1
|
Mansour HM, Mohamed AF, Khattab MM, El-Khatib AS. Unveiling the therapeutic prospects of EGFR inhibition in rotenone-mediated parkinsonism in rats: Modulation of dopamine D3 receptor. Brain Res 2024; 1834:148893. [PMID: 38554797 DOI: 10.1016/j.brainres.2024.148893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 03/01/2024] [Accepted: 03/27/2024] [Indexed: 04/02/2024]
Abstract
Parkinson's disease (PD) is characterized by the progressive loss of dopaminergic neurons in the substantia nigra. The dopamine D3 receptor (D3R) plays a significant role in the pathogenesis and treatment of PD. Activation of receptor tyrosine kinases (RTKs) inhibits signaling mediated by G protein-coupled receptor (GPCR). Epidermal growth factor receptors (EGFRs) and dopamine D3 receptors in the brain are directly associated with PD, both in terms of its development and potential treatment. Therefore, we investigated the impact of modulating the EGFR, a member of the RTKs family, and the dopamine D3R, a member of the GPCR family. In the present study, 100 mg/kg of lapatinib (LAP) was administered to rotenone-intoxicated rats for three weeks. Our findings indicate that LAP effectively alleviated motor impairment, improved histopathological abnormalities, and restored dopaminergic neurons in the substantia nigra. This restoration was achieved through the upregulation of dopamine D3R and increase of tyrosine hydroxylase (TH) expression, as well as boosting dopamine levels. Furthermore, LAP inhibited the activity of p-EGFR, GRK2, and SCR. Additionally, LAP exhibited antioxidant properties by inhibiting the 4-hydroxynonenal (4-HNE) and PLCγ/PKCβII pathway, while enhancing the antioxidant defense mechanism by increasing GSH-GPX4 pathway. The current study offers insights into the potential repositioning of LAP as a disease-modifying drug for PD. This could be achieved by modulating the dopaminergic system and curbing oxidative stress.
Collapse
Affiliation(s)
- Heba M Mansour
- Central Administration of Biologicals, Innovative Products, and Clinical Studies, Egyptian Drug Authority, EDA, Giza, Egypt
| | - Ahmed F Mohamed
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Cairo, Egypt; Faculty of Pharmacy, King Salman International University (KSIU), South Sinai 46612, Egypt.
| | - Mahmoud M Khattab
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Aiman S El-Khatib
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| |
Collapse
|
2
|
Eisa NH, Helmy SA, El-Kashef DH, El-Sherbiny M, Elsherbiny NM. Pramipexole protects against diabetic neuropathy: Effect on oxidative stress, TLR4/IRAK-1/TRAF-6/NF-κB and downstream inflammatory mediators. Int Immunopharmacol 2024; 128:111514. [PMID: 38199193 DOI: 10.1016/j.intimp.2024.111514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 12/09/2023] [Accepted: 01/05/2024] [Indexed: 01/12/2024]
Abstract
BACKGROUND Diabetic neuropathy (DN) is a serious microvascular complication and a major cause of morbidity and mortality in diabetes mellitus. It is characterized by neurodegeneration of terminal sensory nerve fibers with subsequent pain, loss of sensation, and paresthesia, thus compromising the quality of life of diabetic patients. It is considered the leading cause of non-traumatic amputations worldwide, reflecting the insufficiency of current therapies. Pramipexole (PPX) is a dopamine receptor agonist used for the treatment of Parkinson's disease. The current study aims to investigate the potential neuroprotective effect of PPX in an experimental model of DN. METHODS Sprague Dawley rats were randomly assigned into five groups: normal control, Normal + PPX (1 mg/kg) group, STZ control, STZ + PPX (0.25 and 1 mg/kg/day for eight weeks). The neuroprotective effect of PPX in rats was evaluated in terms of sciatic nerve histological alterations, oxidative stress, and protein expression of TLR4/MyD88/IRAK-1/TRAF-6/NF-κB axis and downstream inflammatory mediators. RESULTS PPX administration ameliorated histopathological signs of neuronal inflammation and apoptosis. Additionally, PPX attenuated STZ-induced sciatic nerve oxidative stress and downregulated neural tissue expression of TLR4, MyD88, IRAK-1, TRAF-6, NF-κB and downstream mediators (TNF-α, IL-1β and ICAM-1). CONCLUSION Collectively, the current study sheds light on PPX as a potential protective medication to alleviate neuropathy progression in diabetic patients. PPX neuroprotective effect can be attributed to modulating TLR4/ MyD88/IRAK-1/TRAF-6/ NF-κB axis signaling in nerve tissues with subsequent attenuation of oxidative stress and inflammation.
Collapse
Affiliation(s)
- Nada H Eisa
- Biochemistry Department, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt
| | - Sahar A Helmy
- Biochemistry Department, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt
| | - Dalia H El-Kashef
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt.
| | - Mohamed El-Sherbiny
- Department of Basic Medical Sciences, College of Medicine, AlMaarefa University, P.O. Box 71666, Riyadh 11597, Saudi Arabia; Department of Anatomy and Embryology, Faculty of Medicine, Mansoura University, Mansoura 35516, Egypt
| | - Nehal M Elsherbiny
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Tabuk, Tabuk, Saudi Arabia.
| |
Collapse
|
3
|
Paccione N, Rahmani M, Barcia E, Negro S. Antiparkinsonian Agents in Investigational Polymeric Micro- and Nano-Systems. Pharmaceutics 2022; 15:pharmaceutics15010013. [PMID: 36678642 PMCID: PMC9866990 DOI: 10.3390/pharmaceutics15010013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 12/13/2022] [Accepted: 12/15/2022] [Indexed: 12/24/2022] Open
Abstract
Parkinson's disease (PD) is a devastating neurodegenerative disease characterized by progressive destruction of dopaminergic tissue in the central nervous system (CNS). To date, there is no cure for the disease, with current pharmacological treatments aimed at controlling the symptoms. Therefore, there is an unmet need for new treatments for PD. In addition to new therapeutic options, there exists the need for improved efficiency of the existing ones, as many agents have difficulties in crossing the blood-brain barrier (BBB) to achieve therapeutic levels in the CNS or exhibit inappropriate pharmacokinetic profiles, thereby limiting their clinical benefits. To overcome these limitations, an interesting approach is the use of drug delivery systems, such as polymeric microparticles (MPs) and nanoparticles (NPs) that allow for the controlled release of the active ingredients targeting to the desired site of action, increasing the bioavailability and efficacy of treatments, as well as reducing the number of administrations and adverse effects. Here we review the polymeric micro- and nano-systems under investigation as potential new therapies for PD.
Collapse
Affiliation(s)
- Nicola Paccione
- Department of Pharmaceutics and Food Technology, School of Pharmacy, Universidad Complutense de Madrid, Ciudad Universitaria s/n, 28040 Madrid, Spain
| | - Mahdieh Rahmani
- Department of Pharmaceutics and Food Technology, School of Pharmacy, Universidad Complutense de Madrid, Ciudad Universitaria s/n, 28040 Madrid, Spain
- Correspondence: ; Tel.: +34-913941741
| | - Emilia Barcia
- Department of Pharmaceutics and Food Technology, School of Pharmacy, Universidad Complutense de Madrid, Ciudad Universitaria s/n, 28040 Madrid, Spain
- Institute of Industrial Pharmacy, Universidad Complutense de Madrid, Ciudad Universitaria s/n, 28040 Madrid, Spain
| | - Sofía Negro
- Department of Pharmaceutics and Food Technology, School of Pharmacy, Universidad Complutense de Madrid, Ciudad Universitaria s/n, 28040 Madrid, Spain
- Institute of Industrial Pharmacy, Universidad Complutense de Madrid, Ciudad Universitaria s/n, 28040 Madrid, Spain
| |
Collapse
|
4
|
Effects of pramipexole on beta-amyloid 1-42 memory deficits and evaluation of oxidative stress and mitochondrial function markers in the hippocampus of Wistar rat. Neurotoxicology 2022; 92:91-101. [PMID: 35868426 DOI: 10.1016/j.neuro.2022.07.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Revised: 07/12/2022] [Accepted: 07/13/2022] [Indexed: 12/06/2022]
Abstract
Oxidative damage and mitochondrial dysfunction are two prominent pathological features and gradually understood as important pathogenic events for neurodegenerative diseases, including aging and Alzheimer's disease (AD). The present study was aimed to explore the prolonged treatment of pramipexole (PPX) following amyloid beta (Aβ1-42)-induced cognitive deficits, oxidative stress, and mitochondrial dysfunction in Wistar rat model. We have found that PPX (1.0mg/kg, b.wt.) can rescue cognitive impairments of Aβ1-42-infused rats in Morris water maze. At the same time, PPX attenuated Aβ1-42-induced oxidative damage and increased reduced-glutathione content level, decreased lipid peroxidation rate and suppressed the activity of acetylcholinesterase and shows antioxidant effects. Additionally, PPX treatment has shown inhibition of mitochondrial reactive oxygen species production and restored mitochondrial membrane potential, oxidative phosphorylation, and enhanced ATP levels in Aβ1-42 rats. Furthermore, PPX treatment reduced bioenergetics loss and dynamics alterations by regulating PGC-1α protein level and mitigating translocation of Bax and Drp-1 to mitochondria and cytochrome-c release into the cytoplasm. PPX also increased mitofusin-2 protein expression, a basic element of mitochondrial fusion process. We conclude that remedial role of PPX in mitigating oxidative damage and mitochondrial perturbation that are modulated in Aβ1-42 rats may have the propensity in AD pathogenesis.
Collapse
|
5
|
Chagraoui A, Di Giovanni G, De Deurwaerdère P. Neurobiological and Pharmacological Perspectives of D3 Receptors in Parkinson’s Disease. Biomolecules 2022; 12:biom12020243. [PMID: 35204744 PMCID: PMC8961531 DOI: 10.3390/biom12020243] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 01/19/2022] [Accepted: 01/26/2022] [Indexed: 12/02/2022] Open
Abstract
The discovery of the D3 receptor (D3R) subtypes of dopamine (DA) has generated an understandable increase in interest in the field of neurological diseases, especially Parkinson’s disease (PD). Indeed, although DA replacement therapy with l-DOPA has provided an effective treatment for patients with PD, it is responsible for invalidating abnormal involuntary movements, known as L-DOPA-induced dyskinesia, which constitutes a serious limitation of the use of this therapy. Of particular interest is the finding that chronic l-DOPA treatment can trigger the expression of D1R–D3R heteromeric interactions in the dorsal striatum. The D3R is expressed in various tissues of the central nervous system, including the striatum. Compelling research has focused on striatal D3Rs in the context of PD and motor side effects, including dyskinesia, occurring with DA replacement therapy. Therefore, this review will briefly describe the basal ganglia (BG) and the DA transmission within these brain regions, before going into more detail with regard to the role of D3Rs in PD and their participation in the current treatments. Numerous studies have also highlighted specific interactions between D1Rs and D3Rs that could promote dyskinesia. Finally, this review will also address the possibility that D3Rs located outside of the BG may mediate some of the effects of DA replacement therapy.
Collapse
Affiliation(s)
- Abdeslam Chagraoui
- Différenciation et Communication Neuroendocrine, Endocrine et Germinale Laboratory, Institute for Research and Innovation in Biomedicine of Normandy (IRIB), University of Rouen, INSERM 1239, 76000 Rouen, France
- Department of Medical Biochemistry, Rouen University Hospital, 76000 Rouen, France
- Correspondence: ; Tel.: +33-2-35-14-83-69
| | - Giuseppe Di Giovanni
- Laboratory of Neurophysiology, Department of Physiology and Biochemistry, Faculty of Medicine and Surgery, University of Malta, 2080 Msida, Malta;
- Neuroscience Division, School of Biosciences, Cardiff University, Cardiff CF10 3AT, UK
| | - Philippe De Deurwaerdère
- Unité Mixte de Recherche (UMR) 5287, Centre National de la Recherche Scientifique (CNRS), CEDEX, 33000 Bordeaux, France;
| |
Collapse
|
6
|
Liu X, Guo Y, Yang Y, Qi C, Xiong T, Chen Y, Wu G, Zeng C, Wang D. DRD4 (Dopamine D4 Receptor) Mitigate Abdominal Aortic Aneurysm via Decreasing P38 MAPK (mitogen-activated protein kinase)/NOX4 (NADPH Oxidase 4) Axis-Associated Oxidative Stress. Hypertension 2021; 78:294-307. [PMID: 34176291 DOI: 10.1161/hypertensionaha.120.16738] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
[Figure: see text].
Collapse
Affiliation(s)
- Xuesong Liu
- Department of Cardiology, The Second Xiangya Hospital, Central South University, Changsha, China (X.L., C.Q., T.X.)
| | - Yansong Guo
- Department of Cardiology, Shengli Clinical Medical College of Fujian Medical University, Fujian Provincial Hospital, Fujian Provincial Key Laboratory of Cardiovascular Disease, Fujian Cardiovascular Institute, Fuzhou, China (Y.G.)
| | - Yuxue Yang
- The Hospital Affiliated to Medical School of Yangzhou University (Taizhou People's Hospital), China (Y.Y., D.W.)
| | - Chunlei Qi
- Department of Cardiology, The Second Xiangya Hospital, Central South University, Changsha, China (X.L., C.Q., T.X.)
| | - Ting Xiong
- Department of Cardiology, The Second Xiangya Hospital, Central South University, Changsha, China (X.L., C.Q., T.X.)
| | - Yue Chen
- Department of Cardiology, Daping Hospital, The Third Military Medical University, Chongqing, China (Y.C., G.W., C.Z.)
| | - Gengze Wu
- Department of Cardiology, Daping Hospital, The Third Military Medical University, Chongqing, China (Y.C., G.W., C.Z.)
| | - Chunyu Zeng
- Department of Cardiology, Daping Hospital, The Third Military Medical University, Chongqing, China (Y.C., G.W., C.Z.)
| | - Daxin Wang
- The Hospital Affiliated to Medical School of Yangzhou University (Taizhou People's Hospital), China (Y.Y., D.W.)
| |
Collapse
|
7
|
Yang J, Villar VAM, Jose PA, Zeng C. Renal Dopamine Receptors and Oxidative Stress: Role in Hypertension. Antioxid Redox Signal 2021; 34:716-735. [PMID: 32349533 PMCID: PMC7910420 DOI: 10.1089/ars.2020.8106] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Significance: The kidney plays an important role in the long-term control of blood pressure. Oxidative stress is one of the fundamental mechanisms responsible for the development of hypertension. Dopamine, via five subtypes of receptors, plays an important role in the control of blood pressure by various mechanisms, including the inhibition of oxidative stress. Recent Advances: Dopamine receptors exert their regulatory function to decrease the oxidative stress in the kidney and ultimately maintain normal sodium balance and blood pressure homeostasis. An aberration of this regulation may be involved in the pathogenesis of hypertension. Critical Issues: Our present article reviews the important role of oxidative stress and intrarenal dopaminergic system in the regulation of blood pressure, summarizes the current knowledge on renal dopamine receptor-mediated antioxidation, including decreasing reactive oxygen species production, inhibiting pro-oxidant enzyme nicotinamide-adenine dinucleotide phosphate (NADPH) oxidase, and stimulating antioxidative enzymes, and also discusses its underlying mechanisms, including the increased activity of G protein-coupled receptor kinase 4 (GRK4) and abnormal trafficking of renal dopamine receptors in hypertensive status. Future Directions: Identifying the mechanisms of renal dopamine receptors in the regulation of oxidative stress and their contribution to the pathogenesis of hypertension remains an important research focus. Increased understanding of the role of reciprocal regulation between renal dopamine receptors and oxidative stress in the regulation of blood pressure may give us novel insights into the pathogenesis of hypertension and provide a new treatment strategy for hypertension.
Collapse
Affiliation(s)
- Jian Yang
- Department of Clinical Nutrition, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, People's Republic of China
| | - Van Anthony M Villar
- Division of Renal Diseases & Hypertension, Department of Medicine, The George Washington University School of Medicine and Health Sciences, Washington, District of Columbia, USA
| | - Pedro A Jose
- Division of Renal Diseases & Hypertension, Department of Medicine, The George Washington University School of Medicine and Health Sciences, Washington, District of Columbia, USA
| | - Chunyu Zeng
- Department of Cardiology, Fujian Heart Medical Center, Fujian Medical University Union Hospital, Fuzhou, People's Republic of China.,Department of Cardiology, Daping Hospital, The Third Military Medical University, Chongqing, People's Republic of China
| |
Collapse
|
8
|
Salman M, Tabassum H, Parvez S. Nrf2/HO-1 mediates the neuroprotective effects of pramipexole by attenuating oxidative damage and mitochondrial perturbation after traumatic brain injury in rats. Dis Model Mech 2020; 13:dmm045021. [PMID: 32540990 PMCID: PMC7449795 DOI: 10.1242/dmm.045021] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2020] [Accepted: 05/26/2020] [Indexed: 12/27/2022] Open
Abstract
Pramipexole (PPX), a D2-like receptor agonist, is generally used in the treatment of Parkinson's disease and restless leg syndrome. Its neuroprotective effects have been shown against various neurological disorders. Recent research work has demonstrated that PPX exerts neuroprotection through mitochondria. However, the neuromodulator-related effects of PPX against traumatic brain injury (TBI) remain unexplored. The present study, therefore, investigated the mechanism of neuroprotection by PPX against oxidative stress, mitochondrial dysfunction and neuronal damage following TBI in rats. We hypothesized that the neuroprotection by PPX in TBI-subjected rats might involve activation of the Nrf2/HO-1 (also known as Nfe2l2/Hmox1) signaling pathway. PPX was injected intraperitoneally (0.25 mg/kg body weight and 1.0 mg/kg body weight) at different time intervals post-TBI. Several neurobehavioral parameters were assessed at 48 h post-TBI, and the brain was isolated for molecular and biochemical analysis. The results demonstrated that PPX treatment significantly improved the behavioral deficits, decreased the lipid peroxidation rate, increased glutathione levels and decreased 4-hydroxynonenal levels in TBI-subjected rats. PPX also increased the activities of glutathione peroxidase and superoxide dismutase enzymes. In addition, PPX treatment inhibited mitochondrial reactive oxygen species production, restored mitochondrial membrane potential and increased ATP levels after a TBI. Further, PPX treatment reduced the Bax/Bcl2 ratio and translocation of Bax to mitochondria and cytochrome-c to the cytosol. Finally, PPX treatment greatly accelerated the translocation of Nrf2 to the nucleus and upregulated HO-1 protein expression. We conclude that the neuroprotective effects of PPX are mediated by activation of the Nrf2/HO-1 signaling pathway following TBI.This article has an associated First Person interview with the first author of the paper.
Collapse
Affiliation(s)
- Mohd Salman
- Department of Medical Elementology and Toxicology, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi 110062, India
| | - Heena Tabassum
- Division of Basic Medical Sciences, Indian Council of Medical Research, Ministry of Health and Family Welfare, Government of India, V. Ramalingaswamy Bhawan, New Delhi 110 029, India
| | - Suhel Parvez
- Department of Medical Elementology and Toxicology, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi 110062, India
| |
Collapse
|
9
|
Romero-Sánchez HA, Mendieta L, Austrich-Olivares AM, Garza-Mouriño G, Benitez-Diaz Mirón M, Coen A, Godínez-Chaparro B. Unilateral lesion of the nigroestriatal pathway with 6-OHDA induced allodynia and hyperalgesia reverted by pramipexol in rats. Eur J Pharmacol 2020; 869:172814. [DOI: 10.1016/j.ejphar.2019.172814] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Revised: 11/05/2019] [Accepted: 11/15/2019] [Indexed: 12/25/2022]
|
10
|
Yang P, Perlmutter JS, Benzinger TLS, Morris JC, Xu J. Dopamine D3 receptor: A neglected participant in Parkinson Disease pathogenesis and treatment? Ageing Res Rev 2020; 57:100994. [PMID: 31765822 PMCID: PMC6939386 DOI: 10.1016/j.arr.2019.100994] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Revised: 11/13/2019] [Accepted: 11/20/2019] [Indexed: 12/20/2022]
Abstract
Parkinson disease (PD) is a neurodegenerative disorder characterized by motor and non-motor symptoms which relentlessly and progressively lead to substantial disability and economic burden. Pathologically, these symptoms follow the loss of dopaminergic neurons in the substantia nigra pars compacta (SNpc) associated with abnormal α-synuclein (α-Syn) deposition as cytoplasmic inclusions called Lewy bodies in pigmented brainstem nuclei, and in dystrophic neurons in striatal and cortical regions (Lewy neurites). Pharmacotherapy for PD focuses on improving quality of life and primarily targets dopaminergic pathways. Dopamine acts through two families of receptors, dopamine D1-like and dopamine D2-like; dopamine D3 receptors (D3R) belong to dopamine D2 receptor (D2R) family. Although D3R's precise role in the pathophysiology and treatment of PD has not been determined, we present evidence suggesting an important role for D3R in the early development and occurrence of PD. Agonist activation of D3R increases dopamine concentration, decreases α-Syn accumulation, enhances secretion of brain derived neurotrophic factors (BDNF), ameliorates neuroinflammation, alleviates oxidative stress, promotes neurogenesis in the nigrostriatal pathway, interacts with D1R to reduce PD associated motor symptoms and ameliorates side effects of levodopa (L-DOPA) treatment. Furthermore, D3R mutations can predict PD age of onset and prognosis of PD treatment. The role of D3R in PD merits further research. This review elucidates the potential role of D3R in PD pathogenesis and therapy.
Collapse
Affiliation(s)
- Pengfei Yang
- Department of Radiology, Washington University School of Medicine, 510 S. Kingshighway Blvd, St. Louis, MO 63110, USA
| | - Joel S Perlmutter
- Department of Radiology, Washington University School of Medicine, 510 S. Kingshighway Blvd, St. Louis, MO 63110, USA; Department of Neurology, Washington University School of Medicine, 510 S. Kingshighway Blvd, St. Louis, MO 63110, USA; Department of Neuroscience, Washington University School of Medicine, 510 S. Kingshighway Blvd, St. Louis, MO 63110, USA; Department of Physical Therapy, Washington University School of Medicine, 510 S. Kingshighway Blvd, St. Louis, MO 63110, USA; Department of Occupational Therapy, Washington University School of Medicine, 510 S. Kingshighway Blvd, St. Louis, MO 63110, USA
| | - Tammie L S Benzinger
- Department of Radiology, Washington University School of Medicine, 510 S. Kingshighway Blvd, St. Louis, MO 63110, USA
| | - John C Morris
- Department of Neurology, Washington University School of Medicine, 510 S. Kingshighway Blvd, St. Louis, MO 63110, USA
| | - Jinbin Xu
- Department of Radiology, Washington University School of Medicine, 510 S. Kingshighway Blvd, St. Louis, MO 63110, USA.
| |
Collapse
|
11
|
Martínez A, Ibarra IA, Vargas R. A quantum chemical approach representing a new perspective concerning agonist and antagonist drugs in the context of schizophrenia and Parkinson's disease. PLoS One 2019; 14:e0224691. [PMID: 31830046 PMCID: PMC6907805 DOI: 10.1371/journal.pone.0224691] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Accepted: 10/18/2019] [Indexed: 02/03/2023] Open
Abstract
Schizophrenia and Parkinson's disease can be controlled with dopamine antagonists and agonists. In order to improve the understanding of the reaction mechanism of these drugs, in this investigation we present a quantum chemical study of 20 antagonists and 10 agonists. Electron donor acceptor capacity and global hardness are analyzed using Density Functional Theory calculations. Following this theoretical approach, we provide new insights into the intrinsic response of these chemical species. In summary, antagonists generally prove to be better electron acceptors and worse electron donors than dopamine, whereas agonists present an electron donor-acceptor capacity similar to that of dopamine. The chemical hardness is a descriptor that captures the resistance of a chemical compound to change its number of electrons. Within this model, harder molecules are less polarizable and more stable systems. Our results show that the global hardness is similar for dopamine and agonists whilst antagonists present smaller values. Following the Hard and Soft Acid and Bases principle, it is possible to conclude that dopamine and agonists are hard bases while antagonists are soft acids, and this can be related to their activity. From the electronic point of view, we have evolved a new perspective for the classification of agonist and antagonist, which may help to analyze future results of chemical interactions triggered by these drugs.
Collapse
Affiliation(s)
- Ana Martínez
- Instituto de Investigaciones en Materiales, Universidad Nacional Autónoma de México, Circuito Exterior S. N., Ciudad Universitaria, CDMX, México
- Departamento de Química, División de Ciencias Básicas e Ingeniería, Universidad Autónoma Metropolitana-Iztapalapa, CDMX, México
| | - Ilich A Ibarra
- Laboratorio de Fisicoquímica y Reactividad de Superficies (LaFReS), Instituto de Investigaciones en Materiales, Universidad Nacional Autónoma de México, CDMX, Mexico
| | - Rubicelia Vargas
- Departamento de Química, División de Ciencias Básicas e Ingeniería, Universidad Autónoma Metropolitana-Iztapalapa, CDMX, México
| |
Collapse
|
12
|
Salamon A, Zádori D, Szpisjak L, Klivényi P, Vécsei L. Neuroprotection in Parkinson's disease: facts and hopes. J Neural Transm (Vienna) 2019; 127:821-829. [PMID: 31828513 PMCID: PMC7242234 DOI: 10.1007/s00702-019-02115-8] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Accepted: 12/03/2019] [Indexed: 12/15/2022]
Abstract
Parkinson’s disease (PD) is the second most common neurodegenerative disease worldwide. Behind the symptoms there is a complex pathological mechanism which leads to a dopaminergic cell loss in the substantia nigra pars compacta. Despite the strong efforts, curative treatment has not been found yet. To prevent a further cell death, numerous molecules were tested in terms of neuroprotection in preclinical (in vitro, in vivo) and in clinical studies as well. The aim of this review article is to summarize our knowledge about the extensively tested neuroprotective agents (Search period: 1991–2019). We detail the underlying pathological mechanism and summarize the most important results of the completed animal and clinical trials. Although many positive results have been reported in the literature, there is still no evidence that any of them should be used in clinical practice (Cochrane analysis was performed). Therefore, further studies are needed to better understand the pathomechanism of PD and to find the optimal neuroprotective agent(s).
Collapse
Affiliation(s)
- András Salamon
- Department of Neurology, Faculty of Medicine, Interdisciplinary Excellence Centre, Albert Szent-Györgyi Clinical Center, University of Szeged, Semmelweis u. 6., Szeged, 6725, Hungary
| | - Dénes Zádori
- Department of Neurology, Faculty of Medicine, Interdisciplinary Excellence Centre, Albert Szent-Györgyi Clinical Center, University of Szeged, Semmelweis u. 6., Szeged, 6725, Hungary
| | - László Szpisjak
- Department of Neurology, Faculty of Medicine, Interdisciplinary Excellence Centre, Albert Szent-Györgyi Clinical Center, University of Szeged, Semmelweis u. 6., Szeged, 6725, Hungary
| | - Péter Klivényi
- Department of Neurology, Faculty of Medicine, Interdisciplinary Excellence Centre, Albert Szent-Györgyi Clinical Center, University of Szeged, Semmelweis u. 6., Szeged, 6725, Hungary
| | - László Vécsei
- Department of Neurology, Faculty of Medicine, Interdisciplinary Excellence Centre, Albert Szent-Györgyi Clinical Center, University of Szeged, Semmelweis u. 6., Szeged, 6725, Hungary. .,MTA-SZTE Neuroscience Research Group, Szeged, Hungary.
| |
Collapse
|
13
|
Mishra A, Singh S, Tiwari V, Chaturvedi S, Wahajuddin M, Shukla S. Dopamine receptor activation mitigates mitochondrial dysfunction and oxidative stress to enhance dopaminergic neurogenesis in 6-OHDA lesioned rats: A role of Wnt signalling. Neurochem Int 2019; 129:104463. [PMID: 31078578 DOI: 10.1016/j.neuint.2019.104463] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Revised: 05/07/2019] [Accepted: 05/09/2019] [Indexed: 02/04/2023]
Abstract
Nigral dopaminergic (DAergic) cell degeneration and depletion of dopamine neurotransmitter in the midbrain are cardinal features of Parkinson's disease (PD). Dopamine system regulates different aspects of behavioural phenotypes such as motor control, reward, anxiety and depression via acting on dopamine receptors (D1-D5). Recent studies have shown the potential effects of dopamine on modulation of neurogenesis, a process of newborn neuron formation from neural stem cells (NSCs). Reduced proliferative capacity of NSCs and net neurogenesis has been reported in subventricular zone, olfactory bulb and hippocampus of patients with PD. However, the molecular and cellular mechanism of dopamine mediated modulation of DAergic neurogenesis is not defined. In this study, we attempted to investigate the molecular mechanism of dopamine receptors mediated control of DAergic neurogenesis and whether it affects mitochondrial biogenesis in 6-hydroxydopamine (6-OHDA) induced rat model of PD-like phenotypes. Unilateral administration of 6-OHDA into medial forebrain bundle potentially reduced tyrosine hydroxylase immunoreactivity, dopamine content in substantia nigra pars compacta (SNpc) and striatum region and impaired motor functions in adult rats. We found decreased D1 receptor expression, mitochondrial biogenesis, mitochondrial functions and DAergic differentiation associated with down-regulation of Wnt/β-catenin signalling in SNpc of 6-OHDA lesioned rats. Pharmacological stimulation of D1 receptor enhanced mitochondrial biogenesis, mitochondrial functions and DAergic neurogenesis that lead to improved motor functions in 6-OHDA lesioned rats. D1 agonist induced effects were attenuated following administration of D1 antagonist, whereas shRNA mediated knockdown of Axin-2, a negative regulator of Wnt signalling significantly abolished D1 antagonist induced impairment in mitochondrial biogenesis and DAergic neurogenesis in 6-OHDA lesioned rats. Our results suggest that dopamine receptor regulates DAergic neurogenesis and mitochondrial functions by activation of Wnt/β-catenin signaling in rat model of PD-like phenotypes.
Collapse
Affiliation(s)
- Akanksha Mishra
- Division of Pharmacology, CSIR-Central Drug Research Institute, Lucknow, UP, India; Academy of Scientific and Innovative Research, New Delhi, India
| | - Sonu Singh
- Division of Pharmacology, CSIR-Central Drug Research Institute, Lucknow, UP, India; National Institute of Child Health and Human Development, Bethesda, MD, 20814, USA
| | - Virendra Tiwari
- Division of Pharmacology, CSIR-Central Drug Research Institute, Lucknow, UP, India; Academy of Scientific and Innovative Research, New Delhi, India
| | - Swati Chaturvedi
- Pharmaceutics & Pharmacokinetics Division, CSIR-Central Drug Research Institute, Lucknow, 226031, Uttar Pradesh, India; Academy of Scientific and Innovative Research, New Delhi, India
| | - M Wahajuddin
- Pharmaceutics & Pharmacokinetics Division, CSIR-Central Drug Research Institute, Lucknow, 226031, Uttar Pradesh, India
| | - Shubha Shukla
- Division of Pharmacology, CSIR-Central Drug Research Institute, Lucknow, UP, India; Academy of Scientific and Innovative Research, New Delhi, India.
| |
Collapse
|
14
|
Bono F, Mutti V, Savoia P, Barbon A, Bellucci A, Missale C, Fiorentini C. Nicotine prevents alpha-synuclein accumulation in mouse and human iPSC-derived dopaminergic neurons through activation of the dopamine D3- acetylcholine nicotinic receptor heteromer. Neurobiol Dis 2019; 129:1-12. [PMID: 31051233 DOI: 10.1016/j.nbd.2019.04.017] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Revised: 04/05/2019] [Accepted: 04/29/2019] [Indexed: 12/25/2022] Open
Abstract
We recently found that in mouse dopaminergic neurons, the heteromer formed by the dopamine D3 receptor (D3R) and the β2 subunit of acetylcholine nicotinic receptor (nAChR) exerts neurotrophic effects when activated by nicotine, leading to neurons with enlarged cell bodies and increased dendrite arborization. Beside this action, we now show that nicotine, by activating the D3R-nAChR heteromer, protects dopaminergic neurons against neuronal injury. In primary cultures of mouse dopaminergic neurons, in fact, the ability of nicotine to inhibit both the pathological accumulation of alpha-synuclein induced by glucose deprivation and the consequent morphological defects were strongly prevented by disrupting the D3R-nAChR heteromer with specific interfering TAT-peptides; the relevance of the phosphoinositide 3-kinase (PI3K) intracellular signaling in mediating nicotine prevention of alpha-synuclein aggregation has been also demonstrated. Moreover, the ability of nicotine in restoring the ubiquitin-proteasome system has been found as a mechanism contributing to the neuroprotective properties of nicotine. By using the proximity ligation assay, we have shown that the D3R-nAChR heteromer is also expressed in human dopaminergic neurons derived from induced pluripotent stem cells. In this human cell model, nicotine exerts neuroprotective effects specifically acting through the D3R-nAChR complex thus indicating that this heteromer is a relevant molecular effector involved in the protection of human dopaminergic neurons.
Collapse
Affiliation(s)
- Federica Bono
- Unit of Pharmacology, Department of Molecular and Translational Medicine, University of Brescia, 25123 Brescia, Italy; Laboratory of Personalized and Preventive Medicine, University of Brescia, 25123 Brescia, Italy
| | - Veronica Mutti
- Unit of Pharmacology, Department of Molecular and Translational Medicine, University of Brescia, 25123 Brescia, Italy
| | - Paola Savoia
- Unit of Pharmacology, Department of Molecular and Translational Medicine, University of Brescia, 25123 Brescia, Italy
| | - Alessandro Barbon
- Unit of Biology and Genetic, Department of Molecular and Translational Medicine, University of Brescia, 25123 Brescia, Italy
| | - Arianna Bellucci
- Unit of Pharmacology, Department of Molecular and Translational Medicine, University of Brescia, 25123 Brescia, Italy; Laboratory of Personalized and Preventive Medicine, University of Brescia, 25123 Brescia, Italy
| | - Cristina Missale
- Unit of Pharmacology, Department of Molecular and Translational Medicine, University of Brescia, 25123 Brescia, Italy
| | - Chiara Fiorentini
- Unit of Pharmacology, Department of Molecular and Translational Medicine, University of Brescia, 25123 Brescia, Italy.
| |
Collapse
|
15
|
Effectiveness of Fragment C Domain of Tetanus Toxin and Pramipexole in an Animal Model of Parkinson’s Disease. Neurotox Res 2019; 35:699-710. [DOI: 10.1007/s12640-018-9990-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2018] [Revised: 12/05/2018] [Accepted: 12/11/2018] [Indexed: 12/13/2022]
|
16
|
Wang Y, Yu X, Zhang P, Ma Y, Wang L, Xu H, Sui D. Neuroprotective effects of pramipexole transdermal patch in the MPTP-induced mouse model of Parkinson's disease. J Pharmacol Sci 2018; 138:31-37. [DOI: 10.1016/j.jphs.2018.08.008] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2018] [Revised: 07/30/2018] [Accepted: 08/07/2018] [Indexed: 01/12/2023] Open
|
17
|
Siddique YH, Naz F, Khan W, Jyoti S, Raj Singh B, Naqvi AH. Effect of pramipexole alginate nanodispersion (PAND) on the transgenic Drosophila expressing human alpha synuclein in the brain. J Appl Biomed 2018. [DOI: 10.1016/j.jab.2017.11.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
|
18
|
Das B, Rajagopalan S, Joshi GS, Xu L, Luo D, Andersen JK, Todi SV, Dutta AK. A novel iron (II) preferring dopamine agonist chelator D-607 significantly suppresses α-syn- and MPTP-induced toxicities in vivo. Neuropharmacology 2017; 123:88-99. [PMID: 28533164 DOI: 10.1016/j.neuropharm.2017.05.019] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2017] [Revised: 05/17/2017] [Accepted: 05/18/2017] [Indexed: 12/28/2022]
Abstract
Here, we report the characterization of a novel hybrid D2/D3 agonist and iron (II) specific chelator, D-607, as a multi-target-directed ligand against Parkinson's disease (PD). In our previously published report, we showed that D-607 is a potent agonist of dopamine (DA) D2/D3 receptors, exhibits efficacy in a reserpinized PD animal model and preferentially chelates to iron (II). As further evidence of its potential as a neuroprotective agent in PD, the present study reveals D-607 to be protective in neuronal PC12 cells against 6-OHDA toxicity. In an in vivo Drosophila melanogaster model expressing a disease-causing variant of α-synuclein (α-Syn) protein in fly eyes, the compound was found to significantly suppress toxicity compared to controls, concomitant with reduced levels of aggregated α-Syn. Furthermore, D-607 was able to rescue DAergic neurons from MPTP toxicity in mice, a well-known PD neurotoxicity model, following both sub-chronic and chronic MPTP administration. Mechanistic studies indicated that possible protection of mitochondria, up-regulation of hypoxia-inducible factor, reduction in formation of α-Syn aggregates and antioxidant activity may underlie the observed neuroprotection effects. These observations strongly suggest that D-607 has potential as a promising multifunctional lead molecule for viable symptomatic and disease-modifying therapy for PD.
Collapse
Affiliation(s)
- Banibrata Das
- Department of Pharmaceutical Sciences, Wayne State University, Detroit, MI 48202, USA
| | | | - Gnanada S Joshi
- Department of Pharmacology, Wayne State University, Detroit, MI 48201, USA
| | - Liping Xu
- Department of Pharmaceutical Sciences, Wayne State University, Detroit, MI 48202, USA
| | - Dan Luo
- Department of Pharmaceutical Sciences, Wayne State University, Detroit, MI 48202, USA
| | - Julie K Andersen
- Buck Institute for Research on Aging, 8001 Redwood Blvd, Novato, CA 94945, USA
| | - Sokol V Todi
- Department of Pharmacology, Wayne State University, Detroit, MI 48201, USA
| | - Aloke K Dutta
- Department of Pharmaceutical Sciences, Wayne State University, Detroit, MI 48202, USA.
| |
Collapse
|
19
|
Shibagaki K, Okamoto K, Katsuta O, Nakamura M. Beneficial protective effect of pramipexole on light-induced retinal damage in mice. Exp Eye Res 2015. [PMID: 26213307 DOI: 10.1016/j.exer.2015.07.007] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
We investigated the effects of pramipexole, a potent dopamine receptor D2/D3 agonist, on light-induced retinal damage in mice, H2O2-induced retinal pigment epithelium ARPE-19 cell injury in humans, and hydroxyl radical scavenging activity in a cell-free system. Pramipexole (0.1 and 1 mg/kg body weight) was orally administered to mice 1 h before light exposure (5000 lux, 2 h). Electrophysiological and morphologic studies were performed to evaluate the effects of the pramipexole on light-induced retinal damage in mice. Pramipexole significantly prevented the reduction of the a- and b-wave electroretinogram (ERG) amplitudes caused by light exposure in a dose-dependent manner. In parallel, damage to the inner and outer segments (IS/OS) of the photoreceptors, loss of photoreceptor nuclei, and the number of Tdt-mediated dUTP nick-end labeling (TUNEL)-positive cells in the outer nuclear layer (ONL) caused by light exposure were notably ameliorated by pramipexole. Additionally, pramipexole suppressed H2O2-induced ARPE-19 cell death in vitro in a concentration-dependent manner. The effect of pramipexole was significant at concentrations of 10(-6) M or higher. Pramipexole also significantly prevented H2O2-induced activation of caspases-3/7 and the intracellular accumulation of reactive oxygen species (ROS) in a concentration-dependent manner ranging from 10(-5) to 10(-3) M. Furthermore, pramipexole increased the scavenging activity toward a hydroxyl radical generated from H2O2 in a Fenton reaction. Our results suggest that pramipexole protects against light-induced retinal damage as an antioxidant and that it may be a novel and effective therapy for retinal degenerative disorders, such as dry age-related macular degeneration.
Collapse
Affiliation(s)
- Keiichi Shibagaki
- Research and Development Division, Santen Pharmaceutical Co., Ltd., 4-20, Ofuka-cho, Kita-ku, Osaka 530-8552, Japan; Graduate School of Biological Sciences, Nara Institute of Science and Technology, 8916-5 Takayama-cho, Ikoma-shi, Nara 630-0192, Japan.
| | - Kazuyoshi Okamoto
- Corporate Development Division, Santen Pharmaceutical Co., Ltd., 4-20, Ofuka-cho, Kita-ku, Osaka 530-8552, Japan
| | - Osamu Katsuta
- Research and Development Division, Santen Pharmaceutical Co., Ltd., 4-20, Ofuka-cho, Kita-ku, Osaka 530-8552, Japan
| | - Masatsugu Nakamura
- Research and Development Division, Santen Pharmaceutical Co., Ltd., 4-20, Ofuka-cho, Kita-ku, Osaka 530-8552, Japan
| |
Collapse
|
20
|
Cuevas S, Yang Y, Konkalmatt P, Asico LD, Feranil J, Jones J, Villar VA, Armando I, Jose PA. Role of nuclear factor erythroid 2-related factor 2 in the oxidative stress-dependent hypertension associated with the depletion of DJ-1. Hypertension 2015; 65:1251-7. [PMID: 25895590 DOI: 10.1161/hypertensionaha.114.04525] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2014] [Accepted: 03/26/2015] [Indexed: 01/11/2023]
Abstract
Renal dopamine 2 receptor dysfunction is associated with oxidative stress and high blood pressure (BP). We have reported that DJ-1, an oxidative stress response protein, is positively regulated by dopamine 2 receptor in the kidney. The transcription factor nuclear factor erythroid 2-related factor 2 (Nrf2) regulates the expression of several antioxidant genes. We tested the hypothesis that Nrf2 is involved in the renal DJ-1-mediated inhibition of reactive oxygen species production. We have reported that silencing dopamine 2 receptor in mouse renal proximal tubule cells decreases the expression of DJ-1. We now report that silencing DJ-1 or dopamine 2 receptor in mouse proximal tubule cells and mouse kidneys decreases Nrf2 expression and activity and increases reactive oxygen species production; BP is also increased in mice in which renal DJ-1 or dopamine 2 receptor is silenced. DJ-1(-/-) mice have decreased renal Nrf2 expression and activity and increased nitro-tyrosine levels and BP. Silencing Nrf2 in mouse proximal tubule cells does not alter the expression of DJ-1 or dopamine 2 receptor, indicating that Nrf2 is downstream of dopamine 2 receptor and DJ-1. An Nrf2 inducer, bardoxolone, normalizes the systolic BP and renal malondialdehyde levels in DJ-1(-/-) mice without affecting them in their wild-type littermates. Because Nrf2 ubiquitination is increased in DJ-1(-/-) mice, we conclude that the protective effect of DJ-1 on renal oxidative stress is mediated, in part, by preventing Nrf2 degradation. Moreover, renal dopamine 2 receptor and DJ-1 are necessary for normal Nrf2 activity to keep a normal redox balance and BP.
Collapse
Affiliation(s)
- Santiago Cuevas
- From the Department of Medicine, Division of Nephrology (S.C., Y.Y., P.K., L.D.A., J.F., J.J., V.A.V., I.A., P.A.J.) and Department of Physiology (P.A.J.), University of Maryland School of Medicine, Baltimore.
| | - Yu Yang
- From the Department of Medicine, Division of Nephrology (S.C., Y.Y., P.K., L.D.A., J.F., J.J., V.A.V., I.A., P.A.J.) and Department of Physiology (P.A.J.), University of Maryland School of Medicine, Baltimore
| | - Prasad Konkalmatt
- From the Department of Medicine, Division of Nephrology (S.C., Y.Y., P.K., L.D.A., J.F., J.J., V.A.V., I.A., P.A.J.) and Department of Physiology (P.A.J.), University of Maryland School of Medicine, Baltimore
| | - Laureano D Asico
- From the Department of Medicine, Division of Nephrology (S.C., Y.Y., P.K., L.D.A., J.F., J.J., V.A.V., I.A., P.A.J.) and Department of Physiology (P.A.J.), University of Maryland School of Medicine, Baltimore
| | - Jun Feranil
- From the Department of Medicine, Division of Nephrology (S.C., Y.Y., P.K., L.D.A., J.F., J.J., V.A.V., I.A., P.A.J.) and Department of Physiology (P.A.J.), University of Maryland School of Medicine, Baltimore
| | - John Jones
- From the Department of Medicine, Division of Nephrology (S.C., Y.Y., P.K., L.D.A., J.F., J.J., V.A.V., I.A., P.A.J.) and Department of Physiology (P.A.J.), University of Maryland School of Medicine, Baltimore
| | - Van Anthony Villar
- From the Department of Medicine, Division of Nephrology (S.C., Y.Y., P.K., L.D.A., J.F., J.J., V.A.V., I.A., P.A.J.) and Department of Physiology (P.A.J.), University of Maryland School of Medicine, Baltimore
| | - Ines Armando
- From the Department of Medicine, Division of Nephrology (S.C., Y.Y., P.K., L.D.A., J.F., J.J., V.A.V., I.A., P.A.J.) and Department of Physiology (P.A.J.), University of Maryland School of Medicine, Baltimore
| | - Pedro A Jose
- From the Department of Medicine, Division of Nephrology (S.C., Y.Y., P.K., L.D.A., J.F., J.J., V.A.V., I.A., P.A.J.) and Department of Physiology (P.A.J.), University of Maryland School of Medicine, Baltimore
| |
Collapse
|
21
|
Farias CCD, Bonifácio KL, Matsumoto AK, Higachi L, Casagrande R, Moreira EG, Barbosa DS. Comparison of the antioxidant potential of antiparkinsonian drugs in different in vitro models. BRAZ J PHARM SCI 2014. [DOI: 10.1590/s1984-82502014000400017] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Parkinson's disease (PD) is characterized by progressive degeneration of dopaminergic neurons in the substantia nigra pars compacta. Furthermore, oxidative stress plays a role in PD, causing or contributing to the neurodegenerative process. Currently PD has only symptomatic treatment and still nothing can be done to stop the degenerative process of the disease. This study aimed to comparatively evaluate the antioxidant capacity of pramipexole, selegeline and amantadine in different in vitrostudies and to offer possible explanations on the molecular antioxidant mechanisms of these drugs. In vitro, the antioxidant capacity of the drugs was assessed by the ability of antiparkinsonian drugs to decrease or scavenge ROS in the neutrophil respiratory burst, ability of antiparkinsonian drugs to donate hydrogen and stabilize the free radical 2,2-diphenyl-1-picryl-hydrazyl (DPPH•), to scavenge 2,2'-azino-di-(3-ethylbenzthiazoline-6-sulphonic acid (ABTS+) and evaluation of the ferric reducing antioxidant power (FRAP). This study demonstrated that both pramipexole and selegiline, but not amantadine, have antioxidant effects in vitro by scavenging superoxide anion on the respiratory burst, donating electron in the ABTS+ assay and presenting ferric reduction antioxidant power. This chemical structure-related antioxidant capacity suggests a possible neuroprotective mechanism of these drugs beyond their already recognized mechanism of action.
Collapse
Affiliation(s)
| | | | | | | | - Rúbia Casagrande
- State University of Londrina, Brazil; State University of Londrina, Brazil
| | | | | |
Collapse
|
22
|
Silindir M, Ozer AY. The benefits of pramipexole selection in the treatment of Parkinson's disease. Neurol Sci 2014; 35:1505-11. [PMID: 25038745 DOI: 10.1007/s10072-014-1891-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2014] [Accepted: 07/14/2014] [Indexed: 12/21/2022]
Abstract
Levodopa administration as a gold standard in Parkinson's disease (PD) treatment is very valuable, however, long-term administration may cause some motor complications such as abnormal unintended movements and shortening response to each dose (wearing off phenomenon). Dopamine agonists were developed to reduce duration of immobile off periods and dependence to levodopa for improving motor impairments (Clarke et al., Cochrane Libr 1:1-23, 2000). Pramipexole is one of these nonergot dopamine agonists with high relative in vitro specificity and full intrinsic activity at D2 subfamily of dopamine receptors, with a higher binding affinity to D3 than to D4 or D2 receptor subtypes (Piercey, Clin Neuropharmacol 21:141-151, 1998). It can be advantageously administered as monotherapy or adjunctive therapy to levodopa to decrease side effects and increase effectiveness in both early and advanced PD treatment.
Collapse
Affiliation(s)
- Mine Silindir
- Department of Radiopharmacy, Faculty of Pharmacy, Hacettepe University, 06100, Ankara, Turkey,
| | | |
Collapse
|
23
|
Santra S, Xu L, Shah M, Johnson M, Dutta A. D-512 and D-440 as novel multifunctional dopamine agonists: characterization of neuroprotection properties and evaluation of in vivo efficacy in a Parkinson's disease animal model. ACS Chem Neurosci 2013; 4:1382-92. [PMID: 23906010 DOI: 10.1021/cn400106n] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
In this article, we have demonstrated the in vivo efficacy of D-512 and D-440 in a 6-OHDA-induced unilaterally lesioned rat model experiment, a Parkinson's disease animal model. D-512 is a novel highly potent D2/D3 agonist, and D-440 is a novel highly selective D3 agonist. We evaluated the neuroprotective properties of D-512 and D-440 in the dopaminergic MN9D cells. Cotreatment of these two drugs with 6-OHDA and MPP+ significantly attenuated and reversed 6-OHDA- and MPP+-induced toxicity in a dose-dependent manner in the dopaminergic MN9D cells. The inhibition of caspase 3/7 and lipid peroxidation activities along with the restoration of tyrosine hydroxylase levels by D-512 in 6-OHDA-treated cells may partially explain the mechanism of its neuroprotective property. Furthermore, studies were carried out to elucidate the time-dependent changes in the pERK1/2 and pAkt, two kinases implicated in cell survival and apoptosis, levels upon treatment with 6-OHDA in presence of D-512. The neuroprotective property exhibited by these drugs was independent of their dopamine-agonist activity, which is consistent with our multifunctional drug-development approach that is focused on the generation of disease-modifying symptomatic-treatment agents for Parkinson's disease.
Collapse
Affiliation(s)
- Soumava Santra
- Department of Pharmaceutical Sciences, Wayne State University, Detroit, Michigan 48202, United
States
| | - Liping Xu
- Department of Pharmaceutical Sciences, Wayne State University, Detroit, Michigan 48202, United
States
| | - Mrudang Shah
- Department of Pharmaceutical Sciences, Wayne State University, Detroit, Michigan 48202, United
States
| | - Mark Johnson
- Department of Pharmaceutical Sciences, Wayne State University, Detroit, Michigan 48202, United
States
| | - Aloke Dutta
- Department of Pharmaceutical Sciences, Wayne State University, Detroit, Michigan 48202, United
States
| |
Collapse
|
24
|
Renal dopamine receptors, oxidative stress, and hypertension. Int J Mol Sci 2013; 14:17553-72. [PMID: 23985827 PMCID: PMC3794741 DOI: 10.3390/ijms140917553] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2013] [Revised: 08/09/2013] [Accepted: 08/12/2013] [Indexed: 12/22/2022] Open
Abstract
Dopamine, which is synthesized in the kidney, independent of renal nerves, plays an important role in the regulation of fluid and electrolyte balance and systemic blood pressure. Lack of any of the five dopamine receptor subtypes (D1R, D2R, D3R, D4R, and D5R) results in hypertension. D1R, D2R, and D5R have been reported to be important in the maintenance of a normal redox balance. In the kidney, the antioxidant effects of these receptors are caused by direct and indirect inhibition of pro-oxidant enzymes, specifically, nicotinamide adenine dinucleotide phosphate, reduced form (NADPH) oxidase, and stimulation of anti-oxidant enzymes, which can also indirectly inhibit NADPH oxidase activity. Thus, stimulation of the D2R increases the expression of endogenous anti-oxidants, such as Parkinson protein 7 (PARK7 or DJ-1), paraoxonase 2 (PON2), and heme oxygenase 2 (HO-2), all of which can inhibit NADPH oxidase activity. The D5R decreases NADPH oxidase activity, via the inhibition of phospholipase D2, and increases the expression of HO-1, another antioxidant. D1R inhibits NADPH oxidase activity via protein kinase A and protein kinase C cross-talk. In this review, we provide an overview of the protective roles of a specific dopamine receptor subtype on renal oxidative stress, the different mechanisms involved in this effect, and the role of oxidative stress and impairment of dopamine receptor function in the hypertension that arises from the genetic ablation of a specific dopamine receptor gene in mice.
Collapse
|
25
|
Asanuma M, Miyazaki I, Diaz-Corrales FJ, Shimizu M, Tanaka KI, Ogawa N. Pramipexole has ameliorating effects on levodopa-induced abnormal dopamine turnover in parkinsonian striatum and quenching effects on dopamine-semiquinone generatedin vitro. Neurol Res 2013; 27:533-9. [PMID: 15978181 DOI: 10.1179/016164105x22093] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
Abstract
OBJECTIVES AND METHODS To clarify the effects of a non-ergot dopamine agonist pramipexole on levodopa-induced abnormal dopamine metabolism in the parkinsonian model, we examined striatal changes in dopamine and its metabolites after repeated administration of pramipexole and/or levodopa using 6-hydroxydopamine-lesioned hemi-parkinsonian mice. Moreover, the effects of pramipexole on dopamine-semiquinones were also accessed using an in vitro dopamine-semiquinone generating system to elucidate its neuroprotective property against dopamine quinone-induced neurotoxicity that appears as dopamine neuron-specific oxidative stress. RESULTS Combined administration of pramipexole (0.5 or 1 mg/kg/day, 7 days) selectively suppressed the levodopa-induced (50 mg/kg/day) increase of striatal dopamine turnover in the parkinsonian side, but not in the non-lesioned side. In addition to the antioxidant properties previously reported, it was clarified that pramipexole scavenged dopamine-semiquinones generated in a dose-dependent manner either in simultaneous incubation or post-incubation. DISCUSSION The neurotoxicity of dopamine quinones that appear as dopaminergic neuron-specific oxidative stress has recently been known to play a role in the pathogenesis of Parkinson's disease and neurotoxin-induced parkinsonism. Therefore, the present results revealed that pramipexole possesses neuroprotective effects against abnormal dopamine metabolism in excessively levodopa-administered parkinsonian brains and against cytotoxic dopamine quinones generated from excess dopamine, preventing consequently dopaminergic neuronal damage induced by excess dopamine or levodopa.
Collapse
Affiliation(s)
- Masato Asanuma
- Department of Brain Science, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan.
| | | | | | | | | | | |
Collapse
|
26
|
Functional implications of an early exposure to general anesthesia: are we changing the behavior of our children? Mol Neurobiol 2013; 48:288-93. [PMID: 23821029 DOI: 10.1007/s12035-013-8488-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2013] [Accepted: 06/13/2013] [Indexed: 10/26/2022]
Abstract
There is a rapidly growing body of animal and clinical evidence suggesting that the exposure to anesthetics and sedatives during the critical stages of brain development results in long-lasting (perhaps permanent) impairment in cognitive development in a variety of mammalian species. With improved understanding of the mechanisms responsible for behavioral outcomes of anesthesia-induced developmental neurotoxicity, there is hope for development of protective strategies that will enable safe use of anesthesia in the youngest members of our society. Here, I review presently available evidence regarding anesthesia-induced neurocognitive and social behavioral impairments and possible strategies for preventing them. I also review limited and somewhat controversial evidence that examines the effects of nociception and surgical stimulation on anesthesia--induced developmental neurotoxicity.
Collapse
|
27
|
Boscolo A, Ori C, Bennett J, Wiltgen B, Jevtovic-Todorovic V. Mitochondrial protectant pramipexole prevents sex-specific long-term cognitive impairment from early anaesthesia exposure in rats. Br J Anaesth 2013; 110 Suppl 1:i47-52. [PMID: 23616588 DOI: 10.1093/bja/aet073] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Exposure to general anaesthesia during critical stages of brain development results in long-lasting cognitive impairment. Co-administration of protective agents could minimize the detrimental effects of anaesthesia. Co-administration of R(+)pramipexole (PPX), a synthetic aminobenzothiazol derivative that restores mitochondrial integrity, prevents anaesthesia-induced mitochondrial and neuronal damage and prevents early development of cognitive impairment. Here, we determine the protective effects of PPX into late adulthood in male and female rats. METHODS Postnatal day 7 rats of both sexes were exposed to mock anaesthesia or combined midazolam, nitrous oxide, and isoflurane anaesthesia for 6 h with or without PPX. Cognitive abilities were assessed between 5 and 7 months of age using Morris water maze spatial navigation tasks. RESULTS Examination of spatial reference memory revealed that female, but not male, neonatal rats exposed to anaesthesia showed slowing of acquisition rates, which was significantly improved with PPX treatment. Examination of memory retention revealed that both male and female anaesthesia-treated rats have impaired memory retention performance compared with sham controls. Co-treatment with PPX resulted in improvement in memory retention in both sexes. CONCLUSION PPX provides long-lasting protection against cognitive impairment known to occur when very young animals are exposed to anaesthesia during the peak of brain development. Anaesthesia-induced cognitive impairment appears to be sex-specific with females being more vulnerable than males, suggesting that they could benefit more from early prevention.
Collapse
Affiliation(s)
- A Boscolo
- Department of Anaesthesiology, University of Virginia, Charlottesville, VA, USA
| | | | | | | | | |
Collapse
|
28
|
Dias V, Junn E, Mouradian MM. The role of oxidative stress in Parkinson's disease. JOURNAL OF PARKINSON'S DISEASE 2013; 3:461-91. [PMID: 24252804 PMCID: PMC4135313 DOI: 10.3233/jpd-130230] [Citation(s) in RCA: 1096] [Impact Index Per Article: 99.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Oxidative stress plays an important role in the degeneration of dopaminergic neurons in Parkinson's disease (PD). Disruptions in the physiologic maintenance of the redox potential in neurons interfere with several biological processes, ultimately leading to cell death. Evidence has been developed for oxidative and nitrative damage to key cellular components in the PD substantia nigra. A number of sources and mechanisms for the generation of reactive oxygen species (ROS) are recognized including the metabolism of dopamine itself, mitochondrial dysfunction, iron, neuroinflammatory cells, calcium, and aging. PD causing gene products including DJ-1, PINK1, parkin, alpha-synuclein and LRRK2 also impact in complex ways mitochondrial function leading to exacerbation of ROS generation and susceptibility to oxidative stress. Additionally, cellular homeostatic processes including the ubiquitin-proteasome system and mitophagy are impacted by oxidative stress. It is apparent that the interplay between these various mechanisms contributes to neurodegeneration in PD as a feed forward scenario where primary insults lead to oxidative stress, which damages key cellular pathogenetic proteins that in turn cause more ROS production. Animal models of PD have yielded some insights into the molecular pathways of neuronal degeneration and highlighted previously unknown mechanisms by which oxidative stress contributes to PD. However, therapeutic attempts to target the general state of oxidative stress in clinical trials have failed to demonstrate an impact on disease progression. Recent knowledge gained about the specific mechanisms related to PD gene products that modulate ROS production and the response of neurons to stress may provide targeted new approaches towards neuroprotection.
Collapse
Affiliation(s)
- Vera Dias
- Center for Neurodegenerative and Neuroimmunologic Diseases, Department of Neurology, Rutgers - Robert Wood Johnson Medical School, Piscataway, NJ, USA
| | - Eunsung Junn
- Center for Neurodegenerative and Neuroimmunologic Diseases, Department of Neurology, Rutgers - Robert Wood Johnson Medical School, Piscataway, NJ, USA
| | - M. Maral Mouradian
- Center for Neurodegenerative and Neuroimmunologic Diseases, Department of Neurology, Rutgers - Robert Wood Johnson Medical School, Piscataway, NJ, USA
| |
Collapse
|
29
|
Tönges L, Frank T, Tatenhorst L, Saal KA, Koch JC, Szegő ÉM, Bähr M, Weishaupt JH, Lingor P. Inhibition of rho kinase enhances survival of dopaminergic neurons and attenuates axonal loss in a mouse model of Parkinson's disease. Brain 2012; 135:3355-70. [PMID: 23087045 PMCID: PMC3501973 DOI: 10.1093/brain/aws254] [Citation(s) in RCA: 136] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2012] [Revised: 07/18/2012] [Accepted: 07/21/2012] [Indexed: 01/08/2023] Open
Abstract
Axonal degeneration is one of the earliest features of Parkinson's disease pathology, which is followed by neuronal death in the substantia nigra and other parts of the brain. Inhibition of axonal degeneration combined with cellular neuroprotection therefore seem key to targeting an early stage in Parkinson's disease progression. Based on our previous studies in traumatic and neurodegenerative disease models, we have identified rho kinase as a molecular target that can be manipulated to disinhibit axonal regeneration and improve survival of lesioned central nervous system neurons. In this study, we examined the neuroprotective potential of pharmacological rho kinase inhibition mediated by fasudil in the in vitro 1-methyl-4-phenylpyridinium cell culture model and in the subchronic in vivo 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine mouse model of Parkinson's disease. Application of fasudil resulted in a significant attenuation of dopaminergic cell loss in both paradigms. Furthermore, dopaminergic terminals were preserved as demonstrated by analysis of neurite network in vitro, striatal fibre density and by neurochemical analysis of the levels of dopamine and its metabolites in the striatum. Behavioural tests demonstrated a clear improvement in motor performance after fasudil treatment. The Akt survival pathway was identified as an important molecular mediator for neuroprotective effects of rho kinase inhibition in our paradigm. We conclude that inhibition of rho kinase using the clinically approved small molecule inhibitor fasudil may be a promising new therapeutic strategy for Parkinson's disease.
Collapse
MESH Headings
- 1-(5-Isoquinolinesulfonyl)-2-Methylpiperazine/analogs & derivatives
- 1-(5-Isoquinolinesulfonyl)-2-Methylpiperazine/pharmacology
- 1-(5-Isoquinolinesulfonyl)-2-Methylpiperazine/therapeutic use
- 1-Methyl-4-phenylpyridinium/toxicity
- Animals
- Axons/drug effects
- Axons/pathology
- Behavior, Animal/drug effects
- Behavior, Animal/physiology
- Cell Survival/drug effects
- Cell Survival/physiology
- Cells, Cultured
- Corpus Striatum/metabolism
- Disease Models, Animal
- Dopamine/metabolism
- Dopaminergic Neurons/enzymology
- Dopaminergic Neurons/pathology
- Dopaminergic Neurons/physiology
- MPTP Poisoning/drug therapy
- MPTP Poisoning/enzymology
- Male
- Mice
- Mice, Inbred C57BL
- Nerve Degeneration/chemically induced
- Nerve Degeneration/drug therapy
- Nerve Degeneration/enzymology
- Neurites/pathology
- Neuroprotective Agents/metabolism
- Neuroprotective Agents/pharmacology
- Neuroprotective Agents/therapeutic use
- Parkinson Disease, Secondary/chemically induced
- Parkinson Disease, Secondary/drug therapy
- Parkinson Disease, Secondary/enzymology
- Parkinson Disease, Secondary/pathology
- Proto-Oncogene Proteins c-akt/drug effects
- Proto-Oncogene Proteins c-akt/metabolism
- Rats
- Rats, Wistar
- Substantia Nigra/drug effects
- Substantia Nigra/enzymology
- rho-Associated Kinases/antagonists & inhibitors
- rho-Associated Kinases/physiology
Collapse
Affiliation(s)
- Lars Tönges
- 1 Department of Neurology, University Medicine Göttingen, 37075 Göttingen, Germany
| | - Tobias Frank
- 1 Department of Neurology, University Medicine Göttingen, 37075 Göttingen, Germany
| | - Lars Tatenhorst
- 1 Department of Neurology, University Medicine Göttingen, 37075 Göttingen, Germany
| | - Kim A. Saal
- 1 Department of Neurology, University Medicine Göttingen, 37075 Göttingen, Germany
| | - Jan C. Koch
- 1 Department of Neurology, University Medicine Göttingen, 37075 Göttingen, Germany
| | - Éva M. Szegő
- 2 Cluster of Excellence “Nanoscale Microscopy and Molecular Physiology of the Brain” (CNMPB), 37075 Göttingen, Germany
- 3 Department of Neurodegeneration and Restorative Research, University of Göttingen, 37075 Göttingen, Germany
| | - Mathias Bähr
- 1 Department of Neurology, University Medicine Göttingen, 37075 Göttingen, Germany
- 2 Cluster of Excellence “Nanoscale Microscopy and Molecular Physiology of the Brain” (CNMPB), 37075 Göttingen, Germany
| | | | - Paul Lingor
- 1 Department of Neurology, University Medicine Göttingen, 37075 Göttingen, Germany
- 2 Cluster of Excellence “Nanoscale Microscopy and Molecular Physiology of the Brain” (CNMPB), 37075 Göttingen, Germany
| |
Collapse
|
30
|
Jevtovic-Todorovic V, Boscolo A, Sanchez V, Lunardi N. Anesthesia-induced developmental neurodegeneration: the role of neuronal organelles. Front Neurol 2012; 3:141. [PMID: 23087668 PMCID: PMC3468830 DOI: 10.3389/fneur.2012.00141] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2012] [Accepted: 09/24/2012] [Indexed: 01/12/2023] Open
Abstract
Exposure to general anesthetics (GAs) and antiepileptics during critical stages of brain development causes significant neurotoxicity to immature neurons. Many animal, and emerging human studies have shown long-term functional sequelae manifested as behavioral deficits and cognitive impairments. Since GAs and antiepileptic drugs are a necessity, current research is focused on deciphering the mechanisms responsible for anesthesia-induced developmental neurotoxicity so that protective strategies can be devised. These agents promote massive and wide-spread neuroapoptosis that is caused by the impairment of integrity and function of neuronal organelles. Mitochondria and endoplasmic reticulum are particularly vulnerable. By promoting significant release of intracellular calcium from the endoplasmic reticulum, anesthetics cause an increase in mitochondrial calcium load resulting in the loss of their integrity, release of pro-apoptotic factors, functional impairment of ATP synthesis, and enhanced accumulation of reactive oxygen species. The possibility that GAs may have direct damaging effects on mitochondria, resulting in the impairment of their morphogenesis, also has been proposed. This review will present evidence that neuronal organelles are critical and early targets of anesthesia-induced developmental neurotoxicity.
Collapse
Affiliation(s)
- Vesna Jevtovic-Todorovic
- Department of Anesthesiology, University of Virginia Health System Charlottesville, VA, USA ; Neuroscience Graduate Program, University of Virginia Charlottesville, VA, USA
| | | | | | | |
Collapse
|
31
|
Gerecke KM, Jiao Y, Pagala V, Smeyne RJ. Exercise does not protect against MPTP-induced neurotoxicity in BDNF haploinsufficient mice. PLoS One 2012; 7:e43250. [PMID: 22912838 PMCID: PMC3422268 DOI: 10.1371/journal.pone.0043250] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2012] [Accepted: 07/18/2012] [Indexed: 02/06/2023] Open
Abstract
Exercise has been demonstrated to potently protect substantia nigra pars compacta (SN) dopaminergic neurons from 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced neurotoxicity. One mechanism proposed to account for this neuroprotection is the upregulation of neurotrophic factors. Several neurotrophic factors, including Brain Derived Neurotrophic Factor (BDNF), have been shown to upregulate in response to exercise. In order to determine if exercise-induced neuroprotection is dependent upon BDNF, we compared the neuroprotective effects of voluntary exercise in mice heterozygous for the BDNF gene (BDNF+/-) with strain-matched wild-type (WT) mice. Stereological estimates of SNpc DA neurons from WT mice allowed 90 days exercise via unrestricted running demonstrated complete protection against the MPTP-induced neurotoxicity. However, BDNF+/- mice allowed 90 days of unrestricted exercise were not protected from MPTP-induced SNpc DA neuron loss. Proteomic analysis comparing SN and striatum from 90 day exercised WT and BDNF+/- mice showed differential expression of proteins related to energy regulation, intracellular signaling and trafficking. These results suggest that a full genetic complement of BDNF is critical for the exercise-induced neuroprotection of SNpc DA neurons.
Collapse
Affiliation(s)
- Kim M Gerecke
- Department of Psychology and Neuroscience Program, Rhodes College, Memphis, Tennessee, United States of America.
| | | | | | | |
Collapse
|
32
|
Ignjatović Đ, Vojnović Milutinović D, Nikolić-Kokić A, Slavić M, Andrić D, Tomić M, Kostić-Rajačić S. The mechanisms responsible for neuroprotective capacity of arylpiperazine dopaminergic ligands against cell death induced by sodium nitroprusside. Eur J Pharmacol 2012; 683:93-100. [DOI: 10.1016/j.ejphar.2012.03.011] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2011] [Revised: 02/27/2012] [Accepted: 03/04/2012] [Indexed: 11/29/2022]
|
33
|
Cuevas S, Zhang Y, Yang Y, Escano C, Asico L, Jones JE, Armando I, Jose PA. Role of renal DJ-1 in the pathogenesis of hypertension associated with increased reactive oxygen species production. Hypertension 2012; 59:446-52. [PMID: 22215708 DOI: 10.1161/hypertensionaha.111.185744] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The D(2) dopamine receptor (D(2)R) is important in the pathogenesis of essential hypertension. We have already reported that systemic deletion of the D(2)R gene in mice results in reactive oxygen species (ROS)-dependent hypertension, suggesting that the D(2)R has antioxidant effects. However, the mechanism of this effect is unknown. DJ-1 is a protein that has antioxidant properties. D(2)R and DJ-1 are expressed in the mouse kidney and colocalize and coimunoprecipitate in mouse renal proximal tubule cells. We hypothesized that D(2)Rs regulate renal ROS production in the kidney through regulation of DJ-1 expression or function. Heterozygous D(2)(+/-) mice have increased blood pressure, urinary 8-isoprostanes, and renal Nox 4 expression, but decreased renal DJ-1 expression. Silencing D(2)R expression in mouse renal proximal tubule cells increases ROS production and decreases the expression of DJ-1. Conversely, treatment of these cells with a D(2)R agonist increases DJ-1 expression and decreases Nox 4 expression and NADPH oxidase activity, effects that are partially blocked by a D(2)R antagonist. Silencing DJ-1 expression in mouse renal proximal tubule cells increases ROS production and Nox 4 expression. Selective renal DJ-1 silencing by the subcapsular infusion of DJ-1 siRNA in mice increases blood pressure, renal Nox4 expression, and NADPH oxidase activity. These results suggest that the inhibitory effects of D(2)R on renal ROS production are at least, in part, mediated by a positive regulation of DJ-1 expression/function and that DJ-1 may have a role in the prevention of hypertension associated with increased ROS production.
Collapse
Affiliation(s)
- Santiago Cuevas
- Center for Molecular Physiology Research, Children's National Medical Center, 111 Michigan Avenue NW, Washington, DC 20010, USA.
| | | | | | | | | | | | | | | |
Collapse
|
34
|
Boscolo A, Starr JA, Sanchez V, Lunardi N, DiGruccio MR, Ori C, Erisir A, Trimmer P, Bennett J, Jevtovic-Todorovic V. The abolishment of anesthesia-induced cognitive impairment by timely protection of mitochondria in the developing rat brain: the importance of free oxygen radicals and mitochondrial integrity. Neurobiol Dis 2011; 45:1031-41. [PMID: 22198380 DOI: 10.1016/j.nbd.2011.12.022] [Citation(s) in RCA: 130] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2011] [Revised: 11/22/2011] [Accepted: 12/06/2011] [Indexed: 12/18/2022] Open
Abstract
Early exposure to general anesthesia (GA) causes developmental neuroapoptosis in the mammalian brain and long-term cognitive impairment. Recent evidence suggests that GA also causes functional and morphological impairment of the immature neuronal mitochondria. Injured mitochondria could be a significant source of reactive oxygen species (ROS), which, if not scavenged in timely fashion, may cause excessive lipid peroxidation and damage of cellular membranes. We examined whether early exposure to GA results in ROS upregulation and whether mitochondrial protection and ROS scavenging prevent GA-induced pathomorphological and behavioral impairments. We exposed 7-day-old rats to GA with or without either EUK-134, a synthetic ROS scavenger, or R(+) pramipexole (PPX), a synthetic aminobenzothiazol derivative that restores mitochondrial integrity. We found that GA causes extensive ROS upregulation and lipid peroxidation, as well as mitochondrial injury and neuronal loss in the subiculum. As compared to rats given only GA, those also given PPX or EUK-134 had significantly downregulated lipid peroxidation, preserved mitochondrial integrity, and significantly less neuronal loss. The subiculum is highly intertwined with the hippocampal CA1 region, anterior thalamic nuclei, and both entorhinal and cingulate cortices; hence, it is important in cognitive development. We found that PPX or EUK-134 co-treatment completely prevented GA-induced cognitive impairment. Because mitochondria are vulnerable to GA-induced developmental neurotoxicity, they could be an important therapeutic target for adjuvant therapy aimed at improving the safety of commonly used GAs.
Collapse
Affiliation(s)
- A Boscolo
- Department of Anesthesiology, University of Virginia, Charlottesville, VA 22908, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Abstract
Dopamine is an important regulator of systemic blood pressure via multiple mechanisms. It affects fluid and electrolyte balance by its actions on renal hemodynamics and epithelial ion and water transport and by regulation of hormones and humoral agents. The kidney synthesizes dopamine from circulating or filtered L-DOPA independently from innervation. The major determinants of the renal tubular synthesis/release of dopamine are probably sodium intake and intracellular sodium. Dopamine exerts its actions via two families of cell surface receptors, D1-like receptors comprising D1R and D5R, and D2-like receptors comprising D2R, D3R, and D4R, and by interactions with other G protein-coupled receptors. D1-like receptors are linked to vasodilation, while the effect of D2-like receptors on the vasculature is variable and probably dependent upon the state of nerve activity. Dopamine secreted into the tubular lumen acts mainly via D1-like receptors in an autocrine/paracrine manner to regulate ion transport in the proximal and distal nephron. These effects are mediated mainly by tubular mechanisms and augmented by hemodynamic mechanisms. The natriuretic effect of D1-like receptors is caused by inhibition of ion transport in the apical and basolateral membranes. D2-like receptors participate in the inhibition of ion transport during conditions of euvolemia and moderate volume expansion. Dopamine also controls ion transport and blood pressure by regulating the production of reactive oxygen species and the inflammatory response. Essential hypertension is associated with abnormalities in dopamine production, receptor number, and/or posttranslational modification.
Collapse
Affiliation(s)
- Ines Armando
- Children’s National Medical Center—Center for Molecular Physiology Research, Washington, District of Columbia
| | - Van Anthony M. Villar
- Children’s National Medical Center—Center for Molecular Physiology Research, Washington, District of Columbia
| | - Pedro A. Jose
- Children’s National Medical Center—Center for Molecular Physiology Research, Washington, District of Columbia
| |
Collapse
|
36
|
Li C, Biswas S, Li X, Dutta AK, Le W. Novel D3 dopamine receptor-preferring agonist D-264: Evidence of neuroprotective property in Parkinson's disease animal models induced by 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine and lactacystin. J Neurosci Res 2010; 88:2513-23. [PMID: 20623619 DOI: 10.1002/jnr.22405] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Parkinson's disease (PD), a progressive neurodegenerative movement disorder, is known to be caused by diverse pathological conditions resulting from dysfunction of the ubiquitin-proteasome system (UPS), mitochondria, and oxidative stress leading to preferential nigral dopamine (DA) neuron degeneration in the substantia nigra. In the present study, we evaluated the novel D3 receptor-preferring agonist D-264 in a mouse model of PD to evaluate its neuroprotective properties against both the nigrostriatal dopaminergic toxin 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)- and the proteasome inhibitor lactacystin-induced dopaminergic degeneration. C57BL/6 male mice either were given MPTP by intraperitoneal injection twice per day for 2 successive days at a dose 20 mg/kg or were microinjected with lactacystin bilaterally (1.25 microg/side) into the medial forebrain bundle (MFB). Pretreatment with D-264 (1 mg/kg and 5 mg/kg, intraperitoneally, once per day), started 7 days before administration of MPTP or lactacystin. We found that D-264 significantly improved behavioral performance, attenuated both MPTP- and lactacystin-induced DA neuron loss, and blocked proteasomal inhibition and microglial activation in the substantia nigra (SN). Furthermore, D-264 treatment was shown to increase the levels of brain-derived neurotrophic factor (BDNF) and glial cell line-derived factor (GDNF) in MPTP- and lactacystin-treated mice, possibly indicating, at least in part, the mechanism of neuroprotection by D-264. Furthermore, pretreatment with the D3 receptor antagonist U99194 significantly altered the effect of neuroprotection conferred by D-264. Collectively, our study demonstrates that D-264 can prevent neurodegeneration induced by the selective neurotoxin MPTP and the UPS inhibitor lactacystin. The results indicate that D-264 could potentially serve as a symptomatic and neuroprotective treatment agent for PD.
Collapse
Affiliation(s)
- Chao Li
- Department of Neurology, Baylor College of Medicine, Houston, Texas 77030, USA
| | | | | | | | | |
Collapse
|
37
|
Li C, Guo Y, Xie W, Li X, Janokovic J, Le W. Neuroprotection of pramipexole in UPS impairment induced animal model of Parkinson's disease. Neurochem Res 2010; 35:1546-56. [PMID: 20635141 DOI: 10.1007/s11064-010-0214-3] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/03/2010] [Indexed: 12/21/2022]
Abstract
Pramipexole (PPX), a dopamine (DA) receptor D3 preferring agonist, has been used as monotherapy or adjunct therapy to treat Parkinson's disease (PD) for many years. Several in vitro and in vivo studies in neurotoxin-induced DA neuron injury models have reported that PPX may possess neuroprotective properties. The present study is to evaluate the neuroprotection of PPX in a sustained DA neuron degeneration model of PD induced by ubiquitin-proteasome system (UPS) impairment. Adult C57BL/6 mice were treated with PPX (low dose 0.1 mg/kg or high dose 0.5 mg/kg, i.p, twice a day) started 7 days before, and continued after microinjection of proteasome inhibitor lactacystin in the medial forebrain bundle for a total 4 weeks. Animal behavior observation, and pathological and biochemical assays were conducted to determine the neuroprotective effects of PPX. We report here that PPX treatment significantly improves rotarod performance, attenuates DA neuron loss and striatal DA reduction, and alleviates proteasomal inhibition and microglial activation in the substantia nigra of lactacystin-lesioned mice. PPX can increase the levels of brain-derived neurotrophic factor and glial cell line-derived neurotrophic factor and induce an activation of autophagy. Furthermore, pretreatment with D3 receptor antagonist U99194 can significantly block the PPX-mediated neuroprotection. These results suggest that multiple molecular pathways may be attributed to the neuroprotective effects of PPX in the UPS impairment model of PD.
Collapse
Affiliation(s)
- Chao Li
- Department of Neurology, Baylor College of Medicine, Houston, TX 77030, USA
| | | | | | | | | | | |
Collapse
|
38
|
Ghosh B, Antonio T, Zhen J, Kharkar P, Reith MEA, Dutta AK. Development of (S)-N6-(2-(4-(isoquinolin-1-yl)piperazin-1-yl)ethyl)-N6-propyl-4,5,6,7-tetrahydrobenzo[d]-thiazole-2,6-diamine and its analogue as a D3 receptor preferring agonist: potent in vivo activity in Parkinson's disease animal models. J Med Chem 2010; 53:1023-37. [PMID: 20038106 DOI: 10.1021/jm901184n] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Here we report structure-activity relationship study of a novel hybrid series of compounds where structural alteration of aromatic hydrophobic moieties connected to the piperazine ring and bioisosteric replacement of the aromatic tetralin moieties were carried out. Binding assays were carried out with HEK-293 cells expressing either D2 or D3 receptors with tritiated spiperone to evaluate inhibition constants (K(i)). Functional activity of selected compounds in stimulating GTPgammaS binding was assessed with CHO cells expressing human D2 receptors and AtT-20 cells expressing human D3 receptors. SAR results identified compound (-)-24c (D-301) as one of the lead molecules with preferential agonist activity for D3 receptor (EC(50) (GTP gamma S); D3 = 0.52 nM; D2/D3 (EC(50)): 223). Compounds (-)-24b and (-)-24c exhibited potent radical scavenging activity. The two lead compounds, (-)-24b and (-)-24c, exhibited high in vivo activity in two Parkinson's disease (PD) animal models, reserpinized rat model and 6-OHDA induced unilaterally lesioned rat model. Future studies will explore potential use of these compounds in the neuroprotective therapy for PD.
Collapse
Affiliation(s)
- Balaram Ghosh
- Wayne State University, Department of Pharmaceutical Sciences, Detroit, Michigan 48202, USA
| | | | | | | | | | | |
Collapse
|
39
|
Neuroprotection in Parkinson's Disease. ACTA ACUST UNITED AC 2010. [DOI: 10.1016/b978-1-4160-6641-5.00018-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
40
|
Effects of a Silkworm Extract on Dopamine and Monoamine Oxidase-B Activity in an MPTP-induced Parkinsons Disease Model. Lab Anim Res 2010. [DOI: 10.5625/lar.2010.26.3.287] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
41
|
Yacoubian TA, Standaert DG. Targets for neuroprotection in Parkinson's disease. BIOCHIMICA ET BIOPHYSICA ACTA 2009; 1792:676-87. [PMID: 18930814 PMCID: PMC2740981 DOI: 10.1016/j.bbadis.2008.09.009] [Citation(s) in RCA: 127] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2008] [Revised: 09/16/2008] [Accepted: 09/17/2008] [Indexed: 12/21/2022]
Abstract
Current therapies for Parkinson's disease significantly improve the quality of life for patients suffering from this neurodegenerative disease, yet none of the current therapies has been convincingly shown to slow or prevent the progression of disease. Much has been learned about the pathophysiology of Parkinson's disease in recent years, and these discoveries offer a variety of potential targets for protective therapy. Mechanisms implicated in the disease process include oxidative stress, mitochondrial dysfunction, protein aggregation and misfolding, inflammation, excitotoxicity, and apoptosis. At the same time, the involvement of these diverse processes makes modeling the disease and evaluation of potential treatments difficult. In addition, available clinical tools are limited in their ability to monitor the progression of the disease. In this review, we summarize the different pathogenic mechanisms implicated in Parkinson's disease and neuroprotective strategies targeting these mechanisms currently under clinical study or under preclinical development, with a view towards strategies that seem most promising.
Collapse
Affiliation(s)
- Talene A Yacoubian
- Department of Neurology, Center for Neurodegeneration and Experimental Therapeutics, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | | |
Collapse
|
42
|
Baquet ZC, Williams D, Brody J, Smeyne RJ. A comparison of model-based (2D) and design-based (3D) stereological methods for estimating cell number in the substantia nigra pars compacta (SNpc) of the C57BL/6J mouse. Neuroscience 2009; 161:1082-90. [PMID: 19376196 DOI: 10.1016/j.neuroscience.2009.04.031] [Citation(s) in RCA: 113] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2008] [Revised: 04/09/2009] [Accepted: 04/10/2009] [Indexed: 12/21/2022]
Abstract
The substantia nigra pars compacta (SNpc) is a compact brain structure that contains a variable distribution of cells in both medial to lateral and rostral to caudal dimensions. The SNpc is the primary brain structure affected in Parkinson's disease, where loss of dopaminergic neurons is one of the major hallmarks of the disorder. Neurotoxic and genetic models of Parkinson's disease, as well as mechanisms to treat this disorder, are modeled in the mouse. To accurately assess the validity of a model, one needs to be assured that the method(s) of analysis is accurate. Here, we determined the total number of dopaminergic neurons in the SNpc of the C57BL/6J mouse by serial reconstruction then compared that value to estimates derived using model-based stereology and design-based stereology. Serial reconstruction of the SNpc revealed the total number of SNpc dopaminergic neurons to be 8305+/-540 (+/-SEM). We compared this empirically derived neuron number to model based and design-based stereological estimates. We found that model based estimates gave a value of 8002+/-91 (+/-SEM) while design-based estimates were 8716+/-338 (+/-SEM). Statistical analysis showed no significant difference between estimates generated using model- or design-based stereological methods compared to empirically-derived counts using serial reconstruction.
Collapse
Affiliation(s)
- Z C Baquet
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, 262 Danny Thomas Pl., Memphis, TN 38105-3678, USA
| | | | | | | |
Collapse
|
43
|
Chau KY, Korlipara LVP, Cooper JM, Schapira AHV. Protection against paraquat and A53T alpha-synuclein toxicity by cabergoline is partially mediated by dopamine receptors. J Neurol Sci 2008; 278:44-53. [PMID: 19101702 DOI: 10.1016/j.jns.2008.11.012] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2008] [Revised: 11/13/2008] [Accepted: 11/14/2008] [Indexed: 10/21/2022]
Abstract
Both genetic and environmental factors are thought to be involved in the aetiology of Parkinson's disease (PD). Oxidative damage, mitochondrial and proteasomal dysfunction, and inflammatory change are considered to participate in PD pathogenesis. Dopamine agonists are used in the symptomatic treatment of PD but attention has recently also been focussed on their potential for use in slowing disease progression. We have studied the protective actions of the D2 dopamine agonist cabergoline in toxin (paraquat) and genetic (wild-type and mutant [A53T] alpha-synuclein) models of PD using SHSY-5Y cells. Cabergoline increased glutathione content, reduced free radical production and caspase-3 activation, increased mitochondrial membrane potential and ameliorated cell death in SHSY-5Y cells exposed to paraquat and this action was inhibited in part by D2 receptor blockade. Cabergoline also reduced the toxicity of wild-type and mutant alpha-synuclein expression following paraquat exposure by similar mechanisms. These results confirm the protective action of cabergoline in reducing cell death in two separate genetic and environmental model systems of PD.
Collapse
Affiliation(s)
- Kai-Yin Chau
- University Department of Clinical Neurosciences, Institute of Neurology (Royal Free Campus), University College London, Rowland Hill Street, London NW3 2PF, UK
| | | | | | | |
Collapse
|
44
|
Iravani MM, Sadeghian M, Leung CCM, Tel BC, Rose S, Schapira AH, Jenner P. Continuous subcutaneous infusion of pramipexole protects against lipopolysaccharide-induced dopaminergic cell death without affecting the inflammatory response. Exp Neurol 2008; 212:522-31. [PMID: 18571649 DOI: 10.1016/j.expneurol.2008.04.037] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2008] [Revised: 04/02/2008] [Accepted: 04/30/2008] [Indexed: 12/27/2022]
Abstract
The D2/D3 dopamine receptor agonist pramipexole, protects against toxin-induced dopaminergic neuronal destruction but its mechanism of action is unknown. Inflammation following glial cell activation contributes to cell death in Parkinson's disease and we now report on the effects of acute or chronic administration of pramipexole on lipopolysaccharide (LPS) induced inflammation and nigral dopaminergic cell death in the rat. At 48 h and 30 days following supranigral administration of LPS, approximately 70% of tyrosine hydroxylase (TH) immunoreactive (-ir) cells in substantia nigra had degenerated with a corresponding loss of TH-ir terminals in the striatum. In rats acutely treated with pramipexole (2x1 mg/kg; s.c.) 48 h following LPS application, there was no difference in the number of TH-ir cells or terminals compared to LPS-treated rats receiving vehicle. However, the continuous subcutaneous infusion of pramipexole for 7 days prior to LPS and 21 days subsequently, produced a marked preservation of both TH-ir cells and terminals. At 48 h or 30 days, LPS induced an up-regulation of ubiquitin-ir within the nigral TH-ir neurones, which was reduced by pramipexole treatment. Thirty days following supranigral LPS administration (9 days after the end of infusion), (+)-amphetamine (5 mg/kg, i.p.) caused robust ipsiversive rotation. In rats treated with LPS but receiving continuous subcutaneous administration of pramipexole, (+)-amphetamine-induced rotation was markedly reduced. LPS-induced increase in the levels of inflammatory markers, were not affected by either acute administration or continuous infusion of pramipexole. Continuous infusion of pramipexole protected dopaminergic neurones against inflammation induced degeneration but without modification of the inflammatory response.
Collapse
Affiliation(s)
- Mahmoud M Iravani
- Neurodegenerative Disease Research Centre, School of Health and Biomedical Sciences, King's College, London SE1 1UL, UK
| | | | | | | | | | | | | |
Collapse
|
45
|
Biswas S, Hazeldine S, Ghosh B, Parrington I, Kuzhikandathil E, Reith MEA, Dutta AK. Bioisosteric Heterocyclic Versions of 7-{[2-(4-Phenyl-piperazin-1-yl)ethyl]propylamino}-5,6,7,8-tetrahydronaphthalen-2-ol: Identification of Highly Potent and Selective Agonists for Dopamine D3 Receptor with Potent in Vivo Activity. J Med Chem 2008; 51:3005-19. [DOI: 10.1021/jm701524h] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Swati Biswas
- Department of Pharmaceutical Sciences, Wayne State University, Detroit, Michigan 48202, Department of Psychiatry, Millhauser Laboratories, New York University School of Medicine, New York, New York 10016, and Department of Pharmacology and Physiology, UMDNJ-New Jersey Medical School, Newark, New Jersey 07103
| | - Stuart Hazeldine
- Department of Pharmaceutical Sciences, Wayne State University, Detroit, Michigan 48202, Department of Psychiatry, Millhauser Laboratories, New York University School of Medicine, New York, New York 10016, and Department of Pharmacology and Physiology, UMDNJ-New Jersey Medical School, Newark, New Jersey 07103
| | - Balaram Ghosh
- Department of Pharmaceutical Sciences, Wayne State University, Detroit, Michigan 48202, Department of Psychiatry, Millhauser Laboratories, New York University School of Medicine, New York, New York 10016, and Department of Pharmacology and Physiology, UMDNJ-New Jersey Medical School, Newark, New Jersey 07103
| | - Ingrid Parrington
- Department of Pharmaceutical Sciences, Wayne State University, Detroit, Michigan 48202, Department of Psychiatry, Millhauser Laboratories, New York University School of Medicine, New York, New York 10016, and Department of Pharmacology and Physiology, UMDNJ-New Jersey Medical School, Newark, New Jersey 07103
| | - Eldo Kuzhikandathil
- Department of Pharmaceutical Sciences, Wayne State University, Detroit, Michigan 48202, Department of Psychiatry, Millhauser Laboratories, New York University School of Medicine, New York, New York 10016, and Department of Pharmacology and Physiology, UMDNJ-New Jersey Medical School, Newark, New Jersey 07103
| | - Maarten E. A. Reith
- Department of Pharmaceutical Sciences, Wayne State University, Detroit, Michigan 48202, Department of Psychiatry, Millhauser Laboratories, New York University School of Medicine, New York, New York 10016, and Department of Pharmacology and Physiology, UMDNJ-New Jersey Medical School, Newark, New Jersey 07103
| | - Aloke K. Dutta
- Department of Pharmaceutical Sciences, Wayne State University, Detroit, Michigan 48202, Department of Psychiatry, Millhauser Laboratories, New York University School of Medicine, New York, New York 10016, and Department of Pharmacology and Physiology, UMDNJ-New Jersey Medical School, Newark, New Jersey 07103
| |
Collapse
|
46
|
Abstract
Treatments with potential neuroprotective capability for Parkinson's disease (PD) have been investigated in randomized, controlled, clinical trials and other studies since the mid-1980s. Although promising leads have arisen, no therapy has been proven to halt or slow disease progression. Several large-scale studies have highlighted progress in methodology, as well as the frustrations of translating laboratory science to practical applications. This review summarizes findings from clinical trials with several classes of compounds, including monoamine oxidase-B inhibitors (selegiline, lazabemide, rasagiline), dopaminergic drugs (ropinirole, pramipexole, levodopa), antioxidant strategies (alpha-tocopherol), mitochondrial energy enhancers (coenzyme Q(10), creatine), antiapoptotic agents (TCH346, minocycline, CEP-1347), and antiglutamatergic compounds (riluzole). Beyond small-molecule pharmacology, gene therapy approaches, such as delivering neurotrophic substances (e.g., neurturin) by viral vector, are the next generation of treatment options.
Collapse
Affiliation(s)
- Peter A LeWitt
- Department of Neurology, Henry Ford Hospital, Detroit, Michigan, USA.
| | | |
Collapse
|
47
|
van Balken I, Litvan I. Current and future therapeutic approaches in progressive supranuclear palsy. HANDBOOK OF CLINICAL NEUROLOGY 2008; 89:493-508. [PMID: 18631772 DOI: 10.1016/s0072-9752(07)01246-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Irene van Balken
- Movement Disorders Program, University of Louisville School of Medicine, Department of Neurology, Louisville, KY 40202, USA
| | | |
Collapse
|
48
|
Schneider J, Anderson D, Decamp E. 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-induced Mammalian Models of Parkinson's Disease. PARKINSON'S DISEASE 2008. [DOI: 10.1016/b978-0-12-374028-1.00008-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
49
|
Uberti D, Bianchi I, Olivari L, Ferrari-Toninelli G, Bonini SA, Memo M. Dopaminergic agonists: possible neurorescue drugs endowed with independent and synergistic multisites of action. Neurochem Res 2007; 32:1726-9. [PMID: 17486445 DOI: 10.1007/s11064-007-9350-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2007] [Accepted: 04/03/2007] [Indexed: 12/31/2022]
Abstract
Dopaminergic agonists have been usually used as adjunctive therapy for the cure of Parkinson's disease (PD). It is generally believed that treatment with these drugs is symptomatic rather then curative and does not stop or delay the progression of neuronal degeneration. However, several DA agonists of the DA D2-receptor family (including D2, D3 and D4-subtypes) have recently been shown to possess neuroprotective properties in different in vitro and in vivo experimental PD models. Here we summarize some recent data from our and other groups underlining the wide pharmacological spectrum of DA agonists currently used for treating PD patients. In particular, the mechanism of action of different DA agonists does not appear to be restricted to the stimulation of selective DA receptor subtypes being these drugs endowed with intrinsic, independent, and peculiar antioxidant effects. This activity may represent an additional pharmacological property contributing to their clinical efficacy in PD.
Collapse
Affiliation(s)
- Daniela Uberti
- Department of Biomedical Sciences and Biotechnologies, University of Brescia, Viale Europa 11, Brescia, 25124, Italy
| | | | | | | | | | | |
Collapse
|
50
|
Armando I, Wang X, Villar VAM, Jones JE, Asico LD, Escano C, Jose PA. Reactive oxygen species-dependent hypertension in dopamine D2 receptor-deficient mice. Hypertension 2006; 49:672-8. [PMID: 17190875 DOI: 10.1161/01.hyp.0000254486.00883.3d] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Dysfunction of D2-like receptors has been reported in essential hypertension. Disruption of D2R in mice (D2-/-) results in high blood pressure, and several D2R polymorphisms are associated with decreased D2R expression. Because D2R agonists have antioxidant activity, we hypothesized that increased blood pressure in D2-/- is related to increased oxidative stress. D2-/- mice had increased urinary excretion of 8-isoprostane, a parameter of oxidative stress; increased activity of reduced nicotinamide-adenine dinucleotide phosphate oxidase in renal cortex; increased expression of the reduced nicotinamide-adenine dinucleotide phosphate oxidase subunits Nox1, Nox2, and Nox4; and decreased expression of the antioxidant enzyme heme-oxygenase-2 in the kidneys, suggesting that regulation of reactive oxygen species (ROS) production by D2R involves both pro-oxidant and antioxidant systems. Apocynin, a reduced nicotinamide-adenine dinucleotide phosphate oxidase inhibitor, or hemin, an inducer of heme oxigenase-1, normalized the blood pressure in D2-/- mice. Because D2Rs in the adrenal gland are implicated in aldosterone regulation, we evaluated whether alterations in aldosterone secretion contribute to ROS production in this model. Urinary aldosterone was increased in D2-/- mice and its response to a high-sodium diet was impaired. Spirolactone normalized the blood pressure in D2-/- mice and the renal expression of Nox1 and Nox4, indicating that the increased blood pressure and ROS production are, in part, mediated by impaired aldosterone regulation. However, spironolactone did not normalize the excretion of 8-isoprostane and had no effect on expression of Nox2 or heme-oxygenase-2. Our results show that the D2R is involved in the regulation of ROS production and that, by direct and indirect mechanisms, altered D2R function may result in ROS-dependent hypertension.
Collapse
Affiliation(s)
- Ines Armando
- Department of Pediatrics and Physiology and Biophysics, Georgetown University Medical Center, Washington, DC 20057, USA.
| | | | | | | | | | | | | |
Collapse
|