1
|
Koekkoek LL, Kool T, Eggels L, van der Gun LL, Lamuadni K, Slomp M, Diepenbroek C, Serlie MJ, Kalsbeek A, la Fleur SE. Activation of nucleus accumbens μ-opioid receptors enhances the response to a glycaemic challenge. J Neuroendocrinol 2021; 33:e13036. [PMID: 34528311 PMCID: PMC9286654 DOI: 10.1111/jne.13036] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 08/10/2021] [Accepted: 08/20/2021] [Indexed: 11/30/2022]
Abstract
Opioids are known to affect blood glucose levels but their exact role in the physiological control of glucose metabolism remains unclear. Although there are numerous studies investigating the peripheral effects of opioid stimulation, little is known about how central opioids control blood glucose and which brain areas are involved. One brain area possibly involved is the nucleus accumbens because, as well as being a key site for opioid effects on food intake, it has also been implicated in the control of blood glucose levels. Within the nucleus accumbens, μ-opioid receptors are most abundantly expressed. Therefore, in the present study, we investigated the role of μ-opioid receptors in the nucleus accumbens in the control of glucose metabolism. We show that infusion of the μ-opioid receptor agonist [d-Ala2 , N-MePhe4 , Gly-ol]-enkephalin (DAMGO) in the nucleus accumbens by itself does not affect blood glucose levels, but it enhances the glycaemic response after both an insulin tolerance test, as well as a glucose tolerance test. These findings indicate that the nucleus accumbens plays a role in the central effects of opioids on glucose metabolism, and highlight the possibility of nucleus accumbens μ-opioid receptors as a therapeutic target for enhancing the counter-regulatory response.
Collapse
Affiliation(s)
- Laura L. Koekkoek
- Amsterdam University Medical Center, Location AMCLaboratory of EndocrinologyDepartment of Clinical ChemistryAmsterdam NeuroscienceAmsterdam Gastroenterology, Endocrinology and MetabolismUniversity of AmsterdamAmsterdamThe Netherlands
- Amsterdam University Medical Center, Location AMCDepartment of Endocrinology and MetabolismAmsterdam NeuroscienceAmsterdam Gastroenterology, Endocrinology and MetabolismUniversity of AmsterdamAmsterdamThe Netherlands
- Metabolism and Reward GroupAn Institute of the Royal Netherlands Academy of Arts and SciencesNetherlands Institute for NeuroscienceAmsterdamThe Netherlands
| | - Tess Kool
- Amsterdam University Medical Center, Location AMCLaboratory of EndocrinologyDepartment of Clinical ChemistryAmsterdam NeuroscienceAmsterdam Gastroenterology, Endocrinology and MetabolismUniversity of AmsterdamAmsterdamThe Netherlands
- Amsterdam University Medical Center, Location AMCDepartment of Endocrinology and MetabolismAmsterdam NeuroscienceAmsterdam Gastroenterology, Endocrinology and MetabolismUniversity of AmsterdamAmsterdamThe Netherlands
- Metabolism and Reward GroupAn Institute of the Royal Netherlands Academy of Arts and SciencesNetherlands Institute for NeuroscienceAmsterdamThe Netherlands
| | - Leslie Eggels
- Amsterdam University Medical Center, Location AMCLaboratory of EndocrinologyDepartment of Clinical ChemistryAmsterdam NeuroscienceAmsterdam Gastroenterology, Endocrinology and MetabolismUniversity of AmsterdamAmsterdamThe Netherlands
- Amsterdam University Medical Center, Location AMCDepartment of Endocrinology and MetabolismAmsterdam NeuroscienceAmsterdam Gastroenterology, Endocrinology and MetabolismUniversity of AmsterdamAmsterdamThe Netherlands
- Metabolism and Reward GroupAn Institute of the Royal Netherlands Academy of Arts and SciencesNetherlands Institute for NeuroscienceAmsterdamThe Netherlands
| | - Luna L. van der Gun
- Amsterdam University Medical Center, Location AMCLaboratory of EndocrinologyDepartment of Clinical ChemistryAmsterdam NeuroscienceAmsterdam Gastroenterology, Endocrinology and MetabolismUniversity of AmsterdamAmsterdamThe Netherlands
- Amsterdam University Medical Center, Location AMCDepartment of Endocrinology and MetabolismAmsterdam NeuroscienceAmsterdam Gastroenterology, Endocrinology and MetabolismUniversity of AmsterdamAmsterdamThe Netherlands
- Metabolism and Reward GroupAn Institute of the Royal Netherlands Academy of Arts and SciencesNetherlands Institute for NeuroscienceAmsterdamThe Netherlands
| | - Khalid Lamuadni
- Amsterdam University Medical Center, Location AMCLaboratory of EndocrinologyDepartment of Clinical ChemistryAmsterdam NeuroscienceAmsterdam Gastroenterology, Endocrinology and MetabolismUniversity of AmsterdamAmsterdamThe Netherlands
- Amsterdam University Medical Center, Location AMCDepartment of Endocrinology and MetabolismAmsterdam NeuroscienceAmsterdam Gastroenterology, Endocrinology and MetabolismUniversity of AmsterdamAmsterdamThe Netherlands
- Metabolism and Reward GroupAn Institute of the Royal Netherlands Academy of Arts and SciencesNetherlands Institute for NeuroscienceAmsterdamThe Netherlands
| | - Margo Slomp
- Amsterdam University Medical Center, Location AMCLaboratory of EndocrinologyDepartment of Clinical ChemistryAmsterdam NeuroscienceAmsterdam Gastroenterology, Endocrinology and MetabolismUniversity of AmsterdamAmsterdamThe Netherlands
- Amsterdam University Medical Center, Location AMCDepartment of Endocrinology and MetabolismAmsterdam NeuroscienceAmsterdam Gastroenterology, Endocrinology and MetabolismUniversity of AmsterdamAmsterdamThe Netherlands
- Metabolism and Reward GroupAn Institute of the Royal Netherlands Academy of Arts and SciencesNetherlands Institute for NeuroscienceAmsterdamThe Netherlands
| | - Charlene Diepenbroek
- Amsterdam University Medical Center, Location AMCLaboratory of EndocrinologyDepartment of Clinical ChemistryAmsterdam NeuroscienceAmsterdam Gastroenterology, Endocrinology and MetabolismUniversity of AmsterdamAmsterdamThe Netherlands
- Amsterdam University Medical Center, Location AMCDepartment of Endocrinology and MetabolismAmsterdam NeuroscienceAmsterdam Gastroenterology, Endocrinology and MetabolismUniversity of AmsterdamAmsterdamThe Netherlands
- Metabolism and Reward GroupAn Institute of the Royal Netherlands Academy of Arts and SciencesNetherlands Institute for NeuroscienceAmsterdamThe Netherlands
| | - Mireillle J. Serlie
- Amsterdam University Medical Center, Location AMCDepartment of Endocrinology and MetabolismAmsterdam NeuroscienceAmsterdam Gastroenterology, Endocrinology and MetabolismUniversity of AmsterdamAmsterdamThe Netherlands
| | - Andries Kalsbeek
- Amsterdam University Medical Center, Location AMCLaboratory of EndocrinologyDepartment of Clinical ChemistryAmsterdam NeuroscienceAmsterdam Gastroenterology, Endocrinology and MetabolismUniversity of AmsterdamAmsterdamThe Netherlands
- Amsterdam University Medical Center, Location AMCDepartment of Endocrinology and MetabolismAmsterdam NeuroscienceAmsterdam Gastroenterology, Endocrinology and MetabolismUniversity of AmsterdamAmsterdamThe Netherlands
- Hypothalamic Integration MechanismsAn Institute of the Royal Netherlands Academy of Arts and SciencesNetherlands Institute for NeuroscienceAmsterdamThe Netherlands
| | - Susanne E. la Fleur
- Amsterdam University Medical Center, Location AMCLaboratory of EndocrinologyDepartment of Clinical ChemistryAmsterdam NeuroscienceAmsterdam Gastroenterology, Endocrinology and MetabolismUniversity of AmsterdamAmsterdamThe Netherlands
- Amsterdam University Medical Center, Location AMCDepartment of Endocrinology and MetabolismAmsterdam NeuroscienceAmsterdam Gastroenterology, Endocrinology and MetabolismUniversity of AmsterdamAmsterdamThe Netherlands
- Metabolism and Reward GroupAn Institute of the Royal Netherlands Academy of Arts and SciencesNetherlands Institute for NeuroscienceAmsterdamThe Netherlands
| |
Collapse
|
2
|
Stevens CW. Receptor-centric solutions for the opioid epidemic: Making the opioid user impervious to overdose death. J Neurosci Res 2020; 100:322-328. [PMID: 32420651 DOI: 10.1002/jnr.24636] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 04/08/2020] [Accepted: 04/17/2020] [Indexed: 12/19/2022]
Abstract
This mini-review presents the view that contemporary approaches to stem the tide of opioid overdose deaths are insufficient to make a significant impact. Instead, a focus on the opioid receptor as the ultimate molecular target to directly abolish opioid overdose death is explored. After identifying the key brainstem neurons that control respiration which are inhibited by opioid drugs, genetic techniques targeting the mu opioid receptor are detailed which prevent opioid overdose. This receptor-centric solution for the opioid overdose epidemic can be realized with existing technology and, with sufficient effort, could enter clinical trials within 5 to 10 years.
Collapse
Affiliation(s)
- Craig W Stevens
- Department of Pharmacology & Physiology, Center for Health Sciences, Oklahoma State University, Tulsa, OK, USA
| |
Collapse
|
3
|
Cheng KC, Asakawa A, Li YX, Liu IM, Amitani H, Cheng JT, Inui A. Opioid μ-receptors as new target for insulin resistance. Pharmacol Ther 2013; 139:334-40. [PMID: 23688574 DOI: 10.1016/j.pharmthera.2013.05.002] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2013] [Accepted: 04/12/2013] [Indexed: 10/26/2022]
Abstract
Type-2 diabetes is one of the fastest growing public health problems worldwide resulting from both environmental and genetic factors. Activation of μ-opioid receptor (MOR) could result in reversal of the impairment of insulin-stimulated glucose disposal in genetically obese Zucker rats via exercise training. This improvement of insulin resistance was associated with an elevation of circulating β-endorphin to ameliorate the post-receptor insulin signaling cascade, including downstream effectors of the phosphatidylinositol 3-kinase (PI3-kinase) signaling pathway. In insulin resistant rats, Loperamide treatment effected on the insulin receptor substrate (IRS)-1/PI3-kinase/Akt signaling cascade and subsequent insulin-stimulated glucose transport trafficking on skeletal muscle, which were all suppressed by MOR antagonism. In addition, induction of insulin resistance by the intake of high fructose is more rapid in MOR knockout mice than in wild-type mice. Improvements in insulin sensitivity through the peripheral MOR activation overcoming defects related to the post-receptor in IRS-1-associated PI3-kinase step have been defined. Opioid receptor activation, especially of the μ-subtype, may provide merits in the amelioration of defective insulin action. Atypical zeta (ζ) isoform of protein kinase C serves as a factor that integrates with peripheral MOR pathway and insulin signals for glucose utilization. The developments call new insights into the chemical compounds and/or herbal products that might enhance opioid peptide secretion and/or stimulate MOR in peripheral insulin-sensitive tissues to serve as potential agents or adjuvants for helping the glucose metabolism. In the present review, we update these topics and discuss the concept of targeting peripheral MOR pathway for the treatment of insulin resistance.
Collapse
Affiliation(s)
- Kai-Chun Cheng
- Department of Psychosomatic Internal Medicine, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima 890-8520, Japan
| | | | | | | | | | | | | |
Collapse
|
4
|
Tzeng TF, Liou SS, Liu IM. Myricetin Ameliorates Defective Post-Receptor Insulin Signaling via β-Endorphin Signaling in the Skeletal Muscles of Fructose-Fed Rats. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2011; 2011:150752. [PMID: 21785619 PMCID: PMC3136182 DOI: 10.1093/ecam/neq017] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/03/2009] [Accepted: 01/25/2010] [Indexed: 01/05/2023]
Abstract
β-Endorphin plays a major role in the amelioration of insulin resistance. The present study documents that myricetin (3,5,7,3′, 4′, 5′-hexahydroxyflavone) ameliorates insulin resistance by enhancing β-endorphin production in insulin-resistant rats. The rats were induced for insulin resistance by feeding them a diet containing 60% fructose for 6 weeks. The degree of insulin resistance was measured by the homeostasis model assessment of basal insulin resistance (HOMA-IR). The plasma levels of insulin and β-endorphin were measured by an enzyme-linked immunosorbent assay. The insulin receptor-related signaling mediators in the soleus muscles of rats were evaluated by immunoprecipitation or immunoblotting. Myricetin was injected daily (1 mg kg−1 per injection, thrice daily) for 14 days. Consequently, the high-glucose plasma levels in fructose-fed rats decreased significantly concomitant with an increase in plasma β-endorphin. The reduction of the elevated HOMA-IR index following treatment with myricetin was subsequently inhibited by the administration of β-funaltrexamine hydrochloride (β-FNA) at doses sufficient to block μ-opioid receptors (MOR). The myricetin treatment was also observed to affect the phosphorylation of the insulin receptor, insulin receptor substrate-1, Akt and Akt substrate of 160 kDa, with subsequent effects on glucose-transporter subtype 4 translocation, all of which were blocked by β-FNA pretreatment. These results indicated that enhancement of β-endorphin secretion, which in turn leads to peripheral MOR activation, is involved in the action of myricetin on the amelioration of impaired signaling intermediates downstream of insulin receptors.
Collapse
Affiliation(s)
- Thing-Fong Tzeng
- Department of Internal Medicine, Pao Chien Hospital, Ping Tung City, China
| | | | | |
Collapse
|
5
|
Stimulatory effect of stevioside on peripheral mu opioid receptors in animals. Neurosci Lett 2009; 454:72-5. [PMID: 19429057 DOI: 10.1016/j.neulet.2009.02.055] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2008] [Revised: 02/25/2009] [Accepted: 02/25/2009] [Indexed: 11/23/2022]
Abstract
Stevioside is a dietary supplement widely used as a sweetener to prevent hyperglycemic disorders. However, the action mechanisms of this substance for glucose homeostasis remain obscure. In the present study, a dose-related plasma glucose reduction was observed in Wistar rats receiving intraperitoneally injections of stevioside. Similar to the regulation of glucose metabolism by the activation of mu opioid receptors, this action of stevioside was reversed by naloxonazine under the blockade of mu opioid receptors. We also found that stevioside increased glycogen synthesis in isolated hepatocytes, which was concentration-dependently blocked by naloxonazine. Stevioside did not modify the plasma beta-endorphin levels in Wistar rats but it directly increased the phosphorylation of mu opioid receptors in Chinese hamster ovary cells transfected with mu opioid receptors. Unlike morphine, chronic administration of stevioside did not induce the withdrawal signs in mice. Furthermore, stevioside by intraperitoneal injections did not influence the feeding behaviors of rats. By contrast, intracerebroventricular injections of stevioside increased the rats' food intake, which was also inhibited by pretreatment with naloxonazine. These results showed that it is difficult for stevioside to enter the brain. Stevioside has the ability to activate peripheral mu opioid receptors for lowering plasma glucose and to increase glycogen synthesis in liver. Thus, the stimulation of peripheral mu opioid receptors is responsible for the action of stevioside in the regulation of glucose homeostasis.
Collapse
|
6
|
Activation of I2-imidazoline receptors may ameliorate insulin resistance in fructose-rich chow-fed rats. Neurosci Lett 2008; 448:90-3. [DOI: 10.1016/j.neulet.2008.10.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2008] [Revised: 09/28/2008] [Accepted: 10/01/2008] [Indexed: 11/16/2022]
|
7
|
Ruchat SM, Girard M, Weisnagel SJ, Bouchard C, Vohl MC, Pérusse L. ASSOCIATION BETWEEN µ-OPIOID RECEPTOR-1 102T>C POLYMORPHISM AND INTERMEDIATE TYPE 2 DIABETES PHENOTYPES: RESULTS FROM THE QUEBEC FAMILY STUDY (QFS). Clin Exp Pharmacol Physiol 2008; 35:1018-22. [DOI: 10.1111/j.1440-1681.2008.04972.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
8
|
Zuberi AR, Townsend L, Patterson L, Zheng H, Berthoud HR. Increased adiposity on normal diet, but decreased susceptibility to diet-induced obesity in mu-opioid receptor-deficient mice. Eur J Pharmacol 2008; 585:14-23. [PMID: 18396272 DOI: 10.1016/j.ejphar.2008.01.047] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2007] [Revised: 01/14/2008] [Accepted: 01/21/2008] [Indexed: 01/22/2023]
Abstract
The mu-opioid receptor encoded by the Oprm1 gene plays a crucial role in the mediation of food reward and drug-induced positive reinforcement, but its genetic deletion has been shown to provide food intake-independent, partial protection from diet-induced obesity. We hypothesized that mu-opioid receptor-deficient mice would show an even greater, intake-dependent, resistance to high-fat diet-induced obesity if the diet comprises a sweet component. We generated an F2 population by crossing the heterozygous offspring of homozygous female Oprm1(-/-) mice (on a mixed C57BL/6 and BALB/c genetic background) with male inbred C57BL/6 mice. Groups of genotyped wild-type (WT) and homozygous mutant (KO) males and females were fed either control chow or a high caloric palatable diet consisting of sweet, liquid chocolate-flavored Ensure together with a solid high-fat diet. Food intake, body weight, and body composition was measured over a period of 16 weeks. Unexpectedly, male, and to a lesser extent female, KO mice fed chow for the entire period showed progressively increased body weight and adiposity while eating significantly more chow. In contrast, when exposed to the sweet plus high-fat diet, male, and to a lesser extent female, KO mice gained significantly less body weight and fat mass compared to WT mice when using chow fed counterparts for reference values. Male KO mice consumed 33% less of the sweet liquid diet but increased intake of high-fat pellets, so that total calorie intake was not different from WT animals. These results demonstrate a dissociation of the role of mu-opioid receptors in the control of adiposity for different diets and sex. On a bland diet, normal receptor function appears to confer a slightly catabolic predisposition, but on a highly palatable diet, it confers an anabolic metabolic profile, favoring fat accretion. Because of the complexity of mu-opioid gene regulation and tissue distribution, more selective and targeted approaches will be necessary to fully understand the underlying mechanisms.
Collapse
Affiliation(s)
- Aamir R Zuberi
- Functional Genomics, Pennington Biomedical Research Center, Louisiana State University System, Baton Rouge, LA 70808, USA
| | | | | | | | | |
Collapse
|
9
|
Tzeng TF, Lo CY, Cheng JT, Liu IM. Activation of μ-opioid receptors improves insulin sensitivity in obese Zucker rats. Life Sci 2007; 80:1508-16. [PMID: 17316705 DOI: 10.1016/j.lfs.2007.01.016] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2006] [Revised: 12/30/2006] [Accepted: 01/12/2007] [Indexed: 11/22/2022]
Abstract
In the current study we investigated the effect of mu-opioid receptor activation on insulin sensitivity. In obese Zucker rats, an intravenous injection of loperamide (18 microg/kg, three times daily for 3 days) decreased plasma glucose levels and the glucose-insulin index. Both effects of loperamide were subsequently inhibited by the administration of 10 microg/kg of naloxone or 10 microg/kg of naloxonazine, doses sufficient to block mu-opioid receptors. Other metabolic defects characteristic of obese Zucker rats, such as defects in insulin signaling, the decreased expression of insulin receptor substrate (IRS)-1, the p85 regulatory subunit of phosphatidylinositol 3-kinase (PI3 kinase), and the glucose transporter subtype 4 (GLUT 4), and the reduction of phosphorylation in IRS-1 or Akt serine, were also studied. These defects were all reversed by loperamide treatment in a dose which overcame mu-opioid receptor blockade. Moreover, loss of tolbutamide-induced plasma glucose lowering action (10 mg/kg) in wild-type mice given a fructose-rich diet was markedly delayed by repeated treatment with loperamide; however, this delay induced by loperamide did not occur in mu-opioid receptor knockout mice. These results indicate an important role of peripheral mu-opioid receptors in the loperamide-induced improvement of insulin sensitivity. Our results suggest that activation of peripheral mu-opioid receptors can ameliorate insulin resistance in animals, and provide a new target for therapy of insulin resistance.
Collapse
Affiliation(s)
- Thing-Fong Tzeng
- Department of Internal Medicine, Pao Chien Hospital, Ping Tung City, Taiwan, ROC
| | | | | | | |
Collapse
|
10
|
Ko WC, Liu TP, Cheng JT, Tzeng TF, Liu IM. Effect of opioid μ-receptors activation on insulin signals damaged by tumor necrosis factor α in myoblast C2C12 cells. Neurosci Lett 2006; 397:274-8. [PMID: 16406665 DOI: 10.1016/j.neulet.2005.12.047] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2005] [Revised: 12/08/2005] [Accepted: 12/12/2005] [Indexed: 10/25/2022]
Abstract
In an attempt to develop a new target for handling of insulin resistance, we investigated the effect of opioid mu-receptor activation on insulin signals in differentiated myoblast C2C12 cells damaged by tumor necrosis factor-alpha (TNFalpha). A marked reduction of insulin-stimulated radioactive 2-deoxyglucose (2-DG) uptake was observed in TNFalpha (10 ng/ml for 1 h)-treated cells. Loperamide (10 micromol/l for 24 h) reversed the inhibition of insulin-stimulated 2-DG uptake by TNFalpha in a manner sensitive to blockade of opioid mu-receptors. Insulin signals damaged by TNFalpha were the impaired expressions of insulin receptor (IR), tyrosine autophosphorylation in IR, and insulin receptor substrate (IRS)-1 protein, as well as a decrease of IRS-1 tyrosine phosphorylation. Also, the signaling defects including an attenuated p85 regulatory subunit of phosphatidylinositol 3-kinase (PI3-kinase) and Akt serine phosphorylation were observed. Loperamide (10 micromol/l for 24 h) reversed the TNFalpha-induced decrement of insulin signals at same concentration used to raise glucose uptake. In conclusion, activation of opioid mu-receptors may reverse the insulin signals damaged by inflammatory cytokine.
Collapse
Affiliation(s)
- Wen Ching Ko
- Department of Surgery, Mackay Memorial Hospital and Mackay College of Nursing and Technology, Taipei City, Taiwan, ROC
| | | | | | | | | |
Collapse
|
11
|
Chen CC, Liu IM, Cheng JT. Improvement of insulin resistance by miracle fruit (Synsepalum dulcificum) in fructose-rich chow-fed rats. Phytother Res 2006; 20:987-92. [PMID: 16941611 DOI: 10.1002/ptr.1919] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
In an attempt to probe a new target to improve insulin resistance, miracle fruit (Synsepalum dulcificum) was employed to investigate the effect on insulin resistance induced by fructose-rich chow in rats. Single oral administration of the powder of this miracle fruit decreased the plasma glucose in a dose-dependent manner for 150 min in rats fed fructose-rich chow for 4 weeks. Insulin action on the glucose disposal rate was measured using the glucose-insulin index, the value of the areas under the curve of glucose and insulin during the intraperitoneal glucose tolerance test. Oral administration of miracle fruit (0.2 mg/kg) to fructose-rich chow fed rats, three times daily for 3 days, reversed the raised value of the glucose-insulin index, indicating that miracle fruit has the ability to improve insulin sensitivity. The plasma glucose lowering action of tolbutamide, induced by secretion of endogenous insulin, is widely used to characterize the formation of insulin resistance. The time for the loss of the plasma glucose lowering response to tolbutamide (10.0 mg/kg, i.p.) in fructose-rich chow fed rats was markedly delayed after treatment with miracle fruit compared with the vehicle-treated group. Thus providing supportive data that oral administration of miracle fruit could delay the development of insulin resistance in rats. Also, the in vivo insulin sensitivity was markedly raised by miracle fruit. In conclusion, the results suggest that miracle fruit may be used as an adjuvant for treating diabetic patients with insulin resistance because this fruit has the ability to improve insulin sensitivity.
Collapse
Affiliation(s)
- Chang-Chih Chen
- Department of Emergency Medicine, Mackay Memorial Hospital and College of Oral Medicine, Taipei Medical University, Taipei City, Taiwan 10401, ROC
| | | | | |
Collapse
|
12
|
Gallagher CJ, Gordon CJ, Langefeld CD, Mychaleckyj JC, Freedman BI, Rich SS, Bowden DW, Sale MM. Association of the mu-opioid receptor gene with type 2 diabetes mellitus in an African American population. Mol Genet Metab 2006; 87:54-60. [PMID: 16140553 DOI: 10.1016/j.ymgme.2005.07.013] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2005] [Accepted: 07/19/2005] [Indexed: 11/24/2022]
Abstract
African Americans (AA) are at increased risk for developing type 2 diabetes mellitus (T2DM) relative to European Americans. We previously detected linkage of T2DM to 6q24-q27 (LOD 2.26) at 163.5 cM, closest to marker D6S1035, in a genome-wide scan of AA families. The mu-opioid receptor gene (OPRM1) is located within the LOD-1 support interval of this linkage peak. OPRM1 is an attractive positional candidate gene for T2DM susceptibility since agonists of OPRM1 affect glucose-induced insulin release and OPRM1 knockout mice have a more rapid induction of insulin resistance than wild-type. Twenty-two SNPs in this gene, at an average spacing of 3.9 kb, were genotyped in 380 AA T2DM cases and 276 AA controls. In single SNP association analyses, rs648007 demonstrated significant evidence of association with T2DM (P=0.013). Four blocks of high linkage disequilibrium were detected across the OPRM1 gene. Association analyses of haplotypes in each of these blocks revealed two haplotype blocks with significant overall P values (P=0.007 and 0.046). Significant, but rare, risk and protective haplotypes were identified as driving these associations with T2DM (P=0.034-0.047). These associations suggest that the OPRM1 gene plays a role in T2DM susceptibility in African Americans.
Collapse
Affiliation(s)
- Carla J Gallagher
- Department of Biochemistry, Wake Forest University School of Medicine, Winston-Salem, NC 27157, USA
| | | | | | | | | | | | | | | |
Collapse
|
13
|
Choi SB, Jang JS, Park S. Tramadol enhances hepatic insulin sensitivity via enhancing insulin signaling cascade in the cerebral cortex and hypothalamus of 90% pancreatectomized rats. Brain Res Bull 2005; 67:77-86. [PMID: 16140165 DOI: 10.1016/j.brainresbull.2005.05.029] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2005] [Revised: 05/24/2005] [Accepted: 05/27/2005] [Indexed: 11/28/2022]
Abstract
Clinical observation found that tramadol, mu opioid receptor (MOR) agonist and serotonin (5-HT) reuptake inhibitor, has a hypoglycemic effect in type 2 diabetes patients. The mechanism of its hypoglycemic effect has not been fully defined. This study showed that tramadol activated a neuronal insulin signaling cascade by increasing the induction of insulin receptor substrate-2 expression in primary cultured neuronal cells while this activation was suppressed by naloxone (MOR inhibitor) and dexamethasone (non-specific inhibitor of MOR and 5-HT receptor, DEX). Glucose utilization of the cerebral cortex and hypothalamus was enhanced by a 4-week-tramadol administration in 90% pancreatectomized rats, in vivo, as assessed by measurement of glucokinase expression and glycogen deposition via activating insulin signaling cascade such as neuronal cells in vitro. This improvement was almost completely suppressed by naloxone as well as DEX. Tramadol decreased fasted serum glucose levels, favored an increase in the glucose infusion rate and reduced endogeneous hepatic glucose production after 4 weeks of treatment. However, tramadol did not modulate hepatic glucose output directly, as exhibited by liver perfusion, suggesting tramadol altered hepatic glucose utilization through the effect of organs other than the liver, possibly the central nervous system. The data suggest that tramadol ameliorates peripheral glucose metabolism through central activation of MOR, and that central and peripheral glucose metabolism are therefore likely to be interrelated.
Collapse
Affiliation(s)
- Soo Bong Choi
- Department of Internal Medicine, College of Medicine, Konkuk University, Republic of Korea
| | | | | |
Collapse
|
14
|
Liu TP, Lee CS, Liou SS, Liu IM, Cheng JT. IMPROVEMENT OF INSULIN RESISTANCE BY ACANTHOPANAX SENTICOSUS ROOT IN FRUCTOSE-RICH CHOW-FED RATS. Clin Exp Pharmacol Physiol 2005; 32:649-54. [PMID: 16120192 DOI: 10.1111/j.0305-1870.2005.04245.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
1. In an attempt to develop new substances for handling insulin resistance, an aqueous extract of the root of Acanthopanax senticosus (Araliaceae) was used to screen the effect on insulin resistance induced by fructose-rich chow in rats. 2. Insulin action on glucose disposal rate was measured using the glucose-insulin index, the product from areas under the curve of glucose and insulin during the intraperitoneal glucose tolerance test. In addition to the modification of feeding behaviour and a marked decrease in bodyweight, oral administration (three times daily for 3 days) of the aqueous extract of A. senticosus root to rats that had received fructose-rich chow for 4 weeks reversed the elevated value of the glucose--insulin index, indicating that this herb has the ability to improve insulin sensitivity. 3. Time for the loss of the plasma glucose-lowering response to tolbutamide (10.0 mg/kg, i.p.) in fructose-rich chow-fed rats was markedly delayed by repeated treatment with the aqueous extract of A. senticosus root compared with the vehicle (saline) -treated group. Thus, an improving effect of A. senticosus root on insulin resistance can be considered. 4. An increase in insulin sensitivity following the administration of this herb was further identified using the plasma glucose-lowering action of exogenous insulin in streptozotocin (STZ)-diabetic rats. Oral administration of the aqueous extract of A. senticosus root at a dose of 150.0 mg/kg three times daily to STZ-diabetic rats increased the responses to exogenous insulin 10 days later. 5. The results obtained suggest that oral administration of the aqueous extract from A. senticosus root has the ability to improve insulin sensitivity and delay the development of insulin resistance in rats and, thus, may be used as an adjuvant therapy for patients with insulin resistance.
Collapse
Affiliation(s)
- Tsang-Pai Liu
- Department of General Surgery, Mackay Memorial Hospital, Taipei City, Taiwan, Republic of China
| | | | | | | | | |
Collapse
|
15
|
Tzeng TF, Liu IM, Cheng JT. Activation of opioid mu-receptors by loperamide to improve interleukin-6-induced inhibition of insulin signals in myoblast C2C12 cells. Diabetologia 2005; 48:1386-92. [PMID: 15959754 DOI: 10.1007/s00125-005-1791-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2004] [Accepted: 02/24/2005] [Indexed: 11/26/2022]
Abstract
AIMS/HYPOTHESIS This study investigated the role of opioid mu-receptor activation in the improvement of insulin resistance. METHODS Myoblast C2C12 cells were cultured with IL-6 to induce insulin resistance. Radioactive 2-deoxyglucose (2-DG) uptake was used to evaluate the effect of loperamide on insulin-stimulated glucose utilisation. Protein expression and phosphorylation in insulin-signalling pathways were detected by immunoblotting. RESULTS The insulin-stimulated 2-DG uptake was reduced by IL-6. Loperamide reversed this uptake, and the uptake was inhibited by blockade of opioid mu-receptors. Insulin resistance induced by IL-6 was associated with impaired expression of the insulin receptor (IR), IR tyrosine autophosphorylation, IRS-1 protein content and IRS-1 tyrosine phosphorylation. Also, an attenuated p85 regulatory subunit of phosphatidylinositol 3-kinase, Akt serine phosphorylation and the protein of glucose transporter subtype 4 were observed in insulin resistance. Loperamide reversed IL-6-induced decrement of these insulin signals. CONCLUSIONS/INTERPRETATION Opioid mu-receptor activation may improve IL-6-induced insulin resistance through modulation of insulin signals to reverse the responsiveness of insulin. This provides a new target in the treatment of insulin resistance.
Collapse
Affiliation(s)
- T-F Tzeng
- Department of Internal Medicine, Pao Chien Hospital, Ping Tung City, Taiwan, Republic of China
| | | | | |
Collapse
|
16
|
Sugita H, Kaneki M, Sugita M, Yasukawa T, Yasuhara S, Martyn JAJ. Burn injury impairs insulin-stimulated Akt/PKB activation in skeletal muscle. Am J Physiol Endocrinol Metab 2005; 288:E585-91. [PMID: 15536206 DOI: 10.1152/ajpendo.00321.2004] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The molecular bases underlying burn- or critical illness-induced insulin resistance still remain unclarified. Muscle protein catabolism is a ubiquitous feature of critical illness. Akt/PKB plays a central role in the metabolic actions of insulin and is a pivotal regulator of hypertrophy and atrophy of skeletal muscle. We therefore examined the effects of burn injury on insulin-stimulated Akt/PKB activation in skeletal muscle. Insulin-stimulated phosphorylation of Akt/PKB was significantly attenuated in burned compared with sham-burned rats. Insulin-stimulated Akt/PKB kinase activity, as judged by immune complex kinase assay and phosphorylation status of the endogenous substrate of Akt/PKB, glycogen synthase kinase-3beta (GSK-3beta), was significantly impaired in burned rats. Furthermore, insulin consistently failed to increase the phosphorylation of p70 S6 kinase, another downstream effector of Akt/PKB, in rats with burn injury, whereas phosphorylation of p70 S6 kinase was increased by insulin in controls. The protein expression of Akt/PKB, GSK-3beta, and p70 S6 kinase was unaltered by burn injury. However, insulin-stimulated activation of ERK, a signaling pathway parallel to Akt/PKB, was not affected by burn injury. These results demonstrate that burn injury impairs insulin-stimulated Akt/PKB activation in skeletal muscle and suggest that attenuated Akt/PKB activation may be involved in deranged metabolism and muscle wasting observed after burn injury.
Collapse
Affiliation(s)
- Hiroki Sugita
- Department of Anesthesia and Critical Care, Massachusetts General Hospital, Boston, MA, USA
| | | | | | | | | | | |
Collapse
|
17
|
Su CF, Chang YY, Pai HH, Liu IM, Lo CY, Cheng JT. Mediation of beta-endorphin in exercise-induced improvement in insulin resistance in obese Zucker rats. Diabetes Metab Res Rev 2005; 21:175-82. [PMID: 15386812 DOI: 10.1002/dmrr.496] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
BACKGROUND Aerobic exercise including treadmill running has long been used to successfully treat and/or prevent insulin resistance and type-2 diabetes. Increase of plasma beta-endorphin is observed with exercise. The present study was designed to clarify the role of endogenous beta-endorphin in exercise-induced improvement in insulin resistance. METHODS We used a moderate exercise program consisting of treadmill running at 20 m/min and 0% grade for 1 h/day, 7 days/week, for 8 weeks. Plasma glucose concentration was assessed by the glucose oxidase method. The enzyme-linked immunosorbent assay was performed to quantify the plasma level of beta-endorphin-like immunoreactivity (BER). The glucose disposal rate (GDR) was measured by the hyperinsulinemic euglycemic clamp technique. Changes of the insulin signaling in isolated soleus muscle were then detected by immunoprecipitation and immunoblotting. RESULTS An increase of plasma BER in parallel with the reduction of plasma glucose was obtained in exercise-trained obese Zucker rats. Different from a marked reduction in sedentary obese rats, the value of insulin-stimulated GDR obtained from the exercised obese rats was reversed to near that of the sedentary lean group, eight weeks after the last period of exercise. This effect of exercise was inhibited by naloxone or naloxonazine at doses sufficient to block opioid micro-receptors. Signaling-related defects in the soleus muscle of sedentary obese Zucker rats, which impaired glucose transporter subtype 4 (GLUT 4), included decreased phosphorylation of insulin receptor substrate (IRS)-1, as well as an attenuated p85 regulatory subunit of phosphatidylinositol 3-kinase (PI3 kinase) and Akt serine phosphorylation. In contrast, exercise training failed to modify the levels of insulin receptor (IR), IRS-1, and IR tyrosine autophosphorylation in obese Zucker rats. CONCLUSION Enhanced insulin sensitivity via exercise training might be mediated by endogenous beta-endorphin through an increase of postreceptor insulin signaling related to the IRS-1-associated PI3-kinase step that leads to the enhancement of GLUT 4 translocation and improved glucose disposal in obese Zucker rats.
Collapse
Affiliation(s)
- C F Su
- Graduate Institute of Medicine, Kaohsiung City, Taiwan, ROC
| | | | | | | | | | | |
Collapse
|