microg/m3 and a 24-h mean value of 50 microg/m3. Due to the limitations of epidemiological studies to disentangle effects of single pollutants, a long-term limit value cannot be easily derived. However, applying the precautionary principle, it is desirable to adopt an annual mean of 20 microg NO2/m3 as a long-term mean standard to protect public health.
Collapse
Affiliation(s)
- Martin Kraft
- Ministry of the Environment and Conservation, Agriculture and Consumer Protection of the state of North Rhine-Westphalia, Düsseldorf, Germany.
| | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Meng Z, Qin G, Zhang B. DNA damage in mice treated with sulfur dioxide by inhalation. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2005; 46:150-5. [PMID: 15898097 DOI: 10.1002/em.20142] [Citation(s) in RCA: 76] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Sulfur dioxide (SO2) is a ubiquitous air pollutant produced by the burning of fossil fuels. In this study, single-cell gel electrophoresis (the Comet assay) was used to evaluate the DNA damage produced by inhalation exposure of mice to SO2. Male and female mice were housed in exposure chambers and treated with 14.00 +/- 1.25, 28.00 +/- 1.98, 56.00 +/- 3.11, and 112.00 +/- 3.69 mg/m3 SO2 for 6 hr/day for 7 days, while control groups were exposed to filtered air. Comet assays were performed on blood lymphocytes and cells from the brain, lung, liver, spleen, kidney, intestine, and testicles of the animals. SO2 caused significant, dose-dependent increases in DNA damage, as measured by Olive tail moment, in all the cell types analyzed from both sexes of mice. The results indicate that inhalation exposure to SO2 damages the DNA of multiple organs in addition to the lung, and suggests that this damage could result in mutation, cancer, and other diseases related to DNA damage. Further work will be required to understand the ultimate toxicological significance of this damage. These data also suggest that detecting DNA damage in blood lymphocytes, using the Comet assay, may serve as a useful tool for evaluating the impact of pulmonary SO2 exposure in human biomonitoring studies.
Collapse
Affiliation(s)
- Ziqiang Meng
- Institute of Environmental Medicine and Toxicology, Shanxi University, Taiyuan, China.
| | | | | |
Collapse
|
15
|
Qin G, Meng Z. Effect of sulfur dioxide inhalation on CYP1A1 and CYP1A2 in rat liver and lung. Toxicol Lett 2005; 160:34-42. [PMID: 16023800 DOI: 10.1016/j.toxlet.2005.06.002] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2005] [Revised: 06/02/2005] [Accepted: 06/02/2005] [Indexed: 11/28/2022]
Abstract
Sulfur dioxide (SO2) is a ubiquitous air pollutant, presents in low concentrations in the urban air, and in higher concentrations in the working environment. In the present study, male Wistar rats were housed in exposure chambers and treated with 14.00+/-1.53, 28.00+/-2.12 and 56.00+/-4.28 mg/m3 SO2 for 6 h/day for 7 days, while control rats were exposed to filtered air in the same condition. Highly specific substrates were used as probes of cytochrome P4501A1 (CYP1A1) and cytochrome P4501A2 (CYP1A2). The mRNA levels of CYP1A1 and 1A2 were analyzed in livers and lungs by using a real-time reverse transcription-polymerase chain reaction (real-time RT-PCR) assay. Our results showed that the activities and mRNA levels of P450 were decreased in livers and lungs of rats exposed to SO2. In the liver, a decrease down to 0.68- and 0.64-fold in the CYP1A1 activity, probed by the O-deethylation of ethoxyresorufin (EROD), was observed at higher dose of SO2 (28 and 56 mg/m3); Similarly, CYP1A1 mRNA levels were reduced in livers of rats exposed to SO2 at 28 and 56 mg/m3. For livers, CYP1A2-mediated methoxyresorufin O-demethylase activity (MROD) was unaltered by SO2 at low concentrations, except for a significant decrease in the rats exposed to SO2 at 56 mg/m3 (0.79-fold); however, SO2 at higher concentrations significantly decreased levels of CYP1A2 (28 and 56 mg/m3) (p<0.05). Significant inhibition of both EROD and MROD was observed in lungs of rats exposed to SO2 at 28 and 56mg/m3. CYP1A1 activity was repressed 0.62- and 0.53-fold, while CYP1A2 activity was reduced to 0.74- and 0.55-fold in lungs, respectively. SO2 at higher concentrations (28 and 56 mg/m3) decreased significantly pulmonary CYP1A1 and 1A2 mRNA levels relative to control animals. Furthermore, the decreases of activities and mRNA levels of these P450 enzymes caused by SO2 at different concentrations in lungs and livers of rats followed linear dose-response curves. These results lead to the conclusion that SO2 exposure can reduce CYP1A1 and 1A2 in lungs and livers of rats and ROS and/or cytokines might act as mediators of this effect according to previous studies performed in mice. Reduction of hepatic and pulmonary CYPlAl and lA2 expression during SO2 exposure may be part of an adaptive response by the liver and lung to minimize cell damage.
Collapse
Affiliation(s)
- Guohua Qin
- Institute of Environmental Medicine and Toxicology, Shanxi University, Taiyuan 030006, China
| | | |
Collapse
|
16
|
Joffe A, Mock S, Yun BH, Kolbanovskiy A, Geacintov NE, Shafirovich V. Oxidative generation of guanine radicals by carbonate radicals and their reactions with nitrogen dioxide to form site specific 5-guanidino-4-nitroimidazole lesions in oligodeoxynucleotides. Chem Res Toxicol 2003; 16:966-73. [PMID: 12924924 DOI: 10.1021/tx025578w] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A simple photochemical approach is described for synthesizing site specific, stable 5-guanidino-4-nitroimidazole (NIm) adducts in single- and double-stranded oligodeoxynucleotides containing single and multiple guanine residues. The DNA sequences employed, 5'-d(ACC CG(1)C G(2)TC CG(3)C G(4)CC) and 5'-d(ACC CG(1)C G(2)TC C), were a portion of exon 5 of the p53 tumor suppressor gene, including the codons 157 (G(2)) and 158 (G(3)) mutation hot spots in the former sequence with four Gs and the codon 157 (G(2)) mutation hot spot in the latter sequence with two Gs. The nitration of oligodeoxynucleotides was initiated by the selective photodissociation of persulfate anions to sulfate radicals induced by UV laser pulses (308 nm). In aqueous solutions, of bicarbonate and nitrite anions, the sulfate radicals generate carbonate anion radicals and nitrogen dioxide radicals by one electron oxidation of the respective anions. The guanine residue in the oligodeoxynucleotide is oxidized by the carbonate anion radical to form the neutral guanine radical. While the nitrogen dioxide radicals do not react with any of the intact DNA bases, they readily combine with the guanine radicals at either the C8 or the C5 positions. The C8 addition generates the well-known 8-nitroguanine (8-nitro-G) lesions, whereas the C5 attack produces unstable adducts, which rapidly decompose to NIm lesions. The maximum yields of the nitro products (NIm + 8-nitro-G) were typically in the range of 20-40%, depending on the number of guanine residues in the sequence. The ratio of the NIm to 8-nitro-G lesions gradually decreases from 3.4 in the model compound, 2',3',5'-tri-O-acetylguanosine, to 2.1-2.6 in the single-stranded oligodeoxynucleotides and to 0.8-1.1 in the duplexes. The adduct of the 5'-d(ACC CG(1)C G(2)TC C) oligodeoxynucleotide containing the NIm lesion in codon 157 (G(2)) was isolated in HPLC-pure form. The integrity of this adduct was established by a detailed analysis of exonuclease digestion ladders by matrix-assisted laser desorption ionization with time-of-flight detection MS techniques.
Collapse
Affiliation(s)
- Avrum Joffe
- Chemistry Department and Radiation and Solid State Laboratory, 31 Washington Place, New York University, New York, New York 10003-5180, USA
| | | | | | | | | | | |
Collapse
|
17
|
Suresh Y, Sailaja Devi MM, Manjari V, Das UN. Oxidant stress, antioxidants and nitric oxide in traffic police of Hyderabad, India. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2000; 109:321-325. [PMID: 15092903 DOI: 10.1016/s0269-7491(99)00254-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/1999] [Accepted: 09/13/1999] [Indexed: 05/24/2023]
Abstract
Exposure to environmental pollutants is known to be harmful to health, in general, and to lungs in particular. In this respect, traffic police are at particular risk due to the nature of their job, since they are exposed to emissions from the vehicles. Here, we show that in the traffic police of Hyderabad city, India, the plasma levels of lipid peroxides are high, whereas the concentrations of the nitric oxide are low. In addition, the levels of various antioxidants in the RBC lysate such as catalase, superoxide dismutase and glutathione peroxidase were found to be low with no significant alteration in plasma ceruloplasmin levels. These results suggest that exposure to air pollutants, a major portion of which is due to emissions from the vehicles, can increase oxidant stress, decrease the levels of antioxidants and nitric oxide. This imbalance in the oxidant/antioxidant system may lead to lung damage and is likely to cause respiratory problems in individuals exposed to air pollution.
Collapse
Affiliation(s)
- Y Suresh
- Division of Internal Medicine, Clinical Immunology and Biochemistry, L.V.Prasad Eye Institute, Hyderabad -500 034, India
| | | | | | | |
Collapse
|
18
|
Ito T. Differentiation and proliferation of pulmonary neuroendocrine cells. PROGRESS IN HISTOCHEMISTRY AND CYTOCHEMISTRY 2000; 34:247-322. [PMID: 10689732 DOI: 10.1016/s0079-6336(99)80001-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
In this review article the morphological profiles of pulmonary neuroendocrine cells (PNEC) in experimental animals and humans are described. Although the mechanisms of differentiation and proliferation of neuroendocrine cells in the airway epithelium remain to be solved, several experimental studies using explant culture and cell culture systems of fetal animal lungs have been performed to clarify fundamental phenomena associated with neuroendocrine differentiation and proliferation. Experimental animal studies using chronic hypoxia, toxic substances and carcinogens have succeeded in inducing alterations in PNEC systems, and these studies have elucidated the reactions of PNEC in cell injury and inflammation, and functional aspects of PNEC in disease conditions. Human pulmonary neuroendocrine tumors include various histological subtypes, and show divergent morphological and biological varieties. Molecular abnormalities of small cell carcinoma, the most aggressive subtype of pulmonary neuroendocrine tumors, have been extensively studied, but the mechanism of neuroendocrine differentiation of this tumor is still largely unknown. PNEC share common phenotypes with neuronal cells, and developmental studies have begun contributed evidence that similar transcriptional networks, including active and repressive basic helix-loop-helix (bHLH) factors, function in the differentiation of both PNEC and neuronal cells. Such a bHLH network may also play a central role in determining cell differentiation in lung carcinomas. Further studies of the neuronal bHLH network, its regulatory system and related signal transduction pathways, will be required for understanding the mechanisms of neuroendocrine differentiation and proliferation in normal and pathological lung conditions.
Collapse
Affiliation(s)
- T Ito
- Department of Pathology, Yokohama City University School of Medicine, Kanazawa-ku, Japan.
| |
Collapse
|