1
|
Tachibana T, Sakamoto T. Functions of two distinct "prolactin-releasing peptides" evolved from a common ancestral gene. Front Endocrinol (Lausanne) 2014; 5:170. [PMID: 25426099 PMCID: PMC4226156 DOI: 10.3389/fendo.2014.00170] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2014] [Accepted: 09/29/2014] [Indexed: 12/17/2022] Open
Abstract
Prolactin-releasing peptide (PrRP) is one of the RF-amide peptides and was originally identified in the bovine hypothalamus as a stimulator of prolactin (PRL) release. Independently, another RF-amide peptide was found in Japanese crucian carp and named Carassius-RFa (C-RFa), which shows high homology to PrRP and stimulates PRL secretion in teleost fish. Therefore, C-RFa has been recognized as fish PrRP. However, recent work has revealed that PrRP and C-RFa in non-mammalian vertebrates are encoded by separate genes originated through duplication of an ancestral gene. Indeed, both PrRP and C-RFa are suggested to exist in teleost, amphibian, reptile, and avian species. Therefore, we propose that non-mammalian PrRP (C-RFa) be renamed PrRP2. Despite a common evolutionary origin, PrRP2 appears to be a physiological regulator of PRL, whereas this is not a consistent role for PrRP itself. Further work revealed that the biological functions of PrRP and PrRP2 are not limited solely to PRL release, because they are also neuromodulators of several hypothalamus-pituitary axes and are involved in some brain circuits related to the regulation of food intake, stress, and cardiovascular functions. However, these actions appear to be different among vertebrates. For example, central injection of PrRP inhibits feeding behavior in rodents and teleosts, while it stimulates it in chicks. Therefore, both PrRP and PrRP2 have acquired diverse actions through evolution. In this review, we integrate the burgeoning information of structures, expression profiles, and multiple biological actions of PrRP in higher vertebrates, as well as those of PrRP2 in non-mammals.
Collapse
Affiliation(s)
- Tetsuya Tachibana
- Department of Agrobiological Science, Faculty of Agriculture, Ehime University, Matsuyama, Japan
- *Correspondence: Tetsuya Tachibana, Laboratory of Animal Production, Department of Agrobiological Science, Faculty of Agriculture, Ehime University, Matsuyama 790-8566, Japan e-mail:
| | - Tatsuya Sakamoto
- Ushimado Marine Institute, Faculty of Science, Okayama University, Ushimado, Japan
| |
Collapse
|
2
|
Daukss D, Gazda K, Kosugi T, Osugi T, Tsutsui K, Sower SA. Effects of lamprey PQRFamide peptides on brain gonadotropin-releasing hormone concentrations and pituitary gonadotropin-β mRNA expression. Gen Comp Endocrinol 2012; 177:215-9. [PMID: 22569171 DOI: 10.1016/j.ygcen.2012.04.024] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2011] [Revised: 04/16/2012] [Accepted: 04/23/2012] [Indexed: 01/28/2023]
Abstract
Within the RFamide peptide family, PQRFamide peptides that include neuropeptide FF and AF possess a C-terminal Pro-Gln-Arg-Phe-NH(2) motif. We previously identified PQRFamide peptides, lamprey PQRFa, PQRFa-related peptide (RP)-1 and -RP-2 by immunoaffinity purification in the brain of lamprey, one of the most ancient vertebrate species [13]. Lamprey PQRFamide peptide precursor mRNA was expressed in regions predicted to be involved in neuroendocrine regulation in the hypothalamus. However, the putative function(s) of lamprey PQRFamide peptides (PQRFa, PQRFa-RP-1 and PQRFa-RP-2) were not examined nor was the distribution of PQRFamide peptides examined in other tissues besides the brain. The objective of this study was to determine tissue distribution of lamprey PQRFamide peptide precursor mRNA, and to examine the effects of PQRFamide peptides on brain gonadotropin-releasing hormone (GnRH)-I, -II, and -III protein concentrations, and pituitary gonadotropin (GTH)-β mRNA expression in adult lampreys. Lamprey PQRFamide peptide precursor mRNA was expressed in the eye and the brain. Lamprey PQRFa at 100 μg/kg increased brain concentrations of lamprey GnRH-II compared with controls. PQRFa, PQRFa-RP-1 and PQRFa-RP-2 did not significantly change brain protein concentrations of either lamprey GnRH-I, -III, or lamprey GTH-β mRNA expression in the pituitary. These data suggest that one of the PQRFamide peptides may act as a neuroregulator of at least the lamprey GnRH-II system in adult female lamprey.
Collapse
Affiliation(s)
- Dana Daukss
- Center for Molecular and Comparative Endocrinology, University of New Hampshire, Durham, NH 03824-3544, USA
| | | | | | | | | | | |
Collapse
|
3
|
Saito TH, Nakane R, Akazome Y, Abe H, Oka Y. Electrophysiological analysis of the inhibitory effects of FMRFamide-like peptides on the pacemaker activity of gonadotropin-releasing hormone neurons. J Neurophysiol 2010; 104:3518-29. [PMID: 20962074 DOI: 10.1152/jn.01027.2009] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Gonadotropin-releasing hormone (GnRH) neurons in the terminal nerve (TN) show endogenous pacemaker activity, which is suggested to be dependent on the physiological conditions of the animal. The TN-GnRH neurons have been suggested to function as a neuromodulatory neuron that regulates long-lasting changes in the animal behavior. It has been reported that the TN-GnRH neurons are immunoreactive to FMRFamide. Here, we find that the pacemaker activity of TN-GnRH neuron is inhibited by FMRFamide: bath application of FMRFamide decreased the frequency of pacemaker activity of TN-GnRH neurons in a dose-dependent manner. This decrease was suppressed by a blockage of G protein-coupled receptor pathway by GDP-β-S. In addition, FMRFamide induced an increase in the membrane conductance, and the reversal potential for the FMRFamide-induced current changed according to the changes in [K(+)](out) as predicted from the Nernst equation for K(+). We performed cloning and sequence analysis of the PQRFamide (NPFF/NPAF) gene in the dwarf gourami and found evidence to suggest that FMRFamide-like peptide in TN-GnRH neurons of the dwarf gourami is NPFF. NPFF actually inhibited the pacemaker activity of TN-GnRH neurons, and this inhibition was blocked by RF9, a potent and selective antagonist for mammalian NPFF receptors. These results suggest that the activation of K(+) conductance by FMRFamide-like peptide (≈NPFF) released from TN-GnRH neurons themselves causes the hyperpolarization and then inhibition of pacemaker activity in TN-GnRH neurons. Because TN-GnRH neurons make tight cell clusters in the brain, it is possible that FMRFamide-like peptides released from TN-GnRH neurons negatively regulates the activities of their own (autocrine) and/or neighboring neurons (paracrine).
Collapse
Affiliation(s)
- Takeshi H Saito
- Dept. of Biological Sciences, Graduate School of Science, Univ. of Tokyo, 7-3-1 Hongo, Bukyo-ku, Tokyo 113-0033, Japan
| | | | | | | | | |
Collapse
|
4
|
Médina M, Repérant J, Ward R, Jay B, Miceli D, Kenigfest N. Preoptic FMRF-amide-like immunoreactive projections to the retina in the lamprey (Lampetra fluviatilis). Brain Res 2009; 1273:58-65. [DOI: 10.1016/j.brainres.2009.03.051] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2009] [Revised: 03/17/2009] [Accepted: 03/17/2009] [Indexed: 11/24/2022]
|
5
|
A new key neurohormone controlling reproduction, gonadotropin-inhibitory hormone (GnIH): Biosynthesis, mode of action and functional significance. Prog Neurobiol 2009; 88:76-88. [PMID: 19428963 DOI: 10.1016/j.pneurobio.2009.02.003] [Citation(s) in RCA: 172] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2008] [Revised: 12/22/2008] [Accepted: 02/12/2009] [Indexed: 11/23/2022]
Abstract
Identification of novel neurohormones that play important roles in the regulation of pituitary function is essential for the progress of neurobiology. The decapeptide gonadotropin-releasing hormone (GnRH) is the primary factor responsible for the hypothalamic control of gonadotropin secretion. Gonadal sex steroids and inhibin inhibit gonadotropin secretion via feedback from the gonads, but a neuropeptide inhibitor of gonadotropin secretion was, until recently, unknown in vertebrates. In 2000, a novel hypothalamic dodecapeptide that inhibits gonadotropin release was identified in quail and termed gonadotropin-inhibitory hormone (GnIH). This was the first demonstration of a hypothalamic neuropeptide inhibiting gonadotropin release in any vertebrate. GnIH acts on the pituitary and GnRH neurons in the hypothalamus via a novel G protein-coupled receptor for GnIH to inhibit gonadal development and maintenance by decreasing gonadotropin release and synthesis. GnIH neurons express the melatonin receptor and melatonin stimulates the expression of GnIH. Because GnIH exists and functions in several avian species, GnIH is considered to be a new key neurohormone controlling avian reproduction. From a broader perspective, subsequently the presence of GnIH homologous peptides has been demonstrated in other vertebrates. Mammalian GnIH homologous peptides also act to inhibit reproduction by decreasing gonadotropin release in several mammalian species. Thus, the discovery of GnIH has opened the door to a new research field in reproductive neurobiology. This review summarizes the advances made in our understanding of the biosynthesis, mode of action and functional significance of GnIH, a newly discovered key neurohormone, and its homologous peptides.
Collapse
|
6
|
Kawauchi H, Sower SA, Moriyama S. Chapter 5 The Neuroendocrine Regulation of Prolactin and Somatolactin Secretion in Fish. FISH PHYSIOLOGY 2009. [DOI: 10.1016/s1546-5098(09)28005-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
7
|
Moriyama S, Kasahara M, Amiya N, Takahashi A, Amano M, Sower SA, Yamamori K, Kawauchi H. RFamide peptides inhibit the expression of melanotropin and growth hormone genes in the pituitary of an Agnathan, the sea lamprey, Petromyzon marinus. Endocrinology 2007; 148:3740-9. [PMID: 17494999 DOI: 10.1210/en.2007-0356] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Neuropeptides with the Arg-Phe-amide motif at their C termini (RFamide peptides) were identified in the brains of several vertebrates, and shown to have important physiological roles in neuroendocrine, behavioral, sensory, and autonomic functions. The present study identified RFamide peptides, which are teleost prolactin-releasing peptide (PrRP) homologs, in the sea lamprey, Petromyzon marinus and characterized their effect on the release of pituitary hormones in vitro. Two RFamide peptides (RFa-A and RFa-B) were isolated from an acid extract of sea lamprey brain, including hypothalamus by Sep-Pak C18 cartridge, affinity chromatography using anti-salmon PrRP serum, and reverse-phase HPLC on an ODS-120T column. Amino acid (aa) sequences and mass spectrometric analyses revealed that RFa-A and RFa-B consist of 25 and 20 aa, respectively, and have 75% sequence identity within the C-terminal 20 aa. The RFa-B cDNA encoding a preprohormone of 142 aa was cloned from the lamprey brain, and the deduced aa sequence from positions 48-67 was identical to the sequence of RFa-B. However, the preprohormone does not include an aa sequence similar to the RFa-A sequence. Cell bodies, which were immunoreactive to anti-salmon PrRP serum, were located in the periventricular arcuate nucleus, ventral part of the hypothalamus, and immunoreactive fibers were abundant from the hypothalamus to the brain. A small number of immunoreactive fibers were detected in the dorsal half of the rostral pars distalis of the pituitary, close to the GH-producing cells. In addition, anti-salmon PrRP immunoreactivities were observed in the pars intermedia, corresponding to melanotropin cells. Likewise, signal of RFa-B mRNA was detected not only in the brain but also in the pars intermedia. The synthetic RFa-A and -B inhibited GH mRNA expression in a dose-dependent fashion in vitro, which is comparable to the inhibitory effect of teleost PrRP on GH release. Both RFa-A and -B also inhibited the expression of proopiomelanotropin mRNA, but no effects were observed in the expression of proopiocortin and gonadotropin beta mRNAs. The results indicate that RFamide peptides, which are teleost PrRP homologs, are present in the hypothalamus and pituitary of sea lamprey, and may be physiologically involved in the inhibition of GH and melanotropin release in the sea lamprey pituitary.
Collapse
Affiliation(s)
- Shunsuke Moriyama
- School of Fisheries Sciences, Kitasato University, Sanriku, Iwate 022-0101, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
8
|
Roszer T, Kappelmayer J, Nagy GG, Szentmiklósi AJ, Basnakian AG, Bánfalvi G. The neuropeptide FMRFamide can protect cells against apoptosis in the snail digestive gland. Apoptosis 2006; 11:173-82. [PMID: 16502256 DOI: 10.1007/s10495-006-3391-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
FMRFamide-related peptides are widespread neurotransmitters or neurohormones regulating somatic or visceral motor activity. Some recent data indicate that these neuropeptides may be involved in the control of cell proliferation and apoptosis. In this work we investigated the possible effect of FMRFamide on cell viability in an invertebrate-type proliferating tissue. As a model, we used the midintestinal gland of the snail, Helix lucorum Linnaeus. Immunohistochemistry demonstrated the direct innervation of the gland cells by FMRFamide-containing nerve fibers. Midintestinal glands of snails were injected with 50 microM FMRFamide and the control with sterile deionised water or bovine serum albumin (BSA). Injections were administrated 4 times. Transmission electron microscopy, annexin V-labeling, thiazolyl blue (MTT) viability tests and ploidy analyses were carried out to define the viable/dead cell ratio in the tissue samples. FMRFamide increased the MTT-reduction of tissues, reduced the amount of apoptotic nuclei and annexin V-labeled cells. Deionised water or BSA injection induced cell death. Cell cycle analysis revealed that FMRFamide significantly elevated the amount of cells in G0/G1 phase, but did not induce mitosis. We conclude, that the FMRFamide can be a life-signal for cells, protect them from apoptosis without altering mitosis.
Collapse
Affiliation(s)
- T Roszer
- Workgroup of Neurochemistry, Department of Animal Anatomy & Physiology, Faculty of Science, University of Debrecen, Hungary.
| | | | | | | | | | | |
Collapse
|
9
|
Fukusumi S, Fujii R, Hinuma S. Recent advances in mammalian RFamide peptides: the discovery and functional analyses of PrRP, RFRPs and QRFP. Peptides 2006; 27:1073-86. [PMID: 16500002 DOI: 10.1016/j.peptides.2005.06.031] [Citation(s) in RCA: 133] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2005] [Accepted: 06/24/2005] [Indexed: 11/24/2022]
Abstract
Since the first discovery of a peptide with RFamide structure at its C-terminus (i.e., an RFamide peptide) from an invertebrate in 1977, numerous studies on RFamide peptides have been conducted, and a variety have been identified in various phyla throughout the animal kingdom. The first reported mammalian RFamide peptides were neuropeptide FF (NPFF) and neuropeptide AF (NPAF) in 1985. However, for many years after this, no new novel RFamide peptides were identified in mammals. A breakthrough in discovering mammalian RFamide peptides was made possible by reverse pharmacology on the basis of orphan G protein-coupled receptor (GPCR) research. The first report of an RFamide peptide identified from orphan GPCR research was prolactin (PRL)-releasing peptide (PrRP) in 1998. To date, a total of five RFamide peptide genes have been discovered in mammals. Orphan GPCR research has contributed considerably to the identification of these peptides and their receptor genes. This paper examines these mammalian RFamide peptides focusing especially on PrRP, RFamide-related peptides (RFRPs) and, the most recently identified, pyroglutamylated RFamide peptide (QRFP), the discovery of all of which the authors were at least partly involved in. We review here the strategies employed for the identification of these peptides and examine their characteristics, tissue distribution, receptors and functions.
Collapse
Affiliation(s)
- Shoji Fukusumi
- Frontier Research Laboratories, Pharmaceutical Research Division, Takeda Pharmaceutical Company Ltd., Wadai 10, Tsukuba-shi, Ibaraki 300-4293, Japan
| | | | | |
Collapse
|
10
|
Ukena K, Tsutsui K. A new member of the hypothalamic RF-amide peptide family, LPXRF-amide peptides: structure, localization, and function. MASS SPECTROMETRY REVIEWS 2005; 24:469-486. [PMID: 15389843 DOI: 10.1002/mas.20031] [Citation(s) in RCA: 98] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Recently, we identified a novel hypothalamic neuropeptide with a C-terminal LPLRF-amide sequence in the quail brain. This avian neuropeptide was shown to inhibit gonadotropin release from the cultured anterior pituitary. This peptide is the first hypothalamic peptide that inhibited gonadotropin release reported in vertebrates. We, therefore, termed it gonadotropin-inhibitory hormone (GnIH). After this finding, we found that GnIH-related peptides were present in the brains of other vertebrates, such as mammals, amphibians, and fish. These GnIH-related peptides possessed a LPXRF-amide (X=L or Q) motif at their C-termini in all investigated animals. Mass spectrometric analyses combined with immunoaffinity chromatography were powerful techniques for the identification of mature endogenous LPXRF-amide peptides. The identified LPXRF-amide peptides were found to be localized in the hypothalamus and brainstem areas, and to regulate pituitary hormone release. Subsequently, cDNAs that encode LPXRF-amide peptides were characterized in vertebrate brains. In this review, we summarize the identification, localization, and function of a new member of the hypothalamic RF-amide peptide family, LPXRF-amide peptides in vertebrates. Recent studies on the receptors for LPXRF-amide peptides will also be reviewed.
Collapse
Affiliation(s)
- Kazuyoshi Ukena
- Laboratory of Brain Science, Faculty of Integrated Arts and Sciences, Hiroshima University, Higashi-Hiroshima 739-8521, Japan.
| | | |
Collapse
|
11
|
Médina M, Repérant J, Ward R, Miceli D. Presumptive FMRF-amide-like immunoreactive retinopetal fibres in Crocodylus niloticus. Brain Res 2004; 1025:231-6. [PMID: 15464765 DOI: 10.1016/j.brainres.2004.08.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/10/2004] [Indexed: 10/26/2022]
Abstract
A small contingent of 30-50 of centrifugal visual fibres, showing FMRF-amide-like immunoreactivity, has been identified in C. niloticus; these fibres extend from the chiasmatic region into the retina. They do not take the marginal optic tract, but pass medially to the chiasmatic fascicles, from the preoptic region. The cells of origin of these fibres have not been identified. However, none of the retinopetal neurons of the brainstem [M. Medina, J. Reperant, R. Ward, D. Miceli, Centrifugal visual system of Crocodylus niloticus : a hodological, histochemical and immunocytochemical study, J. Comp. Neurol. 468 (2004) 65-85], labelled by retrograde transport of rhodamine beta-isothiocyanate after intraocular injection of this tracer, show FMRF-amide-like immunoreactivity; neither are any of the FMRF-amide-like immunopositive neurons in the crocodile brain, particularly those of the complex involving the terminal nerve and the septo-preoptic region, labelled by rhodamine after its intraocular injection.
Collapse
Affiliation(s)
- Monique Médina
- Laboratoire d'Anatomie Comparée, Muséum National d'Histoire Naturelle, Département Ecologie et Gestion de la Biodiversité, CNRS FRE2696-MNHN USM0302 CP 55, 55 rue Buffon, F-75005 Paris, France.
| | | | | | | |
Collapse
|
12
|
Röszer T, Jenei Z, Gáll T, Nagy O, Czimmerer Z, Serfözö Z, Elekes K, Bánfalvi G. A Possible Stimulatory Effect of FMRFamide on Neural Nitric Oxide Production in the Central Nervous System of Helix lucorum L. BRAIN, BEHAVIOR AND EVOLUTION 2003; 63:23-33. [PMID: 14673196 DOI: 10.1159/000073757] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2003] [Accepted: 08/01/2003] [Indexed: 11/19/2022]
Abstract
The anatomical and functional relationship between neurons expressing nitric oxide (NO) synthase and molluscan cardioexcitatory (FMRFamide)-like neuropeptides was studied in the central ganglia of Helix lucorum (Pulmonata, Gastropoda), applying NADPHdiaphorase (NADPHd) histochemistry to visualize NO synthase and immunocytochemistry to demonstrate FMRFamide (FMRFa) at the light microscopic level. The NO production of the ganglia was detected by the colorimetric Griess determination of nitrite, a breakdown product of NO. Effects of the NO synthase substrate amino acid L-arginine, the NO synthase inhibitor Nomega-nitro-L-arginine (NOARG), synthetic FMRFa and the FMRFa sensitive ion channel blocker amiloride hydrochloride on nitrite production were also tested. NADPHd reaction labeled nerve cells and fibers in the procerebra, mesocerebra and metacerebra within the cerebral ganglia, and cell clusters in the postcerebral ganglia. FMRFa immunolabeling could be observed within subpopulations of NADPHd positive cells and in pericellular varicose fibers surrounding NADPHd stained neurons. Nitrite production of the ganglia was stimulated by L-arginine (10- 20 mM) but was decreased by NOARG (1-2 mM). Synthetic FMRFa (0.830-3.340 mM) increased the nitrite production in a dose dependent manner, but was ineffective in the presence of NOARG. Amiloride hydrochloride (7.890 mM) reduced the FMRFa evoked nitrite production in all ganglia. This is the first description of an anatomical relationship between putative NO producing and FMRFa containing cells, suggesting a possible regulatory role of FMRFa in the NO mediated signaling in an invertebrate nervous system.
Collapse
Affiliation(s)
- Tamás Röszer
- Department of Animal Anatomy and Physiology, Faculty of Natural Sciences, Debrecen University, Debrecen, Hungary.
| | | | | | | | | | | | | | | |
Collapse
|
13
|
Sakamoto T, Fujimoto M, Andot M. Fishy tales of prolactin-releasing peptide. INTERNATIONAL REVIEW OF CYTOLOGY 2003; 225:91-130. [PMID: 12696591 DOI: 10.1016/s0074-7696(05)25003-9] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Prolactin (PRL) is an important regulator of multiple biological functions, but a specific PRL-releasing factor, PRL-releasing peptide (PrRP), was isolated only recently from mammals and teleosts. Although this peptide seems to be a strong candidate for being a physiologically relevant stimulator of PRL expression and secretion in teleost pituitary and peripheral organs, it may not be a typical or classic hypothalamic releasing factor in rats. We now know that its biological actions are not limited solely to PRL stimulation, because it is also a neuromodulator of several hypothalamus-pituitary axes and is involved in some brain circuits with the regulation of food intake and cardiovascular functions. Moreover, it plays a direct role in hypertension and retinal information processing. It is the purpose of this review to provide a comprehensive survey of our current knowledge of PrRP and to provide a comparative point of view.
Collapse
Affiliation(s)
- Tatsuya Sakamoto
- Ushimado Marine Laboratory, Okayama University, Okayama 701-4303, Japan
| | | | | |
Collapse
|
14
|
Chrachri A, Williamson R. Modulation of spontaneous and evoked EPSCs and IPSCs in optic lobe neurons of cuttlefish Sepia officinalis by the neuropeptide FMRF-amide. Eur J Neurosci 2003; 17:526-36. [PMID: 12581170 DOI: 10.1046/j.1460-9568.2003.02478.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The effects of the neuropeptide FMRFa on spontaneous excitatory postsynaptic currents (sEPSCs) and inhibitory postsynaptic currents (sIPSCs), as well as on evoked EPSCs and IPSCs, in two types of neurons within the central optic lobe of cuttlefish were examined using the whole-cell voltage-clamp technique. FMRFa (1-10 micro m) did not affect cell membrane resting potentials, but reversibly reduced both the frequency and amplitude of sEPSCs in neurons within the medulla region of the optic lobe while increasing the frequency and amplitude of their sIPSCs. For centrifugal neurons in the inner granule cell layer of the optic lobe, FMRFa (1-10 micro m) decreased both the frequency and amplitude of sEPSCs. In the presence of tetrodotoxin (0.5 micro m), neither the interevent interval, nor amplitude distributions of the miniature EPSCs or the miniature IPSCs, were affected by FMRFa, implying a presynaptic action of FMRFa on the optic lobe neurons. Bath application of the neuropeptide also abolished or reduced in amplitude the evoked EPSCs and increased the amplitude of evoked IPSCs in optic lobe neurons, showing that FMRFa induced similar effects on evoked as on spontaneous postsynaptic currents. These results demonstrate the complex range of modulatory effects FMRFa can have within central nervous system circuits.
Collapse
Affiliation(s)
- Abdesslam Chrachri
- Marine Biological Association of the UK, Citadel Hill, Plymouth PL1 2PB, UK.
| | | |
Collapse
|
15
|
Chartrel N, Dujardin C, Leprince J, Desrues L, Tonon MC, Cellier E, Cosette P, Jouenne T, Simonnet G, Vaudry H. Isolation, characterization, and distribution of a novel neuropeptide, Rana RFamide (R-RFa), in the brain of the European green frog Rana esculenta. J Comp Neurol 2002; 448:111-27. [PMID: 12012424 DOI: 10.1002/cne.10253] [Citation(s) in RCA: 87] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
A novel neuropeptide of the RFamide peptide family was isolated in pure form from a frog (Rana esculenta) brain extract by using reversed-phase high performance liquid chromatography in combination with a radioimmunoassay for mammalian neuropeptide FF (NPFF). The primary structure of the peptide was established as Ser-Leu-Lys- Pro-Ala-Ala-Asn-Leu-Pro-Leu- Arg-Phe-NH(2). The sequence of this neuropeptide, designated Rana RFamide (R-RFa), exhibits substantial similarities with those of avian LPLRFamide, gonadotropin-inhibitory hormone, and human RFRP-1. The distribution of R-RFa was investigated in the frog central nervous system by using an antiserum directed against bovine NPFF. In the brain, immunoreactive cell bodies were primarily located in the hypothalamus, i.e., the anterior preoptic area, the suprachiasmatic nucleus, and the dorsal and ventral hypothalamic nuclei. The most abundant population of R-RFa-containing neurons was found in the periependymal region of the suprachiasmatic nucleus. R-RFa- containing fibers were widely distributed throughout the brain from the olfactory bulb to the brainstem, and were particularly abundant in the external layer of the median eminence. In the spinal cord, scattered immunoreactive neurons were found in the gray matter. R-RFa-positive processes were found in all regions of the spinal cord, but they were more abundant in the dorsal horn. This study provides the first characterization of a member of the RFamide peptide family in amphibians. The occurrence of this novel neuropeptide in the hypothalamus and median eminence and in the dorsal region of the spinal cord suggests that, in frog, R-RFa may exert neuroendocrine activities and/or may be involved in the transmission of nociceptive stimuli.
Collapse
Affiliation(s)
- Nicolas Chartrel
- European Institute for Peptide Research (IFRMP 23), Laboratory of Cellular and Molecular Neuroendocrinology, INSERM U-413, UA CNRS, University of Rouen, 76821 Mont- Saint-Aignan, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|